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Figure 1 Juna—August temperaturs anomalies (riative to 1961-90 mean, in K over the
region shown in insat. Shown are obsarved temperatures (black ling, with low-pass-
filtered tamperatures as heaw black ling), modeled temperatures from four HadCM3
smulations including both anthropogenic and natural forcings to 2000 (red, graan, blue
and tumuoise lines), and estimated HadCM3 responsea to purely natural natural forcings

2100

(yellow ling). The observed 2003 temparaturs is shown 22 3 star. Also shown (r=d, graan
and blue lines) are thrze simulations (initialzad in 1989) including changeas ingrenhousa
aas and sulphur emissions according to the SRES AZ scanario to 21007, The inset shows
obzerved summer 2003 temperature anomalies, in K.
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Figure 4 Change in risk of maan European summer temperatures exceaeding the 1.6K
threzhold. a, Histograms of instantaneous return penods under late-twentisth-cantury
conditions in the absance of anthmopoganic cimate changs (gresn ling) and with
anthrapogenic climata change fred ling). b, Fraction atiributable risk (RAR). Alsoshown, as
the vartical ling, is the ‘best estimata’ AR, the maan rsk attibutable to anthmopogenic
factors averaged over the distribution.
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I. EXTREME VALUE THEORY



EXTREME VALUE DISTRIBUTIONS

Suppose X4, X»o,..., are independent random variables with the
same probability distribution, and let M,, = max(Xq, ..., Xn). Un-
der certain circumstances, it can be shown that there exist nor-
malizing constants an > 0O, by, such that

Pr{Mn — bn < a?} = F(apnr +bp)" — H(x).

an

The Three Types Theorem (Fisher-Tippett, Gnedenko) asserts
that if nhondegenerate H exists, it must be one of three types:

H(z) = exp(—e™ ™), all z (Gumbel)
H(z) = {gxp(—gc—a) zig(Fréchet)
H(z) = {‘ixp<_|x|a) ‘”ig (Weibull)

In Fréchet and Weibull, o > 0.



The three types may be combined into a single generalized ex-
treme value (GEV) distribution:

ANV
H(w)=exp{—<1+£ ) }
vy

(y4+ = max(y,0))

where p is a location parameter, v > 0 is a scale parameter
and £ is a shape parameter. ¢ — 0 corresponds to the Gumbel
distribution, £ > 0 to the Fréchet distribution with a =1/¢, £ <0
to the Weibull distribution with a = —1/¢.

£>0: “long-tailed” case, 1 — F(z) o< 2~ 1/¢,

£ = 0: "exponential tail”

£ < 0: “short-tailed” case, finite endpoint at u — &/



EXCEEDANCES OVER
THRESHOLDS

Consider the distribution of X conditionally on exceeding some
high threshold wu:

Fuy) = T 25,

As u — wp =sup{z: F(z) <1}, often find a limit

Fu(y) = G(y; ou, §)

where G is generalized Pareto distribution (GPD)
—1/¢
L

Glyio) =1~ (1+¢%)



The Generalized Pareto Distribution

—1/¢

Glyi0,6) =1 (1+£§)+

¢ > 0: long-tailed (equivalent to usual Pareto distribution), tail
like z—1/¢€,

¢ = 0: take limit as € — 0 to get

G(y;0,0) =1 —exp (—g) ,

o)
I.e. exponential distribution with mean o,

¢ < 0: finite upper endpoint at —o/¢.
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The Poisson-GPD model combines the GPD for the excesses
over the threshold with a Poisson distribtion for the number of
exceedances. Usually the mean of the Poisson distribution is
taken to be A\ per unit time.
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POINT PROCESS APPROACH
Homogeneous case:

Exceedance y > u at time t has probability

1 Yy — I _1/5_1 ( u — ,u>1/§
~ (1 ~ — 11 dydt
w( + ¢ 0 >+ exp{ + ¢ v ). y
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Inhomogeneous case:
e Time-dependent threshold u; and parameters ue, V¢, &

e EXxceedance y > uy at time ¢t has probability

—1/&—1 —1/&
1 Y — It up — w)
— 1+ exp— |1+ dydt
o ( &t o >+ { ( &t o). } Y

e Estimation by maximum likelihood
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ESTIMATION

GEV log likelihood:

- —1/¢
¢ = —Nlog¢—<%+1>ZIog<l—|—§Yzwu> Z<1+g ¢M>

provided 1 + &£(Y; — ) /v > 0 for each i.

Poisson-GPD model:

N .
¢ = NIogA—AT—NIoga—<1—|—1>Zlog(l—l—gﬁ)
&/ i=1 g

provided 1 + £Y; /o > 0O for all i.

The method of maximum likelihood states that we choose the
parameters (u,v,&) or (M o0,£) to maximize ¢. These can be
calculated numerically on the computer.
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DIAGNOSTICS

Gumbel plots
QQ plots of residuals
Mean excess plot

Z and W plots
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Gumbel plots

Used as a diagnostic for Gumbel distribution with annual maxima
data. Order data as Yi.y < ... < Yn-pn, then plot Y. against
reduced value x;y,

z;- y = —log(—log p;-N),

p;-N being the ¢'th plotting position, usually taken to be (i—%)/N.

A straight line is ideal. Curvature may indicate Fréchet or Weibull
form. Also look for outliers.
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Observed data
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Gumbel plots. (a) Annual maxima for River Nidd flow series. (b)
Annual maximum temperatures in Ivigtut, Iceland.
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QQ plots of residuals

A second type of probability plot is drawn after fitting the model.
Suppose Yq,..., Yy are IID observations whose common distribu-
tion function is G(y; 0) depending on parameter vector 6. Sup-
pose 6 has been estimated by 6, and let G_l(p; 0) denote the
inverse distribution function of G, written as a function of 6. A
QQ (quantile-quantile) plot consists of first ordering the obser-
vations Yi.xy < ... < YN, and then plotting Y.,y against the
reduced value

zin = G (piN: 0),
where p;-y may be taken as (z‘—%)/N. If the model is a good fit,

the plot should be roughly a straight line of unit slope through
the origin.

Examples...
19



Observed excess
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QQ plots for GPD, Nidd data. (a) v =70. (b) uv = 100.
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Mean excess plot

Idea: for a sequence of values of w, plot the mean excess over

w against w itself. If the GPD is a good fit, the plot should be
approximately a straight line.

In practice, the actual plot is very jagged and therefore its “straight-
ness’ is difficult to assess. However, a Monte Carlo technique,

assuming the GPD is valid throughout the range of the plot, can
be used to assess this.

Examples...
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Mean excess
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Mean excess over threshold plots for Nidd data, with Monte Carlo
confidence bands, relative to threshold 70 (a) and 100 (b).
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Z- and W-statistic plots
Consider nonstationary model with p, ¢, & dependent on t¢.

Z statistic based on intervals between exceedances Tj.:

Ty
Z, = / Au(8)ds,
Ty 1

Ai(s) = {14 &s(u— ps)/bs)} e,

W statistic based on excess values: if Y. is excess over threshold
at time Ty,

1 §1, Y
W, = —|I 1 K .
" °9 { T V1, + &1, (u — MTk)}

Idea: if the model is exact, both Z;, and W;. and i.i.d. exponential
with mean 1. Can test this with various plots.
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Diagnostic plots based on Z and W statistics for oil company
insurance data (u = 5)
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II. NORTH ATLANTIC CYCLONES
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Data from HURDAT

Maximum windspeeds in all North Atlantic Cyclones from 1851—
2007
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POT MODELS 1900—-2007, u=102.5

Model p | NLLH | NLLH+4p
Gumbel 2 | 847.8 849.8
GEV 3| 843.8 846.8
GEV, lin u 4 | 834.7 838.7
GEV, quad u 5| 833.4 838.4
GEV, cubic u 6 | 829.8 835.8
GEV, lin u, lin logy | 5| 828.0 833.0
GEV, quad u, lin logy | 6 | 826.8 832.8
GEV, lin u, quad logy | 6 | 827.2 833.2

Fitted model: u = By + B1t, 109y = B> + B3t, & const

Bo 51 Bo 53 §
Estimate | 102.5 | 0.0158 | 2.284 | 0.0075 | —0.302
S.E. 2.4 0.049 | 0.476 | 0.0021 | 0.066

28



Max Windspeed

60 80 100 120 140 160

40

TROPICAL CYCLONES FOR THE NORTH ATLANTIC

O O e 0000 [ X _J (X BN N XX __J [ X ] [ ] [ ] e o [ ] [ ] o 00

2020

e O o [ 2 ) Deoe o e ® G0 0O [ X N X BN N )

[ ] [ X J o000 o 0 O o0 O 00000 0o O© o o [ X ] [ ] [ ]
oo O o [ X J [ X _J [ ] e 6 o [ ] oo e e o0 o [ X X X J

[ X ] 0000 O OCH0NE0 © 0000 O O G000 O [ _J o 000 [ ] [ _ X J [ X J
[ X BN J [ ] ® O 0 @ o [ ] [ X X J 090000 00 0 ® o 000 000
[ ] o 6 o [ ] [} [ ] [ ] [ ] [ ] [ N BN NN _ BN M NN B JXIN N _J
aep 00 ° [ ] [ B B B Y By N Y NYX N Y NXN XX NN X NTIN BN N BN NN N
[ ] o0 o ® ® ® O 000 0““.‘.-“0..0 o O0BED
e 00 000 G006 O o 00 [ X ] o G & [ ] e 6 o [ XN NI _J
[ ] [ ] [ ] [ ] [ ] o 000 O O 080 00000 ¢ 0OONFS
0o 00 [ J O O G0 OGO G000 G000 COIDO CGINP ©® 00 O CINED G0 000 000 ONENS O
oD GBS ® & [ ) @b O 000080 O o0 0 B0 60 OO0 G © O 00NN O N &
® 000 O G0 0000 OGNS 6 ® O [ ) ® o o @ oo o0 00 © 0800 oW o
[ ] [ ] [ ] [ X _J o @®e o O e e [ ] o 00 00 [ . X N ]

| | | | | | |
1900 1920 1940 1960 1980 2000
Year

29



z value

w value

O P N W » 01 O

O B N W b O O

Diagnostic Plots for Atlantic Cyclones

(@)

20 40 60 80 100

Time

(d)

20 40 60 80 100

Time

Observed values

Observed values

O P N W H» 01 O

O R N W b~ 01O

(b)

o ©

Expected values for z

(e)

Expected values for w

Correlation

Correlation

0.15
0.10
0.05
0.00
-0.05
-0.10
-0.15

0.15
0.10
0.05
0.00
-0.05
-0.10
-0.15

Lag for z

Lag for w

30



III. EUROPEAN HEATWAVE
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Data:

5 model runs from CCSM 1871—-2100, including anthropogenic
forcing

2 model runs from UKMO 1861—2000, including anthropogenic
forcing

1 model runs from UKMO 2001-2100, including anthropogenic
forcing

2 control runs from CCSM, 2304500 years
2 control runs from UKMO, 341481 vyears

All model data have been calculated for the grid box from 30—50°
N, 10° W—40° E, annual average temperatures over June—August

Expressed an anomalies from 1961—-1990, similar to Stott, Stone
and Allen (2004)
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CLIMATE MODEL RUNS: ANOMALIES FROM 1961-1990

—CCSM ANTHRO.
——UKMO ANTHRO.
—CCSM CONTROL

UKMO CONTROL

biag

i LM ||' "‘
M‘ \’.',*‘,’ : M il W 5‘“!‘ i (M,xl,

v'

!

I I I I I
1900 1950 2000 2050 2100

Year

33



Method:

Fit POT models with various trend terms to the anthropogenic
model runs, 1861—-2010

Also fit trend-free model to control runs (p = 0.176, logy =
—1.068, £ = —0.068)
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POT MODELS 1861-2010, u=1

Model p| NLLH | NLLH+4p
Gumbel 2| 349.6 351.6
GEV 3| 348.6 351.6
GEV, lin u 4 | 315.5 319.5
GEV, quad u 5| 288.1 293.1
GEV, cubic u 6 | 287.7 293.7
GEV, quart u 7 | 285.1 292.1
GEV, quad u, lin logy | 6| 287.9 293.9
GEV, quad u, quad logy | 7 | 287.0 294 .9
Fitted model: u = Bg + 31t + Bot2, 1, & const
Bo 51 B2 log ¥ §
Estimate | —0.187 | —0.030 | 0.000215 | 0.047 | 0.212
S.E. 0.335 | 0.0054 | 0.00003 | 0.212 | 0.067
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Temperature

CLIMATE MODEL RUNS: ANOMALIES FROM 1961-1990

——CCSM ANTHRO.
——UKMO ANTHRO.
—CCSM CONTROL

UKMO CONTROL

1900 1950 2000

36



z value

w value

O P N W b O

Diagnostic Plots for Temperatures (Control)

(@)

Time

(d)

Time

Observed values

Observed values

SO P N W M~ O

(b)

Correlation
o
o

Expected values for z

(e)

0.0

Correlation

Expected values for w

Lag for z

Lag for w

37



z value

w value

O P N W b 00 O

Diagnostic Plots for Temperatures (Anthropogenic)

200 400 600 800

Time

(d)

200 400 600 800

Time

Observed values

Observed values

SO P N W b OO

(b)

0.2

0.1

0.0

Correlation

Expected values for z

(e)

0.2

0.1

Correlation
o
o

Expected values for w

(c)
o ....................................
o
0©° ©oo
o
o
SR RS -
2 4 6 10
Lag for z
()
o ....................................
o
o
o© o © o
SR RS -
2 4 6 10
Lag for w

38



We now estimate the probabilities of crossing various thresholds
in 2003.

Express answer as N=1/(exceedance probability)

T hreshold 2.3:

N=3024 (control), N=29.1 (anthropogenic)

Threshold 2.6:

N=14759 (control), N=83.2 (anthropogenic)
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IV. TREND IN PRECIPITATION

EXTREMES
(Joint work with Amy Grady and Gabi Hegerl)

During the past decade, there has been extensive research by
climatologists documenting increases in the levels of extreme
precipitation, but in observational and model-generated data.

With a few exceptions (papers by Katz, Zwiers and co-authors)
this literature have not made use of the extreme value distribu-
tions and related constructs

There are however a few papers by statisticians that have ex-
plored the possibility of using more advanced extreme value
methods (e.g. Cooley, Naveau and Nychka, to appear JASA;
Sang and Gelfand, submitted)

This discussion uses extreme value methodology to look for
trends
40



DATA SOURCES

e NCDC Rain Gauge Data (Groisman 2000)
— Daily precipitation from 5873 stations
— Select 1970—1999 as period of study
— 90% data coverage provision — 4939 stations meet that

e NCAR-CCSM climate model runs
— 20 x 41 grid cells of side 1.4°
— 1970—-1999 and 2070—2099 (A1B scenario)

e PRISM data
— 1405 x 621 grid, side 4km
— Elevations
— Mean annual precipitation 1970—1997
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EXTREME VALUES METHODOLOGY

The essential idea is to fit a probability model to the exceedances
over a high threshold at each of 5000 data sites, and then to
combine data across sites using spatial statistics.

The model at each site is based on the generalized extreme value
distribution, interpreted as an approximate tail probability in the
right hand tail of the distribution.

N —1/€
Pr{Y >y} ~ & (1 + gu>
v/t

Here x4 = max(x,0), § is a time increment (here 1 day based
on a time unit of 1 year) and the parameters u, 1, £ represent
the location, scale and shape of the distribution. In particular,
when £ > 0 the marginal distributions have a Pareto (power-law)
tail with power —1/¢.

for large vy,
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TEMPORAL AND SPATIAL DEPENDENCE

Here, we make two extensions of the basic methodology.

First, the parameters u, ¢, & are allowed to be time-dependent
through covariates. This allows a very flexible approach to sea-
sonality, and we can also introduce linear trend terms to examine
changes in the extreme value distribution over the time period
of the study.

The second extension is spatial smoothing: after estimating the
25-year return value at each site, we smooth the results across
sites by a technique similar to kriging. We allow for spatial
nonstationarity by dividing the US into 19 overlapping boxes,
and interpolating across the boundaries.
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Root mean square prediction errors for map of 25-year return
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Change | RMSPE Change | RMSPE

A | —0.01 .03 K | 0.08*** .01
B | 0.07** .03 L | 0.07*** .02
C || 0.11%* .01 M | 0.07*** .02
D | 0.05%** .01 N 0.02 .03
E | 0.13*** .02 O 0.01 .02
F 0.00 .02 P || 0.07*** .01
G| —0.01 .02 Q | 0.07*** .01
H | 0.08%** .01 R | 0.15%** .02
I | 0.07*** .01 S | 0.14*** .02
J || 0.05%** .01

For each grid box, we show the mean change in log 25-year
return value (1970 to 1999) and the corresponding standard error
(RMSPE)

Stars indicate significance at 5%*, 1%**, 0.1%™**.

14 of 19 regions are statistically significant increasing: the
remaining five are all in western states
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We can use the same statistical methods to project future changes
by using data from climate models.

Here we use data from CCSM, the climate model run at NCAR.
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Return value map for CCSM data (cm.): 1970—1999
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Return value map for CCSM data (cm.): 2070—2099
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Estimated ratios of 25-year return values for 2070—2099 to those
of 1970—1999, based on CCSM data, A1B scenario
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The climate model data show clear evidence of an increase in 25-
year return values over the next 100 years, as much as doubling
in some places.
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A caveat...

Although the overall increase in observed precipitation
extremes is similar to that stated by other authors, the spatial
pattern is completely different. There are various possible expla-
nations, including different methods of spatial aggregation and
different treatments of seasonal effects.

Even when the same methods are applied to CCSM data over
1970—1999, the results are different.
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Extreme value model with trend: ratio of 25-year return value in
1999 to 25-year return value in 1970, based on CCSM data

55



CONCLUSIONS

. Focus on N-year return values — strong historical tradition
for this measure of extremes (we took N = 25 here)

. Seasonal variation of extreme value parameters is a critical
feature of this analysis

. Overall significant increase over 1970—1999 except for parts
of western states — average increase across continental US
is 7%

. Projections to 2070—2099 show further strong increases but
note caveat based on point 5

. But... based on CCSM data there is a completely different
spatial pattern and no overall increase — still leaves some
doubt as to overall interpretation.

56



FURTHER READING

Finkenstadt, B. and Rootzén, H. (editors) (2003), Extreme Val-
ues in Finance, Telecommunications and the Environment. Chap-
man and Hall/CRC Press, London.

(See http://www.stat.unc.edu/postscript/rs/semstatrls.pdf)

Coles, S.G. (2001), An Introduction to Statistical Modeling of
Extreme Values. Springer Verlag, New York.
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THANK YOU FOR YOUR
ATTENTION!
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