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Method for analyzing extreme precipitation events

(or, What I’ve learned from SAP 3.3)

Most popular method is the “NCDC approach” stemming from

Karl and Knight (1998) and continued by Easterling, Grois-

man and others (see also Kunkel and co-authors, 1999, 2003a,

2003b, 2006,....). Calculate trends in exceedance counts of a

high threshold at each station, then group and spatially smooth

into climate regions.

A few authors have taken the “GEV” approach (Zwiers, Wehner

and co-authors)
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There are (at present) very few papers in the climate literature on

the “threshold” approach to extremes, though there are papers

starting to appear that analyze significant amounts of climate

data (Cooley et al., to appear in JASA; Shamseldin et al., in

preparation)

This talk is based primarily on work by R. Smith, A. Grady and

G. Hegerl, preprint will shortly be available.
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DATA SOURCES

• NCDC Rain Gauge Data (Groisman 2000)

– Daily precipitation from 5873 stations

– Select 1970–1999 as period of study

– 90% data coverage provision — 4939 stations meet that

• NCAR-CCSM climate model runs

– 20 × 41 grid cells of side 1.4o

– 1970–1999 and 2070–2099 (A1B scenario)

• PRISM data

– 1405 × 621 grid, side 4km

– Elevations

– Mean annual precipitation 1970–1997
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EXTREME VALUES METHODOLOGY

If Yt is daily rainfall on day t, assume for large threshold ex-

ceedances,

Pr{Yt > y} ≈ δt

(
1 + ξt

y − µt

ψt

)−1/ξt

+
,

where δt is time unit (= 1
365.25) and µt, ψt, ξt are (time-localized)

parameters of Generalized Extreme Value distribution.

If µ, ψ, ξ are constants, this implies distribution of annual max-

ima is of GEV form

Pr{Ymax ≤ y} = exp


(
1 + ξ

y − µ

ψ

)−1/ξ

+

 .
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An aside: Some thoughts on the issue of “real-time attribution”

An analogy: A 55-year-old man has just died of a heart attack.
It is known that he was a smoker. But he was also overweight,
had high cholesterol, and a family history of heart disease. What
proportion of his risk of heart attack may be “attributed” to
smoking?

The traditional answer in biostatistics/epidemiology is propor-
tional hazard analysis (D.R. Cox 1972): represent the hazard
or risk function (i.e. infinitesimal probability of dying, condi-
tional on not having died previously) as a function of each of
the known risk factors. The function is developed by regression
analysis over many individuals, but can be applied to a specific
individual by inserting the individual values of smoking indicator,
weight, cholesterol, etc. for that individual.

In this way it is possible to make sense of statements like “35%
of this individual’s risk of heart attack was due to smoking”

7



A possible analogy for risk of extreme events:

Suppose (for modern precipitation events) µ = 5 cm., ψ = 1

cm., ξ = 0.1. We observe a rainfall level y = 7. We calculate

the risk function as proportional to
(
1 + ξy−µψ

)−1/ξ
= 0.162.

However, from analysis of historical data we determine that in

pre-industrial times µ was 3.5 (other parameters same). For that

scenario, the risk of this extreme event was 0.050.

The ratio of risks is about 3.2. So we can say the risk of this

particular event is about 3 times larger today than it was pre-

global warming.
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An extension

Suppose ENSO is also a risk factor. Specifically, suppose we

perform a regression analysis of µ on ENSO and determine a

regression coefficient of 0.8.

µ = µ0 + 0.8× ENSO

where µ0 is the base level (5 or 3.5)

Compare ENSO of +1 with ENSO of –1.

ENSO=+1 ENSO =–1
Pre-industrial .085 .028
Present day .322 .092

By analyzing log risks, we can argue that about 48% of the

increased risk is due to greenhouse gases, the rest due to ENSO.
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The actual analysis...

• Represent each of µ, logψ and ξ as regression functions of

seasonality and long-term trend (but not yet ENSO etc.)

• Perform this analysis for each station.

• Calculate an estimate of 25-year return values for each sta-

tion, for 1970 and also for 1999. The look at ratios of return

values.

• Spatially smooth across stations by kriging. This is carried

out in 19 overlapping regions (overlapping to avoid boundary

effects when we draw a map)
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Continental USA divided into 19 regions
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Map of 25-year return values (cm.) for the years 1970–1999
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Root mean square prediction errors for map of 25-year return

values for 1970–1999
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Ratios of return values in 1999 to those in 1970
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Root mean square prediction errors for map of ratios of 25-year

return values in 1999 to those in 1970
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Extreme value model with trend: ratio of 25-year return value in

1999 to 25-year return value in 1970, based on CCSM data
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RMSPE for map in previous slide
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Region ∆1 SE1 ∆2 SE2 ∆3 SE3 ∆4 SE4
A –0.01 0.03 0.05∗∗ 0.05 0.16∗∗ 0.07 0.24∗∗ 0.10
B 0.07∗∗ 0.03 0.08∗∗∗ 0.04 0.14∗∗∗ 0.04 0.12∗∗∗ 0.06
C 0.11∗∗∗ 0.01 0.10 0.03 0.02 0.05 –0.14 0.11
D 0.05∗∗∗ 0.01 0.06 0.05 –0.06 0.04 –0.15 0.10
E 0.13∗∗∗ 0.02 0.14∗ 0.05 –0.07∗ 0.03 –0.09 0.08
F 0.00 0.02 0.05∗ 0.04 –0.07∗ 0.04 –0.03 0.05
G –0.01 0.02 0.01 0.03 0.03 0.03 0.08∗ 0.04
H 0.08∗∗∗ 0.01 0.10∗∗∗ 0.03 0.11∗∗∗ 0.03 0.08 0.06
I 0.07∗∗∗ 0.01 0.12∗∗∗ 0.03 –0.02 0.04 –0.05 0.07
J 0.05∗∗∗ 0.01 0.08∗∗ 0.03 –0.15∗∗∗ 0.03 –0.16∗∗ 0.06
K 0.08∗∗∗ 0.01 0.09∗∗ 0.03 –0.08∗∗∗ 0.02 –0.11∗ 0.05
L 0.07∗∗∗ 0.02 0.07∗ 0.04 –0.04 0.04 –0.03 0.06
M 0.07∗∗∗ 0.02 0.10∗∗ 0.03 0.01 0.03 0.00 0.08
N 0.02 0.03 0.01 0.03 0.06∗∗ 0.02 0.05 0.06
O 0.01 0.02 0.02 0.03 –0.03 0.04 –0.06 0.07
P 0.07∗∗∗ 0.01 0.11∗∗∗ 0.03 –0.01 0.04 –0.07 0.07
Q 0.07∗∗∗ 0.01 0.11∗∗∗ 0.03 –0.04 0.04 –0.03 0.07
R 0.15∗∗∗ 0.02 0.13∗∗∗ 0.03 –0.17∗∗∗ 0.03 –0.06 0.08
S 0.14∗∗∗ 0.02 0.12∗ 0.06 0.00 0.04 0.02 0.05

∆1: Mean change in log 25-year return value (1970 to 1999) by kriging
SE1: Corresponding standard error (or RMSPE)
∆2, SE2: same but using geometrically weighted average (GWA)
∆3, SE3: Results for CCSM using kriging
∆4, SE4: Results for CCSM using GWA
Stars indicate significance at 5%∗, 1%∗∗, 0.1%∗∗∗.
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Trends across 19 regions (measured as change in log RV25) for 8 differ-
ent seasonal models and one non-seasonal model with simple linear trends.
Regional averaged trends by geometric weighted average approach.
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Return value map for CCSM data (cm.): 1970–1999
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Return value map for CCSM data (cm.): 2070–2099
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Estimated ratios of 25-year return values for 2070–2099 to those

of 1970–1999, based on CCSM data, A2 scenario
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CONCLUSIONS

1. Focus on N-year return values — strong historical tradition
for this measure of extremes (we took N = 25 here)

2. Seasonal variation of extreme value parameters is a critical
feature of this analysis

3. Overall significant increase over 1970–1999 except for parts
of western states — average increase across continental US
is 7%

4. Kriging better than weighting of “NCDC approach”

5. But... based on CCSM data there is a completely different
spatial pattern and no overall increase

6. Projections to 2070–2099 show further strong increases but
note caveat based on point 5

7. Decadal variations since 1950s show strongest increases dur-
ing 1990s.
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