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I. THE PUBLIC POLICY CONTEXT
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From the Fourth Assessment Report of IPCC —

Warming of the climate system is unequivocal, as is now

evident from observations of increases in average air and

ocean temperatures, widespread melting of snow and ice,

and rising global average sea level

Most of the observed increase in global average tempera-

tures since the mid-20th century is very likely∗ due to the

observed increase in anthropogenic greenhouse gas con-

centrations

∗Greater than 90% chance
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ASA Activities

• ASA has an Advisory Committee on Climate Change Policy

(principal sponsor of this session)

– Rick Katz (NCAR) — current chair

• ASA members have been included in three climate science

days on Capitol Hill (thanks to Steve Pierson)

• Joint activities with other societies

– I organized a symposium on Communicating Uncertainty

in Climate Change Science at the AAAS meeting last

February (Murali Haran, Mark Berliner, Lenny Smith speak-

ers; Andy Revkin discussant)
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II. HISTORY
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III. OUTLINE OF STATISTICAL
APPROACH
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Basic Idea of Detection and Attribution Analysis:

y =
m∑
j=1

βjxj + u = Xβ + u

where

• y: observed signal

• x1, ..., xm: climate projections due to m forcing factors (e.g.
greenhouse gases, aerosols, solar, volcanic)

• u: noise, assumed normally distributed with mean 0 and co-
variance matrix C

GLS solution:

β̂ = (XTC−1X)−1XTC−1y
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If a particular coefficient βj is statistically significantly different

from 0, we say that the jth forcing factor has been detected

Among those forcing factors that are detected, the corresponding

βjs are then interpreted as the attribution of the observational

signal to the different forcing factors

Workshop at Banff International Research Station last year, see

http://www.birs.ca/events/2012/5-day-workshops/12w5037

http://da-frontiers-birs-2012.wikispaces.com/BIRS+Workshop+Papers
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From a recent presentation by Nathan Gillett -  

  

     1 
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Complications

y and x1, ..., xm are very high dimensional (typically thousands)

but the number of independent observations is very small. This

makes estimation of C difficult

Solutions used by climate scientists:

• Estimate C from control runs of the climate model

• Expand in empirical orthogonal functions (principal compo-

nents) and then truncate

Are there better ways of estimating a covariance matrix in high

dimensions?
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More Complications

• The xjs are not actually known (errors in variables problem)

— climate scientists have addressed this using the total least

squares algorithm (Allen and Stott 2003) but the sampling

properties of this appear to be unknown

– Connection with math stat work on errors in variables, e.g.

Gleser, Annals of Statistics, 1982 (but Gleser’s asymp-

totics won’t apply in the D&A setting)

• Recently, climate scientists have started to realize that the

ys aren’t actually known either — use of ensembles of ob-

servational data realizations (Peter Thorne, Carl Mears)

• There are additional issues about how to incorporate model

uncertainty
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From a slide by Peter Thorne (Banff Workshop) –  
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Sources of Uncertainty for MSU Satellite 

Reconstructions (Carl Mears, Banff Workshop) –  
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Producing Ensembles (Carl Mears, Banff Workshop) – 
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From Santer et al. (2012) –  
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IV. NEW HIERARCHICAL MODELING
APPROACH

(joint with Dorit and Matthias)
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Statistical Model

True temperature change is unknown, but we have an ensemble

of N temperatures changes. We assume that

y(i)|y,W iid∼ Nn(y,W), i = 1, . . . , N,

where W is a covariance matrix describing the variability of the

ensemble members around the true temperature change

Assume that GCM output can be written as the sum of the

(true) temperature change due to forcing plus the internal cli-

mate variability with covariance matrix C:

x(l)
j |xj,C

ind∼ Nn(xj,C), l = 1, . . . , Lj, j = 1, . . . ,m,

where Lj is the number is the number of GCM runs under the

jth forcing scenario
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Statistical Model (continued)

• Internal climate variability: C = BKB′, where B contains
the first r principal components estimated from control runs
(EOFs), K = diag{eλ1, . . . , eλr}, and r << n

• Observation uncertainty: W = σ2W̃(γ), where W̃ is a corre-
lation matrix based on a Gaussian Markov random field (i.e.,
W̃−1 is sparse).

• Priors:

– Noninformative priors for β and σ

– Vaguely informative priors for the λi

– Discrete uniform prior on {γ1, . . . , γnγ} for γ
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Bayesian Fitting Procedure

Gibbs sampler with adaptive Metropolis-Hastings updates

High-dimensional problem → Integrate out y and X:

y(i) = X̄β + g(β)Bη + ε(i), i = 1, . . . , N

where X̄ has jth column
∑Lj
l=1 x(l)

j /Lj, g(β) = (1+
∑m
j=1 β

2
j /Lj)

1/2,

η ∼ Nr(0,K), and ε(i) iid∼ Nn(0,W)

After precomputing certain quantities for all possible values of

γ ∈ {γ1, . . . , γnγ}, the number of computations required to eval-

uate the likelihood in the MCMC algorithm does not depend on

n or N anymore
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Proposed Application

Observational and Model temperature data:

• Climate Model Intercomparison project (CMIP5) models: suite

of 19 models

• Remote Sensing Systems temperature retrievals based on mi-

crowave sounding units (MSUs): 400 realizations

• Temperature at different layers of the atmosphere

– lower stratosphere (TLS)

– mid– to upper troposphere sphere (TMT)

– lower troposphere (TLT)

⇒ Same setup as was used by Santer et al.(2012).
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V. CONCLUSIONS
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• The field of detection and attribution is important for public

policy about uncertainty in climate change projections

• Well established statistical methodology largely developed by

climate scientists

• But, there are opportunities for more sophisticated statistical

analyses — this presentation has outlined some possibilities

• There is a whole other set of techniques based on paleocli-

matology (Bo Li, later in this session)

• Many possibilities for the future!
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