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Objectives

1. “Extreme event attribution” is an active field drawing much
publicity (see in particular, the website of “World Weather
Attribution”)

2. My objective is to extend existing approaches, not contradict
them

3. Acknowledging that dynamical methods will ultimately out-
perform statistical methods, but the latter are much quicker
to calculate and provide an independent validation

4. Key idea of this talk: include a conditioning variable —
some regional climate indicator at a more localized scale than
global mean surface temperature

5. Second key idea: projections of future extreme event proba-
bilities



I. Introduction

I begin with three examples of datasets that contain extreme

events
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For each of these examples, I have collected weather data from

multiple stations in the same region (from the Global Historical

Climatological Network), and also calculated a regional variable

that includes annual or seasonal maxima from spatially aggre-

gated data (from the Climate Research Unit of the University of

East Anglia)
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I have also compiled 17 climate model datasets (from CMIP6)

that correspond to the regional variables defined above
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II. Statistical Analysis

IIa. Used the Generalized Extreme Value (GEV) for each station

with regional variable as a covariate

IIb. Combine stations using a spatial model

IIc. Climate models to project the regional variable forwards and

backwards in time

IId. “End to end” analysis to show how the extreme event prob-

ability changes corresponding to climate variation (including

uncertainty bounds)



Aside: Background on Extreme Value Theory

Original papers: Fréchet (1927), Fisher and Tippett (1928), von
Mises (1936), Gnedenko (1943)

Consider X1, X2, . . . IID random variables with distribution func-
tion F , Mn = max(X1, . . . , Xn). Find asymptotic distribution in
form

Pr
{
Mn − bn
an

≤ y
}

= Fn(any + bn) → G(y)

where an and bn are normalizing constants and G is some limiting
distribution.

Fisher-Tippett-Gnedenko theorem: if such a limit exists, G(y)
must be one of “three types” of probability distributions.

Von Mises showed they could be combined into a single distri-
bution family which we nowadays call the Generalized Extreme
Value (GEV) distribution.



GEV Distribution: Characterization

G(y;µ, ψ, ξ) = exp

−
(

1 + ξ
y − µ
ψ

)−1/ξ

+


valid whenever 1 + ξy−µψ > 0.

• µ is the location parameter — determines center of distribution

• ψ is the scale parameter — how spread out the distribution is

• ξ is the shape parameter.

• When ξ > 0, 1 − G(y) ultimately behaves like y−1/ξ — Pareto tail —
long-tailed. Also known as Fréchet distribution.

• When ξ < 0, the distribution has a finite endpoint at µ − ψ/ξ — short-
tailed, equivalent to Weibull distribution

• The case ξ = 0 is interpreted as the limit ξ → 0: in that case, G(y) =
exp(−e−y), also known as the Gumbel distribution.

• Precipitation series usually follow a Pareto tail with ξ ≈ 0.1 but there is
a finite endpoint because of the probable maximum precipitation

• Temperature series usually follow a Weibull tail with ξ ≈ −0.2 but this
can create problems also



GEV Distribution: Estimation

G(y;µ, ψ, ξ) = exp

−
(

1 + ξ
y − µ
ψ

)−1/ξ

+


valid whenever 1 + ξy−µψ > 0.

• Sample Y1, . . . , YN , e.g. annual maximum temperatures at a specific lo-
cation

• Maximum likelihood estimation (MLE): Define g(y;µ, ψ, ξ) = dG(y;µ,ψ,ξ)
dy

,

choose µ, ψ, ξ to minimize

`(µ, ψ, ξ) = −
N∑
i=1

log g(Yi;µ, ψ, ξ).

• First numerical optimization method proposed by Jenkinson (1969)

• Fisher information matrix calculated by Prescott and Walden (1980),
more detailed maximum likelihood theory by Smith (1985)

• Many modern refinements, e.g. Zhang and Shaby (2021)

• Standard MLE theory holds when ξ > −1
2



Extensions of the GEV

• Alternative viewpoints, e.g. excesses over thresholds, Gener-
alized Pareto distribution (Pickands 1975; Davison and Smith
1990; Coles 2001)

• Include covariates (e.g. Smith 1990 and many other refer-
ences)

• Multivariate extremes (many references...)

• Spatial models: allow µ, ψ, ξ and any regression parame-
ters to vary smoothly in space; fit a Gaussian process model
(Coles and Casson 1999,...)

• Many forms of stochastic processes that directly allow for
dependence among spatial locations, e.g. max-stable pro-
cesses, max-id, scale mixtures of normals, etc.



IIa. GEV Analysis

G(y) = Pr {Y ≤ y} = exp

−
(

1 + ξ
y − µ
ψ

)−1/ξ

+


• Parameters µ, ψ, ξ depend on time and space

• Time dependence based on regional variable as a covariate

• Point of clarification: There is a debate in the literature

about whether the analyzed data should include the extreme

event of interest. The results I am showing here do not

do this: the analyses for Kelowna, London and Houston are

based on station data up to 2020, 2021 and 2016 respec-

tively.



Covariate Models
(Risser and Wehner 2017, Russell et al. 2020)

µs,t = θs,1 + θs,4Xt,

logψs,t = θs,2 + θs,5Xt,

ξs,t = θs,3,

Define a parameter vector Θs =
(
θs,1 . . . θs,5

)
at each site s;

a 5-dimensional parameter vector for each site s.

Extension: log
{

1+ξs,t
1−ξs,t

}
= θs,3 + θs,6Xt (6-parameter model), also

combined into Θs



IIb. Spatial Extremes Analysis

Objective: Come up with a model for interpolating the GEV

distributions between stations, and also improving the analysis

at individual stations by “borrowing strength” across stations.

• Latent process approach: Russell, Risser, Smith and Kunkel

(2020)

• Idea is to “combine strength” across different stations

• Fit a spatial model to all the stations, then project backwards

to specific locations (including the stations)

• Several other approaches, see in particular Zhang, Risser,

Wehner and O’Brien (forthcoming)



Concept of Approach

• True (latent) process Θ (KN-dimensional, K=5 or 6)

• Estimated process Θ̂ (GEV estimates at each site)

• Assume (Θ̂ | Θ) ∼ NKN(Θ,W )

• Spatial model (Θ ∼ NKN(µ⊗ IN , V (φ)))

• Θ̂ ∼ NKN(µ⊗ IN , V (φ) +W )

• Estimate W empirically, µ and φ by MLE

• Hence generate Θ | Θ̂

• Model for V (φ): co-regionalization (Wackernagel 2003, Fin-

ley et al. 2008, etc.)



Kelowna, B.C. (Single Station Approach)

5-Par Model:

Parameter Estimate SE t-val p-val
θ1 34.8265 0.2511 138.7138 0.0000
θ2 0.0703 0.1812 0.3882 0.6979
θ3 -0.3709 0.3533 -1.0497 0.2939
θ4 1.8317 0.2708 6.7642 0.0000
θ5 -0.0958 0.3372 -0.2841 0.7763

MLE probability of exceeding 44.6oC in 2021, given X2021: 0.

Bayesian posterior mean: 0.012 (1-in-83-year event, even given the high
regional temperature)

6-Par Model:

Parameter Estimate SE t-val p-val
θ1 34.8386 0.2809 124.0051 0.0000
θ2 0.1397 0.1866 0.7486 0.4541
θ3 -0.9475 0.4582 -2.0679 0.0386
θ4 1.8494 0.2686 6.8861 0.0000
θ5 -0.2301 0.2755 -0.8352 0.4036
θ6 1.1113 0.7217 1.5399 0.1236

MLE probability for 2021 is 0.072, Bayesian 0.076 (1-in-13-year)



Results: Kelowna (6-Par Spatial Model)

MLE Analysis

Parameter Estimate SE t-val p-val
θ1 34.8386 0.2809 124.0051 0.0000
θ2 0.1397 0.1866 0.7486 0.4541
θ3 -0.9475 0.4582 -2.0679 0.0386
θ4 1.8494 0.2686 6.8861 0.0000
θ5 -0.2301 0.2755 -0.8352 0.4036
θ6 1.1113 0.7217 1.5399 0.1236

Spatial Analysis

Parameter Estimate SE t-val p-val
θ1 34.8437 0.1767 197.2273 0.0000
θ2 0.1099 0.0808 1.3597 0.1739
θ3 -0.5908 0.1272 -4.6438 0.0000
θ4 1.7402 0.1530 11.3750 0.0000
θ5 -0.3748 0.1219 -3.0754 0.0021
θ6 0.4290 0.2025 2.1185 0.0341



Estimates and 66% Credible Intervals for Mean Exceedance Prob-

ability: Comox, B.C.
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Estimates and 66% Credible Intervals for Mean Exceedance Prob-

ability: Kelowna (with monotonicity constraint)
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PNW: 500-year return values for (i), (ii), (iii)



NEU: 500-year return values for (i), (ii), (iii)



GOM: 500-year return values for (i), (ii), (iii)

Houston, we have a problem



Looking at the Probabilities of Individual Events

Conditional probabilities of exceeding 2021 temp in PNW:

(i) 1901–1950 (ii) 2001–2020 (iii) 2021
Kelowna (44.6oC) 3× 10−12 8.6× 10−6 0.0061

All Canadian stations 0.0081 0.0185 0.067

Conditional probabilities of exceeding 2022 temp in UK:
(i) 1901–1950 (ii) 2001–2021 (iii) 2022

Heathrow 0 3.1× 10−5 0.017
All U.K. stations 0.0081 0.0319 0.095

Conditional probabilities of exceeding 2017 precip in Houston:

(i) 1901–1950 (ii) 2001–2016 (iii) 2017
Houston Hobby 4.7× 10−5 0.00014 0.0023

All stations > 70 cm 0.00017 0.00030 0.0023

Still haven’t introduced climate models into the discussion



IIc: Projecting the Distribution of the Regional Variable

Forwards and Backwards in Time



• Obvious method: regress observed regional value on 17 climate models,
then use standard prediction theory
– Objection: ignores variability in the covariates (climate model)

• To accommodate this feature, we need a model for the joint error distri-
bution of 17 climate models. They are not independent!

• Typical solution: use principal components (empirical orthogonal func-
tions), but it’s not clear how to accommodate variability in the PCs
(side note: Katzfuss, Hammerling and Smith (2017, GRL) proposed a
Bayesian solution to detection and attribution, but did not resolve this
question)

• Alternative: factor analysis (FA) instead of PCs
• FA models are based on unobserved latent components, easy to imple-

ment via Gibbs sampling (don’t need Metropolis)
• But..... still susceptible to overfitting, possible lack of proprietary of

posterior distribution
• I have avoided these issues by using a “shrinkage prior” formulation of

Bhattacharya and Dunson (2011), allows arbitrarily many factors (I ac-
tually used 2)



Regional Variable Projections: Gulf of Mexico
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Regional Variable Projections: Pacific Northwest
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Regional Variable Projections: Northern Europe
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IId: End to End Analysis

• Generate Monte Carlo sample for regional variable condition

on climate models

• Conditional on the regional variable, use the spatial GEV

model to simulate values of the exceedance probabilities

• Compute 66% prediction intervals (“likely” in IPCC termi-

nology)

• Plot the results



End To End Analysis: Mean Probability of Exceeding 2021 Value
for All Stations in Canada
Mean probability over 1850–1949: 0.008; for 2023: 0.025;
for 2080: (0.035, 0.072, 0.22) under three scenarios; for 2100: (0.029, 0.083, 0.54)
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End To End Analysis: Mean Probability of Exceeding 2022 Value
for All Stations in U.K.
Mean probability over 1850–1949: 0.008; for 2023: 0.052;
for 2080: (0.15, 0.25, 0.56) under three scenarios; for 2100: (0.16, 0.35, 0.97)
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End To End Analysis: Mean Probability of Exceeding 2017 Value
for 8 Stations near Houston
Mean probability over 1850–1949: 0.00015; for 2023: 0.00048;

for 2080: (0.00061, 0.0017, 0.0086) under three scenarios;
for 2100: (0.0005, 0.0023, 0.024)
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End To End Analysis: Probability of Annual Maximum Exceeding
40 oC in Cardiff (unedited figure)
Mean probability over 1850–1949: 0.0009; for 2023: 0.0037;

for 2080: (0.029, 0.092, 0.47) under three scenarios;
for 2100: (0.024, 0.16, 1)
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III: Conclusions and Policy Implications

• We have only considered three scenarios for the future, and

there are many others, but the analysis demonstrates that

there is a huge difference among the scenarios for projected

probabilities of future extreme events

• Calculation of confidence/prediction/credible intervals is a

key point of this analysis. We need to quantify uncertainty

• The important caveat: this analysis still relies on statistical

assumptions that are not directly verifiable. We need a range

of alternative approaches in order to demonstrate that the

qualitative conclusions are not dependent on one particular

method of analysis.

Slides and datasets: http://rls.sites.oasis.unc.edu/ClimExt/intro.html


