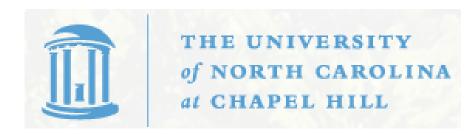
A CONDITIONAL APPROACH TO EXTREME EVENT ATTRIBUTION Richard L. Smith

University of North Carolina, Chapel Hill, USA rls@email.unc.edu

Seminar, Cardiff University, July 6, 2023 Slides, datasets etc.: http://rls.sites.oasis.unc.edu/ClimExt/intro.html



The Guardian, June 27, 2023

Current heatwave across US south made five times more likely by climate crisis

Latest 'heat dome' event over Texas and Louisiana, plus much of Mexico, driven by human-cause climate change, scientists find

A temperature display reading 99F (about 37.2C) in late afternoon in Houston, Texas, at the weekend. Photograph: Xinhua/Shutterstock

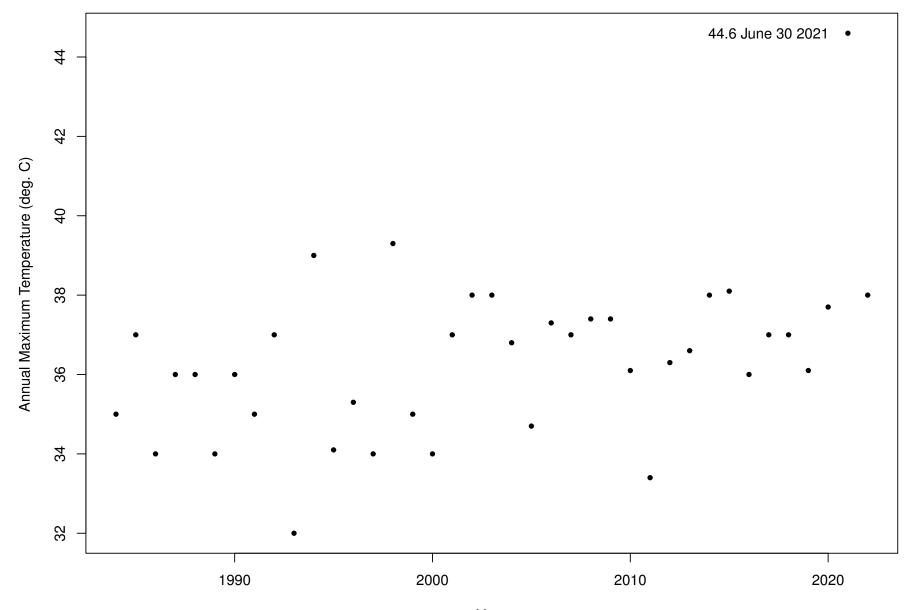
The record heatwave roiling parts of Texas, Louisiana and <u>Mexico</u> was made at least five times more likely due to human-caused climate change, scientists have found, marking the latest in a series of recent extreme "heat dome" events that have scorched various parts of the world.

Objectives

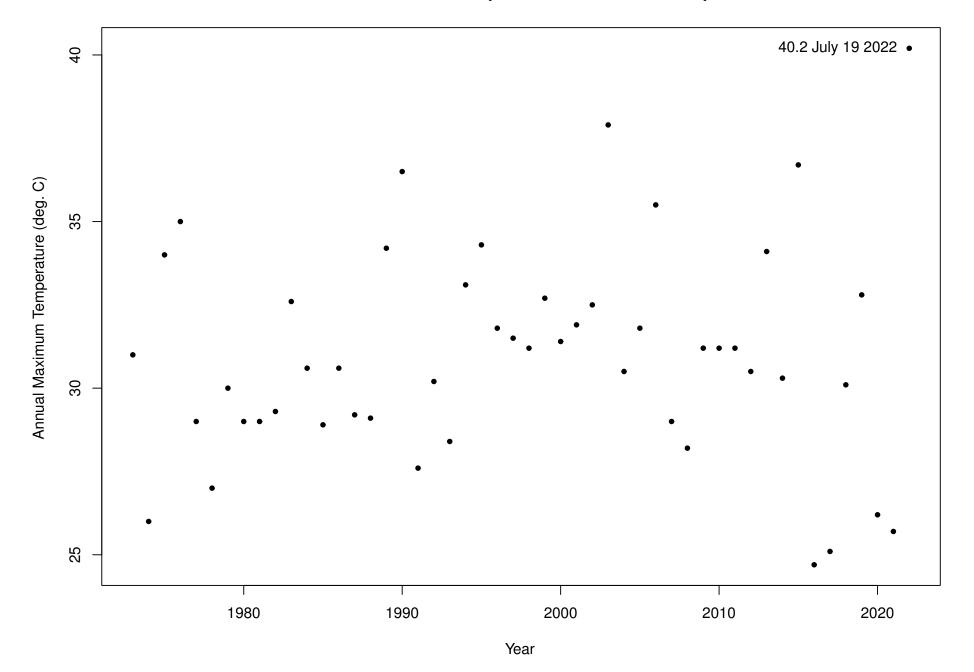
- 1. "Extreme event attribution" is an active field drawing much publicity (see in particular, the website of "World Weather Attribution")
- 2. My objective is to extend existing approaches, not contradict them
- 3. Acknowledging that dynamical methods will ultimately outperform statistical methods, but the latter are much quicker to calculate and provide an independent validation
- 4. Key idea of this talk: include a *conditioning variable* some regional climate indicator at a more localized scale than global mean surface temperature
- 5. Second key idea: projections of future extreme event probabilities

I. Introduction

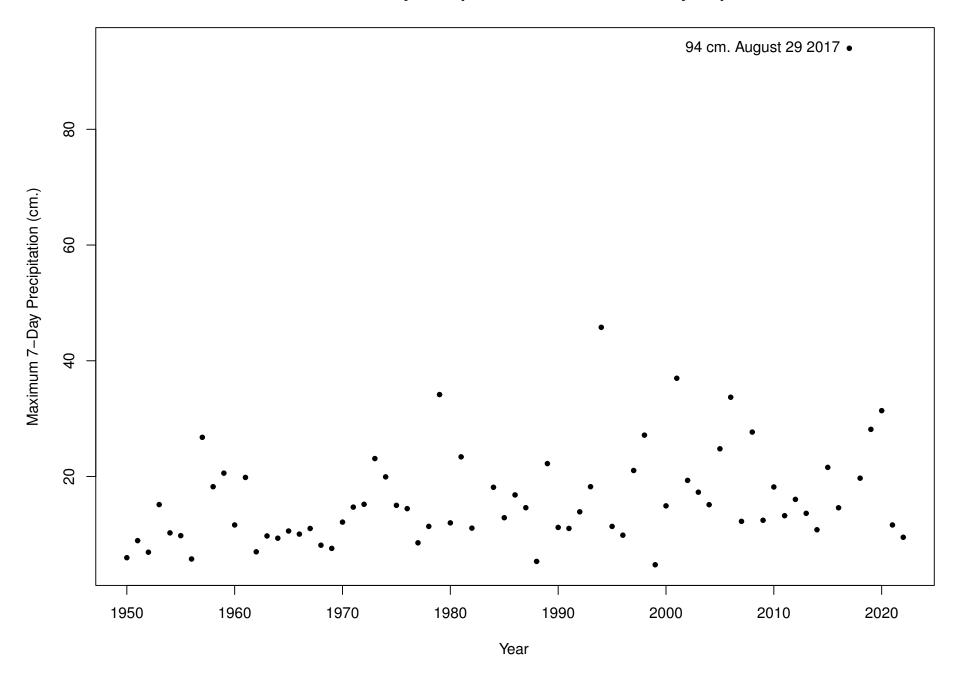
I begin with three examples of datasets that contain extreme events



Annual Maximum Temperatures in Kelowna, BC



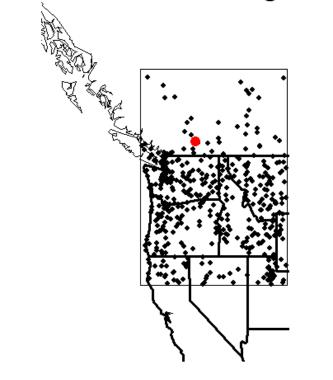
Annual Maximum Temperatures at Heathrow Airport



Maximum 7–Day Precipitations at Houston Hobby Airport

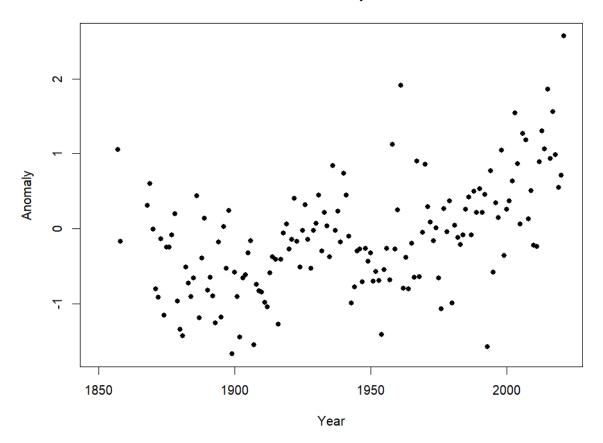
For each of these overseles. I have collected weather data from

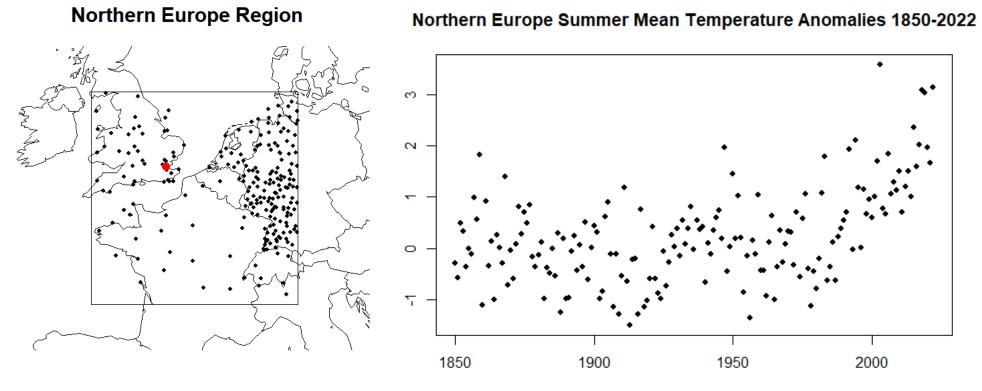
For each of these examples, I have collected weather data from multiple stations in the same region (from the Global Historical Climatological Network), and also calculated a *regional variable* that includes annual or seasonal maxima from spatially aggregated data (from the Climate Research Unit of the University of East Anglia)



Pacific Northwest Region

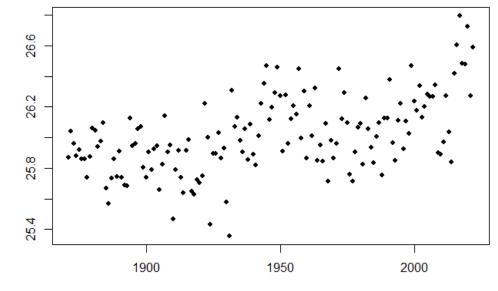
Pacific Northwest Summer Mean Temperature Anomalies 1850-2021



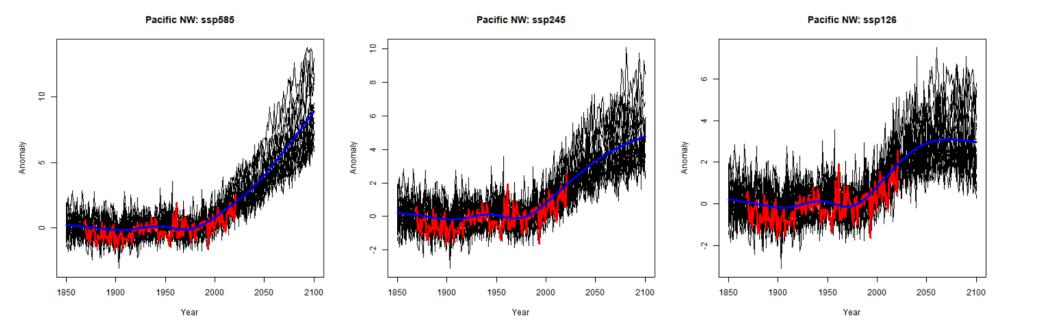


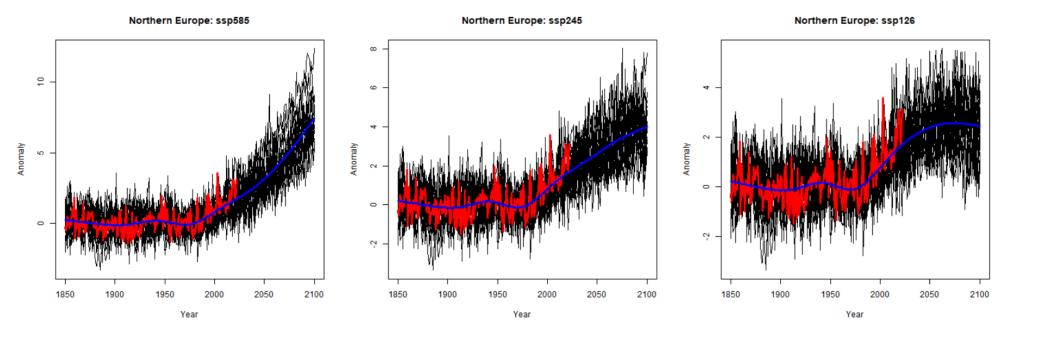


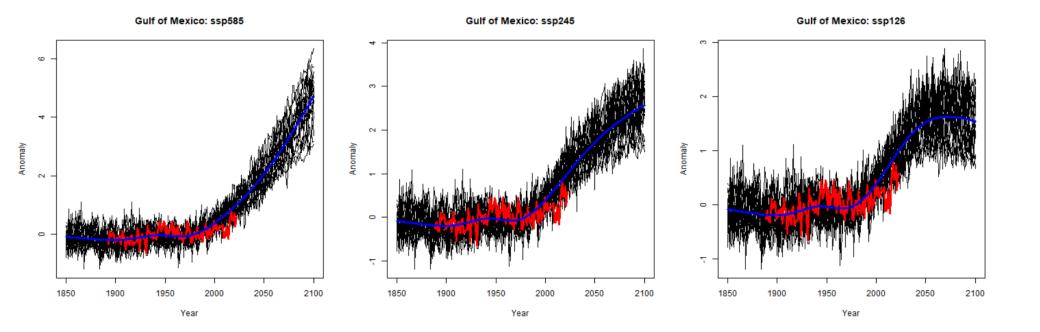
Gulf of Mexico Jul-Jun SST Means 1871-2022



I have also compiled 17 climate model datasets (from CMIP6) that correspond to the regional variables defined above







II. Statistical Analysis

- IIa. Used the Generalized Extreme Value (GEV) for each station with regional variable as a covariate
- IIb. Combine stations using a spatial model
- IIc. Climate models to project the regional variable forwards and backwards in time
- IId. "End to end" analysis to show how the extreme event probability changes corresponding to climate variation (including uncertainty bounds)

Aside: Background on Extreme Value Theory

Original papers: Fréchet (1927), Fisher and Tippett (1928), von Mises (1936), Gnedenko (1943)

Consider X_1, X_2, \ldots IID random variables with distribution function F, $M_n = \max(X_1, \ldots, X_n)$. Find asymptotic distribution in form

$$\Pr\left\{\frac{M_n - b_n}{a_n} \le y\right\} = F^n(a_n y + b_n) \rightarrow G(y)$$

where a_n and b_n are normalizing constants and G is some limiting distribution.

Fisher-Tippett-Gnedenko theorem: if such a limit exists, G(y) must be one of "three types" of probability distributions.

Von Mises showed they could be combined into a single distribution family which we nowadays call the *Generalized Extreme Value* (GEV) distribution.

GEV Distribution: Characterization $G(y; \mu, \psi, \xi) = \exp \left\{ -\left(1 + \xi \frac{y - \mu}{\psi}\right)_{+}^{-1/\xi} \right\}$

valid whenever $1 + \xi \frac{y-\mu}{\psi} > 0$.

- μ is the *location parameter* determines center of distribution
- ψ is the scale parameter how spread out the distribution is
- ξ is the shape parameter.
- When $\xi > 0$, 1 G(y) ultimately behaves like $y^{-1/\xi}$ Pareto tail long-tailed. Also known as Fréchet distribution.
- When $\xi < 0$, the distribution has a finite endpoint at $\mu \psi/\xi$ short-tailed, equivalent to Weibull distribution
- The case $\xi = 0$ is interpreted as the limit $\xi \to 0$: in that case, $G(y) = \exp(-e^{-y})$, also known as the Gumbel distribution.
- Precipitation series usually follow a Pareto tail with $\xi \approx 0.1$ but there is a finite endpoint because of the *probable maximum precipitation*
- Temperature series usually follow a Weibull tail with $\xi \approx -0.2$ but this can create problems also

GEV Distribution: Estimation

$$G(y; \mu, \psi, \xi) = \exp \left\{ -\left(1 + \xi \frac{y - \mu}{\psi}\right)_{+}^{-1/\xi} \right\}$$

valid whenever $1 + \xi \frac{y-\mu}{\psi} > 0$.

- Sample Y_1, \ldots, Y_N , e.g. annual maximum temperatures at a specific location
- Maximum likelihood estimation (MLE): Define $g(y; \mu, \psi, \xi) = \frac{dG(y; \mu, \psi, \xi)}{dy}$, choose μ , ψ , ξ to minimize

$$\ell(\mu,\psi,\xi) = -\sum_{i=1}^N \log g(Y_i;\mu,\psi,\xi).$$

- First numerical optimization method proposed by Jenkinson (1969)
- Fisher information matrix calculated by Prescott and Walden (1980), more detailed maximum likelihood theory by Smith (1985)
- Many modern refinements, e.g. Zhang and Shaby (2021)
- Standard MLE theory holds when $\xi > -\frac{1}{2}$

Extensions of the GEV

- Alternative viewpoints, e.g. excesses over thresholds, Generalized Pareto distribution (Pickands 1975; Davison and Smith 1990; Coles 2001)
- Include covariates (e.g. Smith 1990 and many other references)
- Multivariate extremes (many references...)
- Spatial models: allow μ, ψ, ξ and any regression parameters to vary smoothly in space; fit a Gaussian process model (Coles and Casson 1999,...)
- Many forms of stochastic processes that directly allow for dependence among spatial locations, e.g. max-stable processes, max-id, scale mixtures of normals, etc.

IIa. GEV Analysis

$$G(y) = \Pr\{Y \le y\} = \exp\left\{-\left(1+\xi\frac{y-\mu}{\psi}\right)_{+}^{-1/\xi}\right\}$$

- Parameters $\mu, \ \psi, \ \xi$ depend on time and space
- Time dependence based on regional variable as a covariate
- Point of clarification: There is a debate in the literature about whether the analyzed data should include the extreme event of interest. The results I am showing here do *not* do this: the analyses for Kelowna, London and Houston are based on station data up to 2020, 2021 and 2016 respectively.

Covariate Models (Risser and Wehner 2017, Russell et al. 2020) $\mu_{s,t} = \theta_{s,1} + \theta_{s,4}X_t,$ $\log \psi_{s,t} = \theta_{s,2} + \theta_{s,5}X_t,$ $\xi_{s,t} = \theta_{s,3},$

Define a parameter vector $\Theta_s = \begin{pmatrix} \theta_{s,1} & \dots & \theta_{s,5} \end{pmatrix}$ at each site *s*; a 5-dimensional parameter vector for each site *s*.

Extension: $\log \left\{ \frac{1+\xi_{s,t}}{1-\xi_{s,t}} \right\} = \theta_{s,3} + \theta_{s,6} X_t$ (6-parameter model), also combined into Θ_s

IIb. Spatial Extremes Analysis

Objective: Come up with a model for interpolating the GEV distributions between stations, and also improving the analysis at individual stations by "borrowing strength" across stations.

- Latent process approach: Russell, Risser, Smith and Kunkel (2020)
- Idea is to "combine strength" across different stations
- Fit a spatial model to all the stations, then project backwards to specific locations (including the stations)
- Several other approaches, see in particular Zhang, Risser, Wehner and O'Brien (forthcoming)

Concept of Approach

- True (latent) process Θ (*KN*-dimensional, *K*=5 or 6)
- Estimated process $\widehat{\Theta}$ (GEV estimates at each site)
- Assume $(\widehat{\Theta} \mid \Theta) \sim \mathcal{N}_{KN}(\Theta, W)$
- Spatial model ($\Theta \sim \mathcal{N}_{KN}(\mu \otimes I_N, V(\phi))$)
- $\widehat{\Theta} \sim \mathcal{N}_{KN}(\mu \otimes I_N, V(\phi) + W)$
- Estimate W empirically, μ and ϕ by MLE
- Hence generate $\Theta \mid \widehat{\Theta}$
- Model for V(φ): co-regionalization (Wackernagel 2003, Finley et al. 2008, etc.)

Kelowna, B.C. (Single Station Approach)

5-Par Model:	Parameter	Estimate	SE	t-val	p-val
	$ heta_1$	34.8265	0.2511	138.7138	0.0000
	θ_2	0.0703	0.1812	0.3882	0.6979
	$ heta_3$	-0.3709	0.3533	-1.0497	0.2939
	$ heta_4$	1.8317	0.2708	6.7642	0.0000
	$ heta_5$	-0.0958	0.3372	-0.2841	0.7763

MLE probability of exceeding 44.6°C in 2021, given X_{2021} : 0.

Bayesian posterior mean: 0.012 (1-in-83-year event, even *given* the high regional temperature)

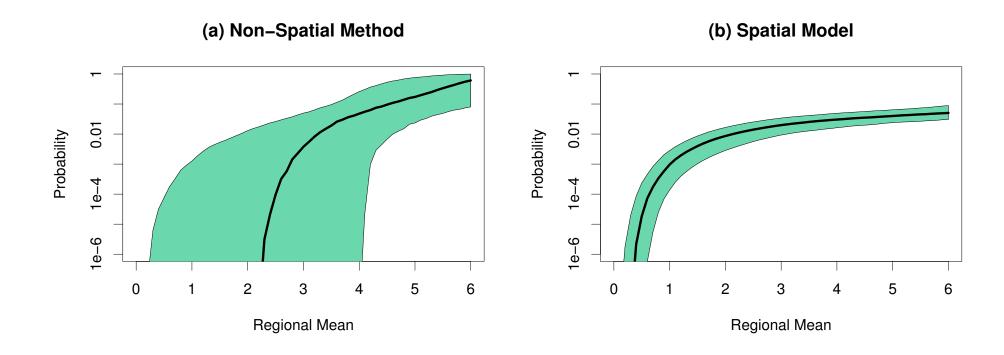
	Parameter	Estimate	SE	t-val	p-val
6-Par Model:	$ heta_1$	34.8386	0.2809	124.0051	0.0000
	θ_2	0.1397	0.1866	0.7486	0.4541
	$ heta_3$	-0.9475	0.4582	-2.0679	0.0386
	$ heta_4$	1.8494	0.2686	6.8861	0.0000
	$ heta_5$	-0.2301	0.2755	-0.8352	0.4036
	$ heta_6$	1.1113	0.7217	1.5399	0.1236

MLE probability for 2021 is 0.072, Bayesian 0.076 (1-in-13-year)

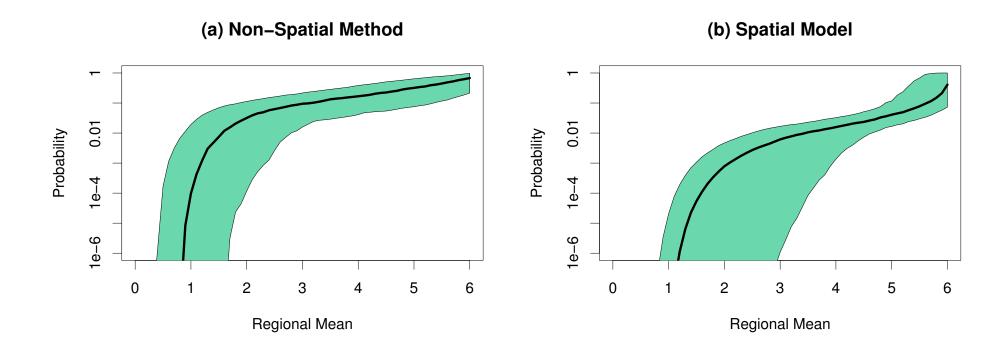
Results: Kelowna (6-Par Spatial Model)

MLE Analysis	Parameter	Estimate	SE	t-val	p-val
	$ heta_1$	34.8386	0.2809	124.0051	0.0000
	θ_2	0.1397	0.1866	0.7486	0.4541
	$ heta_3$	-0.9475	0.4582	-2.0679	0.0386
	$ heta_4$	1.8494	0.2686	6.8861	0.0000
	$ heta_5$	-0.2301	0.2755	-0.8352	0.4036
	$ heta_6$	1.1113	0.7217	1.5399	0.1236
_	·	· · · ·	· · ·		
	Parameter	Estimate	SE	t-val	p-val
Spatial Analysis	$ heta_1$	34.8437	0.1767	197.2273	0.0000
	θ_2	0.1099	0.0808	1.3597	0.1739
	θ_3	-0.5908	0.1272	-4.6438	0.0000
	θ_4	1.7402	0.1530	11.3750	0.0000
	θ_5	-0.3748	0.1219	-3.0754	0.0021
	$ heta_6$	0.4290	0.2025	2.1185	0.0341

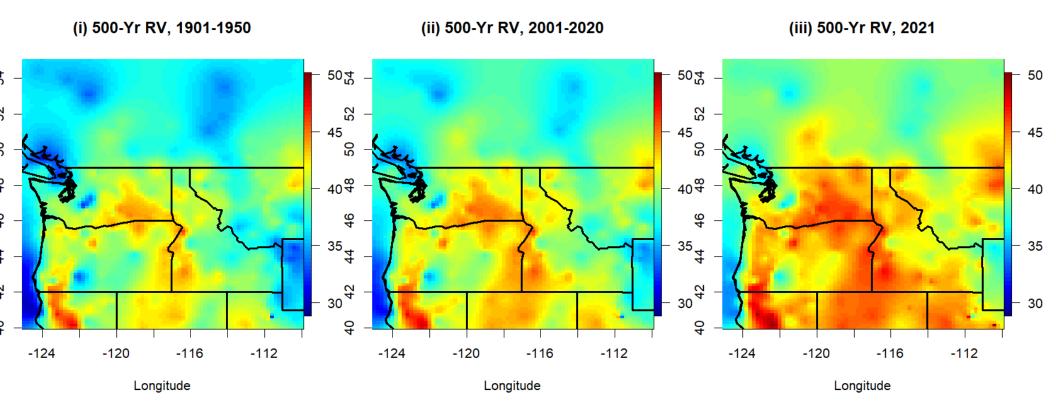
Estimates and 66% Credible Intervals for Mean Exceedance Probability: Comox, B.C.

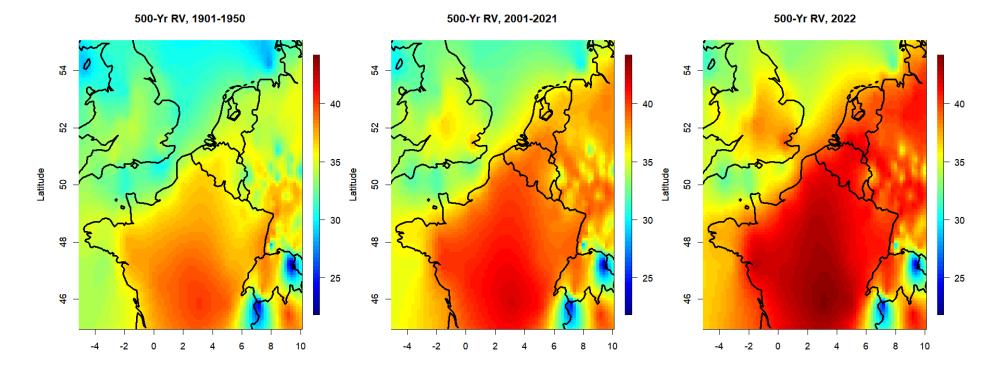


Estimates and 66% Credible Intervals for Mean Exceedance Probability: Kelowna (with monotonicity constraint)



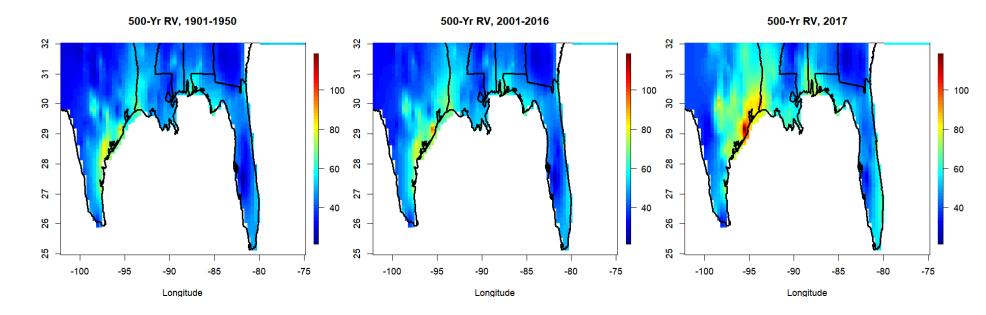
PNW: 500-year return values for (i), (ii), (iii)





NEU: 500-year return values for (i), (ii), (iii)

GOM: 500-year return values for (i), (ii), (iii)



Houston, we have a problem

Looking at the Probabilities of Individual Events

Conditional probabilities of exceeding 2021 temp in PNW:

	(i) 1901–1950	(ii) 2001–2020	(iii) 2021
Kelowna (44.6°C)	$3 imes 10^{-12}$	$8.6 imes 10^{-6}$	0.0061
All Canadian stations	0.0081	0.0185	0.067

Conditional probabilities of exceeding 2022 temp in UK:

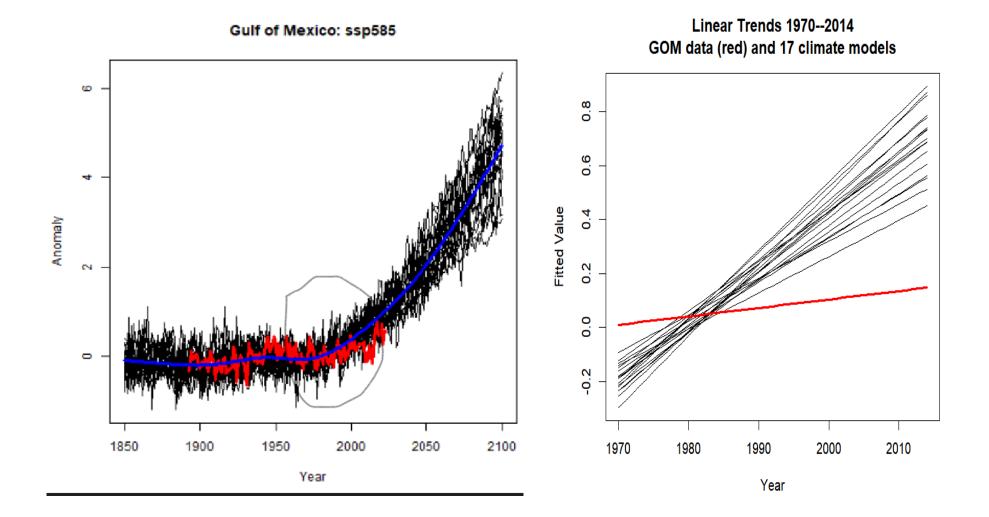
	(i) 1901–1950	(ii) 2001–2021	(iii) 2022
Heathrow	0	$3.1 imes 10^{-5}$	0.017
All U.K. stations	0.0081	0.0319	0.095

Conditional probabilities of exceeding 2017 precip in Houston:

	(i) 1901–1950	(ii) 2001–2016	(iii) 2017
Houston Hobby	$4.7 imes 10^{-5}$	0.00014	0.0023
All stations $>$ 70 cm	0.00017	0.00030	0.0023

Still haven't introduced climate models into the discussion

IIc: Projecting the Distribution of the Regional Variable Forwards and Backwards in Time

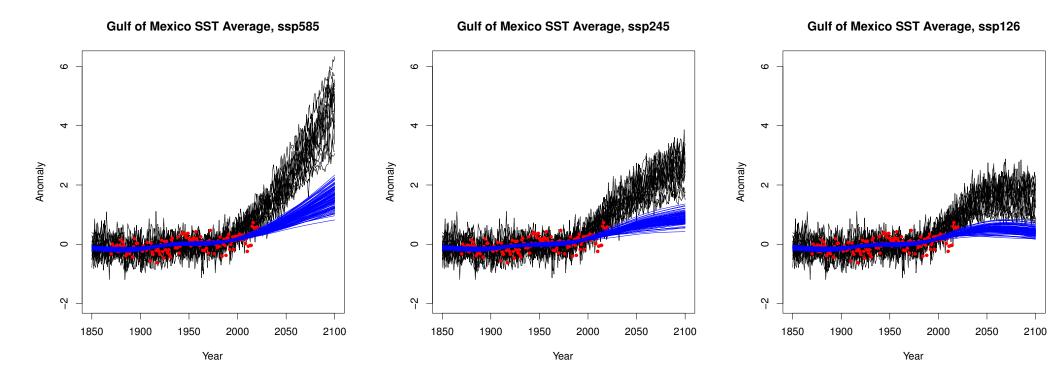


• Obvious method: regress observed regional value on 17 climate models, then use standard prediction theory

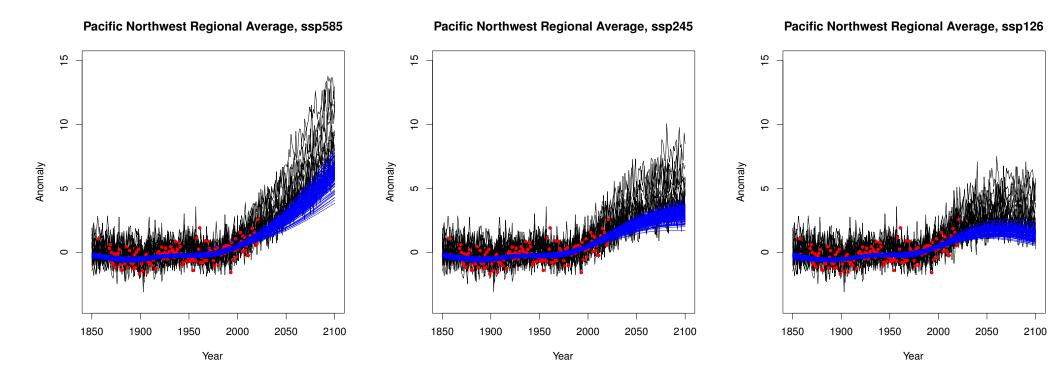
- Objection: ignores variability in the covariates (climate model)

- To accommodate this feature, we need a model for the joint error distribution of 17 climate models. They are not independent!
- Typical solution: use principal components (empirical orthogonal functions), but it's not clear how to accommodate variability in the PCs (side note: Katzfuss, Hammerling and Smith (2017, GRL) proposed a Bayesian solution to detection and attribution, but did not resolve this question)
- Alternative: factor analysis (FA) instead of PCs
- FA models are based on unobserved latent components, easy to implement via Gibbs sampling (don't need Metropolis)
- But.... still susceptible to overfitting, possible lack of proprietary of posterior distribution
- I have avoided these issues by using a "shrinkage prior" formulation of Bhattacharya and Dunson (2011), allows arbitrarily many factors (I actually used 2)

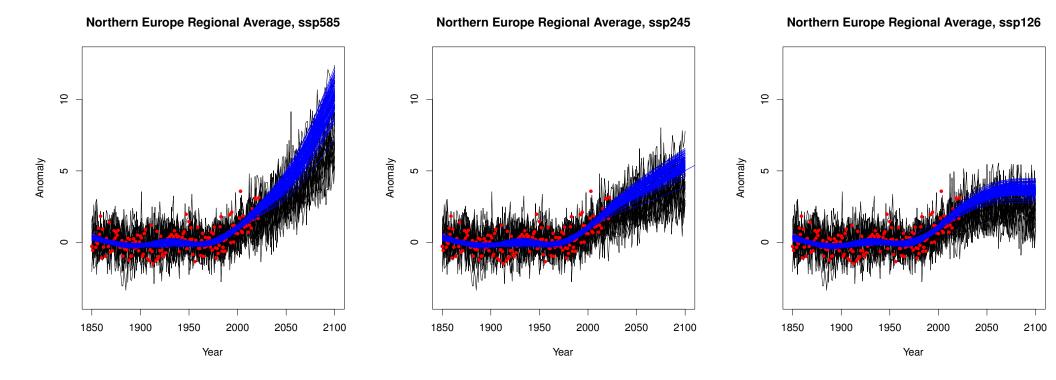
Regional Variable Projections: Gulf of Mexico



Regional Variable Projections: Pacific Northwest



Regional Variable Projections: Northern Europe

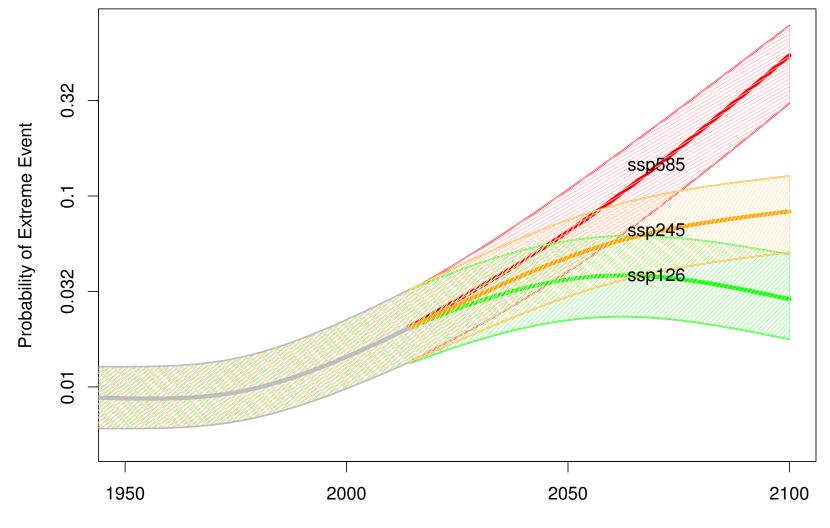


IId: End to End Analysis

- Generate Monte Carlo sample for regional variable condition on climate models
- Conditional on the regional variable, use the spatial GEV model to simulate values of the exceedance probabilities
- Compute 66% prediction intervals ("likely" in IPCC terminology)
- Plot the results

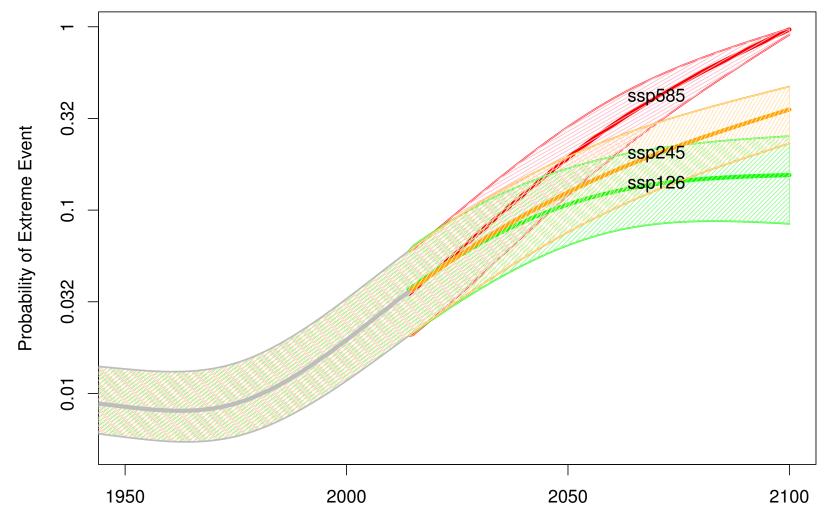
End To End Analysis: Mean Probability of Exceeding 2021 Value for All Stations in Canada Mean probability over 1850–1949: 0.008; for 2023: 0.025;

for 2080: (0.035, 0.072, 0.22) under three scenarios; for 2100: (0.029, 0.083, 0.54)

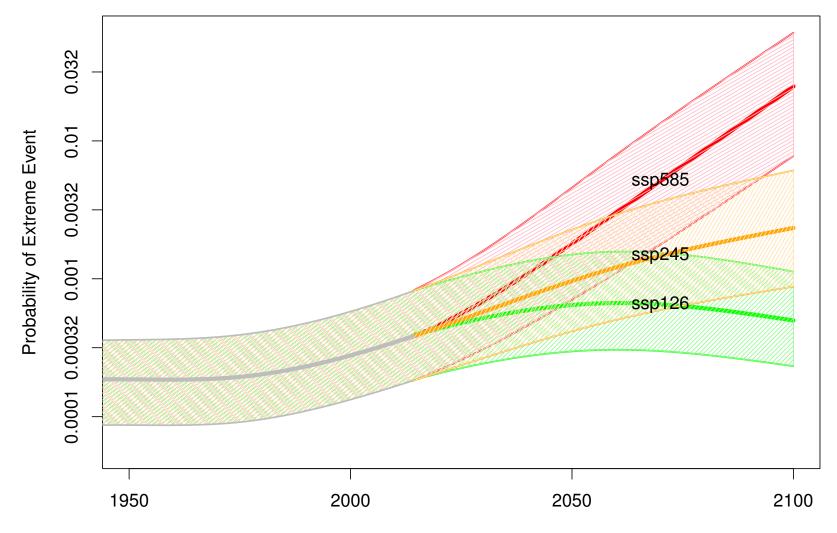


End To End Analysis: Mean Probability of Exceeding 2022 Value for All Stations in U.K. Mean probability over 1850–1949: 0.008; for 2023: 0.052;

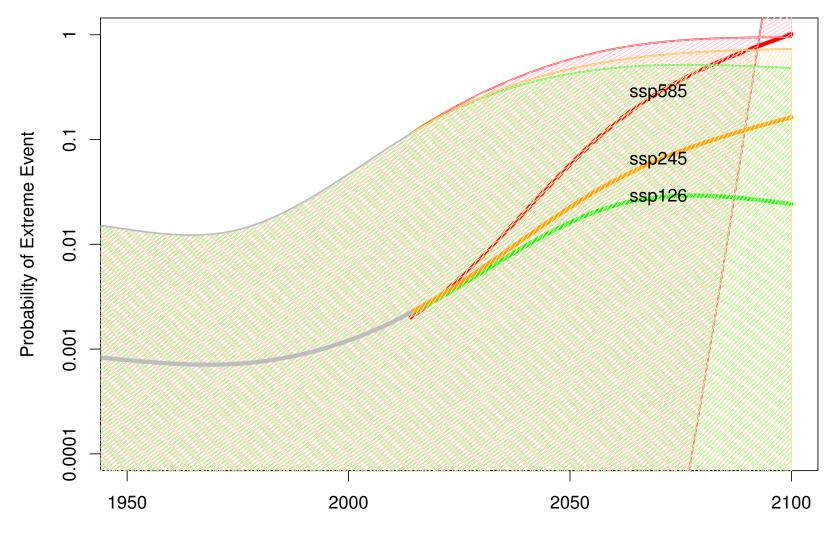
for 2080: (0.15, 0.25, 0.56) under three scenarios; for 2100: (0.16, 0.35, 0.97)



End To End Analysis: Mean Probability of Exceeding 2017 Value for 8 Stations near Houston Mean probability over 1850–1949: 0.00015; for 2023: 0.00048; for 2080: (0.00061, 0.0017, 0.0086) under three scenarios; for 2100: (0.0005, 0.0023, 0.024)



End To End Analysis: Probability of Annual Maximum Exceeding 40 ^oC in Cardiff (unedited figure) Mean probability over 1850–1949: 0.0009; for 2023: 0.0037; for 2080: (0.029, 0.092, 0.47) under three scenarios; for 2100: (0.024, 0.16, 1)



III: Conclusions and Policy Implications

- We have only considered three scenarios for the future, and there are many others, but the analysis demonstrates that there is a *huge* difference among the scenarios for projected probabilities of future extreme events
- Calculation of confidence/prediction/credible intervals is a key point of this analysis. We need to *quantify uncertainty*
- The important caveat: this analysis still relies on statistical assumptions that are not directly verifiable. We need a range of alternative approaches in order to demonstrate that the qualitative conclusions are not dependent on one particular method of analysis.

Slides and datasets: http://rls.sites.oasis.unc.edu/ClimExt/intro.html