Data

e Observational data from CRU (Climate Research Unit,
University of East Anglia, UK) — monthly averages on 5°x5° grid
boxes, aggregated to JJA average anomalies over

— Europe: spatial averages over 10°W-40°E, 30°N-50°N (2003 value was
1.92K but 2012 almost the same)

— Russia: spatial averages over 30°E-60°E, 45°N-65°N (2010 value 3.65K)
— Central USA (including Texas and Oklahoma): spatial averages over
90°W-105°W, 25°N-45°N (2011 value 2.01K)

e (Climate model data from CMIP3

— 14 climate models

— Total of 64 control runs, 44 twentieth century runs, 34 future
projections under A2 scenario

— Same spatial regions as observational data, converted to anomalies
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Introduction To Extreme Value Theory

Key tool: Generalized Extreme Value Distribution (GEV)

Three-parameter distribution, derived as the general form of limiting dis-
tribution for extreme values (Fisher-Tippett 1928, Gnedenko 1943)

e 1, o, £ known as location, scale and shape parameters
e £ > 0 represents long-tailed distribution, £ < 0 short-tailed

Pr{Y <y} = exp [—{l-l-E(y_“)}_ug

g +

Peaks over threshold approach implies that the GEV can be used generally

to study the tail of a distribution: assume GEV holds exactly above a

threshold « and that values below u are treated as left-censored

Time trends by allowing u, o, £ to depend on time

Example: Allow pu; = Bo+ S 1, Brzw, where {zy, k=1,..,K, t=1,..,T}

are spline basis functions for the approximation of a smooth trend from

time 1 to T with K degrees of freedom

Critical questions:

— Determination of threshold and K

— Point and interval estimates for the probability of exceeding a high
value, such as 1.92K in the case of the Europe time series
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Europe Summer Mean Temperatures With Trend
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Central USA Summer Mean Temperatures
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Bayesian Calculations

Focus on posterior distribution of binary log of threshold exceedance
probability (BLOTEP)
Use models both with and without trends

Use 80th (solid curve), 75th (dashed) and 85t (dot-dashed) percentiles for
thresholds
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What’s Next?

Obvious strategy at this point is to rerun the GEV calculation on the model data

But this runs into the scale mismatch problem: data plots shows that the models and
observations are on different scales, so we should expect the extreme value parameters to
be different as well

Requires a more subtle approach — hierarchical modeling

Model GFDL, Run 1, Europe Model GISS, Run 1, Europe
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Proposed Hierarchical Model
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Bayesian Statistics Details

Model Specification
o (Mq,D1) ~WN,(A, m, M*, F), Wishart-Normal prior with density
o | D" D/2 exp [—Str {D1 (A 4+ F(My — M*)(My — M*)T)}].
e Given My, Dy, 619 .. 0(0.N) are IID ~ N,(My, D71).

e Given 0(17) Y(1.J) generated by GEV with parameters (1.7
(Y©b3) for j =0, if ==1)

e Similar structure for My, Dy etc.

e We can expand this model by defining 6% ~ N, (M, (¥'D1)~ ') where
1) represents departure from exchangeability (v = 1 is exchangeable).

However, ¥ is not identifiable — we can only try different values as a
sensitivity check.

Computation
o (My,Dq) | 6V 0N ~ WN,(A,m,M* F), where m = m + N, F =
F+ N,M* = (FM* +30, 9“5”) JE, A=A+ FM M T4+, gD _
FAr N+
e Metropolis update for (1) . #(1.N) given M;,D; and Y's
e Metropolis update for #(1.0) based on conditional density

exp {—"5 (600 — ﬂ.fl)T Dy (639 — _.wl)} L (609 y(©9)

where L is likelihood for 8(1:2) given data Y(©P%) gnd = =1
e Similar updates for = = 0 side of picture; up to 1,000,000 iterations

15
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Europe Summer Mean Temperatures With Trend
and gentral 50% of Hierarchical Model Distribution
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Central USA Summer Mean Temperatures With Trend
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Central USA Summer Mean Temperatures With Trend and
Central 50% of Hierarchical Model Distribution
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Posterior Densities for the BLORRAT

(numbers are for solid curves and equal weights; dashed curves allow

for different weights between climate models and observations)

Density

Density

0.10

0.00

0.10

0.00

Europe 2003
Posterior Median RR=2.04
Posterior Quartiles RR=0.79, 7.79

0

| | | | |
-10 -5 0 5 10
BLORRAT
Russia 2010

Posterior Median RR=2.77,
Posterior Quartiles RR=0.91, 8.96

- /_\
.
|IJ Ty
e 4

BLORRAT

Density

Density

0.10 0.20

0.00

0.10 0.20

0.00

Europe 2012
Posterior Median RR=2.77,
Posterior Quartiles RR=1.13, 7.07

g -1
0 / . .
y \
\ .
. "
' O
‘
¥ y .
. .
. B
B

¢

.

BLORRAT

Central USA 2011
Posterior Median RR=2.35,
Posterior Quartiles RR=1.07, 5.44

.
) A
v o a
SO
J ¥ .
i ¢ ) .
.
. .
|

BLORRAT

22



Probability

Changes in Projected Extreme Event Probabilities Over Time
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Conclusions

 For each of Russia 2010, Central USA 2011 and
Europe 2012 events, estimated risk ratio is at least
2.3, and it’s likely (probability at least .66) that the
risk ratio is >1.5.

 We also computed future projections of extreme
event probabilities; sharp increase for Europe; much
less so for the other two regions studied

* Possible extension: Look at joint distributions of
multiple events (e.g. extreme temperature and
droughts)
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JOINT DISTRIBUTIONS OF
EXTREME EVENTS



Example 1. Herweijer and Seager (2008) argued that the persistence of
drought patterns in various parts of the world may be explained in terms of
SST patterns. One of their examples (Figure 3 of their paper) demonstrated
that precipitation patterns in the south-west USA are highly correlated with
those of a region of South America including parts of Uruguay and Argentina.

I computed annual precipitation means for the same regions, that show the
two variables are clearly correlated (r=0.38; pj.0001). The correlation coef-
ficient is lower than that stated by Herweijer and Seager (r=0.57) but this
is explained by their use of 6-year moving average filter, which naturally in-
creases the correlation.

Our interest here: look at dependence in lower tail probabilities

Transform to unit Fréchet distribution (small values of precipitation corre-
sponding to large values on Frchet scale)
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Figure 1. Left: Plot of USA annual precipitation means over latitudes 25-
35°N, longitudes 95-120°W, against Argentina annual precipitation means
over latitudes 30-40°S, longitudes 50-65°W, 1901-2002. Right: Same data
with empirical transformation to unit Fréchet distribution. Data from gridded
monthly precipitation means archived by the Climate Research Unit of the
University of East Anglia.



Example 2. Lau and Kim (2012) have provided evidence that the 2010
Russian heatwave and the 2010 Pakistan floods were derived from a common
set of meteorological conditions, implying a physical dependence between
these very extreme events.

Using the same data source as for Example 1, I have constructed summer
temperature means over Russia and precipitation means over Pakistan corre-
sponding to the spatial areas used by Lau and Kim.

Scatterpolt of raw data and unit Fréchet transformation. 2010 value approx-
imated — an outlier for temperature but not for precipitation.



Pakistan Rain (mm/mon)

° - § e
o ) &
ﬂ .O ° o % 8 B
® 4 e o o 2010% @ -
°
o ©
= ‘> :’-;. * % A § ]
° R * ° 3
\) ]
..~ ‘ [ ] E Py
® _oe o 0% * o =
o o®0 o Py ." (@) o ]
Lo [ J ® ‘. ‘U) O ®
° o g ° % °
o = k.
[ o — e® o ° °
| | | | | | | | | |
17 18 19 20 21 22 0) 50 100 150 200

Russian Temperature (deg C) Transformed Russian Temperature

Figure 2. Left: Plot of JJA Russian temperature means against Pakistan JJA
precipitation means, 1901-2002. Right: Same data with empirical transfor-
mation to unit Fréchet distribution. Data from CRU, as in Figure 1. The
Russian data were averaged over 45-65°N, 30-60°E, while the Pakistan data
were averaged over 32-35°N, 70-73°E, same as in Lau and Kim (2012).
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Methods

Focus on the proportion by which the probability of a joint ex-
ceedance is greater than what would be true under independence.

Method: Fit a joint bivariate model to the exceedances above a
threshold on the unit Fréchet scale

Two models:

e Classical logistic dependence model (Gumbel and Mustafi
1967; Coles and Tawn 1991)

e The n-asymmetric logistic model (Ramos and Ledford 2009)



Ref: Alexandra Ramos and Anthony Ledford (2009), A new class of models for
bivariate joint tails, J.R. Statist. Soc. B71, 219-241.

3.2. Smooth H,,

The model that is detailed here 1s based on a modified version of the asymmetric logistic depend-
ence structure of classical bivariate extremes (Tawn, 1988). Suppose that H,, has density h,, given
by

n—a o 1 —w —1/a Ny a/n-2 - o |
B, (W) = / - { (pw) 1/ 4+ ( ; ) } {w(l —w)}~U+1/a) (3.1)

v ‘T}Z p

for 0 <w<'1 where N, = p~ V4 plin — (p=1/e 4 pl/eya/n and ne (0,1], >0 and p>0. It is
straightforward to show that h,, as defined above satisfies the normalizing condition (2.5) and
so, by equation (2.3), we have

_ | £\ 1/ £\ /ey aln
FST(s..r)=N,;‘[(ps)—‘/w(;) —{(ps)—”u(;) } ] (3.2)

where (s, 1) €[1,00) x [1.00). The marginal survivor functions of S and T, as given by equations
(2.6). have leading terms that behave like powers of s or 7. For example, Pr(S > s) behaves like
s~ if a < nand s~V if a> 7 for large s. Thus the marginal tails of (S, T) can be heavier or
of the same heaviness as the joint survivor function, depending on the relative sizes of o and 7.



Logistic Model Ramos-Ledford Model
Estimate 90% CI Estimate 90% CI
10-year 2.7 (1.2 , 4.2) 2.9 (1.2 , 5.0)
20-year 4.7 (1.4 , 7.8) 4.9 (1.2 , 9.6)
50-year 10.8 (2.1 , 18.8) 9.9 (1.4 , 23.4)

Table 1. Estimates of the increase in probability of a joint ex-
treme event in both variables, relative to the probability under in-
dependence, for the USA/Uruguay-Argentina precipitation data.
Shown are the point estimate and 90% confidence interval, under
both the logistic model and the Ramos-Ledford model.

Logistic Model

Ramos-Ledford Model

Estimate 90% CI Estimate 90% CI
10-year | 1.01 | (1.00 , 1.01)| 0.33 (0.04 , 1.4)
20-year | 1.02 | (1.00 , 1.03)| 0.21 |(0.008 , 1.8)
50-year | 1.05 |(1.01 , 1.07)| 0.17 |(0.001 , 2.9)

Table 2. Similar to Table 1, but for the Russia-Pakistan dataset.
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Conclusions

e The USA—-Argentina precipitation example shows clear de-
pendence in the lower tail, though the evidence for that rests
primarily on three years’ data

e In contrast, the analysis of Russian temperatures and Pak-
istan rainfall patterns shows no historical correlation between
those two variables

e Implications for future analyses: the analyses also show the
merits of the Ramos-Ledford approach to bivariate extreme
value modeling. The existence of a parametric family which
IS tractable for likelihood evaluation creates the possibility of
constructing hiterarchical models for these problems.



At least three methodological extensions, all of
which are topics of active research:

1. Models for multivariate extremes in > 2 dimensions

2. Spatial extremes: max-stable process, different estimation
methods
(a) Composite likelihood method
(b) Open-faced sandwich approach
(c) Approximations to exact likelihood, e.g. ABC method

3. Hierarchical models for bivariate and spatial extremes?
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