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FAILED WIZARDS OF
WALL STREET

" Can you devise surefire ways to beat the markets? The
rocket scientists thought they could. Boy, were they ever
wrong

Smart people aren't supposed to get into this kind of a mess. With two
Nobel prize winners among its partners, Long-Term Capital Management
L.P. was considered too clever to get caught in a market downdraft. The
Greenwich (Conn.) hedge fund nearly tripled the money of its wealthy
investors between its inception in March, 1994, and the end of 1997. Its
sophisticated arbitrage strategy was avowedly "market-neutral"--designed to
make money whether prices were rising or falling. Indeed, until last spring
its net asset value never fell more than 3% in a single month.

Then came the guns of August. Long-Term Capital's rocket science
exploded on the launchpad. Its portfolio's value fell 44%, giving 1t a year-to-
date decline of 52%. That's a loss of almost $2 billion. "August has been
very painful for all of us," Chief Executive John W. Merniwether, a
legendary bond trader, said in a letter to investors. (Long-Term's exccutives
declined to speak on the record.)
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These figures show negative daily returns from closing prices
of 1982-2001 stock prices in three companies, Pfizer, GE and
Citibank. Typical questions here are

1. How to determine Value at Risk, i.e. the amount which might
be lost in a portfolio of assets over a specified time period with
a specified small probability,

2. Dependence among the extremes of different series, and ap-
plication to the portfolio management problem,

3. Modeling extremes in the presence of volatility.



INSURANCE EXTREMES



From Smith and Goodman (2000) —

The data consist of all insurance claims experienced by a large
international oil company over a threshold 0.5 during a 15-year
period — a total of 393 claims. Seven types:

Type | Description | Number | Mean
1 Fire 175 11.1
2 Liability 17 12.2
3 Offshore 40 0.4
4 Cargo 30 3.9
5 Hull 85 2.6
6 Onshore 44 2.7
7 Aviation 2 1.6

Total of all 393 claims: 2989.6

10 largest claims: 776.2, 268.0, 142.0, 131.0, 95.8, 56.8, 46.2,
45.2, 40.4, 30.7.
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Some problems:

1. What is the distribution of very large claims?

2. Is there any evidence of a change of the distribution over
time?

3. What is the influence of the different types of claim??

4. How should one characterize the risk to the company? More
precisely, what probability distribution can one put on the amount
of money that the company will have to pay out in settlement
of large insurance claims over a future time period of, say, three
years?



WEATHER EXTREMES
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Human contribution to the European

heatwave of 2003

Peter A. Stott'. D. A. Stone™* & M. R. Allen”
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Figure 1 Juna—August temperaturs anomalies (riative to 1961-90 mean, in K over the
region shown in insat. Shown are obsarved temperatures (black ling, with low-pass-
filtered tamperatures as heaw black ling), modeled temperatures from four HadCM3
smulations including both anthropogenic and natural forcings to 2000 (red, graan, blue
and tumuoise lines), and estimated HadCM3 responsea to purely natural natural forcings

2000 2050 2100

(yellow ling). The observed 2003 temparaturs is shown 22 3 star. Also shown (r=d, graan
and blue lines) are thrze simulations (initialzad in 1989) including changeas ingrenhousa
aas and sulphur emissions according to the SRES AZ scanario to 21007, The inset shows
obzerved summer 2003 temperature anomalies, in K.
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I. EXTREME VALUE THEORY
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EXTREME VALUE DISTRIBUTIONS

Suppose X4, X»o,..., are independent random variables with the
same probability distribution, and let M,, = max(Xq, ..., Xn). Un-
der certain circumstances, it can be shown that there exist nor-
malizing constants an > 0O, by, such that

Pr{Mn — bn < a?} = F(apnr +bp)" — H(x).

an

The Three Types Theorem (Fisher-Tippett, Gnedenko) asserts
that if nhondegenerate H exists, it must be one of three types:

H(z) = exp(—e™ ™), all z (Gumbel)
H(z) = {gxp(—gc—a) zig(Fréchet)
H(z) = {‘ixp<_|x|a) ‘”ig (Weibull)

In Fréchet and Weibull, o > 0.
15



The three types may be combined into a single generalized ex-
treme value (GEV) distribution:

ANV
H(w)=exp{—<1+£ ) }
vy

(y4+ = max(y,0))

where p is a location parameter, v > 0 is a scale parameter
and £ is a shape parameter. ¢ — 0 corresponds to the Gumbel
distribution, £ > 0 to the Fréchet distribution with a =1/¢, £ <0
to the Weibull distribution with a = —1/¢.

£>0: “long-tailed” case, 1 — F(z) o< 2~ 1/¢,
£ = 0: "exponential tail”

£ < 0: “short-tailed” case, finite endpoint at u — &/
16



EXCEEDANCES OVER
THRESHOLDS

Consider the distribution of X conditionally on exceeding some
high threshold wu:

Fuy) = T 25,

As u — wp =sup{z: F(z) <1}, often find a limit

Fu(y) = G(y; ou, §)

where G is generalized Pareto distribution (GPD)
—1/¢
L

Glyio) =1~ (1+¢%)
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The Generalized Pareto Distribution

—1/¢

Glyi0,6) =1 (1+£§)+

¢ > 0: long-tailed (equivalent to usual Pareto distribution), tail
like z—1/¢€,

¢ = 0: take limit as € — 0 to get

G(y;0,0) =1 —exp (—g) ,

o)
I.e. exponential distribution with mean o,

¢ < 0: finite upper endpoint at —o/¢.

18



The Poisson-GPD model combines the GPD for the excesses
over the threshold with a Poisson distribtion for the number of
exceedances. Usually the mean of the Poisson distribution is
taken to be A\ per unit time.
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OTHER MODELS FOR EXTREMES

1. r-largest Order Statistics Model: Instead of just considering
the maximum value in each year, look at the r largest (from
independent events), for some fixed small number r. Then
we can also write down an asymptotic expression for the joint
distribution of these r largest events. The case r = 1 reduces
to classical extreme value theory.

2. There is also an alternative viewpoint known as the point pro-
cess approach, which is a threshold approach like the GPD,
but leads to a direct fitting of the GEV distribution for annual
maxima. This can be very useful when we are interesting in
the interrelations among the different approaches.

20



.....
- - =
-----
- =
------
--‘-
- '-—-
-----------
=
_—q-
-----
-------
........
------
- i
-------
""""""
¢¢¢¢
------
----
......
i =
-'-
=l
- ==
.......
- =+
....
5
- =y
.......
---- g
‘--‘
. =
----
- =
-------
- =¥
-
- =7
----------
! -
-------
----------
AR I W e
- &
(o RTI en E ie
— — i 2
oo 1 s b’ = st
sy
i
HEE

Illustration of point process model.



An extension of this approach allows for nonstationary processes

in which the parameters u, @ and & are all allowed to be time-
dependent, denoted ¢, Y and &;.

This is the basis of the extreme value regression approaches
introduced later
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ESTIMATION

GEV log likelihood:

- —1/¢
¢ = —Nlog¢—<%+1>ZIog<l—|—§Yzwu> Z<1+g ¢M>

provided 1 + &£(Y; — ) /v > 0 for each i.

Poisson-GPD model:

N .
¢ = NIogA—AT—NIoga—<1—|—1>Zlog(l—l—gﬁ)
&/ i=1 g

provided 1 + £Y; /o > 0O for all i.

The method of maximum likelihood states that we choose the
parameters (u,v,&) or (M o0,£) to maximize ¢. These can be
calculated numerically on the computer.
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II. EXAMPLES
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DIAGNOSTICS

Gumbel plots
QQ) plots of residuals

Mean excess plot
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Gumbel plots

Used as a diagnostic for Gumbel distribution with annual maxima
data. Order data as Yi.y < ... < Yn-pn, then plot Y. against
reduced value x;y,

z;- y = —log(—log p;-N),

p;-N being the ¢'th plotting position, usually taken to be (i—%)/N.

A straight line is ideal. Curvature may indicate Fréchet or Weibull
form. Also look for outliers.
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Observed data

(a) (b)

300 - g 30
250 .
. s e 7.5 TR
©
® o) g
200 7 : O °®
o g "
@ @ -
‘.'.O. g 20 4
150 - : 8
o ‘0'
100 - . ioad h
oe® ...
S 2 2.8 4 0 2 4
Reduced data Reduced data

Gumbel plots. (a) Annual maxima for River Nidd flow series. (b)
Annual maximum temperatures in Ivigtut, Iceland.
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QQ plots of residuals

A second type of probability plot is drawn after fitting the model.
Suppose Yq,..., Yy are IID observations whose common distribu-
tion function is G(y; 0) depending on parameter vector 6. Sup-
pose 6 has been estimated by 6, and let G_l(p; 0) denote the
inverse distribution function of G, written as a function of 6. A
QQ (quantile-quantile) plot consists of first ordering the obser-
vations Yi.xy < ... < YN, and then plotting Y.,y against the
reduced value

zin = G (piN: 0),
where p;-y may be taken as (z‘—%)/N. If the model is a good fit,

the plot should be roughly a straight line of unit slope through
the origin.

Examples...
29



Observed value
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GEV model to Ivigtut data, (a) without adjustment, (b) exclud-
ing largest value from model fit but including it in the plot.
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Observed excess
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QQ plots for GPD, Nidd data. (a) v =70. (b) uv = 100.
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Mean excess plot

Idea: for a sequence of values of w, plot the mean excess over

w against w itself. If the GPD is a good fit, the plot should be
approximately a straight line.

In practice, the actual plot is very jagged and therefore its “straight-
ness’ is difficult to assess. However, a Monte Carlo technique,

assuming the GPD is valid throughout the range of the plot, can
be used to assess this.

Examples...

32
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PROFILES LIKELIHOODS FOR
QUANTILES

Suppose we are interested in the N-year return level yu, i.e. the
(1 —1/N)-quantile of the annual maximum distribution. We can
express yyn as a function of the extreme value parameters u, o
and &, and thereby obtain an estimate for any N.

However, that raises the question of what is the uncertainty of
this estimate. A very general approach to this is via something
called the profile likelihood, which calculates the likelihood of yx
after maximizing with respect to the other parameters.

Example from the Nidd data:
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BAYESIAN APPROACHES

An alternative approach to extreme value inference is Bayesian,
using vague priors for the GEV parameters and MCMC samples
for the computations. Bayesian methods are particularly useful
for predictive inference, e.g. if Z is some as yet unobserved ran-
dom variable whose distribution depends on u,® and &, estimate
Pr{Z > z} by

/Pr{Z > 2z p, W, E3m(p, 9, €Y ) dpdypdg

where 7(...|Y) denotes the posterior density given past data Y

36
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Example. The left figure shows the five best running times by
different athletes in the women's 3000 metre track event for
each year from 1972 to 1992. Also shown on the plot is Wang
Junxia’s world record from 1993. Many questions were raised
about possible illegal drug use.

We approach this by asking how implausible Wang's performance
was, given all data up to 1992.

Robinson and Tawn (1995) used the r largest order statistics
method (with » = 5, translated to smallest order statistics) to
estimate an extreme value distribution, and hence computed a
profile likelihood for x|+, the lower endpoint of the distribution,
based on data up to 1992 (right plot of previous figure)

39



Alternative Bayesian calculation:
(Smith 1997)

Compute the (Bayesian) predictive probability that the 1993 per-
formance is equal or better to Wang’s, given the data up to 1992,
and conditional on the event that there is a new world record.

The answer is approximately 0.0006.
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III. INSURANCE EXTREMES
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From Smith and Goodman (2000) —

The data consist of all insurance claims experienced by a large
international oil company over a threshold 0.5 during a 15-year
period — a total of 393 claims. Seven types:

Type | Description | Number | Mean
1 Fire 175 11.1
2 Liability 17 12.2
3 Offshore 40 0.4
4 Cargo 30 3.9
5 Hull 85 2.6
6 Onshore 44 2.7
7 Aviation 2 1.6

Total of all 393 claims: 2989.6

10 largest claims: 776.2, 268.0, 142.0, 131.0, 95.8, 56.8, 46.2,
45.2, 40.4, 30.7.
42



GPD fits to various thresholds:

U Ny | Mean o &
Excess

0.5(393 | 7.11 1.02 | 1.01
251132 | 17.89 | 3.47 | 0.91
5 73 28.9 6.26 | 0.89
10 | 42 | 44.05 | 10.51 | 0.64
15| 31 | 53.60 | 5.68 | 1.44
20 | 17 | 91.21 | 19.92 | 1.10
25 | 13 | 113.7 | 74.46 | 0.93
50 §) 37.97 | 1560.8 | 0.29
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Point process approach:

u | Ny p log ¢ §
0.5]/393| 26.5 | 3.30 | 1.00
(4.4) | (0.24) | (0.09)
25]132] 26.3 | 3.22 | 0.91
(5.2) | (0.31) | (0.16)
5 | 73 | 26.8 | 3.25 | 0.89
(5.5) | (0.31) | (0.21)
10 | 42 | 272 | 3.22 | 0.84
(5.7) | (0.32) | (0.25)
15| 31 | 22.3 | 2.79 | 1.44
(3.9) | (0.46) | (0.45)
20 | 17 | 22.7 | 3.13 | 1.10
(5.7) | (0.56) | (0.53)
25 | 13 | 20.5 | 3.39 | 0.93
(8.6) | (0.66) | (0.56)

Standard errors are in parentheses
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Predictive Distributions of Future Losses

What is the probability distribution of future losses over a specific
time period, say 1 year?

Let Y be future total loss. Distribution function G(y; u,v, &) —
in practice this must itself be simulated.
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Traditional frequentist approach:

G(y) = G(y; 4,9, )
where [i, ¢, & are MLEs.

Bayesian:

C(y) = [ Glyi b, O)dm(is, € | X)

where 7(- | X) denotes posterior density given data X.
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Hierarchical models for claim type and year effects

How can we use the fact that there are six different types of
claim? One possibility is a hierarchical model, in which we as-
sume each of the six types has separate extreme value parameters
pi, ¥, &, but that these have second-stage normal distributions,

g~ N:m,lhsi]a jg=1,...,6,
log wj ~ N:mwasqu]a Jg=1,...,6,
fj ~ N:m€,82], ] — 1, ...,6.

£

This can be fitred by hierarchical Bayesian methods.

In an extension of the same idea, we also assume that each year
has a yearly parameter ¢, which is also drawn from a normal
distribution.

We show boxplots for each of u;,logv;,&;, j = 1,...,6 and for
0, k=2,15.
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50000 4  A: All data combined
B: Separate types
C: Separate types and years

10000 | D: As C, outliers omitted
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Computations of posterior predictive distribution functions (plot-
ted on a log-log scale) corresponding to the homogenous model
(curve A) and three different versions of the hierarchical model.
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The final plot shows the advntage of the hierarchical approach.
We actually get less extreme predictions under the hierarchical
model (curves B or C) than we do ignoring the hierarchical struc-
ture (curve A).
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IV. TREND IN PRECIPITATION

EXTREMES
(Joint work with Amy Grady and Gabi Hegerl)

During the past decade, there has been extensive research by
climatologists documenting increases in the levels of extreme
precipitation, but in observational and model-generated data.

With a few exceptions (papers by Katz, Zwiers and co-authors)
this literature have not made use of the extreme value distribu-
tions and related constructs

There are however a few papers by statisticians that have ex-
plored the possibility of using more advanced extreme value
methods (e.g. Cooley, Naveau and Nychka, to appear JASA;
Sang and Gelfand, submitted)

This discussion uses extreme value methodology to look for
trends
52



DATA SOURCES

e NCDC Rain Gauge Data (Groisman 2000)
— Daily precipitation from 5873 stations
— Select 1970—1999 as period of study
— 90% data coverage provision — 4939 stations meet that

e NCAR-CCSM climate model runs
— 20 x 41 grid cells of side 1.4°
— 1970—-1999 and 2070—2099 (A2 scenario)

e PRISM data
— 1405 x 621 grid, side 4km
— Elevations
— Mean annual precipitation 1970—1997
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EXTREME VALUES METHODOLOGY

Based on “point process’ extreme values methodology (cf. Smith
1989, Coles 2001, Smith 2003)
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Inhomogeneous case:
e Time-dependent threshold u; and parameters ue, V¢, &

e EXxceedance y > uy at time ¢t has probability

—1/&—1 —1/&
1 Y — It up — w)
— 1+ exp— |1+ dydt
o ( &t o >+ { ( &t o). } Y

e Estimation by maximum likelihood
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Seasonal models without trends

General structure:

=

1 2mkt 2mkt
= 0 (9 COS 0 Sin ) :
H bt 2 912608 55 o5 T L2kt SN 565 o
K>
2kt 2kt
O = 0 (9 COS 0 Sin ) :
9t 21 % ,;::1 2,2k €05 3o o5 T 022k4151N 500
K3
2mkt 2mkt
= 6 (9 COS 0 Sin ) :
“ 3.1+ k; 3.2k €05 365 05 T V32641510 365 o5

Call this the (K1, Ko, K3) model.

Note: This is all for one station. The 6 parameters will differ at
each station.
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Models with trend
Add to the above:

e Overall linear trend 6,k 4ot added to any of u; (j = 1),

logyy (j = 1), & (j = 1). Define Kj to be 1 if this term is
included, o.w. O.

e Interaction terms of form

2wkt 27wkt
tSIin

365.25’ 365.25’

t COS

Typical model denoted
(K1, Ko, K3) x (K1,K5,K3) x (K7", K5, K3")

Eventually use (4,2,1) x(1,1,0) x (2,2,0) model (27 parameters
for each station)
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SPATIAL SMOOTHING

Let Zs be field of interest, indexed by s (typically the logarithm
of the 25-year RV at site s, or a log of ratio of RVs. Taking logs
improves fit of spatial model, to follow.)

Don't observe Z, — estimate Z,. Assume
Z | Z ~ N[Z,W]
Z ~ N[XB,V(¢)]
Z ~ N[XB,V(¢)+ W].

for known W, X are covariates, 8 are unknown regression pa-
rameters and ¢ are parameters of spatial covariance matrix V.

e ¢ by REML
e 3 given ¢ by GLS
e Predict Z at observed and unobserved sites by kriging
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Spatial Heterogeneity
e Divide US into 19 overlapping regions, most 10° x 10°

— Kriging within each region

— Linear smoothing across region boundaries

— Same for MSPEs

— Also calculate regional averages, including MSPE
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REGIONAL AVERAGE TRENDS FOR 9 EV MODELS (GWA METHOD)

Trend

o — (4,2,1)x{1,1,0)x{2,2,0), r=1 {(main model)
(Y'). —
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Trends across 19 regions (measured as change in log RV25) for 8 differ-
ent seasonal models and one non-seasonal model with simple linear trends.
Regional averaged trends by geometric weighted average approach.
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Map of 25-year return values (cm.) for the years 1970—1999
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Root mean square prediction errors for map of 25-year return
values for 1970—1999
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Ratios of return values in 1999 to those in 1970
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A1 | S1 [ &, [So A1 [ S1 | A5 [Ss

—0.01 | .03 | 0.05** | .05 0.08*** | .01 || 0.09** | .03
0.07** | .03 | 0.08"** | .04 0.07*** | .02 | 0.07* | .04
0.11*** | .01 0.10 | .03 0.07*** | .02 | 0.10** | .03
0.05*** | .01 0.06 | .05 0.02 | .03 0.01 .03
0.13** | .02 | 0.14* | .05 0.01 .02 0.02 | .03

0.00 |.02| 0.05* | .04 0.07*** | .01 | 0.11*** | .03
—0.01 | .02 0.01 .03 0.07*** | .01 | 0.11*** | .03
0.08*** | .01 | 0.10™** | .03 0.15"* | .02 || 0.13*** | .03
0.07*** | .01 | 0.12*** | .03 0.14** | .02 | 0.12* | .06
0.05*** | .01 | 0.08** | .03

C—TITOTMONOW®>
NIDLOTVTOzZ2LZrr X

A1: Mean change in log 25-year return value (1970 to 1999) by
kriging

S1: Corresponding standard error (or RMSPE)

A»>, So: same but using geometrically weighted average (GWA)
Stars indicate significance at 5%*, 1%**, 0.1%%***.
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Return value map for CCSM data (cm.): 1970—1999
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Return value map for CCSM data (cm.): 2070—2099
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Estimated ratios of 25-year return values for 2070—2099 to those
of 1970—1999, based on CCSM data, A2 scenario
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Extreme value model with trend: ratio of 25-year return value in
1999 to 25-year return value in 1970, based on CCSM data
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CONCLUSIONS

. Focus on N-year return values — strong historical tradition
for this measure of extremes (we took N = 25 here)

. Seasonal variation of extreme value parameters is a critical
feature of this analysis

. Overall significant increase over 1970—1999 except for parts
of western states — average increase across continental US
is 7%

. Projections to 2070—2099 show further strong increases but
note caveat based on point 5

. But... based on CCSM data there is a completely different
spatial pattern and no overall increase — still leaves some
doubt as to overall interpretation.
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