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What'’s wrong with that picture?

We fitted a linear trend to data which are obviously autocor-
related

OLS estimate 0.74 deg C per century, standard error 0.037

So it looks statistically significant, but question how standard
error is affected by the autocorrelation

First and simplest correction to this: assume an AR(1) time
series model for the residual

So I calculated the residuals from the linear trend and fitted
an AR(1) model, X,, = ¢1X,,_1 + en, estimated ¢; = 0.62
with standard error 0.07. With this model, the standard error
of the OLS linear trend becomes 0.057, still making the trend
very highly significant

But is this an adequate model?
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Fit AR(p) of various orders p, calculate log likelihood, AIC, and

the standard error of the linear trend.

Model Xn, =YF_ 1 ¢, X, + €n, en ~ N[0,02] (IID)

AR order LogLik AIC Trend SE
0 72.00548 | —140.0110 0.036
1 99.99997 | —193.9999 0.057
2 100.13509 | —192.2702 0.060
3 101.84946 | —193.6989 0.069
4 105.92796 | —199.8559 0.082
5 106.12261 | —198.2452 0.079
6) 107.98867 | —199.9773 0.086
7 108.16547 | —198.3309 0.089
8 108.16548 | —196.3310 0.089
9 108.41251 | —194.8250 0.086
10 108.48379 | —192.9676 0.087




Extend the calculation to ARI\/IA(p g) for various p and g: model
IS Xn = Y41 6iXni =en+TI_10jenj, en ~ N[0,02] (IID)

AR order MA order
O 1 2 3 4 5

0 —140.0 | —177.2 | —188.4 | —186.4 | —191.5 | —192.0
1 —194.0 | —193.0 | —197.4 | —195.5 | —201.7 | —199.8
2 —192.3 | —193.0 | —195.4 | —199.2 | —200.8 | —199.1
3 —193.7 | —197.2 | —=200.3 | —197.9 | —200.8 | —200.1
4 —199.9 | —199.6 | —199.8 | —197.8 | —196.8 | —197.4
5 —198.2 | —198.8 | —197.8 | —195.8 | —194.8 | —192.8
6 —200.0 | —198.3 | —196.4 | —195.7 | —196.5 | —199.6
7 —198.3 | —196.3 | —200.2 | —199.1 | —194.6 | —197.3
38 —196.3 | —195.8 | —194.4 | —192.5 | —192.8 | —196.4
9 —194.8 | —194.4 | —197.6 | —197.9 | —196.2 | —194 .4
10 —193.0 | —192.5 | —195.0 | —191.2 | —194.9 | —192.4

SE of trend based on ARMA(1,4) model: 0.087 deg C per cen-

tury
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Calculating the standard error of the trend
Estimate B = > , w;X;, variance

2 n n
oc D D Wiwsplij

i=1j=1
where p is the autocorrelation function of the fitted ARMA model

Alternative formula (Bloomfield and Nychka, 1992)

R 1/2
Variance(B3) = 2/0 w( f)s(f)df

where s(f) is the spectral density of the autocovariance function

and
2

w(f) =

n o .
Z wn€—27m]f
j=1

is the transfer function
11
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What’s better than the OLS linear trend
estimator?

Use generalized least squares (GLS)

yn = PBo + Bizn + un,
un, ~ ARMA(p,q)

Repeat same process with AIC: ARMA(1,4) again best

—~

B8 = 0.73, standard error 0.10.
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Calculations in R

ip=4
ig=1
tsl=arima(y2,order=c(ip,0,iq) ,xreg=1:ny,method="ML")

Coefficients:
arl ar2 ar3 ar4 mal intercept 1:ny
0.0058 0.2764 0.0101 0.3313 0.5884 -0.4415 0.0073
s.e. 0.3458 0.2173 0.0919 0.0891 0.3791 0.0681 0.0010

sigma”2 estimated as 0.009061: 1log likelihood = 106.8,
aic = -197.59

acf1=ARMAacf (ar=ts1$coef[1:ip] ,ma=ts1$coef[ip+1:iql,lag.max=150)
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Statistical Models

Let
e t1;: 1th year of series
e y;. temperature anomaly in year t;
o to; = (11, —1998)
® y; = po+ Pit1; + Boto; + uy
e Simple linear regression (OLS): u; ~ N[0, c2] (IID)
e Time series regression (GLS): u; — ¢1ui—1 — ... — PpUj_p =

ei +01€6i-1+ ... + 0g€i—g, € ~ N[0,0°] (IID)

Fit using arima function in R
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Adjustment for the ElI Ninho Effect

El Nino is a weather effect caused by circulation changes in
the Pacific Ocean

1998 was one of the strongest El Nino years in history

A common measure of El Nino is the Southern Oscillation
Index (SOI), computed monthly

Here use SOI with a seven-month lag as an additional co-
variate in the analysis
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Selecting The Changepoint

If we were to select the changepoint through some form of au-
tomated statistical changepoint analysis, where would we put
it?
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Conclusion from Temperature Trend Analysis

e NO evidence of decrease post-1998 — if anything, the trend
increases after this time

e After adjusting for El Nino, even stronger evidence for a
continuously increasing trend

e If we were to select the changepoint instead of fixing it at
1998, we would choose some year in the 1970s
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Warm streaks in the U.S. temperature record:

What are the chances?

Peter F. Craigmile'?, Peter Guttorp®*, Robert Lund®, Richard L. Smith®’, Peter W. Thorne®®1°,
and Derek Arndt®

! Department of Statistics, Ohio State University, Columbus, Ohio, USA, 2School of Mathematics and Statistics, University
of Glasgow, Scotland, UK, E"‘D:—:-|tnar’[me nt of Statistics, University of Washington, Seattle, Washington, USA, "'Norwegian
Computing Center, Oslo, Norway, * Department of Mathematical Sciences, Clemson University, Clemson, South Carolina,
USA, ®Department of Statistics and Operations Research, University of North Carolina at Chapel Hill, Chapel Hill, North
Carolina, USA, 7statistical and Applied Mathematical Sciences Institute, Research Triangle Park, North Carolina, USA,
BNational Climatic Data Center, Asheville, North Carolina, USA, ® Department of Marine, Earth and Atmospheric Sciences,
North Carolina State University at Raleigh, Raleigh, North Carolina, USA, '“Nansen Environment and Remote Sensing
Center, Bergen, Morway

Abstract A recent observation in NOAA's National Climatic Data Center’s monthly assessment of the state
of the climate was that contiguous U.S. average monthly temperatures were in the top third of monthly
ranked historical temperatures for 13 straight months from June 2011 to June 2012. The chance of such a
streak occurring randomly was quoted as (1/3)'3, or about one in 1.6 million. The streak continued for three
more months before the October 2012 value dropped below the upper tercile. The climate system displays a
degree of persistence that increases this probability relative to the assumption of independence. This paper
puts forth different statistical techniques that more accurately quantify the probability of this and other such
streaks. We consider how much more likely streaks are when an underlying warming trend is accounted for
in the record, the chance of streaks occurring anywhere in the record, and the distribution of the record’s
longest streak.
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Continental US monthly temperatures, Jan 1895—0Oct 2012.

For each month between June 2011 and Sep 2012, the monthly
temperature was in the top tercile of all observations for that
month up to that point in the time series. Attention was first
drawn to this in June 2012, at which point the series of top
tercile events was 13 months long, leading to a nailve calculation
that the probability of that event was (1/3)13 = 6.3 x 107,
Eventually, the streak extended to 16 months, but ended at that
point, as the temperature for Oct 2012 was not in the top tercile.

In this study, we estimate the probability of either a 13-month or
a 16-month streak of top-tercile events, under various assump-
tions about the monthly temperature time series.
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Method

e [wo issues with NOAA analysis:
— Neglects autocorrelation
— Ignores selection effect

e Solutions:

— Fit time series model — ARMA or long-range dependence

— Use simlulation to determine the probability distribution
of the longest streak in 117 years

e Some of the issues:
— Selection of ARMA model — AR(1) performs poorly
— Variances differ by month — must take that into account
— Choices of estimation methods, e.g. MLE Or Bayesian —

Bayesian methods allow one to take account of parameter
estimation uncertainty
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Table 2. Estimate of the Probability of Obtaining an Upper Tercile Streak of at Least
16 Months, Assuming Different Statistical Models for the Temperature®

Assumption for {Z;}

Model ARMA(3,1) ARMA(4,2) FD-ML FD-Bayes
Stationary model (1) 0.031 0.034 0.019 0.035
Trend model (2) 0.065 0.069 0.116 0.145
Model (2), zero slope 0.007 0.008 0.008 0.013
Nonlinear trend model (3) 0.135 0.141 0.269 0.163
% Increase 830 790 1260 1030

4The last line shows the percentage increase in the probability as we go from
model (2) with a zero slope to model (2) with the actual slope observed for the
temperature series. The first three columns are taken from Table S8 of the support-
ing information and agree (subject to the margin of error) with results presented
in Table S3 and on p. 12 of Text S1. The last column for the fractionally differenced
Bayesian model is taken from the p = 0 case of Figure S5.
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Figure 6. Histograms of the maximum run of upper tercile streak when {Z,} is an ARMA(3,1) process for different
assumptions made for the trend.
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Conclusions

It's important to take account of monthly varying standard
deviations as well as means.

Estimation under a high-order ARMA model or fractional
differencing lead to very similar results, but don't use AR(1).

In a model with no trend, the probability that there is a
sequence of length 16 consecutive top-tercile observations
somewhere after year 30 in the 117-year time series is of
the order of 0.01-0.03, depending on the exact model being
fitted. With a linear trend, these probability rise to something
over .05. Include a nonlinear trend, and the probabilities are
even higher — in other words, not surprising at all.

Overall, the results may be taken as supporting the over-
all anthropogenic influence on temperature, but not to a
stronger extent than other methods of analysis.
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A Parliamentary Question is a device where any member of the
U.K. Parliament can ask a question of the Government on any
topic, and is entitled to expect a full answer.
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Climate Change

Question

Asked by Lord Donoughue

To ask Her Majesty’'s Government, further to the Written Answers by Baroness Verma on 14 January (WA 110), 5 February (WA
31-2% and 21 March (WA 170-1), whether they will ensure that their assessment of the probability in relation to global
temperatures of a linear trend with first-order autoregressive noise compared with a driftless third-order autoregressive
integrated model is published in the Official Report; and, if not, why not. [HL6620]

22 Apr 2013 : Column WA359
Lord Newby: As indicated in a previous Written Answer given by my noble friend Baroness Verma to the noble Lord on 14
January 2013 (Official Report, col. WA110), it is the role of the scientific community to assess and decide between various

methods for studying global temperature time series. It is also for the scientific community to publish the findings of such
work, In the peer-reviewed scientific literature.

www.parliament.uk, April 22, 2013
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Met Office

Statistical models
and the global
temperature record

May 2013

Professor Julia Slingo, ‘,‘/

Met Office Chief Scientist

#
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Essence of the Met Office Response

Acknowledged that under certain circumstances an ARIMA(3,1,0)
without drift can fit the data better than an AR(1) model
with drift, as measured by likelihood

The result depends on the start and finish date of the series

Provides various reasons why this should not be interpreted
as an argument against climate change

Still, it didn't seem to me (RLS) to settle the issue beyond
doubt
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There is a tradition of this kind of research going back some
time
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Global Warming as a Manifestation of a Random Walk

A. H. GORDON
Flinders Institute for Atmospheric and Marine Science, The Flinders University of South Australia, Bedford Park, South Australia
(Manuscript received 17 April 1990, in final form 31 December 1990)
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FIG. 3. Plots of the changes in temperaturc from one year 1o the next from the 18611988 series of mean surface temperature anomalies.
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It is important to examine all ways and means by
which the observed data series develop trends l:_aefore
facing hard and fast conclusions that any particular
activity is the one and only responsible agent.
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Summary So Far

Integrated or unit root models (e.g. ARIMA(p,d,q) with d =
1) have been proposed for climate models and there is some
statistical support for them

If these models are accepted, the evidence for a linear trend
IS not clear-cut

Note that we are not talking about fractionally integrated
models (0 < d < %) for which there is by now a substantial
tradition. These models have slowly decaying autocorrela-
tions but are still stationary

Integrated models are not physically realistic but this has not
stopped people advocating them

I see the need for a more definitive statistical rebuttal
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HadCRUT4 Global Series, 1900—2012

Model I: y —y;_1

Model II : Yr =
Model III @ y —y;—1 =
Model IV : Yr =

Use AICC as measure of fit

ARMA(p,q) (mean 0)

Linear Trend + ARMA(p,q)
Nonlinear Trend + ARMA(p,q)
Nonlinear Trend + ARMA(p,q)
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Integrated Time Series, No Trend

p
0 1 2 3 4 5

O|—-165.4 | —-178.9 | —-182.8 | -180.7 | —187.7 | —185.8
1|-169.2 | -181.3 | —-180.7 | —184.1 | -186.3 | —134.4
2| —-176.0 | —182.8 | —-18b.7 | —182.7 | —184.7 | —184.4
3|—-185.5|—-184.2 | —-185.2 | -183.0 | —=184.4 | —184.0
4 1 —-183.5 | —-181.5 | —-183.0 | —=180.7 | —=181.5 NA
5|—-185.2 | —-183.1 | -181.0 | -185.8 | —183.6 | —182.5
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Stationary Time Series, Linear Trend

p
0 1 2 3 4 5

0| —-136.1 | -168.8 | —-178.2 | —-176.2 | —180.9 | —181.6
1|-183.1 | —-183.1 | —-186.8 | —184.5 | —190.8 | —188.5
2 |—-181.3 | —-181.7 | -184.5 | -187.4 | —189.2 | —187.3
3| —-182.6 | -186.6 | -188.9 | —187.1 | -189.3 | —187.3
4 1 —-189.7 | -188.7 | -188.4 | —-185.4 | —185.1 NA
5 —-187.9 | -187.6 | -186.0 | —183.0 | —182.6 | —183.8
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Integrated Time Series, Nonlinear Trend

p
0 1 2 3 4 5

O|—-156.8 | —195.1 | =201.7 | —199.4 | —207.7 | —208.9
1|-161.4 | —-199.5 | —-199.4 | —202.3 | —210.3 | —209.0
2| —169.9 | —202.3 | —210.0 | —201.4 | —209.7 | —208.7
3| —-183.2 | -201.0 | —203.5 | —201.2 | —207.3 | —204.8
4 1 —-180.9 | -199.3 | —201.2 | —198.7 | —205.3 NA
5| —-186.8 | —201.7 | —=199.4 | —207.7 | —204.8 | —204.8
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Stationary Time Series, Nonlinear Trend

p
0 1 2 3 4 5

O|—-199.1 | —204.6 | —202.4 | —217.8 | —216.9 | —215.9
1| —-202.6 | —202.3 | —215.2 | —217.7 | =216.1 | —214.7
2 | —205.2 | 217.3 | =205.0 | —216.6 | —214.1 | —213.3
3| —203.8 | —205.9 | =203.6 | —214.3 | —211.7 | —213.5
4 | =202.2 | —203.5 | —213.7 | —212.0 | —227.1 NA
5| —-205.7 | m203.2 | —216.2 | —233.3 | —212.6 | —226.5
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Residual
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Conclusions

e If we restrict ourselves to linear trends, there is not a clear-
cut preference between integrated time series models without
a trend and stationary models with a trend

e However, if we extend the analysis to include nonlinear trends,
there is a very clear preference that the residuals are
stationary, not integrated

e PoOssible extensions:

— Add fractionally integrated models to the comparison

— Bring in additional covariates, e.g. circulation indices and
external forcing factors

— Consider using a nonlinear trend derived from a climate
model. That would make clear the connection with de-
tection and attribution methods which are the preferred
tool for attributing climate change used by climatologists.
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EXTREME VALUE DISTRIBUTIONS

X1, Xo, ..., 1.0.d., F(CE) = PF{XZ' < 33}, My = max(Xl, ...,Xn),
PriM, < x} = F(x)".
For non-trivial results must renormalize. find a, > 0O, by, such that

Pr {Mn — bn < x} = F(anz +bn)" — H(x).
an

The Three Types Theorem (Fisher-Tippett, Gnedenko) asserts
that if nondegenerate H exists, it must be one of three types:

H(z) = exp(—e™ ™), all z (Gumbel)
H(z) = {(e)xp(—x_o‘) iig(l:réchet)
H(z) = {?xp(—|x|o‘) ””ig (Weibull)

In Fréchet and Weibull, o > 0.
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The three types may be combined into a single generalized ex-
treme value (GEV) distribution:

v\ L/
H(w)=exp{—<1+£ ) }
vy

(y4+ = max(y,0))

where p is a location parameter, v > 0 is a scale parameter
and £ is a shape parameter. £ — 0 corresponds to the Gumbel
distribution, £ > 0 to the Fréchet distribution with a =1/¢, £ <0
to the Weibull distribution with a = —1/¢.

£>0: “long-tailed” case, 1 — F(z) o< 2~ 1/¢,
£ = 0: "exponential tail”

£ < 0: “short-tailed” case, finite endpoint at u — &/
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EXCEEDANCES OVER THRESHOLDS

Consider the distribution of X conditionally on exceeding some
high threshold wu:

= D F

As u — wp =sup{z: F(x) < 1}, often find a limit
Fu(y) = G(y; ou, §)

where G is generalized Pareto distribution (GPD)

Gy;0,6) =1 — (1 + gg):/g.

Equivalence to three types theorem established by Pickands (1975).
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The Generalized Pareto Distribution

—1/¢

Gly;0,6) =1 — (1+£§)+

¢ > 0: long-tailed (equivalent to usual Pareto distribution), tail
like z—1/¢€,

& = 0: take limit as £ —+ 0 to get

G(y;0,0) =1 —exp (—g) ,

o)
I.e. exponential distribution with mean o,

¢ < 0: finite upper endpoint at —o/¢.
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POISSON-GPD MODEL FOR
EXCEEDANCES

. The number, N, of exceedances of the level u in any one
year has a Poisson distribution with mean ),

. Conditionally on N > 1, the excess values Y7,..., Yy are IID
from the GPD.
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Relation to GEV for annual maxima:

Suppose =z > u. T he probability that the annual maximum of the
Poisson-GPD process is less than x is

@)
Pr{lrg.a<>§VY:i <z}=Pr{N=0}+ ) Pr{N=n, Y1 <z, .Y, <z}
_Z_

n=1

R S {1 - (1 +¢ _u)_l/g}n

=1 n! o
exp {—A (1 1t ; u)_l/{f} .

This is GEV with o = ¥+ &(u—p), A = (1 + g%)_l/g. Thus the
GEV and GPD models are entirely consistent with one another
above the GPD threshold, and moreover, shows exactly how the
Poisson—GPD parameters ¢ and A\ vary with w.
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ALTERNATIVE PROBABILITY MODELS

1. The r largest order statistics model

If Yo1 2 Yoo = ... 2 Ynr are r largest order statistics of IID
sample of size n, and a,, and b, are EVT normalizing constants,

then

) )
an, an,

(Y’I’L,l - bn an,,'r - bn)

converges in distribution to a limiting random vector (X1, ..., X;),
whose density is

2y — )\~ HE
h(zy,....,2zr) = ¥ " exp —<1+£ ; )
1) <& XTi— [
—[14+= | 1 J .
( +£>j;og< T )}
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2. Point process approach (Smith 1989)

Two-dimensional plot of exceedance times and exceedance levels
forms a nonhomogeneous Poisson process with

ANA) = (t2 —t1)W(y;p, 1, §)

ENEY
W (y; pyah, €) = <1+§%>

(1 + &y —p)/v > 0).
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Illustration of point process model.
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An extension of this approach allows for nonstationary processes
in which the parameters u, ¥ and & are all allowed to be time-
dependent, denoted u¢, Y and &.

This is the basis of the extreme value regression approaches
introduced later

Comment. The point process approach is almost equivalent to
the following: assume the GEV (not GPD) distribution is valid for
exceedances over the threshold, and that all observations under
the threshold are censored. Compared with the GPD approach,
the parameterization directly in terms of u, v, & is often easier
to interpret, especially when trends are involved.
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ESTIMATION

GEV log likelihood:

. —1/¢
_Z<1+5Y2w M)

1

provided 1 + &(Y; — ) /v > 0 for each 1.
Poisson-GPD model:
1\ & Y;
Iny(MNo,§) = Nlogh—AT'— Nlogo — |1 +E Z log (1 —|—§—>
i=1 o
provided 1 4 ¢Y; /o > O for all i.

Usual asymptotics valid if £ > —% (Smith 1985)
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Bayesian approaches

An alternative approach to extreme value inference is Bayesian,
using vague priors for the GEV parameters and MCMC samples
for the computations. Bayesian methods are particularly useful
for predictive inference, e.g. if Z is some as yet unobserved ran-
dom variable whose distribution depends on u,® and &, estimate
Pr{Z > z} by

/Pr{Z > 2z, Em(p, ¥, €Y ) dpdipdg

where 7(...|Y) denotes the posterior density given past data Y
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Example. The left figure shows the five best running times by
different athletes in the women's 3000 metre track event for
each year from 1972 to 1992. Also shown on the plot is Wang
Junxia’s world record from 1993. Many questions were raised
about possible illegal drug use.

We approach this by asking how implausible Wang's performance
was, given all data up to 1992.

Robinson and Tawn (1995) used the r largest order statistics
method (with » = 5, translated to smallest order statistics) to
estimate an extreme value distribution, and hence computed a
profile likelihood for x|+, the lower endpoint of the distribution,
based on data up to 1992 (right plot of previous figure)
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Alternative Bayesian calculation:
(Smith 1997)

Compute the (Bayesian) predictive probability that the 1993 per-
formance is equal or better to Wang’s, given the data up to 1992,
and conditional on the event that there is a new world record.
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yy=read.table(’C:

r=5

1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992

533.
536.
532.
526.
507.
516.
512.
.80
513.
514.
506.
512.
502.
505.
513.
518.
506.
518.
518.
512.
513.

511

00
60
80
60
12
80
10

53
30
78
08
62
83
99
10
53
48
38
00
72

545.
537.
535.
.00
.80

531
521

526.
513.
516.
513.
514.
509.
514.
509.
507.
514.
518.
507.
518.
519.
515.
516.

/Users/rls/r2/d/evt/marathon/w3000.txt’ ,header=F)

80
20
20

30
20
40
90
80
36
02
59
83
10
50
15
51
46
72
63

549.
538.
535.
.80
525.
526.
513.
.30

531

521

514.
518.
509.
514.
512.
508.
514.
518.
509.
518.
523.
515.
517.

20
40
60

40
40
50

00
35
71
60
00
83
43
73
02
97
14
82
92

556.
540.
539.
534.
528.
526.
520.
.60

521

516.
524 .
.67
514.
513.
515.
515.
519.
510.
520.
523.
516.
518.

511

00
60
00
20
40
60
90

00
64

62
57
74
92
28
45
85
68
05
45

556.
543.
.40
535.
534.
529.
522.
524.
520.
524.
513.
515.
514.
516.
516.
519.
.67
522.
524.
516.
519.

541

511

60
00

00
90
20
30
10
40
65
40
06
91
51
00
45

12
07
06
94
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+ ++++++++++++++++++++VVY

# likelihood function (compute NLLH - defaults to 10710 if parameter values

# infeasible) - par vector is (mu, log psi, xi)
lh=function(par){

if (abs(par[2])>20){return(10°10)}
#if (abs(par[3])>1){return(10~10)}
if (par[3]>=0){return(10~10)}
mu=par [1]

psi=exp(par[2])

xi=par[3]

£=0

for(i in 9:21){

f=f+r*par[2]

sl=1+xi* (mu-yy[i,6])/psi

if (s1<=0){return(10710)}
sl=-log(sl)/xi

if (abs(s1)>20){return(10~10)}
f=f+exp(sl)

for(j in 2:6){
sl=1+xi*(mu-yy[i,j])/psi

if (s1<=0){return(10710)}
f=f+(1+1/xi)*1log(sl)

3}

return(f)

¥
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> # trial optimization of likelihood function
> par=c(520,0,-0.01)

> lh(par)

[1] 485.5571

>

> par=c(510,1,-0.1)

> lh(par)

[1] 255.9864

>

> optl=optim(par,lh,method="Nelder-Mead")
> opt2=optim(par,lh,method="BFGS")

> opt3=optim(par,lh,method="CG")

> optl$par

[1] 510.8844846 1.3119151 -0.3377374
> opt2$par

[1] 510.8840970 1.3118407 -0.3378123
> opt3$par

[1] 510.4261195 1.3143073 -0.3549833
> optl$value

[1] 116.1818

> opt2$value

[1] 116.1818

> opt3$value

[1] 116.3213

>

90



>

> # MLE of endpoint (intepreted as smallest possible running time)
>

> opti$par[1]+exp(opti$par[2])/opti$par[3]

[1] 499.8899

> opt2$par[1]+exp(opt2$par[2])/opt2$par[3]

[1] 499.8928

>

# now do more through optimization and prepare for MCMC
par=c(520,0,-0.01)
opt2=optim(par,lh,method="BFGS" ,hessian=T)

library (MASS)

A=ginv(opt2%hessian)

sqrt(diag(A))

[1] 0.85637360 0.08829459 0.07802306

> eiv=eigen(A)

> V=eiv$vectors

> V=V %x*Y, diag(sqrt(eiv$values)) %*% t(V)

V V V V V V
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+ +++++++++++++VVVVVVVVVYV

# MCMC - adjust nsim=total number of simulations,
par=opt2$par

nsim=1000000

nsave=1

nwrite=100

del=1

1h1=1h(par)

parsim=matrix(nrow=nsim/nsave,ncol=3)
accp=rep(0,nsim)

for(isim in 1:nsim){

# Metropolis update step

parnew=par+del*V %x} rnorm(3)

1h2=1h(parnew)

if (runif (1)<exp(1h1-1h2)){

1h1=1h2

par=parnew

accplisim]=1

+

if (nsave*round(isim/nsave)==isim){
parsim[isim/nsave,]=par
write(isim,’C:/Users/rls/marll/conferences/NCSUFeb2015/counter.txt’ ,ncol=1)
}

if (nwrite*round(isim/nwrite)==isim){
write(parsim,’C:/Users/rls/marll/conferences/NCSUFeb2015/parsim.txt’,ncol=1)}}
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> # results from presaved MCMC output

> parsiml=matrix(scan(’C:/Users/rls/marll/conferences/NCSUFeb2015/parsiml.txt’) ,nr
Read 30000 items

parsim=parsiml[(length(parsimi[,1])/2+1) :1length(parsimi[,1]),]
sl=1+parsim[,3]*(parsim[,1]-502.62) /exp(parsim[,2])
s1[s1<0]=s1

s1[s1>0]=1-exp(-s1[s1>0] "~ (-1/parsim[s1>0,3]))
s2=1+parsim[,3]*(parsim[,1]-486.11) /exp(parsim[,2])

s2[s2<0]=0

s2[s2>0]=1-exp(-s2[s2>0] " (-1/parsim[s2>0,3]))

mean (s2/s1)

[1] 0.000422214

> mean(s2==0)

VvV V V V VYV VYV

[1] 0.9212
> quantile(s2/s1,c¢(0.5,0.9,0.95,0.975,0.995))
50% 90% 95% 97.5% 99.5%

0.0000000000 0.0000000000 0.0001011265 0.0026199509 0.0254551231
> endp=parsim[,1]+exp(parsim[,2])/parsim[, 3]

> sum(endp<486.11)/length(endp)

[1] 0.079

> plot(density(endp[endp>460]))
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Motivating Question:

Concern over increasing frequency of extreme meteorological
events
— Is the increasing frequency a result of
anthropogenic influence?
— How much more rapidly with they increase in the future?

Focus on three specific events: heatwaves in Europe 2003,
Russia 2010 and Central USA 2011

Identify meteorological variables of interest — JJA temper-
ature averages over a region

— Europe — 10° W to 40° E, 30° to 50° N

— Russia — 30° to 60° E, 45° to 65° N

— Central USA — 90° to 105° W, 25° to 45° N

Probabilities of crossing thresholds — respectively 1.92K,
3.65K, 2.01K — in any year from 1990 to 2040.
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Data

Climate model runs have been downloaded from the WCRP
CMIP3 Multi-Model Data website (http://esg.linl.gov:8080/index.jsp)

Three kinds of model runs:

e [ wentieth-century

e Pre-industrial control model runs (used a proxy for natural
forcing)

e Future projections (A2 scenario)

We also took observational data (5° x 5° gridded monthly tem-
perature anomalies) from the website of the Climate Research

Unit of the University of East Anglia (www.cru.uea.ac.uk — Had-
CRUT3v dataset)
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Number Model Control runs | 20C runs | A2 runs
1 bccr bcm2 0O 2 1 1
2 cCCCma_cgcm3 1 10 5 5
3 cnrm_cma3 5 1 1
4 csiro mk3 0 3 3 1
5 gfdl cm2 1 5 3 1
6) giss_model e r 5 ) 1
7 ingv_echam4 1 1 1
8 inmcm3_ 0 3 1 1
9 ipsl_cm4 7 1 1
10 Miroc3 2 medres 5 3 3
11 mpi_echamb>s 5 4 3
12 mri_cgcm?2_ 3 2a 3 5 5
13 ncar ccsm3 0 { 5 5
14 ukmo_hadcm3 3 2 1

List of climate models, including numbers of runs available
under three scenarios
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Anomaly

(b) Russia JJA Temperatures 1900-2012
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Analysis of Observational Data

Key tool: Generalized Extreme Value Distribution (GEV)
e [ hree-parameter distribution, derived as the general form of

limiting distribution for extreme values (Fisher-Tippett 1928,
Gnedenko 1943)

e u, o, £ known as location, scale and shape parameters

e £ > 0 represents long-tailed distribution, & < O short-tailed

Formula:

e = e 021
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Peaks over threshold approach implies that the GEV can be
used generally to study the tail of a distribution: assume GEV
holds exactly above a threshold w and that values below u
are treated as left-censored

Time trends by allowing u, o, & to depend on time

Example: Allow uy = Bo+31_ ;1 Brog; where {zpy, k=1,.., K, t =
1,...,T'} are spline basis functions for the approximation of a
smooth trend from time 1 to 7' with K degrees of freedom

Critical questions:

— Determination of threshold and K

— Estimating the probability of exceeding a high value such
as 1.92K
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Application to Temperature Series
GEV with trend fitted to three observational time series

T hreshold was chosen as fixed quantile — 75th, 80th or 85th
percentile

AIC was used to help select the number of spline basis terms
K

Estimate probability of extreme event by maximum likelihood
(MLE) or Bayesian method

Repeat the same calculation with no spline terms
Use full series or part?

Examine sensitivity to threshold choice through plots of the
posterior densities.
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K Europe Russia Texas
Threshold | 75% | 80% | 85% | 0.75 0.8 0.85 0.75 0.8 0.85
2 97r.9 | 87.7 | 67.5 | 149.8 | 131.2 | 110.4 | 146.6 | 131.3 | 108.8
3 75.7 | 68.5 | 60.5 | 145.8 | 135.4 | 112.7 | 142.6 | 125.0 | 105.5
4 76.1 | 66.2 | 449 | 148.1 | 137.8 | 113.8 | 144.6 | 126.8 | 103.6
5 74.1 | 646 | 546 | 147.0 | 134.1 | 121.2 | 144.1 | 126.5 | 104.9
6 742 | 74.3 | 61.6 | 146.8 | 133.6 | 113.1 | 143.8 | 125.5 | 106.1
7 779 | 75.2 | 59.8 | 146.6 | 135.1 | 114.0 | 133.4 | 126.4 | 106.8
8 86.2 | 77.4 | 65.9 | 148.0 | 137.1 | 122.1 | 138.9 | 128.4 | 108.1
0] 86.8 | 74.6 | 67.1 | 149.4 | 138.7 | 113.3 | 148.6 | 130.6 | 110.2
10 88.7 | 94.8 | 54.2 | 150.8 | 140.4 | 125.1 | 128.2 | 122.9 | 105.7
11 90.6 | 73.4 | 73.5 | 153.1 | 142.6 | 125.7 | 144.2 | 127.8 | 110.5
12 79.1 | 98.6 | 59.3 | 152.8 | 140.8 | 126.4 | 135.1 | 119.7 | 105.8
13 05.3 | 79.6 | 59.1 | 156.1 | 144.2 | 127.4 | 136.2 | 116.9 | 104.2
14 77.5 | 78.6 | b4.6 | 157.5 | 142.4 | 128.7 | 138.9 | 121.8 | 107.9
15 O7.6 | 85.5 | 77.9 | 157.2 | 143.1 | 129.5 | 136.8 | 122.5 | 109.6

AIC values for different values of K, at three different thresholds, for each

dataset of interest. In each column, the smallest three AIC values are

indicated in red, green and blue respectively.
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Dataset Endpoint | K | Threshold | MLE | Posterior Posterior Quantiles
Mean 0.05 0.5 0.95

Europe 2002 5 80% .021 .076 0 .057 217
Europe 2012 5 80% .0027 113 .031 .098 246
Europe 2002 0 80% 0 .0004 0 0 .002
Europe 2012 0 80% .0044 .011 .001 .0081 .029
Russia 2009 6 80% .0013 .010 0 .004 .040
Russia 2012 5 80% .010 .058 .005 .039 .181
Russia 2009 0 80% 0 .0011 0 0 .0069
Russia 2012 0 80% .0019 .0067 .0003 | .0043 | .021
CentUSA 2010 13 80% .0007 072 .003 .045 234
CentUSA 2012 13 80% .089 .300 .058 .268 .653
CentUSA 2010 0 80% .0023 .0078 .00007 | .0052 | .024
CentUSA 2012 0 80% .005 .012 .001 .0092 | .031

Results of extreme value analysis applied to observational datasets. For three
datasets (Europe, Russia, Central USA), different choices of the endpoint
of the analysis, spline degrees of freedom K, and threshold, we show the
maximum likelihood estimate (MLE) of the probability of the extreme event
of interest, as well as the posterior mean and three quantiles of the posterior
distribution.
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(a) Europe JJA Temperatures 1900-2012 (b) Russia JJA Temperatures 1900-2012
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Plot of three time series for 1900—2012, with fitted trend curves.
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Summary So Far:
e Estimate extreme event probabilities by GEV with trends
e Bayesian posterior densities best way to describe uncertainty

e [ WO major disadvantages:

— No way to distinguish anthropogenic climate change ef-
fects from other short-term fluctations in the climate (El
Ninos and other circulation-based events; the 1930s dust-
bowl in the US)

— No basis for projecting into the future

It might seem that the way to do future projections is simply to
rerun the analysis based on climate model data instead of obser-
vations. However, this runs into the scale mismatch problem.
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Model GFDL, Run 1, Europe Model GISS, Run 1, Europe
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Model GFDL, Run 1, Russia Model GISS, Run 1, Russia
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Model GFDL, Run 1, Central USA
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I. TIME SERIES ANALYSIS FOR
CLIMATE DATA

I.a Overview

I.b The post-1998 “hiatus” in temperature trends
I.c NOAA'’s record ‘streak”

I.d Trends or nonstationarity?

II. CLIMATE EXTREMES

II.a Extreme value models

II.b An example based on track records

II.c Applying extreme value models to weather extremes
II.d Joint distributions of two of more variables
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Example 1. Herweijer and Seager (2008) argued that the persistence of
drought patterns in various parts of the world may be explained in terms of
SST patterns. One of their examples (Figure 3 of their paper) demonstrated
that precipitation patterns in the south-west USA are highly correlated with
those of a region of South America including parts of Uruguay and Argentina.

I computed annual precipitation means for the same regions, that show the
two variables are clearly correlated (r=0.38; pj.0001). The correlation coef-
ficient is lower than that stated by Herweijer and Seager (r=0.57) but this
is explained by their use of 6-year moving average filter, which naturally in-
creases the correlation.

Our interest here: look at dependence in lower tail probabilities

Transform to unit Fréchet distribution (small values of precipitation corre-
sponding to large values on Frchet scale)
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Figure 1. Left: Plot of USA annual precipitation means over latitudes 25-
35°N, longitudes 95-120°W, against Argentina annual precipitation means
over latitudes 30-40°S, longitudes 50-65°W, 1901-2002. Right: Same data
with empirical transformation to unit Fréchet distribution. Data from gridded
monthly precipitation means archived by the Climate Research Unit of the
University of East Anglia.
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Example 2. Lau and Kim (2012) have provided evidence that the 2010
Russian heatwave and the 2010 Pakistan floods were derived from a common
set of meteorological conditions, implying a physical dependence between
these very extreme events.

Using the same data source as for Example 1, I have constructed summer
temperature means over Russia and precipitation means over Pakistan corre-
sponding to the spatial areas used by Lau and Kim.

Scatterpolt of raw data and unit Fréchet transformation. 2010 value approx-
imated — an outlier for temperature but not for precipitation.
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Figure 2. Left: Plot of JJA Russian temperature means against Pakistan JJA
precipitation means, 1901-2002. Right: Same data with empirical transfor-
mation to unit Fréchet distribution. Data from CRU, as in Figure 1. The
Russian data were averaged over 45-65°N, 30-60°E, while the Pakistan data
were averaged over 32-35°N, 70-73°E, same as in Lau and Kim (2012).
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Methods

Focus on the proportion by which the probability of a joint ex-
ceedance is greater than what would be true under independence.

Method: Fit a joint bivariate model to the exceedances above a
threshold on the unit Fréchet scale

Two models:

e Classical logistic dependence model (Gumbel and Mustafi
1967; Coles and Tawn 1991)

e The n-asymmetric logistic model (Ramos and Ledford 2009)

119



Logistic Model Ramos-Ledford Model
Estimate 90% CI Estimate 90% CI
10-year 2.7 (1.2 , 4.2) 2.9 (1.2 , 5.0)
20-year 4.7 (1.4 , 7.8) 4.9 (1.2 , 9.6)
50-year 10.8 (2.1 , 18.8) 9.9 (1.4 , 23.4)

Table 1. Estimates of the increase in probability of a joint ex-
treme event in both variables, relative to the probability under in-
dependence, for the USA/Uruguay-Argentina precipitation data.
Shown are the point estimate and 90% confidence interval, under
both the logistic model and the Ramos-Ledford model.

Logistic Model

Ramos-Ledford Model

Estimate 90% CI Estimate 90% CI
10-year | 1.01 | (1.00 , 1.01)| 0.33 (0.04 , 1.4)
20-year | 1.02 | (1.00 , 1.03)| 0.21 |(0.008 , 1.8)
50-year | 1.05 |(1.01 , 1.07)| 0.17 |(0.001 , 2.9)

Table 2. Similar to Table 1, but for the Russia-Pakistan dataset.
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Conclusions

e The USA—-Argentina precipitation example shows clear de-
pendence in the lower tail, though the evidence for that rests
primarily on three years’ data

e In contrast, the analysis of Russian temperatures and Pak-
istan rainfall patterns shows no historical correlation between
those two variables

e Implications for future analyses: the analyses also show the
merits of the Ramos-Ledford approach to bivariate extreme
value modeling. The existence of a parametric family which
IS tractable for likelihood evaluation creates the possibility of
constructing hiterarchical models for these problems.
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At least three methodological extensions, all of
which are topics of active research:

1. Models for multivariate extremes in > 2 dimensions

2. Spatial extremes: max-stable process, different estimation
methods
(a) Composite likelihood method
(b) Open-faced sandwich approach
(c) Approximations to exact likelihood, e.g. ABC method

3. Hierarchical models for bivariate and spatial extremes?
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