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Objectives

Big Picture view: investigate how close the failure
probability comes to the target of <10° and
characterize uncertainty in the computation

Little Picture: focus on one specific model (LS-DYNA
model — next slide)

Failure depends both on the strengths of the individual
components (IM7 and Kevlar), and on how these
components determine the quantity of interest (“Peak
OS Acceleration”)

Our purpose: develop Bayesian methods that allow for
model/parameter uncertainty as well as the inherent
randomness of the system



Framework application to former off-nominal landing

Mars Sample Return — Capture, Containment and Return Systen

FAILURE DEFINITION PROBABILITY REQUIREMENT

CNA METRIC COMPUTATION VERIFICATION
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Data |

e 15 variables measuring physical characteristics of the sample (7 for IM7, 8
for Kevlar)

e 5 of the variables measure elastic moduli (either Young’s modulus or the
shear modulus)

 The other 10 variables measure strengths in various modes (tensile,
compressive, shear)

 Between 3 and 12 samples for each variable

* Previous work at JPL: fitting normal distributions for moduli, Weibull for the
failure strengths

IM7 90 Deg Tensile Strength | Zhang, L.F., Xie, M., and Tang, L.C. “Bias Correction for the Least Squares Estimator of Weibull

Shape Parameter with Complete and Censored Data.” Reliabiliny Engineering and Svstem Safeiy,

i | Tensile Strength [MPa) Bernard's Estimatar (i} Inf-In{1-Fiij In[Tensile Strangth 2006, dm: |U_|[]](1,_a'_i gess 200509010,
1 WK 0.155091 -1.75289 W
2 WX 0384304 -0.71672 WK
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X OLBACDS 0.60883 i
1
Uyg = [1+0.72(n — 1.8)71%1]71 4+ 0.008
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Accel(G's)

Data Il

 UQ Input Data: 25 rows of X1-X15 data from latin

hypercube sampling (LHS)

e UQ Output Data (next slide): Peak OS acceleration
 Requirement: a peak OS acceleration <3000 G
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Structure of this Presentation

* Part 1: Bayesian Weibull/Normal analysis of
strength and modulus data

e Part 2: UQ analysis of the LS-DYNA experiment

e Part 3: End to end analysis of the probability
of failure in this system (preliminary version!)



Weibull Distribution

Cumulative distribution function (CDF):

F(-y;crjlj'fs’):l—exp{— (%) } y>0, >0, >0

Probability density function (pdf):
f(y' a, ‘j') = % p— Ckya_l,ﬁ_a exp {_ (%) }

Negative log likelihood (NLLH): given sample Y1,...,Ys,
tala, B) = =7 log f(Yii o, B) = S0, {— l0ga — (o — 1) 10gY; + alog 8 + (%) }

Maximum likelihood estimation (MLE) usually computed by minimizing
the NLLH: for given sample Yi,...,Y,, choose «, 3 to minimize ¢,(«, 3)

Bayesian estimation: assume prior density mo(a, 3), then

] - — mo(a.5) H:I:l f(Yia,5)
TT(QH ,15|}13 “a s 1}n) — f _[?TU(G'-.,@] H:’Zl (Yo, B)dadB

Practical computation: use Adaptive Metropolis Sampler (AMS) of Haario
et al. (2001) [there are numerous variants, such as the Delayed Rejection
Adaptive Metropolis (DRAM) algorithm]



Results for X11 (12 values)
e Y values (scaled): 34.29, 34.84, ... , 38.74

e MLE: @ =27.52 (SE=6.16), = 37.03 (SE=0.41); standard errors from
observed Hessian matrix; same results using R functions optim and nlm

e AMS: 100,000 samples (2.9 seconds, acceptance rate 0.25)
For a: posterior mean 25.69, posterior SD 6.40
For 3: posterior mean 37.04, posterior SD 0.47
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Normal Distribution

Cumulative distribution function (CDF):
G(y;p.o) = d (££), & = standard normal cdf, o > 0

b
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Probability density function (pdf): g(y; p,o) = % o< %exp {—

Negative log likelihood (NLLH): given sample Y1,....Y,,

N
gn(ﬂ'g J) — = Z?:l {|OQ o+ % (%) }

Maximum likelihood estimation (MLE) by minimizing the NLLH: note
that the MLE for o is different from the usual sample SD (n rather than
n — 1 in numerator)

Bayesian estimation: assume prior density mq(u, o), then
mo(po) [ [ a(Vino)
[ o pe,0) H:;l g(Yip,o)dpde

w(p,o|Y1,...,Y,) = T

Of course for this case we could directly use the sample mean and SD
but we have computed the AMS for consistency with the Weibull analysis
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Results for X1 (8 values)

e Y values (scaled): 7.23, 7.64, ... , 7.35

e Usual sample estimates y = 7.37, s, = 0.16 (standard errors 0.06, 0.04)
MLE: i = 7.37 (SE=0.05), 6 = 0.15 (SE=0.04).

e AMS: 100,000 samples (2.2 seconds, acceptance rate 0.34)
For p. posterior mean 7.37, posterior SD 0.07
For 3. posterior mean 0.17, posterior SD 0.05
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UQ Analysis: Gaussian Process Modeling for
Computer Experiments

e Raw data (rescaled): 25 runs of a LHS experiment on vari-
ables X0001,...,X0015, output is "Peak OS Acceleration”

(original units divided by 1000)

e [ he problem: determine probability that Peak OS Acceleration>
3 when the input variables are random
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Gaussian Process Approach
(Sacks et al. 1989, Kennedy & O’Hagan 2001)

e Objective: Represent an output variable z; in terms of input variables
that I denote by s, k=1,.... K

e In this experiment, each s;,, = = 1,...,25 is one of X0001-X0015,
rescaled to mean 0 and variance 1

e [ he model also includes linear covariates X though for this analysis we
don't use them (assume constant-mean response)

e Model Z ~ N,[X[3,X] where N denotes n-dimensional normal, X3 is
mean response (for us: pl) and X is covariance matrix

e > — aV(8) where « > 0 and a very popular choice for V is

- S s\ 2
ik — 245k
vij = EXD{— ) (—Z - ) }
E=1 Pk

where p1,...,px are “spatial range” parameters. In practice I write 6, =
logprand 6 = ( 61 60> ... Ok ).



Connections with Spatial Statistics

Refs: RLS notes (http://rls.sites.oasis.unc.edu/postscript/rs/envnotes.pdf);
books by Cressie, Stein and several others

Assuming Z ~ N,[X3,aV (0)] where X is n x q, define Define

H = v@e)'—ve ' xxve) tx)xTve) 1,
G%(0) = Z'HZ,
a = GHO)/(n—q).
"(0) = ”;q|og02(9)—|— log det(XTV (8)~ 1X)-|-_|ogdet(1 (0))

e=0(8) is called the restricted likelihood function and the quantity 8 that
minimizes ¢*(0) is called the REML estimator. Bayesian inference also
starts with ¢*(8)

Kriging formulas: To predict a new value zg with mean :rgﬁl variance crg

and Cov(zo,Z) = T, c:alc:ulate Z0 = (xD—XTZ 1T)TB+TTZ 17 with mean
squared prediction error 02 — 7T 11 4 (xo — XTI T(XTEZ1X) Y (x0 —
XTy-17).
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Application to this dataset
25 datapoints with 15 unknowns — already problematic!

Tried three R optimization routines: optim with method=""Nelder-Mead" ,
optim with method="BFGS"”, nim. Wildly varying solutions, none has
positive definite hessian

Alternative: try a ‘“regularized REML" minimize ¢*(0) + \Y (0, — 0)2.

Seems to work when A > 0, still some pathological behavior with optim
routine, nlm not sensitive to starting values

Use cross-validation to select best A = 2.

Diagnostics: Cross-validation plot, plot of zp against zg, histograms and
QQ plots of zp — 2o

15
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Critique
e [ he variance of the noise is greater than that of the signal.
e It does appear that the residuals closely follow a normal distribution.

e One possible issue is too narrow a range of input values:
— We would get greater signal to noise ratio with a wider range of inputs

— There are no simulated values in the critical region (in this scaling, z > 3 —
observed range is 2.474 to 2.749)

— Kriging with constant mean is an interpolator, which means it will never produce
a predicted value outside the range of data (and input values far from the test
dataset will simply be predicted back to the overall mean)

— Devil’'s advocate argument: if we can't produce a critical value in a simulation, how
can understand the conditions under which this might occur in reality?

Max Acceleration versus X0003

e In fact, a linear regression fits this
dataset better!

— Regress z on X0001-X0015 with
standard variable selection: X0003
iIs by far the strongest predictor
(however, the minimum AIC model
has 6 predictors)

Max Accel
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T T T T T T T
25 26 27 28 29 3.0 31 17

Compressive Strength 0 deg. IM7



Simulation Strategy

e Fix N =2000, M = 1000 (or larger). Want to calculate Pr (z > zit) for
some critical value zcrit

e For:=1 to N:

— For k= 1,...,K = 15, select either u;, o (normal cases) or o, S
(Weibull c:ases) from the respective posterior distributions of the kth
input variable. This is one sample from the posterior distribution.

— For j =1 to M:

* For k. = 1 to 15, simulate one value of the normal or Weibull
distribution corresponding to the kth input variable. This is our
trial set of inputs so.

* Use the UQ model to obtain the mean predictor zg and its RMSE
Sp at predictor sg.

So
later: use a longer-tailed distribution, e.g. t).

* Exceedance probability 1 — & (@) (extension to be considered

— Average over 3 =1,..., M to obtain one estimate p:“:rft for the proba-
bility of exceeding zgyit.
e [ he set of values pf:”)t* 1 = 1,...,N is treated as a sample from the

posterior distribution of perit.

18
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Overview and Summary

This is a parametric statistical analysis — normal, Weibull, GP distribu-
tions with parameters u, o, «ap, [ for each component, 8 for the GP
model

Known parameters: calculate exact pei: by simulation

Unknown parameters: p.i; depends on parameters, but we integrate dif-
ferent parts of the analysis to calculate a posterior distribution w(perit | D)
where D is data (not yet fully implemented for 8)

How to interpret n(p.s | D)? Various metrics, e.g. posterior mean or
median, calculate a 95% credible interval, etc.

The analysis is still dependent on the validity of various parametric models

The analysis is also dependent on high-quality data. A sophisticated
statistical model cannot make up for the lack of high-quality data
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