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1. Introduction

Hourly ozone data are available for 73 stations in South Korea from January, 1988 to August,

1998. We are interested in detecting trends in both the mean levels and the extremes of ozone,

and in determining how these trends vary over the country. The latter aspect means that we

also have to understand the spatial dependence of ozone. In this connection, therefore, we

examine the following features:

(a) Determining trends in mean ozone levels at individual stations and combination across

stations;

(b) Determining trends in extreme ozone levels at individual stations and combination across

stations;

(c) Spatial modeling of trends in mean and extreme ozone levels.

To determine trends in mean ozone levels, one way is to use the mean of hourly ozone

measured from 9 a.m. to 5 p.m. for each day. In the present analysis, however, we focus only

on daily maxima of hourly ozone since a lot of missing values for that time period were found

in the hourly ozone data.

2. Determining trends in mean and extreme ozone levels at individual stations

To investigate a temporal trend in mean ozone levels at a single station, the mean of daily

ozone maxima was computed for each month from January, 1988 to August, 1998, for each



of the 73 stations. In case the number of daily ozone maxima in a month is less than 15,

the corresponding monthly mean was not computed, being treated as a missing value. Let Yt

denote the monthly mean ozone for month t at a single station. The model considered �rst is

a general linear regression with seasonal components and AR(1) errors, of form

Yt = �0 + �1t + �2 cos(2�t) + �3 sin(2�t) + �4 cos(4�t) + �5 sin(4�t) + �t;

�t = ��t�h + Æt;
(1)

where Æt's are iid N(0; �2) disturbances and j�j < 1. We adopt a base time interval of one year,

so that h = 1=12 is the length of one month. The parameter �1 is a linear trend (in ppb per

year) and the seasonal components correspond to one-year and six-month cycles respectively.

Using the method of maximum likelihood, model (??) was �tted to each of the 73 stations.

The results show that there is enormous variability in the estimates of the trend parameter �1

over the stations: from -2.88 to +3.66 with a mean of .728 and a standard deviation of 1.134.

Although the overall mean seems to be slight, when compounded over the 102
3
years of the

data series, it results an overall increase of about 7.8 ppb (102
3
� :728 = 7:765). Our particular

attention is given to Seoul city having 20 stations in which the range of the estimates of �1

was -1.01 to +3.66 with a mean of 1.088 (slightly higher than the national mean) and standard

deviation 1.082. In particular, the station with the highest trend in the nation locates in Seoul

city. The results also show that there is very strong evidence of seasonal e�ects and of positive

correlations among the monthly mean ozone levels over time.

The t statistic (parameter estimate divided by standard error) for �1 was also computed

for each station. According to the results, the number of stations for which t > 2 is 28 out of

the 73 stations, which is substantially greater than the number that would have been expected

by chance (:025 � 73 = 1:825), assuming approximate normality of the parameter estimates.

Moreover, the number of stations for which t > 0 is 56 out of 73, which is substantially larger

than would seem plausible by chance alone if there were no overall trend.

Since the monthly mean ozone levels show great variability season to season, a separate

analysis was carried out for each of the four seasons (winter, spring, summer and fall). Each

season consists of three consecutive months and is considered to continue to the same season

of the following year. Thus, winter season, for example, consists of December, January and

February in the period 1988-1998. The model �tted to each season is a simple linear regression

with AR(1) errors, i.e. Yt = �0+�1t+ �t, with �t de�ned as in (??), where we adopt a base time

interval of one season of three consecutive months, so that h = 1=3 is the length of one month.

In each season, the maximum likelihood estimate of the trend parameter �1 was computed

for each of the 73 stations. The range of the estimates and their mean and standard deviation

are included in Table 1. Results of t statistics for �1 at individual stations are also given in

Table 1. As expected, summer season has the highest overall mean of 1.116, which implies that

there was an overall increase of about 12.3 ppb (11� 1:116 = 12:276) in summer season during



Table 1. Estimates and t statistics for �1 in each season

Season Range of Mean Standard t > 2 t > 1 t > 0 t < 0 t < �1 t < �2
Estimates Deviation

Winter -3.08�+3.53 .437 1.179 24 35 52 21 10 7

Spring -3.36�+5.57 .792 1.741 21 31 48 25 10 6

Summer -2.28�+3.92 1.116 1.299 27 43 60 13 5 2

Fall -3.97�+2.87 .189 1.243 7 23 44 29 9 3

the 11 years of the data series. In that season, the number of stations for which t > 2 and for

which t > 0 are 27 and 60, respectively, out of 73, which are both substantially larger than

would have been expected by chance. The results in Table 1 also show that there were overall

positive trends in all seasons.

For investigation of a trend in extreme ozone levels at an individual station, the threshold-

based method of Smith (1989) was applied to the time series of daily ozone maxima for each of

the 73 stations. Threshold methods are based on �tting stochastic models to the exceedances

over a �xed high threshold u, say. Extreme values in a time series typically appear in clusters

due to its local dependence. In the present analysis, clusters were de�ned by the property

that two threshold exceedances within three days of each other are considered part of the same

cluster. Following Smith (1989), the two-dimensional point process f(Ti; Yi)g, where Ti is the

time of the ith cluster maximum and Yi is the value, may be approximated by a nonhomogeneous

Poisson process with intensity measure �(�) de�ned by

�((t1; t2]� (y;1)) =
Z t2

t1

V (y; �t; �t; �t) dt; 0 � t1 < t2; y � u; (2)

where V (y; �; �; �) = f1+ �(y��)=�g�1=�+ , x+ = maxfx; 0g and �t, �t, �t represent respectively

a shape parameter, location parameter and scale parameter for time t. Under this model, if we

observe the time series on a time interval (0; T �] and if we observe N cluster maxima at time

T1; :::; TN , then the likelihood function is given by

L = exp

 
�
Z T �

0

V (u; �t; �t; �t) dt

!
NY
i=1

v(Yi; �Ti
; �Ti

; �Ti
); (3)

where v(y; �; �; �) = �@V (y; �; �; �)=@y. In practice, the integral in (??) is replaced by a sum

of form
R T �

0
V (u; �t; �t; �t) dt � h

P
t V (u; �t; �t; �t), where the sum is over days t and h is the

length of one day. We adopt a base time interval of one year, so that h = 1=365. If there are

missing data, the integral in (??) is replaced by an integral over the available period of data.

With the data series of daily ozone maxima for a single station, the model adopted is of

form

�t = �0; �t = �0e
�t; �t = �0e

�t; (4)



where �0, �0, �0 are constants and

�t = �1t + �2 cos(2�t) + �3 sin(2�t) + �4 cos(4�t) + �5 sin(4�t): (5)

For any q � 1 with q < 1, let yT (q) denote the q-level quantile of the distribution of the annual

maximum of daily ozone maxima in a one-year time period (T; T + 1]. Then, under model

(??)-(??), it can be seen that yT+1(q) = e�1yT (q), i.e. the linear trend �1 is interpretable as an

\in
ation factor" associated with the extreme quantiles of the annual maxima.

Using the method of maximum likelihood, model (??)-(??) was �tted to each of the 73

stations. In each station, the analysis was repeated, varying the threshold u from the 95th

percentile of the empirical distribution of daily ozone maxima to the 98th percentile. For

the 95th-percentile threshold, successful model �ts were obtained for 65 stations, while for

higher-percentile thresholds (the 96th, 97th, 98th) the number of stations with successful �ts

decreased (62, 59, 47 respectively), which might be due to smaller number of exceedances.

Summary statistics for the trend parameter �1 are given in Table 2. For the 95th-percentile

Table 2. Estimates and t statistics for �1 in extreme value model

Threshold Range of Mean Standard t > 2 t > 1 t > 0 t < 0 t < �1 t < �2
Estimates Deviation

95th -.065�+.067 .0108 .0260 22 31 44 21 11 5

96th -.065�+.075 .0117 .0276 20 31 43 19 12 5

97th -.063�+.070 .0121 .0284 20 31 38 21 9 4

98th -.051�+.076 .0118 .0271 14 25 30 17 7 2

threshold, the overall mean of .0108 corresponds to a rise of approximately 1.1% (e:0108 =

1:01086) per year in the extreme quantiles, which results an overall increase of about 12.2%

(e10
2

3
�:0108 = 1:1221) during the 102

3
years of the data series. For higher thresholds, the overall

means are slightly higher. The t statistics also reveal evidence of overall positive trends for all

thresholds considered.

3. Spatial modeling of trends in mean and extreme ozone levels

The results of section 2 appear to con�rm overall positive trends in mean and extreme ozone

levels, but are nevertheless hard to interpret because of the enormous spatial variability in the

estimates of the trend parameters. In this section, we explore a variant of the usual hierarchical

model as one way of spatially smoothing the �1 estimates obtained in section 2, by assuming

the existence of an underlying smooth spatial �eld.

Let �1(s) denote a temporal trend of interest which is assumed to vary smoothly as a func-

tion of spatial location s lying in some domain S. We assume that for each si of a �xed subset

of spatial locations fs1; :::; sng, we observe a time series Y (si; t), where t is time, whose distri-

bution depends on �1(si) as well as possibly other nuisance parameters, which we shall denote



by �. Suppose, for each spatial location si, we calculate an estimate of �1(si), which we denote

by �̂1(si), based just on the time series Y (si; t). This may be based on any model appropriate

for that time series. Since most statistical methods lead to approximately normal distributions

of estimators in large samples, we may assume �̂1(si) = �1(si) + �(si), where (�(s1); :::; �(sn))

is a multivariate normal vector of errors with mean zero and known covariance matrix W . In

the present study, we shall assume W to be diagonal with entries determined by the standard

errors of the maximum likelihood analyses in section 2. AssumingW to be diagonal contains an

implicit assumption that the time series Y (si; t), i = 1; :::; n, are independent. We also assume

that the random �eld f�1(s); s 2 Sg is Gaussian with mean and covariance functions given

by a �nite-parameter model with parameters �. In particular, the mean vector and covariance

matrix of (�1(s1); :::; �1(sn)) may be written by �1(�) and
P

1(�) respectively. Since �(si) rep-

resents measurement error while �1(si) re
ects the inherent randomness of the environment, it

is reasonable to assume that (�1(s1); :::; �1(sn)) and (�(s1); :::; �(sn)) are independent.

With these assumptions, the model now becomes

(�̂1(s1); :::; �̂1(sn)) � N(�1(�);
P

1(�) +W )

from which the parameters � may be estimated by the method of maximum likelihood. More-

over, once the parameters � are estimated, it is then possible to reconstruct smoothed estimates

of �1(s), s 2 S, by kriging. It remains to specify parametric models for �1(�) and
P

1(�). In

the present study, we assume that the mean of �1(si) is a cubic polynomial function of the

two-dimensional vector si and the covariance matrix
P

1(�) is of either the Gaussian structure

with

Cov(�1(si); �1(sj)) = �2 exp

 
�jjsi � sjjj2

�21

!

for the trends in mean ozone levels, where � = (�1; �2) and jj � jj is Euclidean distance, or the

Mat�ern structure with

Cov(�1(si); �1(sj)) =
�2

2�3�1�(�3)

 
2
p
�3jjsi � sjjj

�1

!�3

K�3

 
2
p
�3jjsi � sjjj

�1

!

for the trends in extreme ozone levels, where � = (�1; �2; �3) and K�3(�) is the modi�ed Bessel

function of the third kind of order �3 (Handcock and Stein (1993) gave a detailed account of

the Mat�ern covariance function). The detailed results of the analysis will be given in the talk.
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