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Extreme Weather Events are of Increasing Concern
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How Should We Characterize the Influence
of Anthropogenic Climate Change on
Probabilities of Extreme Events?

Focus of discussion is how probabilities of extreme events are
changing

Stott, Stone and Allen (2004) defined fraction of attributable risk
(FAR) as a measure of human influence on extreme events

Estimate the probabilities P,, P, of the extreme event of interest
under natural forcings and anthropogenic forcings respectively
(derived from climate models). Then FAR=1-P,/P,.

Example: for the Europe 2003 event they estimated the probability
under anthropogenic conditions to be 1 in 250 (P,), but the
probability under natural conditions to be 1 in 1000 (P,).

Based on this they stated the FAR was 1-250/1000=0.75.

According to them, it was “very likely” (confidence level at least
90%) that the FAR was at least 0.5.

| prefer to use risk ratio, RR=P,/P,, or its logarithm.



An Alternative Viewpoint - The NRC
Report on “Climate and Social Stress”

* Focus on increased probability of extreme
event probabilities over the next ten years
— not directly concerned with attribution
problem

 The committee did not find published
literature that would lead to numerical
answers

e But there is widespread agreement that
extreme event probabilities are increasing

* Their conclusion: Expect surprises



Current Literature

Initial approach given by Stott et al. (2004) -
used extreme value theory

Various methods based on normal Hansen, Saito and
distributions (Beniston and Diaz 2004, Schar et Ruedy (2012)
al. 2004, Jaeger et al. 2008)

Nonparametric method (Hoerling et al. 2007) 6__'No'fml'ms;ibu'ﬁ0n' S A
Recently Hansen et al. (2012) empirically ' jiggi:iggi

examined a very large number of 3 —1971-1981 i
observational time series but did not consider :}ggt;gg% | ]
climate models, so no attribution or forward ——2001-2011

projections 3

Not everyone agrees extreme events 5L

represent climate change — Dole et al. (2011)

argued Russia 2010 heatwave was the result AF

of a natural blocking event, and Hoerling et al. — oo
(2013) make a similar argument for the Texas -5 -4 =3 5

heatwave of 2011



The Method of Pall et al. (Nature, 2011)

Pall et al. proposed a

simpler method based on Power Calculation:

counting of extreme

events in a large Sample size required to distinguish two event probabilities in a
ensemble of “several test of size 0.05 at power 0.8.

thousand model runs”

(climateprediction.net) NuI Ratio of Probabilities

The method seems Probability 2 4 6 8 | 10
effective if you have a 0.05 422 71 | 31 18 | 11
large ensemble and the 0.025 880 144 | 67 41 | 28
probabilities are not too 0.01 2,239 384 | 170 | 104 | 73
small 0.001 about 23,000 | 3,863 | 1,728 | 1,057 | 743

However, power o ‘ .
calculations show that Highlighted cases correspond to two versions of the analysis by

the method could Pall et al., and the probability values given in Stott, Stone and
become extremely data  Allen (2004)
intensive if the estimated

probabilities are truly Conclusion: the method could become extremely data intensive
small



Data

e Observational data from CRU (Climate Research Unit,
University of East Anglia, UK) — monthly averages on 5°x5° grid
boxes, aggregated to JJA average anomalies over

— Europe: spatial averages over 10°W-40°E, 30°N-50°N (2003 value was
1.92K but 2012 almost the same)

— Russia: spatial averages over 30°E-60°E, 45°N-65°N (2010 value 3.65K)
— Central USA (including Texas and Oklahoma): spatial averages over
90°W-105°W, 25°N-45°N (2011 value 2.01K)

e (Climate model data from CMIP3

— 14 climate models

— Total of 64 control runs, 44 twentieth century runs, 34 future
projections under A2 scenario

— Same spatial regions as observational data, converted to anomalies



Europe Summer Mean Temperatures
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Russia Summer Mean Temperatures
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Central USA Summer Mean Temperatures
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Introduction To Extreme Value Theory

Key tool: Generalized Extreme Value Distribution (GEV)

Three-parameter distribution, derived as the general form of limiting dis-
tribution for extreme values (Fisher-Tippett 1928, Gnedenko 1943)

e 1, o, £ known as location, scale and shape parameters
e £ > 0 represents long-tailed distribution, £ < 0 short-tailed

Pr{Y <y} = exp [—{l-l-E(y_“)}_ug

g +

Peaks over threshold approach implies that the GEV can be used generally

to study the tail of a distribution: assume GEV holds exactly above a

threshold « and that values below u are treated as left-censored

Time trends by allowing u, o, £ to depend on time

Example: Allow pu; = Bo+ S 1, Brzw, where {zy, k=1,..,K, t=1,..,T}

are spline basis functions for the approximation of a smooth trend from

time 1 to T with K degrees of freedom

Critical questions:

— Determination of threshold and K

— Point and interval estimates for the probability of exceeding a high
value, such as 1.92K in the case of the Europe time series
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Europe Summer Mean Temperatures
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Europe Summer Mean Temperatures With Trend
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Russia Summer Mean Temperatures
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Russia Summer Mean Temperatures With Trend
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Central USA Summer Mean Temperatures
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Central USA Summer Mean Temperatures With Trend
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Bayesian Calculations

Focus on posterior distribution of binary log of threshold exceedance
probability (BLOTEP)
Use models both with and without trends

Use 80th (solid curve), 75th (dashed) and 85t (dot-dashed) percentiles for
thresholds

Europe

—10 -5

BLOTEFP

Europe No Trend

BLOTEF

Density

Density

02 03 04 05

00 01

02 03 04 05

00 01

Russia

—10 -5

BLOTEF

Russia No Trend

—10 —5

BLOTEP

Density

Density

02 03 04 05

00 01

02 03 04 05

00 041

CentUsA

it e
N

BELOTEFR

CentUsSA No Trend

-10 -5

—10 -5

BLOTER

18



What’s Next?

Obvious strategy at this point is to rerun the GEV calculation on the model data

But this runs into the scale mismatch problem: data plots shows that the models and
observations are on different scales, so we should expect the extreme value parameters to
be different as well

Requires a more subtle approach — hierarchical modeling

Model GFDL, Run 1, Europe Model GISS, Run 1, Europe
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Proposed Hierarchical Model

™
~="1
| —

\

==0
GEV

@ Natural Anthropogenlc

Natural Models Data Observations Anthropogenic Models Data

20



Bayesian Statistics Details

Model Specification
o (Mq,D1) ~WN,(A, m, M*, F), Wishart-Normal prior with density
o | D" D/2 exp [—Str {D1 (A 4+ F(My — M*)(My — M*)T)}].
e Given My, Dy, 619 .. 0(0.N) are IID ~ N,(My, D71).

e Given 0(17) Y(1.J) generated by GEV with parameters (1.7
(Y©b3) for j =0, if ==1)

e Similar structure for My, Dy etc.

e We can expand this model by defining 6% ~ N, (M, (¥'D1)~ ') where
1) represents departure from exchangeability (v = 1 is exchangeable).

However, ¥ is not identifiable — we can only try different values as a
sensitivity check.

Computation
o (My,Dq) | 6V 0N ~ WN,(A,m,M* F), where m = m + N, F =
F+ N,M* = (FM* +30, 9“5”) JE, A=A+ FM M T4+, gD _
FAr N+
e Metropolis update for (1) . #(1.N) given M;,D; and Y's
e Metropolis update for #(1.0) based on conditional density

exp {—"5 (600 — ﬂ.fl)T Dy (639 — _.wl)} L (609 y(©9)

where L is likelihood for 8(1:2) given data Y(©P%) gnd = =1
e Similar updates for = = 0 side of picture; up to 1,000,000 iterations
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Europe Summer Mean Temperatures With Trend
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Europe Summer Mean Temperatures With Trend
and gentral 50% of Hierarchical Model Distribution

o ™ ®

ot

1.0

Anomaly
0.5

0.0

-0.5

-1.0

1900 1920 1940 1960 1980 2000

Year

23



Russia Summer Mean Temperatures With Trend
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Russia Summer Mean Temperatures With Trend
and Central 50% of Hierarchical Model Distribution
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Central USA Summer Mean Temperatures With Trend
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Central USA Summer Mean Temperatures With Trend and
Central 50% of Hierarchical Model Distribution
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Posterior Densities for the BLORRAT

(numbers are for solid curves and equal weights; dashed curves allow

for different weights between climate models and observations)
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Probability

Changes in Projected Extreme Event Probabilities Over Time
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Sensitivity Plots
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Sensitivity plots for Europe. Left-hand figure: Plots of the posterior me-
dian probability of the extreme event for various weightings between models
and observations, represented by psi, and with the Monte Carlo procedure
repreated several times. Right-hand figure: Plots of the posterior median
probability of the extreme event with various choices of the smoothness of
the trend and the threshold of the distribution fit.
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What Next?

 We plan to repeat the analyses using newer datasets and
other meteorological variables (especially precipitation,
maximum windspeed in hurricanes)

* High-impact events that depend on more than one
meteorological variable, e.g.

— Texas 2011: high temperatures and a drought in the same year.
One extreme event caused by a combination of two
meteorological variables

— The Russian heatwave and the Pakistani floods of 2011 may

have been related: two different events but possible statistical
dependence

e Spatial analysis — the actual scale of interest may be
different from the one at which data were originally
compiled — need for downscaling

* Account for multiple comparisons
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Conclusions

Extreme value theory provides a viable method for
estimating extreme event probabilities in the presence of
a trend

For combining observations with climate models, we
propose a hierarchical model that allows for systematic
discrepancies between models and observations

For each of Russia 2010, Central USA 2011 and Europe
2012 events, estimated risk ratio is at least 2.3, and it’s
likely (probability at least .66) that the risk ratio is >1.5.

We also computed future projections of extreme event
probabilities; sharp increase for Europe; much less so for
the other two regions studied

Paper to be submitted shortly; data and programs will be
available
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