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I Introduction



Concept of Extreme Event Attribution
Observe some extreme weather event

Run a large number of climate models under anthropogenic
forcings; measure weather variable corresponding to the ob-
served extreme event

Repeat but under either natural forcings or using control
model runs

Estimate P;: probability of extreme event under anthro-
pogenic scenario and Fy: probability of extreme event under
natural or control scenario

The fraction of attributable risk is
P,
FAR = 1-2-2
P
P

or just consider the risk ratio P
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Statement of the Problem

Find a statistically defensible strategy for estimating the FAR
or RR based on time series of observational or model data

Characterize the uncertainty (e.g. through confidence or
Bayesian credible intervals)

The objective is to provide portable R software that is appli-
cable to public databases

Also: find ways of projecting extreme event probabilities into
the future

We illustrate these issues with regard to three recent heat-
wave events: the European heatwave of 2003, the Russian
heatwave of 2010, the central USA heatwave of 2011.
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II Literature Review
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Stott, Stone and Allen (Nature, 2004)
used the GPD plus bootstrapping to
estimate the probability of an
exceedance of 1.6K using both natural
forcings (green curve shows pdf of
estimated return period) and
anthropogenic forcings (red curve).
The results show an estimated
probability of around 1/250 per year
under anthropogenic forcing and
around 1/1000 per year under natural
forcing, for a risk ratio of 4 or a FAR of
1-1/4=0.75. The bottom curve
expresses the pdf of the estimated
FAR. They concluded that there is at
least a 90% chance that the FAR is >0.5
(risk ratio >2).

Estimated likelihood (normalized)

Estimated likelihood (normalized)

a Return period (yr)

1 4 10 20
1,000 250 100 50
Instantaneous risk: rate of occurrence per 10° yr
b Increase in risk
None 2 4 10

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of risk attributable to anthropogenic factors



LETTER

doi:10.1038/nature09762

Anthropogenic greenhouse gas contribution to flood
risk in England and Wales in autumn 2000

Pardeep Pall>%, Tolu Aina®, Daithi A. Stone"*, Peter A. Stott®, Toru Nozawa®, Arno G. J. Hilberts’, Dag Lohmann’ & M ylesR. Allen™*

Interest in attributing the risk of damaging weather-related events
to anthropogenic climate change is increasing’'. Yet climate models
used to study the attribution problem typically do not resolve the
weather systems associated with damaging events® such as the UK
floods of October and November 2000. Occurring during the wettest
autumn in England and Wales since records began in 1766, these
floods damaged nearly 10,000 properties across that region, dis-
rupted services severely, and caused insured losses estimated at
£1.3 billion (refs 5, 6). Although the flooding was deemed a ‘wake-
up call’ to the impacts of climate change at the time’, such claims are
typically supported only by general thermodynamic arguments that
suggest increased extreme precipitation under global warming, but
fail®” to account fully for the complex hydrometeorology™'’ asso-
ciated with flooding. Here we present a multi-step, physically based
‘probabilistic event attribution’ framework showing that it is very

likely that global anthropogenic greenhouse gas emissions substan-
tially increased the risk of flood occurrence in England and Wales in
autumn 2000. Using publicly volunteered distributed comput-
ing'"'%, we generate several thousand seasonal-forecast-resolution
climate model simulations of autumn 2000 weather, both under
realistic conditions, and under conditions as they might have been
had these greenhouse gas emissions and the resulting large-scale
warming never occurred. Results are fed into a precipitation-runoff
model that is used to simulate severe daily river runoff events in
England and Wales (proxy indicators of flood events). The precise
magnitude of the anthropogenic contribution remains uncertain,
but in nine out of ten cases our model results indicate that twentieth-
century anthropogenic greenhouse gas emissions increased the risk
of floods occurring in England and Wales in autumn 2000 by more
than 20%, and in two out of three cases by more than 90%.

Pall et al. (2011), nonparametric, very data-intensive

13



Perceptions of Climate Change:
The New Climate Dice

James Hansen"', Makiko Sato”, Reto Ruedy”

*NASA Goddard Institute for Space Studies and Columbia University Earth Institute, ®"Sigma Space Partners, New
York, NY 10025

"Climate dice", describing the chance of unusually warm or cool seasons relative to climatology,
have become progressively "loaded" in the past 30 years, coincident with rapid global warming.
The distribution of seasonal mean temperature anomalies has shifted toward higher temperatures
and the range of anomalies has increased. An important change 1s the emergence of a category
of summertime extremely hot outliers, more than three standard deviations (o) warmer than
climatology. This hot extreme, which covered much less than 1% of Earth's surface in the period
of climatology, now typically covers about 10% of the land area. We conclude that extreme heat
waves, such as that in Texas and Oklahoma in 2011 and Moscow in 2010, were "caused" by
global warming, because their likelihood was negligible prior to the recent rapid global warming.
We discuss practical implications of this substantial, growing climate change.
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GEOPHYSICAL RESEARCH LETTERS, VOL. 38, L06702, doi:10.1029/2010GL046582, 2011

Was there a basis for anticipating the 2010 Russian heat wave?

Randall Dole,! Martin ch,f(:rlinlg,l Judith Perlwitz.” Jon Eischeid.? Philip 13’(:gi0nl,2
Tao Zhaﬂng Xiao-Wel Quum,:2 Taiyi XUL2 and Donald I‘\./[urra}}!2

[1] The 2010 summer heat wave in western Russia was
extraordinary, with the region experiencing the warmest July
since at least 1880 and numerous locations setting all-time
maximum temperature records. This study explores whether
carly warning could have been provided through knowledge
of natural and human-caused climate forcings. Model simu-
lations and observational data are used to determine the
impact of observed sea surface temperatures (SSTs), sca ice
conditions and greenhouse gas concentrations. Analysis
of forced model simulations indicates that neither human
influences nor other slowly evolving ocean boundary con-
ditions contributed substantially to the magnitude of this heat
wave. They also provide evidence that such an intense event
could be produced through natural variability alone. Analysis

15



Anatomy of an Extreme Event

Martin Hoerling!, Arun Kumar?, Randall Dole!, John W. Nielsen-Gammon?, Jon
Eischeid,#, Judith Perlwitzl4, Xiao-Wei Quanl# Tao Zhang!#4, Philip Pegion!#, and
Mingyue Chen?

INOAA Earth System Research Laboratory, Boulder, Colorado
2 NOAA Climate Prediction Center, Camp Springs, MD
3 Department of Atmospheric Sciences, Texas A&M University, College Station, Texas

4 University of Colorado, Cooperative Institute for Research in Environmental Sciences,
Boulder, Colorado

The record-setting 2011 Texas drought/heat wave is examined to identify physical
processes, underlying causes, and predictability. October 2010-September 2011
was Texas’s driest 12-month period on record. While the summer 2011 heat wave
magnitude (2.9°C above the 1981-2010 mean) was larger than the previous record,
events of similar or larger magnitude appear in pre-industrial control runs of
climate models. The principal factor contributing to the heat wave magnitude was a
severe rainfall deficit during antecedent and concurrent seasons related to

anomalous sea surface temperatures (SSTs) that included a La Nina event. Virtually



III Why i1s Extreme Value
Modeling Hard?
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To provide some context for the results and modeling methods
to follow, we give some elementary theoretical calculations that
show why we cannot expect to get very precise results based on
small numbers of climate model runs.

Suppose we try to estimate the probability of an extreme events
as the proportion X/n from a set of n climate model runs where
X contain the event in question (this is essentially the technique
of Pall et al.).

Suppose X ~ Bin(n,p) and we are interested in testing Hg: p =
po versus Hy : p = kpg for some k > 1.

If we fix the size of the test to be 0.05 and the power to be 0.8,
how big a sample size n do we need?
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Y4
2 3 4 5 6 !’ 38 9 10
0.05 169 52 27 16 14 12 { 6 5
0.025 339 104 54 43 28 24 14 13 11
0.01 905 301 137 110 71 60 53 33 29
0.0075 1207 402 223 146 94 81 71 44 39
0.005 1811 604 335 220 142 122 106 66 59
0.0025 3623 1209 671 440 285 244 213 133 119
0.001 9061 3024 1679 1102 713 611 534 332 299
0.00075 | 12082 | 4032 2239 1470 950 314 713 443 399
0.0005 18124 | 6049 3360 2205 1426 | 1222 | 1069 665 598
0.00025 | 36249 | 12099 6720 4411 2852 | 2445 | 2139 | 1330 | 1197
0.0001 90624 | 30250 | 16802 | 11029 | 7131 | 6112 | 5348 | 3327 | 2994

Sample size required to reject null hypothesis p = pg against alternative

hypothesis p = kpg, £ > 1 in a binomial experiment of size 0.05 and power

0.8
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Conclusion:

By a simple argument of counting threshold exceedances in re-
peated climate model runs, we would expect to need sample
sizes from a few tens up to several hundred to distinguish ex-
treme event probabilities that are typical in these discussions.

Most published climate model runs contain between 1 and 5

replications of the same model, so direct estimation is unlikely
to work.
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IV Data
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Climate model runs have been downloaded from the WCRP
CMIP3 Multi-Model Data website (http://esg.linl.gov:8080/index.jsp)

Three kinds of model runs:

e [ wentieth-century

e Pre-industrial control model runs (used a proxy for natural
forcing)

e Future projections (A2 scenario)

We also took observational data (5° x 5° gridded monthly tem-
perature anomalies) from the website of the Climate Research

Unit of the University of East Anglia (www.cru.uea.ac.uk — Had-
CRUT3v dataset)
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Number Model Control runs | 20C runs | A2 runs
1 bccr bcm2 0O 2 1 1
2 cCCCma_cgcm3 1 10 5 5
3 cnrm_cma3 5 1 1
4 csiro mk3 0 3 3 1
5 gfdl cm2 1 5 3 1
6) giss_model e r 5 ) 1
7 ingv_echam4 1 1 1
8 inmcm3_ 0 3 1 1
9 ipsl_cm4 7 1 1
10 Miroc3 2 medres 5 3 3
11 mpi_echamb>s 5 4 3
12 mri_cgcm?2_ 3 2a 3 5 5
13 ncar ccsm3 0 { 5 5
14 ukmo_hadcm3 3 2 1

List of climate models, including numbers of runs available
under three scenarios
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We calculated summer (JJA) averages of temperature anomaly
for each of three regions:

e Europe — 10° W to 40° E, 30°—50° N
e Russia — 30° to 60° E, 45°—65° N

e Central USA — 90° to 105° W, 250—45° N

Plots of the time series show both increasing and decreasing
trends

We also note a ‘scale mismatch” problem — the variances of
the observational and model time series are typically different,
meaning that we cannot expect to use the model data directly
to calculate extreme event probabilities for the osbervations
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(a) Europe JJA Temperatures 1900-2012 (b) Russia JJA Temperatures 1900-2012
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Model GFDL, Run 1, Europe Model GISS, Run 1, Europe
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V The Generalized Extreme
Value Distribution (GEV)
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The Generalized Extreme Value
Distribution (GEV)

e [ hree-parameter distribution, derived as the general form of

limiting distribution for extreme values (Fisher-Tippett 1928,
Gnedenko 1943)

e 1, o, £ Kknown as location, scale and shape parameters

e £ > 0 represents long-tailed distribution, & < O short-tailed

Formula:
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Peaks over threshold approach implies that the GEV can be
used generally to study the tail of a distribution: assume GEV
holds exactly above a threshold w and that values below u
are treated as left-censored

Time trends by allowing u, o, & to depend on time

Example: Allow uy = Bo+31_ ;1 Brog; where {zpy, k=1,.., K, t =
1,...,T'} are spline basis functions for the approximation of a
smooth trend from time 1 to 7' with K degrees of freedom

Critical questions:

— Determination of threshold and K

— Estimating the probability of exceeding a high value such
as 2.3K
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VI Analysis of a Single Time
Series
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GEV with trend fitted to three observational time series

T hreshold was chosen as fixed quantile — 75th, 80th or 85th
percentile

AIC was used to help select the number of spline basis terms
K

Estimate probability of extreme event by maximum likelihood
(MLE) or Bayesian method

Repeat the same calculation with no spline terms
Use full series or part?

Examine sensitivity to threshold choice through plots of the
posterior densities.
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K Europe Russia Texas
Threshold | 75% | 80% | 85% | 0.75 0.8 0.85 0.75 0.8 0.85
2 97r.9 | 87.7 | 67.5 | 149.8 | 131.2 | 110.4 | 146.6 | 131.3 | 108.8
3 75.7 | 68.5 | 60.5 | 145.8 | 135.4 | 112.7 | 142.6 | 125.0 | 105.5
4 76.1 | 66.2 | 449 | 148.1 | 137.8 | 113.8 | 144.6 | 126.8 | 103.6
5 74.1 | 646 | 546 | 147.0 | 134.1 | 121.2 | 144.1 | 126.5 | 104.9
6 742 | 74.3 | 61.6 | 146.8 | 133.6 | 113.1 | 143.8 | 125.5 | 106.1
7 779 | 75.2 | 59.8 | 146.6 | 135.1 | 114.0 | 133.4 | 126.4 | 106.8
8 86.2 | 77.4 | 65.9 | 148.0 | 137.1 | 122.1 | 138.9 | 128.4 | 108.1
0] 86.8 | 74.6 | 67.1 | 149.4 | 138.7 | 113.3 | 148.6 | 130.6 | 110.2
10 88.7 | 94.8 | 54.2 | 150.8 | 140.4 | 125.1 | 128.2 | 122.9 | 105.7
11 90.6 | 73.4 | 73.5 | 153.1 | 142.6 | 125.7 | 144.2 | 127.8 | 110.5
12 79.1 | 98.6 | 59.3 | 152.8 | 140.8 | 126.4 | 135.1 | 119.7 | 105.8
13 05.3 | 79.6 | 59.1 | 156.1 | 144.2 | 127.4 | 136.2 | 116.9 | 104.2
14 77.5 | 78.6 | b4.6 | 157.5 | 142.4 | 128.7 | 138.9 | 121.8 | 107.9
15 O7.6 | 85.5 | 77.9 | 157.2 | 143.1 | 129.5 | 136.8 | 122.5 | 109.6

AIC values for different values of K, at three different thresholds, for each

dataset of interest. In each column, the smallest three AIC values are

indicated in red, green and blue respectively.
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Dataset Endpoint | K | Threshold | MLE | Posterior Posterior Quantiles
Mean 0.05 0.5 0.95

Europe 2002 5 80% .021 .076 0 .057 217
Europe 2012 5 80% .0027 113 .031 .098 246
Europe 2002 0 80% 0 .0004 0 0 .002
Europe 2012 0 80% .0044 .011 .001 .0081 .029
Russia 2009 6 80% .0013 .010 0 .004 .040
Russia 2012 5 80% .010 .058 .005 .039 .181
Russia 2009 0 80% 0 .0011 0 0 .0069
Russia 2012 0 80% .0019 .0067 .0003 | .0043 | .021
CentUSA 2010 13 80% .0007 072 .003 .045 234
CentUSA 2012 13 80% .089 .300 .058 .268 .653
CentUSA 2010 0 80% .0023 .0078 .00007 | .0052 | .024
CentUSA 2012 0 80% .005 .012 .001 .0092 | .031

Results of extreme value analysis applied to observational datasets. For three
datasets (Europe, Russia, Central USA), different choices of the endpoint
of the analysis, spline degrees of freedom K, and threshold, we show the
maximum likelihood estimate (MLE) of the probability of the extreme event
of interest, as well as the posterior mean and three quantiles of the posterior
distribution.
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Summary So Far:
e Estimate extreme event probabilities by GEV with trends
e Bayesian posterior densities best way to describe uncertainty

e [ wo major disadvantages:

— No way to distinguish anthropogenic climate change ef-
fects from other short-term fluctations in the climate (El
Ninos and other circulation-based events; the 1930s dust-
bowl in the US)

— No basis for projecting into the future

To go further, we need to find a way to combine observa-
tional and climate model data in a way that takes account
of the scale mismatch issue noted earlier. We now propose
a hierarchical modeling approach to do this.
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VII Hierarchical Models
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Hierarchical Model
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Features of the Present Approach

A ‘'switching’ variable = deterines whether climate change
IS natural or anthropogenic

Conditional on = = 0 or 1, define mean vector (Mg or M)
and precision matrix (Dg or D7) for GEV parameters §(:J)

Bottom level of hierarchy contains observational and model
data

Normal-Wishart conjugate prior for (Mg, Dg) or (Mq1,D1) —
allows Gibbs updating

Metropolis updating for GEV parameters

Ultimately use posterior density for observation GEV param-
eters (0(0:0) or 9(1.0)) to calculate extreme event probabilities

A refinement — multiply the precision matrix for 6(0:0) or
0(1,0) py 4 to allow non-exhangeability.
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VIII Results
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For each of the three time series, we calculate the binary log
risk ratio (BLORRAT) for the extreme event of interest, corre-
sponding to the European, Russian and Central USA heatwaves
of 2003, 2010 and 2011 respetively.

Compute posterior densities under variety of assumptions, in-
cluding varying .
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Europe 2003 Europe 2012
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Posterior Quantiles of the Risk Ratio

Series Y Percentile of Posterior Density

5 25 50 75 95
Europe 2003 0.2510.11 1 0.68 | 2.06 | 6.88 | 47.40
Europe 2003 1 0.060.49|1.78| 7.03 | 77.69
Europe 2003 4 0.06 0.53|1.85| 6.84 | 85.61
Europe 2012 0.2510.17,10.64 |1.54 | 3.66 | 13.71
Europe 2012 1 0.29]1.03 | 2.66| 6.66 | 34.86
Europe 2012 4 0.80 291 |7.14 | 20.46 | 159.48
Russia 2010 0.2510.14 | 0.73 | 2.07 | 6.02 | 36.62
Russia 2010 1 0.16 | 0.95 |1 2.89 | 9.00 | 68.17
Russia 2010 4 0.08| 0.76 | 2.75 | 10.90 | 186.06
Central USA 2011 | 0.2510.25|10.74 | 1.53 | 3.23 | 10.42
Central USA 2011 1 0.31|1.00|2.25| 5.21 19.24
Central USA 2011 4 0.45|1.75 | 4.37 | 10.98 | 55.46
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We also calculate boxplots of the projected extreme event proba-
bilities up to 2040, and risk ratios based on those (from 20C+A2
model runs)
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IX Conclusions
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For comparing extreme event probabilities for anthropogenic
versus control conditions in climate models, we typically find
estimated risk ratios of about 2, but with very wide credible
intervals

These calculations remain problematic given the difficulty of
estimating extreme event probabilities as well as the scale
mismatch problem

However, projections of extreme event probabilities into the
future show notable increases, especially for Europe

We can also compare the risk ratios for current or future
event probabilities versus past probabilities (2000 used as
reference), and find much stronger evidence for change (but
still very wide BCIs)
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