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I. Universal Kriging, REML Estimation and Bayesian

Spatial Statistics

We assume data follow a Gaussian random field with mean and

covariance functions represented as functions of finite-dimensional

parameters.

Define the prediction problem as(
Y
Y0

)
∼ N

[(
Xβ

xT0β

)
,

(
V (θ) w(θ)T

w(θ) v0(θ)

)]
(1)

where Y is an n-dimensional vector of observations, Y0 is some

unobserved quantity we want to predict, X and x0 are known

regressors, β is a q-dimensional vector of unknown regression

coefficients, and V, w and v0 are functions of unknown finite-

dimensional θ.
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Model (1) arises in various contexts:

• Random effects ANOVA

• Time series models where the covariances are parametrically
specified (e.g. ARIMA)

• Spatial statistics

The most widely used spatial models (stationary and isotropic)
assume the covariance between components Yi and Yj is a func-
tion of the (scalar) distance between them, Cθ(dij). An example
is the exponential power model

Cθ(d) = σ2 exp

{
−
(
d

ρ

)κ}
,

where θ = (κ, σ2, ρ) with 0 < κ ≤ 2, σ2 > 0, ρ > 0.

The key assumption is: the covariances are unknown in practice,
but expressed as functions of finitely many parameters θ.
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Universal Kriging

Assume model (1) where the covariances V, w, v0 are known but

β is unknown. The classical formulation of universal kriging asks

for a predictor Ŷ0 = λTY that minimizes σ2
0 = E

{
(Y0 − Ŷ0)

2
}

subject to the unbiasedness condition E
{
Y0 − Ŷ0

}
= 0.

The classical solution:

λ = wTV −1 + (x0 −XTV −1w)T (XTV −1X)−1XTV −1,

σ2
0 = v0 − wTV −1w+ (x0 −XTV −1w)T (XTV −1X)−1(x0 −XTV −1w).
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Estimation of θ

Consider the model Y ∼ N [Xβ, V (θ)].

The restricted likelihood is the joint density of an (n−q)-dimensional

set of contrasts (defined to be independent of β). It is also an

integrated likelihood with respect to a flat prior on β (Harville

1974). It leads to the formula for the log RL:

`n(θ) = −
1

2
log |V (θ)| −

1

2
log |XTV (θ)−1X| −

G2(θ)

2
,

where G2 = Y TWY , W = V −1 − V −1XT (XV −1XT )−1XV −1, is

the generalized residual sum of squares.

The REML estimator θ̂ is defined to maximize `n(θ) w.r.t. θ. It

is usually considered superior to MLE, though the two estimators

are equivalent to first-order asymptotics.
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Bayesian Reformulation

Suppose (β, θ) have a joint prior density of the form π(θ)dβdθ

(constant in β).

The Bayesian predictive density of Y0 given Y is

p(Y0 | Y ) =

∫ ∫
f(Y, Y0 | β, θ)π(θ)dβdθ∫ ∫
f(Y | β, θ)π(θ)dβdθ

.

After some algebraic manipulation, this may be rewritten

p(Y0 | Y ) =

∫
e`n(θ)ψ(Y0 | Y, θ)π(θ)dθ∫

e`n(θ)π(θ)dθ
(2)

where

ψ(Y0 | Y, θ) =
1√

2πσ0(θ)
exp

−1

2

(
Y0 − λ(θ)TY

σ0(θ)

)2
 .
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Two forms of predictive density

The conventional kriging formula uses the “plug-in” predictive

density

ψ̂(Y0 | Y ) = ψ(Y0 | Y, θ̂).

The natural Bayesian solution uses (2) to define a predictive

density, which we shall write ψ̃(Y0 | Y ).

In subsequent discussion, we shall mostly use the predictive dis-

tribution function, i.e. redefine ψ(z|Y, θ) = Φ
(
z−λ(θ)TY
σ0(θ)

)
where

Φ(·) is the standard normal distribution function, but then define

ψ̂ and ψ̃ in the same way.

The central question of this talk is then: Is ψ̃ superior to ψ̂? —

and how is this influenced by the choice of prior?
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III Existing Results on “Kriging With Estimated
Parameters”

Suppose we apply universal kriging to predict Y0 by λTY , but
estimate λ̂ = λ(θ̂) where θ̂ is the MLE or REMLE.

Harville and Jeske (1992) and Zimmerman and Cressie (1992)
proposed the following correction to the mean squared prediction
error:

V1 = E
{
(Y0 − λ̂TY )2

}
≈ σ2

0 + tr

{
I−1

(
∂λ

∂θ

)T
V

(
∂λ

∂θ

)}
where I is the observed information matrix for θ. This formula
corrects for the error in specifying the kriging weights λ.

The derivation of this formula assumed that θ̂−θ was independent
of Y0 − λTY . Abt (1999) derived an improved formula without
this assumption, but noted that in practice, the improvement
made little difference to the result.
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However, in calculating a prediction interval for Y0, it is also
necessary to consider the effect of σ2

0 being unknown. Define

V2 =

(
∂σ2

0

∂θ

)T
I−1

(
∂σ2

0

∂θ

)

Stein (1999) considered the KL divergence

D =
∫

log

{
p(y0 | Y, θ)
p(y0 | Y, θ̂)

}
p(y0 | Y, θ)dy0

and derived the approximation

D ≈
1

2σ2
0

tr

{
I−1

(
∂λ

∂θ

)T
V

(
∂λ

∂θ

)}
+

V2

4σ4
0

.

This led Zhu and Stein (2004) to suggest

V3 = V1 +
1

2
·
V2

σ2
0

could be a suitable design criterion. We return to this later.
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Bayesian Approaches Based on Reference Priors

As shown by Berger, De Oliveira and Sansó (2001) and extended
by Paulo (2003), the reference prior for a Bayesian approach is
the same as the Jeffreys prior derived from the restricted likeli-
hood. It is therefore given by

π(θ) ∝ |I(θ)|1/2

where I(θ) is Fisher information matrix, with entries κi,j given
by

κi,j = trace
{
W
∂V

∂θi
W
∂V

∂θj

}
,

where W = V −1 − V −1X(XTV −1X)−1XTV −1.

These authors, as well as Stein (1999), all performed simulations
to suggest that Bayesian prediction intervals would perform well
if assessed by frequentist coverage probability. One of the aims
of the present talk is to present a theoretical discussion of this
issue.
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IV The Approach Based on Second-Order Asymptotics

Long history —

• Frequentist Asymptotics for Prediction — Cox (1975), Barndorff-
Nielsen and Cox (1996), Hall, Peng and Tajvidi (1999),...

• Predictive Likelihood — Lauritzen (1974), Hinkley (1979),
Butler (1986), Davison (1986), Bjørnstad (1990),....

• Decision Theoretic Approaches — Aitchison (1975), Harris
(1989), Komaki (1996), Smith (1999)

• Matching Bayesian and Frequentist Inference — Welch and
Peers (1963),......., Datta and Mukerjee (2004 Springer-Verlag
Monograph). See in particular, Datta, Mukerjee, M. Ghosh
and Sweeting (2000, Annals of Statistics) for a “matching
prior” approach to predictive inference.

With scattered exceptions, all of this literature applies only to
the case of independent observations.
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Notation

Define

ψ̃(z | Y ) =

∫
e`n(θ)+Q(θ)ψ(z | Y, θ)dθ∫

e`n(θ)+Q(θ)dθ
(3)

where e`n(θ) is the restricted likelihood of θ, Q(θ) = logπ(θ) and

ψ(z | Y, θ) = Φ
(
z−λ(θ)TY
σ0(θ)

)
. Also let ψ̃−1 be inverse function, i.e.

ψ̃−1(P | Y ) is the value of z for which ψ̃(z | Y ) = P .

For P ∈ (0,1) define

zP (Y | θ) = λ(θ)TY + σ0(θ)Φ
−1(P ),

ẑP (Y ) = λ̂TY + σ̂0Φ
−1(P ),

z̃P (Y ) = ψ̃−1(P | Y ).
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For an estimator z∗P (could be ẑP or z̃P ) we would like to calculate

E {ψ(z∗P (Y ) | Y, θ)− ψ(zP (Y | θ) | Y, θ)} (4)

and

E {z∗P (Y )− zP (Y | θ)} (5)

(4) is called the coverage probability bias (CPB). (5) leads to

the expected length of a prediction interval (our proposed design

criterion) because for a 100(P2 − P1)% interval,

E
{
z∗P2

(Y )− z∗P1
(Y )

}
= E

{
zP2

− zP1

}
+E

{
z∗P2

− zP2

}
− E

{
z∗P1

− zP1

}
= σ0{Φ−1(P2)−Φ−1(P1)}+E

{
z∗P2

− zP2

}
− E

{
z∗P1

− zP1

}
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Define Ui =
∂`n(θ)
∂θi

, Uij = ∂2`n(θ)
∂θi∂θj

, Uijk = ∂3`n(θ)
∂θi∂θj∂θk

.

The matrix with entries Uij has an inverse with entries U ij.

Other quantities Q(θ) = logπ(θ), λ(θ), σ0(θ). Suffixes denote

partial differentiation, e.g. Qi =
∂Q
∂θi

, σ0ij = ∂2σ0
∂θi∂θj

. Let

Ui = n1/2Zi,

Uij = n1/2Zij + nκij,

Uijk = n1/2Zijk + nκijk,

and define also κi,j = n−1E
{
UiUj

}
= −κij, κij,k = n−1E

{
UijUk

}
.

Suppose inverse of {κi,j} matrix has entries {κi,j}. We assume

all the Z quantities are Op(1) and all the κ quantities are O(1)

as n → ∞ (increasing domain asymptotics) and we employ the

summation convention.
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Step 1: Taylor expansion of ψ̂

ψ̂ − ψ = n−1/2κi,jZiψj + n−1(κi,jκk,`ZikZjψ`

+
1

2
κi,rκj,sκk,tκijkZrZsψt

+
1

2
κi,jκk,`ZiZkψj`) +Op(n

−3/2).

Follows well-known references on higher-order asymptotics of

MLE, e.g. McCullagh (1987), Barndorff-Nielsen and Cox (1994).
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Step 2: From ψ̂ to ψ̃

Using a Laplace approximation to the Bayesian integral, Lindley

(1980) showed that

ψ̃ − ψ̂ =
1

2
Ûijkψ̂`Û

ijÛk` −
1

2
(ψ̂ij + 2ψ̂iQ̂j)Û

ij +Op(n
−2).

where the hats indicate that Uijk, ψ`, etc., are evaluated at the

REMLE θ = θ̂.

Hence

ψ̃ − ψ̂ =
1

2n

{
κijkκ

i,jκk,`ψ` + (ψij + 2ψiQj)κ
i,j
}

+Op(n
−3/2).

Together, these approximations give an expansions of either ψ̂−ψ
or ψ̃ − ψ in powers of n−1/2.
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Step 3: From a distribution function to its inverse (based
on Cox (1975))

Suppose ψ∗(z) (could be ψ̂ or ψ̃) is an estimator of the conditional
prediction distribution function ψ(z) = ψ(z | Y, θ) that has an
expansion

ψ∗(z) = ψ(z) + n−1/2R+ n−1S + o(n−1).

Define predictive quantile z∗P by ψ∗(z∗P ) = P . Then

z∗P − zP = −n−1/2R

ψ′
− n−1

(
RR′

ψ′2
−
R2

ψ′3
−
S

ψ′

)
+ op(n

−1), (6)

ψ(z∗P )− ψ(zP ) = −n−1/2R− n−1
(
RR′

ψ′
− S

)
+ op(n

−1). (7)

Here primes denote differentiation with respect to z. By taking
expectations in (6) and (7) respectively, we derive expressions
for the expected length of a prediction interval and the coverage
probability bias (CPB).
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Step 4: Evaluate the expectations

Side comment: Up to this point, the calculations are the same as

in the independent case. In particular, by taking expectations in

(7), it should be possible to re-derive the results in Datta, Muk-

erjee, Ghosh and Sweeting (2000) (though they used a different

method)

However, for dependent observations, these expectations are

much harder to evaluate.
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As an example of the terms to be evaluated, consider

E

{
RR′

ψ′

}
= E

{
κi,jZiψjκ

k,`Zkψ
′
`

ψ′

}
= κi,jκk,`φ(Φ−1(P ))×

E

ZiZk
λ

T
j Y

σ0
+
σ0j

σ0
Φ−1(P )


{
σ0`

σ0
−
(
λT` Y

σ0
+
σ0`

σ0
Φ−1(P )

)
Φ−1(P )

}

This requires evaluating moments of Y ’s of up to sixth order,

but it is still an explicit calculation!
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Results

nE {ψ(ẑP (Y ) | Y, θ)− ψ(zP (Y | θ) | Y, θ)}

∼ φ(Φ−1(P ))Φ−1(P )

[
−

1

2
Φ−1(P )

2
κi,j

σ0iσ0j

σ2
0

+κi,jκk,`
(
κjk,` +

1

2
κjk`

)
σ0i

σ0
+

1

2
κi,j

{
σ0ij

σ0
−
λTi V λj

σ2
0

}

−
1

2
κi,kκj,` ·

1

nσ2
0

(
λTi V

∂W

∂θk
V
∂W

∂θ`
V λj + λTi V

∂W

∂θ`
V
∂W

∂θk
V λj

)]
,

nE {ψ(z̃P (Y ) | Y, θ)− ψ(zP (Y | θ) | Y, θ)}

∼ φ(Φ−1(P ))Φ−1(P )

[
κi,jκk,`

(
κjk,` + κjk`

) σ0i

σ0

−κi,j
(
σ0iσ0j

σ2
0

−
σ0ij

σ0

)
+ κi,j

σ0i

σ0
Qj

−
1

2
κi,kκj,` ·

1

nσ2
0

(
λTi V

∂W

∂θk
V
∂W

∂θ`
V λj + λTi V

∂W

∂θ`
V
∂W

∂θk
V λj

)]
.
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nE {ẑP − zP} ≈ Φ−1(P )
{
κi,jκk,`σ0`

(
κik,j +

1

2
κijk

)
+

1

2
κi,jσ0ij

}

nE {z̃P − zP} ≈ Φ−1(P )
{
κi,jκk,`σ0`(κik,j + κijk)

+κi,j
(
σ0ij −

σ0iσ0j

σ0

)
+ κi,jQjσ0i

+
1

2
Φ−1(P )

2
κi,j

σ0iσ0j

σ0
+

1

2
κi,j

λTi V λj

σ0

}
.
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These results imply the existence of a “matching prior” for which

the second-order CPB is 0. However we can also manipulate the

asymptotic expressions to obtain a direct estimate of zP with the

same property:

z
†
P = ẑP − n−1Φ−1(P )

{
κ̂i,jκ̂k,`σ̂0`

(
κ̂ik,j +

1

2
κ̂ijk

)
+

1

2
κ̂i,j

(
σ̂0ij −

σ̂0iσ̂0j

σ̂0
Φ−1(P )

2
)
−

1

2σ̂0
κ̂i,jλ̂Ti V̂ λ̂j

−
1

2nσ̂0
κ̂i,jκ̂k,`

(
λ̂Tj V̂

∂Ŵ

∂θi
V̂
∂Ŵ

∂θk
V̂ λ̂` + λ̂Tj V̂

∂Ŵ

∂θk
V̂
∂Ŵ

∂θi
V̂ λ̂`

)}
.
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IV. Application to Network Design

Large literature, many different approaches.

Recent work has focussed on contrast between two types of
criterion:
• Estimative — e.g. choose the design to maximize the deter-

minant of the Fisher information matrix of θ
• Predictive — focus on a specific Y0, find a design to minimize
σ0. Note that this ignores the estimation of θ, in effect
assuming θ known.

Zhu and Stein (2004) proposed a combined estimative and pre-
dictive criterion, using approximations derived by Stein (1999).

They also considered (but rejected as too computationally inten-
sive) a direct Bayesian approach, choosing the optimal design to
minimize the expected length(s) of a Bayesian prediction interval
for the quantity (or quantities) being predicted.

25



Direct Bayesian Approach

• For any data set, use MCMC to construct the Bayesian pre-

dictive distribution

• For any given design, run the Bayesian analysis on simulated

data sets to determine the expected length of Bayesian pre-

diction intervals

• Use an optimization algorithm (e.g. simulated annealing) to

find the optimal design

Direct implementation of this approach requires a lot of Monte

Carlo simulation.
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The new result is that these two criteria of Zhu and Stein are

almost equivalent — taking the “direct Bayesian approach” but

using asymptotic approximations, one derives a criterion for the

optimal design very similar to the V3 criterion given earlier.
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Suppose we use an estimator of zP whose second-order CPB is

0 (e.g. either the Bayes estimator with matching prior, or z†P ).

In either case we have

nE
{
z
†
P − zP

}
≈

1

2σ0
Φ−1(P )

{
κi,jλTi V λj + Φ−1(P )

2
κi,jσ0iσ0j

+κi,kκj,`
(
λTi V

∂W

∂θk
V
∂W

∂θ`
V λj + λTi V

∂W

∂θ`
V
∂W

∂θk
V λj

)}
.

The second line is Abt’s refinement of the Harville-Jeske-Zimmerman-

Cressie correction and will be ignored in subsequent discussion.
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Use this to construct a two-sided prediction interval, with tail

probability 1− P in each tail. The approximate expected length

of this prediction interval is

2Φ−1(P )

√
σ2
0 + n−1κi,jλTi V λj + n−1Φ−1(P )

2
κi,jσ0iσ0j.

In the notation of Zhu and Stein (2004), the quantity under the

square root sign is

V4 = V1 +
Φ−1(P )

2

4
·
V2

σ2
0

.

Recall their own criterion was V3 = V1 + 1
2 ·

V2
σ2
0
.
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Two Design Criteria

V3 = V1 +
1

2
·
V2

σ2
0

(Zhu and Stein)

V4 = V1 +
Φ−1(P )

2

4
·
V2

σ2
0

(this talk)

The present formula V4 has the unusual feature that the design

might depend on the desired coverage probability of a prediction

interval.

It is also tied directly to two specific methods of constructing a

prediction interval whose second-order coverage probability bias

is 0, whereas previous approaches have not shown how to con-

struct such an interval.
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V. An Example

In North Carolina there are 38 monitors for PM2.5 (fine partic-

ulate matter). Suppose we wanted to redesign the network for

optimal estimation of population-weighted daily average. We

use daily data from 2000. Assume individual days’ data are in-

dependent replications of the model

Cov(yi, yj) =

{
θ21 if i = j,

θ3θ
2
1e
−dij/θ2 if i 6= j,

with yi, yj the PM2.5 at locations i and j, dij is distance (units of

100 km.), and we estimated θ1 = 6.495, θ2 = 4.019, θ3 = .9423.

Treat this as the true model, but assume θ1, θ2, θ3 would have to

be re-estimated on any given day.
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Population-weighted averages were calculated using data from

the 2000 U.S. census for the 809 zip code tabulation areas

(ZCTA) in North Carolina. Select 38 ZCTA out of 809 to place

the monitoring station to give most accurate prediction of the

total population PM2.5 exposure defined as

y0 =
∑
i

piyi,

where pi is the population at the i’th ZCTA, and yi is the

PM2.5 level there. V1 and V4 with coverage probabilities P =

0.9,0.99,0.999 are used as design criteria, and a simulated an-

nealing algorithm is used to find the optimal designs.
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Point Predictor
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 Optimal Designs Under Four Criteria

Four designs selected using criteria of this talk (calculations due

to Zhengyuan Zhu)

33



All four designs tend to place monitors in regions of high pop-

ulation density (as does the current EPA network) but it is no-

ticeable that the criterion V4, especially for smaller P , tends to

favor a network with clusters of nearby monitors, reflecting the

role such clusters play in ensuring good estimation of model pa-

rameters.
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Summary

1. The second-order coverage probability bias of the Bayes es-
timator of zP is smaller than that of the plug-in estimator in
the limit as P → 0 or 1, regardless of the prior.

2. For the Bayesian predictive distribution there is a matching
prior, i.e. one for which the second-order CPB of z̃P is 0.

3. However we can also achieve the same second-order proper-
ties directly, using the estimator z†P .

4. For any of these estimators of predictive quantiles, we have
an approximation for the expected length of a prediction in-
terval, and this can be used as a design criterion.

5. In the case of an estimate whose second-order CPB is 0,
we obtain a design criterion very similar to that of Zhu and
Stein, but adapted to a specific construction of a prediction
interval.
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