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This talk is motivated by spatial interpolation problems that oc-

cur very widely in connection with environmental monitoring.

There are two broad approaches to these problems:

(a) Geostatistical approach based on covariances or variograms

(b) Lattice approach based on conditional dependence struc-

tures

For whatever reasons, (a) is usually approached from a frequen-

tist point of view and (b) from a Bayesian viewpoint.

The main purpose of this talk is to explore Bayesian approaches

to (a).
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Example 1

Holland, Caragea and Smith (Atmospheric Environment, 2004),

interested in long-term time trends in atmospheric SO2 and par-

ticulate SO2−
4 , at 30 long-term monitor stations (CASTNet).

Estimated trend (percent change from 1990 to 1999), with stan-

dard errors, are shown on the next two figures.
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By fitting a spatial model (treating the standard error of the

trend at each site as an estimate of the measurement error),

they constructed a kriged map of trends in SO2 and SO2−
4 across

the region, together with estimated prediction standard errors.

In the next two figures, we show the results constructed by two

methods:

• Estimate the model parameters by restricted maximum like-

lihood (REML), then apply kriging treating these parameters

as known.

• Fully Bayesian approach, in which the predictive distribution

derive from universal is integrated with respect to the pos-

terior distribution
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Although the two maps are not very different, there are percep-

tible differences, with the prediction standard errors being larger

under the Bayesian approach.
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Example 2

Smith, Kolenikov and Cox (2003) developed a spatial-temporal
model for PM2.5 (“fine” particulate matter of diameter ≤ 2.5µm),
restricted to the states of North Carolina, South Carolina and
Georgia, and the year 1999. The model used linear regression to
represent fixed temporal and spatial means and a landuse effect,
and spatially correlated random errors estimated with a power-
law variogram.

They used weekly aggregated data from 74 stations, and con-
structed interpolated maps of PM2.5 for week 33 (the week with
the highest levels) and for the average over the whole year.

Although the published paper didn’t include any Bayesian method-
ology, the present also includes a parallel Bayesian analysis, to
illustrate the differences between the two. The prediction vari-
ances are typically about one-third higher using the Bayesian
approach compared with the MLE.
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It’s also possible to interpret these results as the probability that

the annual mean PM2.5 at any location exceeds a threshold,

which we have here taken to be 16.5 µm. Once again we have

constructed spatial maps of this quantity using both the MLE

and the Bayesian approach. The estimated probability is typically

higher using the Bayesian method than the MLE.
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Next, I show some simulations produced by Elizabeth Sham-

seldin. She constructed a simulated random field on 16 lo-

cations, using an exponential-power correlation proportional to

exp
{
−
(
d
ρ

)κ}
where d is the distance between two locations, ρ is

the range parameter, and 0 < κ ≤ 2. The model also assumed a

spatial trend linear in the latitude and longitude coordinates.

A cross-validation exercise was performed in which each location

was omitted an predicted from the other 15 data points. This

was repeated 100 times to calculate an empirical coverage prob-

ability for the nominal 95% prediction intervals. Three methods

were used: universal kriging based on the known model param-

eters, a “plug-in” approach using the REML estimators, and a

fully Bayesian analysis.
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Sampling configuration for simulation experiment (E. Shamseldin)
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Simulated coverage probabilities for nominal 95% PIs
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In these simulations, we can see that the Bayesian prediction

intervals have coverage probabilities close to their nominal 95%

values, but the prediction intervals based on plugging the REML

estimates into the universal kriging formula have too small a

coverage probability, especially for small κ.

The undercoverage of plug-in prediction intervals is well known,

and several proposals have been made over the years. Harville

and Jeske (1992), Zimmerman and Cressie (1992) proposed

approximations to the prediction variance based on the delta

method, and Stein (1999) developed a number of alternatives.

From various points of view, it is attractive to use Bayesian

methods in this context, but there is no proof in general that

they actually solve the problem of undercoverage of prediction

intervals.
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Bayesian network design

(Joint work with Zhengyuan Zhu)

There are many criteria for design of a monitoring network, in-
cluding

• Entropy approaches (J. Zidek and co-authors)

• Extensions of classical design criteria such as D-optimality
and A-optimality (Federov and W. Müller (1989); Müller
(2000); Berliner, Lu and Snyder (1999))

• “Pure Bayesian” approaches (Sansó and P. Müller)

• Designs that attempt to trade off between “optimality for
prediction” and “optimality for estimation” (Zimmerman;
Zhu)
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An alternative suggestion (containing elements of all of the above):

Since Bayesian prediction intervals supposedly “correct” for the

model parameters being unknown, we might use the expected

length of a Bayesian prediction interval, directly, as a criterion

for experimental design.

Practical point: It is extremely unlikely, in practice, that any-

one would agree on a single “variable of interest” whose pre-

diction forms the sole purpose of a network design. However,

the same method could be applied to a suite of possible predic-

tion variables, using either the average or the maximum length

of a Bayesian prediction interval as the criterion for the overall

design. This is quite close to what is already done in several

network design criteria.
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What would be needed for a brute force implementation of this
approach?

• For any data set, use MCMC to construct the Bayesian pre-
dictive distribution

• For any given design, run the Bayesian analysis on simulated
data sets to determine the expected length of Bayesian pre-
diction intervals

• Use an optimization algorithm (e.g. simulated annealing) to
find the optimal design

Zhu (2002, PhD thesis, University of Chicago) dismissed this
possibility as too computationally intensive, and instead proposed
various approximate schemes
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Basics of Spatial Prediction

We assume data follow a Gaussian random field with mean and

covariance functions represented as functions of finite-dimensional

parameters.

Define the prediction problem as(
Y
Y0

)
∼ N

[(
Xβ

xT0β

)
,

(
V wT

w v0

)]
(1)

where Y is an n-dimensional vector of observations, Y0 is some

unobserved quantity we want to predict, X and x0 are known

regressors, and β is a p-dimensional vectors of unknown regres-

sion coefficients. For the moment, we assume V, w and v0 are

known.
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Where notationally convenient, we also define Y ∗ =

(
Y
Y0

)
and

write (1) as

Y ∗ ∼ N [X∗β, V ∗]. (2)
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Specifying the Covariances

The most common and widely used spatial models (stationary

and isotropic) assume the covariance between components Yi and

Yj is a function of the (scalar) distance between them, Cθ(dij).

For example,

Cθ(d) = σ exp

{
−
(
d

ρ

)κ}
, (3)

where θ = (κ, σ, ρ), or

Cθ(d) =
σ

2ν−1Γ(ν)

(
2ν1/2d

ρ

)ν
Kν

(
2ν1/2d

ρ

)
, (4)

where Kν is a modified Bessel function and we have θ = (ν, σ, ρ)

(Matérn).
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Estimation

Model of form

Y ∼ N [Xβ, V (θ)]

where the unknown parameters are (β, θ) and V (θ) is a known

function of finite-dimensional parameters θ.

Methods of estimation:

1. Curve fitting to the variogram, based on residuals from OLS

regression.

2. MLE: choose (β, θ) to maximize log likelihood function

−
1

2
log |V | −

1

2
(Y −Xβ)V −1(Y −Xβ).
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Maximize w.r.t. β first, set β̂ = (XTV −1X)−1XTV −1Y , then

choose θ to maximize

−
1

2
log |V (θ)| −

G2(θ)

2

where G2 = Y TWY , W = V −1 − V −1XT (XV −1XT )−1XV −1, is

the generalized residual sum of squares.

3. Restricted maximum likelihood (REML estimation). Theo-

retically, this is defined as maximum likelihood estimation in the

subset of data that lies orthogonal to the X-space. In practice,

θ̂ is chosen to maximize

`n(θ) = −
1

2
log |V (θ)| −

1

2
log |XTV (θ)−1X| −

G2(θ)

2
.
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The Main Prediction Problem

Assume model (1) where the covariances V, w, v0 are known but

β is unknown. The classical formulation of universal kriging asks

for a predictor Ŷ0 = λTY that minimizes σ2
0 = E

{
(Y0 − Ŷ0)

2
}

subject to the unbiasedness condition E
{
Y0 − Ŷ0

}
= 0.

The classical solution:

λ = wTV −1 + (x0 −XTV −1w)T (XTV −1X)−1XTV −1,

σ2
0 = v0 − wTV −1w+ (x0 −XTV −1w)T (XTV −1X)−1(x0 −XTV −1w).
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Bayesian Reformulation of Universal Kriging

Assume the model (1) or equivalently (2). Suppose β (the only
unknown parameter, for the moment) has a prior density which
is assumed uniform across Rp. The Bayesian predictive density
of Y0 given Y is then

p(Y0 | Y ) =

∫
f(Y ∗ | β)dβ∫
f(Y | β)dβ

. (5)

After some manipulation, this may be rewritten in the form

p(Y0 | Y ) =
1√

2πσ2
0

exp

−1

2

(
Y0 − λTY

σ0

)2
 (6)

Thus, in the case where β is the only unknown, we have rederived
universal kriging as a Bayesian predictor. Moreover, because of
the usual (frequentist) derivation of universal kriging, it follows
that in this case, Bayesian procedures have exact frequentist
properties.
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Now consider the case where θ is also unknown. We assume θ

has a prior density π(θ), independent of β.

The Bayesian predictive density of Y0 given Y is now

p(Y0 | Y ) =

∫ ∫
f(Y ∗ | β, θ)π(θ)dβdθ∫ ∫
f(Y | β, θ)π(θ)dβdθ

...

=

∫
e`n(θ)ψ(θ)π(θ)dθ∫
e`n(θ)π(θ)dθ

(7)

where e`n(θ) is the restricted likelihood of θ and ψ(θ)

= 1√
2πσ2

0

exp

{
−1

2

(
Y0−λTY

σ0

)2
}
.

The REML estimator θ̂ is the value of θ that maximizes `n(θ).

We also write (7) as ψ̃, to distinguish it from the plug-in rule

ψ̂ = ψ(θ̂).
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Bullet Point Number 1

Universal kriging has a nice Bayesian interpretation, as the exact

solution of a Bayesian prediction problem for the linear model

parameters, but only under the assumption that the covariance

parameters are known — an unrealistic assumption in practice.

When the covariance parameters are unknown, the REML esti-

mator has the interpretation of a maximum a posteriori estima-

tor, after integrating out the linear model parameters. However,

the traditional plug-in approach to prediction does not have a

rigorous Bayesian interpretation.
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Solution of (7): Use Laplace approximation.

First, some notation. Let

Ui =
∂`n(θ)

∂θi
,

Uij =
∂2`n(θ)

∂θi∂θj
,

Uijk =
∂3`n(θ)

∂θi∂θj∂θk
,

where θi, θj... denote components of the vector θ.

Suppose inverse of {Uij} matrix has entries {U ij}.
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We shall introduce other quantities such as Q(θ) = logπ(θ) and

ψ(θ) = 1√
2πσ2

0

exp
{
−1

2

(
Y0−λTY

σ0

)}
that are functions of θ, and

where needed, we use suffixes to denote partial differentiation,

for example Qi = ∂Q/∂θi, ψij = ∂2ψ/∂θi∂θj. All these quantities

are evaluated at the true θ unless denoted otherwise. The REML

estimator is denoted θ̂ with components θ̂i. The REMLE of ψ is

ψ̂ = ψ(θ̂). Any expression with a hat on it, such as Ûijk, means

that it is to be evaluated at the REMLE θ̂ rather than the true

value θ.
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Using summation convention, define

D =
1

2
UijkU

ikUj`ψ` −
1

2
(ψij + 2ψiQj)U

ij (8)

and let D̂ denote the same expression where all terms have hats.

With these conventions, Smith (1997, 1999) used Laplace’s in-

tergal approximation to derive the formula

ψ̃ = ψ̂+ D̂, (9)

accurate to Op(n−1).

We can also apply (9) to the predictive distribution function

ψ(z;Y, θ) = Φ

(
z − λTY

σ0

)
and invert the resulting ψ̂ or ψ̃ to compute prediction intervals.
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Bullet Point Number 2

Laplace integration is a plausible alternative to MCMC. It is not

clear whether it is a better approximation to the true posterior

distribution than MCMC, but it could be much more convenient

to apply.

Parenthetical remark: A different form of Laplace approxima-

tion was proposed by Tierney and Kadane (1988). The present

version is more convenient if the objective is to compute the

predictive distribution function at many values of z.
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Mathematical properties of Bayesian predictors

(Cox 1975; Smith 1997, 1999)

Suppose ψ∗(z) (could be ψ̂ or ψ̃) is an estimator of the conditional
prediction distribution function ψ(z) = ψ(z ; Y, θ) that has an
expansion

ψ∗(z) = ψ(z) + n−1/2R+ n−1S + o(n−1). (10)

Define predictive quantile z∗P by ψ∗(z∗P ) = P . Then

z∗P − zP = −n−1/2R

ψ′
− n−1

(
RR′

ψ′2
−
R2

ψ′3
−
S

ψ′

)
+ op(n

−1), (11)

ψ(z∗P )− ψ(zP ) = −n−1/2R− n−1
(
RR′

ψ′
− S

)
+ op(n

−1). (12)

By taking expectations in (11) and (12) respectively, we derive
expressions for the expected length of a prediction interval and
the coverage probability bias (CPB).
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More notation:

κi,j = n−1E
{
UiUj

}
,

κij = n−1E
{
Uij

}
= −κi,j,

κijk = n−1E
{
Uijk

}
,

κi,jk = n−1E
{
UiUjk

}
,

W = V −1 − V −1X(XTV −1X)−1XTV −1,

λi =
∂λ

∂θi
, λij =

∂2λ

∂θi∂θj
,

σ0i =
∂σ0

∂θi
, σ0ij =

∂2σ0

∂θi∂θj
.

Suppose inverse of {κi,j} matrix has entries {κi,j}. We assume

all these quantities are of O(1) (or Op(1)) as n→∞.
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nE {ψ(ẑP (Y ) ; Y, θ)− ψ(zP (Y ) ; Y, θ)}

∼ φ(Φ−1(P ))Φ−1(P )
[
−

1

2
Φ−1(P )

2
κi,j

σ0iσ0j

σ2
0

+κi,jκk,`
(
κjk,` +

1

2
κjk`

)
σ0i

σ0
+

1

2
κi,j

{
σ0ij

σ0
−
λTi V λj

σ2
0

}

−
1

2
κi,kκj,` ·

1

nσ2
0

(
λTi V

∂W

∂θk
V
∂W

∂θ`
V λj + λTi V

∂W

∂θ`
V
∂W

∂θk
V λj

)]
,

nE {ψ(z̃P (Y ) ; Y, θ)− ψ(zP (Y ) ; Y, θ)}
∼ φ(Φ−1(P ))Φ−1(P )

[
κi,jκk,`

(
κjk,` + κjk`

) σ0i

σ0

−κi,j
(
σ0iσ0j

σ2
0

−
σ0ij

σ0

)
+ κi,j

σ0i

σ0
Qj

−
1

2
κi,kκj,` ·

1

nσ2
0

(
λTi V

∂W

∂θk
V
∂W

∂θ`
V λj + λTi V

∂W

∂θ`
V
∂W

∂θk
V λj

)]
.
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Bullet Point Number 3

Even if...

• you subscribe to the belief that “subjective probability does

not exist”;

• you haven’t a clue how to choose a prior distribution;

• you can’t or won’t use MCMC (because Laplace approxima-

tion is an alternative);

you should still use Bayesian methods to solve spatial interpola-

tion problems with estimated parameters.
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Expected length of a prediction interval

(This page has been corrected since the original version of the

talk)

nE {ẑP − zP} ≈ Φ−1(P )
{
κi,jκk,`σ0`

(
κik,j +

1

2
κijk

)
+

1

2
κi,jσ0ij

}

nE {z̃P − zP} ≈ Φ−1(P )
{
κi,jκk,`σ0`(κik,j + κijk)

+κi,j
(
σ0ij −

σ0iσ0j

σ0

)
+ κi,jQjσ0i

+
1

2
Φ−1(P )

2
κi,j

σ0iσ0j

σ0
+

1

2
κi,j

λTi V λj

σ0

}
.
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For a 100(P2 − P1)% Bayesian prediction interval,

E
{
z̃P2

(Y )− z̃P1
(Y )

}
= E

{
zP2

(Y ; θ)− zP1
(Y ; θ)

}
+E

{
z̃P2

(Y )− zP2
(Y ; θ)

}
−E

{
z̃P1

(Y )− zP1
(Y ; θ)

}
= σ0{Φ−1(P2)−Φ−1(P1)}

+E
{
z̃P2

(Y )− zP2
(Y ; θ)

}
−E

{
z̃P1

(Y )− zP1
(Y ; θ)

}
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Application to network design

Recall from earlier discussion, a “brute force” approach to Bayesian

network design would require three nested computations, (a)

MCMC to calculate a predictive distribution, (b) simulation to

determine the expected length of a Bayesian prediction interval,

(c) simulated annealing (or some equivalent method) to deter-

mine the optimal design.

The methods described here create the possibility of replacing

(a) and (b) by a single analytic approximation, so that only (c)

needs iterative numerical methods.
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Bullet Point Number 4

The expected length of a Bayesian prediction interval may be

used as the basis of a network design criterion, combining “pre-

dictive” and “estimative” approaches to design. The new ap-

proximation takes into account the prior density, as well as the

desired coverage level of the prediction interval. Because it is

formally justified as the O
(
1
n

)
approximation to the exact ex-

pected length, it may also have a more rigorous mathematical

justification than the earlier approaches.
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Conclusions

1. Universal kriging is a very elegant technique for spatial pre-
diction in the present of unknown linear regression parame-
ters, but it fails to allow correctly for the spatial covariance
parameters also being unknown.

2. Bayesian prediction intervals provide an alternative to this,
with numerical solution by MCMC or Laplace methods.

3. Asymptotic results suggest that Bayesian prediction inter-
vals have better sampling properties than conventional ap-
proaches, regardless of the prior.

4. The same ideas suggest a new design criterion for monitoring
networks.

Thank you to TIES for the opportunity to give this talk!
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