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OUTLINE OF TALKs

I. An Example of Hierarchical Models Applied to Insurance Ex-

tremes

II. Attribution of Climate Extremes

III. The Attribution Problem for Joint Distributions of Climate

Extremes (introduction)



I. AN EXAMPLE OF HIERARCHICAL
MODELS APPLIED TO INSURANCE

EXTREMES

From the book chapter Bayesian Risk Analysis by R.L. Smith
and D.J. Goodman (2000)

http://www.stat.unc.edu/postscript/rs/pred/inex1.pdf

See also:

R.L. Smith (2003), Statistics of Extremes, With Applications
in Environment, Insurance and Finance. In Extreme Values in
Finance, Telecommunications and the Environment, edited by
B. Finkenstadt and H. Rootzen, Chapman and Hall/CRC Press,
London, pp. 1-78.

http://www.stat.unc.edu/postscript/rs/semstatrls.pdf



The data consist of all insurance claims experienced by a large

international oil company over a threshold 0.5 during a 15-year

period — a total of 393 claims. Seven types:

Type Description Number Mean
1 Fire 175 11.1
2 Liability 17 12.2
3 Offshore 40 9.4
4 Cargo 30 3.9
5 Hull 85 2.6
6 Onshore 44 2.7
7 Aviation 2 1.6

Total of all 393 claims: 2989.6

10 largest claims: 776.2, 268.0, 142.0, 131.0, 95.8, 56.8, 46.2,

45.2, 40.4, 30.7.



(a)

Years From Start

C
la

im
 S

iz
e

0 5 10 15

0.5
1.0

5.0
10.0

50.0
100.0

500.0
1000.0

(b)

Years From Start

T
ot

al
 n

um
be

r 
of

 c
la

im
s

0 5 10 15

0

100

200

300

400

(c)

Years From Start

T
ot

al
 s

iz
e 

of
 c

la
im

s

0 5 10 15

0

500

1000

1500

2000

2500

3000

(d)

Threshold

M
ea

n 
ex

ce
ss

 o
ve

r 
th

re
sh

ol
d

0 20 40 60 80

0

50

100

150

200

250

300

Some plots of the insurance data.



Some problems:

1. What is the distribution of very large claims?

2. Is there any evidence of a change of the distribution over

time?

3. What is the influence of the different types of claim?

4. How should one characterize the risk to the company? More

precisely, what probability distribution can one put on the amount

of money that the company will have to pay out in settlement

of large insurance claims over a future time period of, say, three

years?



Introduction to Univariate Extreme Value
Theory



EXTREME VALUE DISTRIBUTIONS

X1, X2, ..., i.i.d., F (x) = Pr{Xi ≤ x}, Mn = max(X1, ..., Xn),

Pr{Mn ≤ x} = F (x)n.

For non-trivial results must renormalize: find an > 0, bn such that

Pr
{
Mn − bn
an

≤ x
}

= F (anx+ bn)n → H(x).

The Three Types Theorem (Fisher-Tippett, Gnedenko) asserts
that if nondegenerate H exists, it must be one of three types:

H(x) = exp(−e−x), all x (Gumbel)

H(x) =
{0 x < 0

exp(−x−α) x > 0
(Fréchet)

H(x) =
{

exp(−|x|α) x < 0

1 x > 0
(Weibull)

In Fréchet and Weibull, α > 0.



The three types may be combined into a single generalized ex-

treme value (GEV) distribution:

H(x) = exp

−
(

1 + ξ
x− µ
ψ

)−1/ξ

+

 ,
(y+ = max(y,0))

where µ is a location parameter, ψ > 0 is a scale parameter

and ξ is a shape parameter. ξ → 0 corresponds to the Gumbel

distribution, ξ > 0 to the Fréchet distribution with α = 1/ξ, ξ < 0

to the Weibull distribution with α = −1/ξ.

ξ > 0: “long-tailed” case, 1− F (x) ∝ x−1/ξ,

ξ = 0: “exponential tail”

ξ < 0: “short-tailed” case, finite endpoint at µ− ξ/ψ



EXCEEDANCES OVER THRESHOLDS

Consider the distribution of X conditionally on exceeding some

high threshold u:

Fu(y) =
F (u+ y)− F (u)

1− F (u)
.

As u→ ωF = sup{x : F (x) < 1}, often find a limit

Fu(y) ≈ G(y;σu, ξ)

where G is generalized Pareto distribution (GPD)

G(y;σ, ξ) = 1−
(

1 + ξ
y

σ

)−1/ξ

+
.

Equivalence to three types theorem established by Pickands (1975).



The Generalized Pareto Distribution

G(y;σ, ξ) = 1−
(

1 + ξ
y

σ

)−1/ξ

+
.

ξ > 0: long-tailed (equivalent to usual Pareto distribution), tail

like x−1/ξ,

ξ = 0: take limit as ξ → 0 to get

G(y;σ,0) = 1− exp
(
−
y

σ

)
,

i.e. exponential distribution with mean σ,

ξ < 0: finite upper endpoint at −σ/ξ.



POISSON-GPD MODEL FOR
EXCEEDANCES

1. The number, N , of exceedances of the level u in any one

year has a Poisson distribution with mean λ,

2. Conditionally on N ≥ 1, the excess values Y1, ..., YN are IID

from the GPD.



Relation to GEV for annual maxima:

Suppose x > u. The probability that the annual maximum of the

Poisson-GPD process is less than x is

Pr{ max
1≤i≤N

Yi ≤ x} = Pr{N = 0}+
∞∑
n=1

Pr{N = n, Y1 ≤ x, ... Yn ≤ x}

= e−λ +
∞∑
n=1

λne−λ

n!

{
1−

(
1 + ξ

x− u
σ

)−1/ξ
}n

= exp

{
−λ

(
1 + ξ

x− u
σ

)−1/ξ
}
.

This is GEV with σ = ψ+ξ(u−µ), λ =
(
1 + ξu−µψ

)−1/ξ
. Thus the

GEV and GPD models are entirely consistent with one another

above the GPD threshold, and moreover, shows exactly how the

Poisson–GPD parameters σ and λ vary with u.



ALTERNATIVE PROBABILITY MODELS

1. The r largest order statistics model

If Yn,1 ≥ Yn,2 ≥ ... ≥ Yn,r are r largest order statistics of IID

sample of size n, and an and bn are EVT normalizing constants,

then (
Yn,1 − bn

an
, ...,

Yn,r − bn
an

)
converges in distribution to a limiting random vector (X1, ..., Xr),

whose density is

h(x1, ..., xr) = ψ−r exp

−
(

1 + ξ
xr − µ
ψ

)−1/ξ

−
(

1 +
1

ξ

) r∑
j=1

log

(
1 + ξ

xj − µ
ψ

) .



2. Point process approach (Smith 1989)

Two-dimensional plot of exceedance times and exceedance levels

forms a nonhomogeneous Poisson process with

Λ(A) = (t2 − t1)Ψ(y;µ, ψ, ξ)

Ψ(y;µ, ψ, ξ) =

(
1 + ξ

y − µ
ψ

)−1/ξ

(1 + ξ(y − µ)/ψ > 0).



 

Illustration of point process model.



An extension of this approach allows for nonstationary processes

in which the parameters µ, ψ and ξ are all allowed to be time-

dependent, denoted µt, ψt and ξt.

This is the basis of the extreme value regression approaches

introduced later

Comment. The point process approach is almost equivalent to

the following: assume the GEV (not GPD) distribution is valid for

exceedances over the threshold, and that all observations under

the threshold are censored. Compared with the GPD approach,

the parameterization directly in terms of µ, ψ, ξ is often easier

to interpret, especially when trends are involved.



ESTIMATION

GEV log likelihood:

`Y (µ, ψ, ξ) = −N logψ −
(

1

ξ
+ 1

)∑
i

log

(
1 + ξ

Yi − µ
ψ

)

−
∑
i

(
1 + ξ

Yi − µ
ψ

)−1/ξ

provided 1 + ξ(Yi − µ)/ψ > 0 for each i.

Poisson-GPD model:

`N,Y (λ, σ, ξ) = N logλ− λT −N logσ −
(

1 +
1

ξ

) N∑
i=1

log
(

1 + ξ
Yi
σ

)
provided 1 + ξYi/σ > 0 for all i.

Usual asymptotics valid if ξ > −1
2 (Smith 1985)



Bayesian approaches

An alternative approach to extreme value inference is Bayesian,

using vague priors for the GEV parameters and MCMC samples

for the computations. Bayesian methods are particularly useful

for predictive inference, e.g. if Z is some as yet unobserved ran-

dom variable whose distribution depends on µ, ψ and ξ, estimate

Pr{Z > z} by ∫
Pr{Z > z;µ, ψ, ξ}π(µ, ψ, ξ|Y )dµdψdξ

where π(...|Y ) denotes the posterior density given past data Y



 

Plots of women’s 3000 meter records, and profile log-likelihood

for ultimate best value based on pre-1993 data.



Example. The left figure shows the five best running times by

different athletes in the women’s 3000 metre track event for

each year from 1972 to 1992. Also shown on the plot is Wang

Junxia’s world record from 1993. Many questions were raised

about possible illegal drug use.

We approach this by asking how implausible Wang’s performance

was, given all data up to 1992.

Robinson and Tawn (1995) used the r largest order statistics

method (with r = 5, translated to smallest order statistics) to

estimate an extreme value distribution, and hence computed a

profile likelihood for xult, the lower endpoint of the distribution,

based on data up to 1992 (right plot of previous figure)



Alternative Bayesian calculation:

(Smith 1997)

Compute the (Bayesian) predictive probability that the 1993 per-

formance is equal or better to Wang’s, given the data up to 1992,

and conditional on the event that there is a new world record.

The answer is approximately 0.0006.



Insurance Extremes Dataset

We return to the oil company data set discussed earlier. Prior
to any of the analysis, some examination was made of clustering
phenomena, but this only reduced the original 425 claims to 393
“independent” claims (Smith & Goodman 2000)

GPD fits to various thresholds:

u Nu Mean σ ξ
Excess

0.5 393 7.11 1.02 1.01
2.5 132 17.89 3.47 0.91
5 73 28.9 6.26 0.89

10 42 44.05 10.51 0.84
15 31 53.60 5.68 1.44
20 17 91.21 19.92 1.10
25 13 113.7 74.46 0.93
50 6 37.97 150.8 0.29



Point process approach:

u Nu µ logψ ξ
0.5 393 26.5 3.30 1.00

(4.4) (0.24) (0.09)
2.5 132 26.3 3.22 0.91

(5.2) (0.31) (0.16)
5 73 26.8 3.25 0.89

(5.5) (0.31) (0.21)
10 42 27.2 3.22 0.84

(5.7) (0.32) (0.25)
15 31 22.3 2.79 1.44

(3.9) (0.46) (0.45)
20 17 22.7 3.13 1.10

(5.7) (0.56) (0.53)
25 13 20.5 3.39 0.93

(8.6) (0.66) (0.56)

Standard errors are in parentheses



Predictive Distributions of Future Losses

What is the probability distribution of future losses over a specific

time period, say 1 year?

Let Y be future total loss. Distribution function G(y;µ, ψ, ξ) —

in practice this must itself be simulated.



Traditional frequentist approach:

Ĝ(y) = G(y; µ̂, ψ̂, ξ̂)

where µ̂, ψ̂, ξ̂ are MLEs.

Bayesian:

G̃(y) =
∫
G(y;µ, ψ, ξ)dπ(µ, ψ, ξ | X)

where π(· | X) denotes posterior density given data X.
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Estimated posterior densities for the three parameters, and for

the predictive distribution function. Four independent Monte

Carlo runs are shown for each plot.



Hierarchical models for claim type and year effects

Further features of the data:

1. When separate GPDs are fitted to each of the 6 main types,

there are clear differences among the parameters.

2. The rate of high-threshold crossings does not appear uniform,

but peaks around years 10–12.



A Hierarchical Model:

Level I. Parameters mµ, mψ, mξ, s
2
µ, s

2
ψ, s

2
ξ are generated from

a prior distribution.

Level II. Conditional on the parameters in Level I, parameters

µ1, ..., µJ (where J is the number of types) are independently

drawn from N(mµ, s2
µ), the normal distribution with mean mµ,

variance s2
µ. Similarly, logψ1, ..., logψJ are drawn independently

from N(mψ, s
2
ψ), ξ1, ..., ξJ are drawn independently from N(mξ, s

2
ξ ).

Level III. Conditional on Level II, for each j ∈ {1, ..., J}, the point

process of exceedances of type j is generated from the Poisson

process with parameters µj, ψj, ξj.



This model may be further extended to include a year effect, as

follows. Suppose the extreme value parameters for type j in year

k are not µj, ψj, ξj but µj + δk, ψj, ξj. We fix δ1 = 0 to ensure

identifiability, and let {δk, k > 1} follow an AR(1) process:

δk = ρδk−1 + ηk, ηk ∼ N(0, s2
η)

with a vague prior on (ρ, s2
η).

We show boxplots for each of µj, logψj, ξj, j = 1, ...,6 and for

δk, k = 2,15.
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II. ATTRIBUTION OF CLIMATE
EXTREMES

(Joint work with Michael Wehner, Lawrence Berkeley National

Laboratory)



Superstorm Sandy on October 27 2012 (Scott Sistek)



Superstorm Sandy (www.guardian.co.uk; October 30, 2012)



Superstorm Sandy (www.cnn.com; October 31, 2012)



 



Motivating Question:

• Concern over increasing frequency of extreme meteorological
events
– Is the increasing frequency a result of

anthropogenic influence?
– How much more rapidly with they increase in the future?

• Focus on three specific events: heatwaves in Europe 2003,
Russia 2010 and Central USA 2011

• Identify meteorological variables of interest — JJA temper-
ature averages over a region
– Europe — 10o W to 40o E, 30o to 50o N
– Russia — 30o to 60o E, 45o to 65o N
– Central USA — 90o to 105o W, 25o to 45o N

• Probabilities of crossing thresholds — respectively 1.92K,
3.65K, 2.01K — in any year from 1990 to 2040.



Background

• Stott, Stone and Allen (2004) defined “fraction of attributable
risk” (FAR)
– Observe some extreme event
– Let P1 be probability of this event estimated from models

including anthropogenic forcings, P0 corresponding prob-
ability under natural forcings

– FAR = 1− P0
P1

(also consider RR = P1
P0

)

• For the Europe 2003 event they claimed P1 ≈ 1
250, P0 ≈ 1

1000
so RR = 4 and FAR = 1− 1

4 = 0.75.

• “Very likely” (confidence level at least 90%) that the FAR
was at least 0.5 (RR ≥ 2),

• Method used a combination of extreme value theory, and
detection and attribution methodology from the climate lit-
erature


