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Objectives

Big Picture view: investigate how close the failure
probability comes to the target of <10° and
characterize uncertainty in the computation

Little Picture: focus on one specific model (LS-DYNA
model — next slide)

Failure depends both on the strengths of the individual
components (IM7 and Kevlar), and on how these
components determine the quantity of interest (“Peak
OS Acceleration”)

Our purpose: develop Bayesian methods that allow for
model/parameter uncertainty as well as the inherent
randomness of the system



Framework application to former off-nominal landing

Mars Sample Return — Capture, Containment and Return Systen

FAILURE DEFINITION PROBABILITY REQUIREMENT

CNA METRIC COMPUTATION VERIFICATION
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Data |

e 15 variables measuring physical characteristics of the sample (7 for IM7, 8
for Kevlar)

e 5 of the variables measure elastic moduli (either Young’s modulus or the
shear modulus)

 The other 10 variables measure strengths in various modes (tensile,
compressive, shear)

 Between 3 and 12 samples for each variable

* Previous work at JPL: fitting normal distributions for moduli, Weibull for the
failure strengths

IM7 90 Deg Tensile Strength | Zhang, L.F., Xie, M., and Tang, L.C. “Bias Correction for the Least Squares Estimator of Weibull

Shape Parameter with Complete and Censored Data.” Reliabiliny Engineering and Svstem Safeiy,

i | Tensile Strength [MPa) Bernard's Estimatar (i} Inf-In{1-Fiij In[Tensile Strangth 2006, dm: |U_|[]](1,_a'_i gess 200509010,
1 WK 0.155091 -1.75289 W
2 WX 0384304 -0.71672 WK
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X OLBACDS 0.60883 i
1
Uyg = [1+0.72(n — 1.8)71%1]71 4+ 0.008
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4 samples 0.79088 2 E
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Accel(G's)

Data Il

 UQ Input Data: 25 rows of X1-X15 data from latin

hypercube sampling (LHS)

e UQ Output Data (next slide): Peak OS acceleration
 Requirement: a peak OS acceleration <3000 G
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Structure of this Presentation

* Part 1: Bayesian Weibull/Normal analysis of
strength and modulus data

e Part 2: UQ analysis of the LS-DYNA experiment

e Part 3: End to end analysis of the probability
of failure in this system (preliminary version!)



Weibull Distribution

Cumulative distribution function (CDF):

F(-y;crjlj'fs’):l—exp{— (%) } y>0, >0, >0

Probability density function (pdf):
f(y' a, ‘j') = % p— Ckya_l,ﬁ_a exp {_ (%) }

Negative log likelihood (NLLH): given sample Y1,...,Ys,
tala, B) = =7 log f(Yii o, B) = S0, {— l0ga — (o — 1) 10gY; + alog 8 + (%) }

Maximum likelihood estimation (MLE) usually computed by minimizing
the NLLH: for given sample Yi,...,Y,, choose «, 3 to minimize ¢,(«, 3)

Bayesian estimation: assume prior density mo(a, 3), then

] - — mo(a.5) H:I:l f(Yia,5)
TT(QH ,15|}13 “a s 1}n) — f _[?TU(G'-.,@] H:’Zl (Yo, B)dadB

Practical computation: use Adaptive Metropolis Sampler (AMS) of Haario
et al. (2001) [there are numerous variants, such as the Delayed Rejection
Adaptive Metropolis (DRAM) algorithm]



Results for X11 (12 values)
e Y values (scaled): 34.29, 34.84, ... , 38.74

e MLE: @ =27.52 (SE=6.16), = 37.03 (SE=0.41); standard errors from
observed Hessian matrix; same results using R functions optim and nlm

e AMS: 100,000 samples (2.9 seconds, acceptance rate 0.25)
For a: posterior mean 25.69, posterior SD 6.40
For 3: posterior mean 37.04, posterior SD 0.47
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Normal Distribution

Cumulative distribution function (CDF):
G(y;p.o) = d (££), & = standard normal cdf, o > 0

b
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Probability density function (pdf): g(y; p,o) = % o< %exp {—

Negative log likelihood (NLLH): given sample Y1,....Y,,

N
gn(ﬂ'g J) — = Z?:l {|OQ o+ % (%) }

Maximum likelihood estimation (MLE) by minimizing the NLLH: note
that the MLE for o is different from the usual sample SD (n rather than
n — 1 in numerator)

Bayesian estimation: assume prior density mq(u, o), then
mo(po) [ [ a(Vino)
[ o pe,0) H:;l g(Yip,o)dpde

w(p,o|Y1,...,Y,) = T

Of course for this case we could directly use the sample mean and SD
but we have computed the AMS for consistency with the Weibull analysis
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Results for X1 (8 values)

e Y values (scaled): 7.23, 7.64, ... , 7.35

e Usual sample estimates y = 7.37, s, = 0.16 (standard errors 0.06, 0.04)
MLE: i = 7.37 (SE=0.05), 6 = 0.15 (SE=0.04).

e AMS: 100,000 samples (2.2 seconds, acceptance rate 0.34)
For p. posterior mean 7.37, posterior SD 0.07
For 3. posterior mean 0.17, posterior SD 0.05

Posterior Density of mu Posterior Density of sigma
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UQ Analysis: Gaussian Process Modeling for
Computer Experiments

e Raw data (rescaled): 25 runs of a LHS experiment on vari-
ables X0001,...,X0015, output is "Peak OS Acceleration”

(original units divided by 1000)

e [ he problem: determine probability that Peak OS Acceleration>
3 when the input variables are random
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Gaussian Process Approach
(Sacks et al. 1989, Kennedy & O’Hagan 2001)

e Objective: Represent an output variable z; in terms of input variables
that I denote by s, k=1,.... K

e In this experiment, each s;,, = = 1,...,25 is one of X0001-X0015,
rescaled to mean 0 and variance 1

e [ he model also includes linear covariates X though for this analysis we
don't use them (assume constant-mean response)

e Model Z ~ N,[X[3,X] where N denotes n-dimensional normal, X3 is
mean response (for us: pl) and X is covariance matrix

e > — aV(8) where « > 0 and a very popular choice for V is

- S s\ 2
ik — 245k
vij = EXD{— ) (—Z - ) }
E=1 Pk

where p1,...,px are “spatial range” parameters. In practice I write 6, =
logprand 6 = ( 61 60> ... Ok ).



Connections with Spatial Statistics

Refs: RLS notes (http://rls.sites.oasis.unc.edu/postscript/rs/envnotes.pdf);
books by Cressie, Stein and several others

Assuming Z ~ N,[X3,aV (0)] where X is n x q, define Define

H = v@e)'—ve ' xxve) tx)xTve) 1,
G%(0) = Z'HZ,
a = GHO)/(n—q).
"(0) = ”;q|og02(9)—|— log det(XTV (8)~ 1X)-|-_|ogdet(1 (0))

e=0(8) is called the restricted likelihood function and the quantity 8 that
minimizes ¢*(0) is called the REML estimator. Bayesian inference also
starts with ¢*(8)

Kriging formulas: To predict a new value zg with mean :rgﬁl variance crg

and Cov(zo,Z) = T, c:alc:ulate Z0 = (xD—XTZ 1T)TB+TTZ 17 with mean
squared prediction error 02 — 7T 11 4 (xo — XTI T(XTEZ1X) Y (x0 —
XTy-17).
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Application to this dataset
25 datapoints with 15 unknowns — already problematic!

Tried three R optimization routines: optim with method=""Nelder-Mead" ,
optim with method="BFGS"”, nim. Wildly varying solutions, none has
positive definite hessian

Alternative: try a ‘“regularized REML" minimize ¢*(0) + \Y (0, — 0)2.

Seems to work when A > 0, still some pathological behavior with optim
routine, nlm not sensitive to starting values

Use cross-validation to select best A = 2.

Diagnostics: Cross-validation plot, plot of zp against zg, histograms and
QQ plots of zp — 2o

15
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Critique
e [ he variance of the noise is greater than that of the signal.
e It does appear that the residuals closely follow a normal distribution.

e One possible issue is too narrow a range of input values:
— We would get greater signal to noise ratio with a wider range of inputs

— There are no simulated values in the critical region (in this scaling, z > 3 —
observed range is 2.474 to 2.749)

— Kriging with constant mean is an interpolator, which means it will never produce
a predicted value outside the range of data (and input values far from the test
dataset will simply be predicted back to the overall mean)

— Devil’'s advocate argument: if we can't produce a critical value in a simulation, how
can understand the conditions under which this might occur in reality?

Max Acceleration versus X0003

e In fact, a linear regression fits this
dataset better!

— Regress z on X0001-X0015 with
standard variable selection: X0003
iIs by far the strongest predictor
(however, the minimum AIC model
has 6 predictors)

Max Accel
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T T T T T T T
25 26 27 28 29 3.0 31 17

Compressive Strength 0 deg. IM7



Simulation Strategy

e Fix N =2000, M = 1000 (or larger). Want to calculate Pr (z > zit) for
some critical value zcrit

e For:=1 to N:

— For k= 1,...,K = 15, select either u;, o (normal cases) or o, S
(Weibull c:ases) from the respective posterior distributions of the kth
input variable. This is one sample from the posterior distribution.

— For j =1 to M:

* For k. = 1 to 15, simulate one value of the normal or Weibull
distribution corresponding to the kth input variable. This is our
trial set of inputs so.

* Use the UQ model to obtain the mean predictor zg and its RMSE
Sp at predictor sg.

So
later: use a longer-tailed distribution, e.g. t).

* Exceedance probability 1 — & (@) (extension to be considered

— Average over 3 =1,..., M to obtain one estimate p:“:rft for the proba-
bility of exceeding zgyit.
e [ he set of values pf:”)t* 1 = 1,...,N is treated as a sample from the

posterior distribution of perit.

18
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Overview and Summary

This is a parametric statistical analysis — normal, Weibull, GP distribu-
tions with parameters u, o, «ap, [ for each component, 8 for the GP
model

Known parameters: calculate exact pei: by simulation

Unknown parameters: p.i; depends on parameters, but we integrate dif-
ferent parts of the analysis to calculate a posterior distribution w(perit | D)
where D is data (not yet fully implemented for 8)

How to interpret n(p.s | D)? Various metrics, e.g. posterior mean or
median, calculate a 95% credible interval, etc.

The analysis is still dependent on the validity of various parametric models

The analysis is also dependent on high-quality data. A sophisticated
statistical model cannot make up for the lack of high-quality data
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