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I. Motivating Example: Interpolation of Air Pollution Data

The problems of spatial interpolation and network design are

introduced through an example using the EPA fine particulates

(PM2.5) network. The analysis is taken from Smith, Kolenikov

and Cox (2003).
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Current EPA standard for PM2.5:

• Twenty-four hour average PM2.5 not to exceed 65 µg/m3

for a three-year average of annual 98th percentiles at any

population-oriented monitoring site in a monitoring area.

• Three-year annual average PM2.5 not to exceed 15 µg/m3

concentrations from a single community-oriented monitor-

ing site or the spatial average of eligible community-oriented

monitoring sites in a monitoring area.
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The data (compiled from a larger data set) consisted of weekly

average PM2.5 levels during 1999 at 74 EPA stations in NC, SC,

GA. We fitted a model of the form

yxt = f(x) + g(t) + ηxt

in which yxt is the square root of PM2.5 in location x in week t,

f(x) and g(t) are fixed functions of time and space respectively

(both represented as linear regression functions), and ηxt is a

random error (independent in time but dependent in space).

The model parameters were estimated by maximum likelihood,

and kriging (described later) was used to interpolate ηxt at loca-

tions x off the network. Based on that, a map was constructed

of the interpolated annual average for each point in the study

region, together with an estimated root mean square prediction

error.
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Fig. 1. (a) Interpolated surface for annual mean PM2.5 in

µg/m3, and monitor locations (circles). (b) Root mean squared

prediction error for the surface in (a). Adapted from Smith,

Kolenikov and Cox (2003).
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Questions for this talk:

There are many questions along the lines of what is the right
model for this data set, but in this talk, I focus on two more
theoretical aspects:

1. Computation of RMSPEs. The calculations above used the
conventional formulae for kriging prediction errors that you
can find in any text on geostatistics, but these ignore model
estimation errors. Is this appropriate, and how could we
improve on this approach?

2. Design of the network. The EPA is constantly adding or
deleting stations as it attempts to provide better coverage
or to reduce costs. How could it do this most efficiently?

The two questions are linked because accurate determination of
kriging errors is critical in assessing the design.
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II. Universal Kriging, REML Estimation and Bayesian

Spatial Statistics

We assume data follow a Gaussian random field with mean and

covariance functions represented as functions of finite-dimensional

parameters.

Define the prediction problem as(
Y
Y0

)
∼ N

[(
Xβ

xT0β

)
,

(
V wT

w v0

)]
(1)

where Y is an n-dimensional vector of observations, Y0 is some

unobserved quantity we want to predict, X and x0 are known

regressors, and β is a p-dimensional vector of unknown regression

coefficients. For the moment, we assume V, w and v0 are known.
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The most widely used spatial models (stationary and isotropic)
assume the covariance between components Yi and Yj is a func-
tion of the (scalar) distance between them, Cθ(dij). An example
is the exponential power model

Cθ(d) = σ2 exp

{
−
(
d

ρ

)κ}
,

where θ = (κ, σ2, ρ) with 0 < κ ≤ 2, σ2 > 0, ρ > 0.

The PM2.5 data analysis actually assumed

V ar{Yi − Yj} = θ1 + θ2d
θ3
ij (θ1 > 0, θ2 > 0,0 < θ3 ≤ 2).

This is of intrinsically stationary form and Cθ(d) does not exist,
though the model can easily be transformed into one for which
the methods of this talk apply.

The key assumption is: the covariances are unknown in practice,
but expressed as functions of finitely many parameters θ.
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Universal Kriging

Assume model (1) where the covariances V, w, v0 are known but

β is unknown. The classical formulation of universal kriging asks

for a predictor Ŷ0 = λTY that minimizes σ2
0 = E

{
(Y0 − Ŷ0)

2
}

subject to the unbiasedness condition E
{
Y0 − Ŷ0

}
= 0.

The classical solution:

λ = wTV −1 + (x0 −XTV −1w)T (XTV −1X)−1XTV −1,

σ2
0 = v0 − wTV −1w+ (x0 −XTV −1w)T (XTV −1X)−1(x0 −XTV −1w).
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Maximum Likelihood and REML Estimation

Model of form

Y ∼ N [Xβ, V (θ)].

A classical method of estimation is the method of maximum
likelihood (MLE), in which the parameters β and θ are chosen
to maximize the joint density of Y given β and θ (the likelihood
function).

In practice, once θ is specified, the MLE β̂ can be calculated
by elementary algebra (the generalized least squares estimator).
Therefore, in practice MLE is computed by maximizing the pro-
file log likelihood

−
1

2
log |V (θ)| −

G2(θ)

2

where G2 = Y TWY , W = V −1 − V −1XT (XV −1XT )−1XV −1, is
the generalized residual sum of squares.
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An alternative to MLE is to use the restricted likelihood function.

As defined originally by Patterson and Thompson (1971), if X is

n × p, we define a (n − p)-dimensional vector of contrasts ATY ,

where A is n× (n− p) has rank n− p and satisfies ATX = 0. The

restricted likelihood is the density of ATY ∼ N [0, ATV A].

In practice this is equivalent to maximizing the function

`n(θ) = −
1

2
log |V (θ)| −

1

2
log |XTV (θ)−1X| −

G2(θ)

2
.

The resulting estimator is called REML. It is usually considered

superior to MLE, though the two estimators are equivalent to

first-order asymptotics.
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Bayesian Reformulation

Suppose (β, θ) have a joint prior density of the form π(θ)dβdθ

(constant in β).

The Bayesian predictive density of Y0 given Y is

p(Y0 | Y ) =

∫ ∫
f(Y, Y0 | β, θ)π(θ)dβdθ∫ ∫
f(Y | β, θ)π(θ)dβdθ

.

After some algebraic manipulation, this may be rewritten

p(Y0 | Y ) =

∫
e`n(θ)ψ(Y0 | Y, θ)π(θ)dθ∫

e`n(θ)π(θ)dθ
(2)

where

ψ(Y0 | Y, θ) =
1√

2πσ0(θ)
exp

−1

2

(
Y0 − λ(θ)TY

σ0(θ)

)2
 .
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Two forms of predictive density

The REML estimator θ̂ is the value of θ that maximizes `n(θ).

The conventional kriging formula uses the predictive density

ψ̂(Y0 | Y ) = ψ(Y0 | Y, θ̂)
also known as estimative density (Aitchison) or plug-in rule.

In contrast to this, we write (2) as ψ̃(Y0 | Y ), which Aitchison
called the predictive density.

In subsequent discussion, we shall mostly use the predictive dis-

tribution function, i.e. redefine ψ(z|Y, θ) = Φ
(
z−λ(θ)TY
σ0(θ)

)
where

Φ(·) is the standard normal distribution function.

The first central question of this talk is then: Is ψ̃ superior to
ψ̂? (and if so, how is this influenced by the choice of prior?)
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Designing Monitor Networks

Large literature, many different approaches.

Recent work has focussed on contrast between two types of
criterion:

• Estimative — e.g. choose the design to maximize the deter-
minant of the Fisher information matrix of θ

• Predictive — focus on a specific Y0, find a design to minimize
σ0. Note that this ignores the estimation of θ, in effect
assuming θ known.

Zhu and Stein (2004) discussed the idea of using Bayesian predic-
tion intervals as a basis for network design, arguing that Bayesian
intervals take account of the uncertainty of θ and therefore
should be superior to the predictive approach. However, they
rejected this as too computationally intensive, and instead pro-
posed a two-stage criterion (more later).
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Direct Bayesian Approach

• For any data set, use MCMC to construct the Bayesian pre-

dictive distribution

• For any given design, run the Bayesian analysis on simulated

data sets to determine the expected length of Bayesian pre-

diction intervals

• Use an optimization algorithm (e.g. simulated annealing) to

find the optimal design

Direct implementation of this approach requires a lot of Monte

Carlo simulation. The second major theme of this talk is to pro-

pose an approximate approach that reduces the first two steps to

a simple algebraic formula for the expected length of a Bayesian

prediction interval.
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III Existing Results on “Kriging With Estimated
Parameters”

Suppose we apply universal kriging to predict Y0 by λTY , but
estimate λ̂ = λ(θ̂) where θ̂ is the MLE or REMLE.

Harville and Jeske (1992) and Zimmerman and Cressie (1992)
proposed the following correction to the mean squared prediction
error:

V1 = E
{
(Y0 − λ̂TY )2

}
≈ σ2

0 + tr

{
I−1

(
∂λ

∂θ

)T
V

(
∂λ

∂θ

)}
where I is the observed information matrix for θ. This formula
corrects for the error in specifying the kriging weights λ.

The derivation of this formula assumed that θ̂−θ was independent
of Y0 − λTY . Abt (1999) derived an improved formula without
this assumption, but noted that in practice, the improvement
made little difference to the result.
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However, in calculating a prediction interval for Y0, it is also

necessary to consider the effect of σ2
0 being unknown. Stein

(1999) and Zhu and Stein (2004) defined

V2 =

(
∂σ2

0

∂θ

)T
I−1

(
∂σ2

0

∂θ

)

as a measure of the uncertainty in σ2
0, and they suggested that

some linear combination of V1 and V2
σ2
0

would best measure the

overall uncertainty. In particular, they suggested

V3 = V1 +
1

2
·
V2

σ2
0

as a suitable combined criterion. However, it’s not clear exactly

why this particular linear combination is appropriate.
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Bayesian Approaches Based on Reference Priors

For a model with parameters (β, σ2, ρ) where σ2 is the marginal
variance and ρ is the range parameter, Berger, De Oliveira and
Sansó (2001) derived the “reference prior” in the form

π(β, σ2, ρ) ∝
1

σ2

tr(W∂V

∂ρ
W
∂V

∂ρ

)
−

1

n− p

{
tr

(
W
∂V

∂ρ

)}2
1/2 . (3)

They compare this with alternative definitions of reference prior
and Jeffreys prior. However, they don’t point out that (3) is
actually the same as the Jeffreys prior derived from the restricted
likelihood.

Paulo (2003) extended their result to a general multi-parameter
spatial likelihood.

Both papers used simulation to demonstrate that the method
would produce good frequentist coverage probability.
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IV The Approach Based on Second-Order Asymptotics

Long history —

• Frequentist Asymptotics for Prediction — Cox (1975), Barndorff-
Nielsen and Cox (1996), Hall, Peng and Tajvidi (1999),...

• Predictive Likelihood — Lauritzen (1974), Hinkley (1979),
Butler (1986), Davison (1986), Bjørnstad (1990),....

• Decision Theoretic Approaches — Aitchison (1975), Harris
(1989), Komaki (1996), Smith (1999)

• Matching Bayesian and Frequentist Inference — Welch and
Peers (1963),......., Datta and Mukerjee (2004 Springer-Verlag
Monograph). See in particular, Datta, Mukerjee, M. Ghosh
and Sweeting (2000, Annals of Statistics) for a “matching
prior” approach to predictive inference.

With scattered exceptions, all of this literature applies only to
the case of independent observations.
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Notation

Define

ψ̃(z | Y ) =

∫
e`n(θ)+Q(θ)ψ(z | Y, θ)dθ∫

e`n(θ)+Q(θ)dθ
(4)

where e`n(θ) is the restricted likelihood of θ, Q(θ) = logπ(θ) and

ψ(z | Y, θ) = Φ
(
z−λ(θ)TY
σ0(θ)

)
. Also let ψ̃−1 be inverse function, i.e.

ψ̃−1(P | Y ) is the value of z for which ψ̃(z | Y ) = P .

For P ∈ (0,1) define

zP (Y | θ) = λ(θ)TY + σ0(θ)Φ
−1(P ),

ẑP (Y ) = λ̂TY + σ̂0Φ
−1(P ),

z̃P (Y ) = ψ̃−1(P | Y ).
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For an estimator z∗P (could be ẑP or z̃P ) we would like to calculate

E {ψ(z∗P (Y ) | Y, θ)− ψ(zP (Y | θ) | Y, θ)} (5)

and

E {z∗P (Y )− zP (Y | θ)} (6)

(5) is called the coverage probability bias (CPB). (6) leads to

the expected length of a prediction interval (our proposed design

criterion) because for a 100(P2 − P1)% interval,

E
{
z∗P2

(Y )− z∗P1
(Y )

}
= E

{
zP2

− zP1

}
+E

{
z∗P2

− zP2

}
− E

{
z∗P1

− zP1

}
= σ0{Φ−1(P2)−Φ−1(P1)}+E

{
z∗P2

− zP2

}
− E

{
z∗P1

− zP1

}
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Define Ui =
∂`n(θ)
∂θi

, Uij = ∂2`n(θ)
∂θi∂θj

, Uijk = ∂3`n(θ)
∂θi∂θj∂θk

.

The matrix with entries Uij has an inverse with entries U ij.

Other quantities Q(θ) = logπ(θ), λ(θ), σ0(θ). Suffixes denote

partial differentiation, e.g. Qi =
∂Q
∂θi

, σ0ij = ∂2σ0
∂θi∂θj

. Let

Ui = n1/2Zi,

Uij = n1/2Zij + nκij,

Uijk = n1/2Zijk + nκijk,

and define also κi,j = n−1E
{
UiUj

}
= −κij, κij,k = n−1E

{
UijUk

}
.

Suppose inverse of {κi,j} matrix has entries {κi,j}. We assume

all the Z quantities are Op(1) and all the κ quantities are O(1)

as n→∞ and we employ the summation convention.
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Step 1: Taylor expansion of ψ̂

ψ̂ − ψ = n−1/2κi,jZiψj + n−1(κi,jκk,`ZikZjψ`

+
1

2
κi,rκj,sκk,tκijkZrZsψt

+
1

2
κi,jκk,`ZiZkψj`) +Op(n

−3/2).

Follows well-known references on higher-order asymptotics of

MLE, e.g. McCullagh (1987), Barndorff-Nielsen and Cox (1994).
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Step 2: From ψ̂ to ψ̃

Using a Laplace approximation to the Bayesian integral, Lindley

(1980) showed that

ψ̃ − ψ̂ =
1

2
Ûijkψ̂`Û

ijÛk` −
1

2
(ψ̂ij + 2ψ̂iQ̂j)Û

ij +Op(n
−2).

where the hats indicate that Uijk, ψ`, etc., are evaluated at the

REMLE θ = θ̂.

Hence

ψ̃ − ψ̂ =
1

2n

{
κijkκ

i,jκk,`ψ` + (ψij + 2ψiQj)κ
i,j
}

+Op(n
−3/2).

Together, these approximations give an expansions of either ψ̂−ψ
or ψ̃ − ψ in powers of n−1/2.
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Step 3: From a distribution function to its inverse (Cox
1975, Smith 1999)

Suppose ψ∗(z) (could be ψ̂ or ψ̃) is an estimator of the conditional
prediction distribution function ψ(z) = ψ(z | Y, θ) that has an
expansion

ψ∗(z) = ψ(z) + n−1/2R+ n−1S + o(n−1).

Define predictive quantile z∗P by ψ∗(z∗P ) = P . Then

z∗P − zP = −n−1/2R

ψ′
− n−1

(
RR′

ψ′2
−
R2

ψ′3
−
S

ψ′

)
+ op(n

−1), (7)

ψ(z∗P )− ψ(zP ) = −n−1/2R− n−1
(
RR′

ψ′
− S

)
+ op(n

−1). (8)

Here primes denote differentiation with respect to z. By taking
expectations in (7) and (8) respectively, we derive expressions
for the expected length of a prediction interval and the coverage
probability bias (CPB).
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Step 4: Evaluate the expectations

Side comment: Up to this point, the calculations are the same as

in the independent case. In particular, by taking expectations in

(8), it should be possible to re-derive the results in Datta, Muk-

erjee, Ghosh and Sweeting (2000) (though they used a different

method)

However, for dependent observations, these expectations are

much harder to evaluate.
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As an example of the terms to be evaluated, consider

E

{
RR′

ψ′

}
= E

{
κi,jZiψjκ

k,`Zkψ
′
`

ψ′

}
= κi,jκk,`φ(Φ−1(P ))×

E

ZiZk
λ

T
j Y

σ0
+
σ0j

σ0
Φ−1(P )


{
σ0`

σ0
−
(
λT` Y

σ0
+
σ0`

σ0
Φ−1(P )

)
Φ−1(P )

}

This requires evaluating moments of Y ’s of up to sixth order,

but it is still an explicit calculation!
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If εi, εj, ... are jointly normal random variables with mean 0 and

covariances {σij}, then

E{εiεj} = σij,

E{εiεjεkε`} = σijσk` + σikσj` + σi`σjk,

E{εiεjεkε`εrεs} = σijσk`σrs[15]

where [15] denotes that the same term is repeated and summed

15 times according to all the possible ways of dividing the six

indices into three blocks of size two.

All odd-order moments are 0.
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Results

nE {ψ(ẑP (Y ) | Y, θ)− ψ(zP (Y | θ) | Y, θ)}

∼ φ(Φ−1(P ))Φ−1(P )

[
−

1

2
Φ−1(P )

2
κi,j

σ0iσ0j

σ2
0

+κi,jκk,`
(
κjk,` +

1

2
κjk`

)
σ0i

σ0
+

1

2
κi,j

{
σ0ij

σ0
−
λTi V λj

σ2
0

}

−
1

2
κi,kκj,` ·

1

nσ2
0

(
λTi V

∂W

∂θk
V
∂W

∂θ`
V λj + λTi V

∂W

∂θ`
V
∂W

∂θk
V λj

)]
,

nE {ψ(z̃P (Y ) | Y, θ)− ψ(zP (Y | θ) | Y, θ)}

∼ φ(Φ−1(P ))Φ−1(P )

[
κi,jκk,`

(
κjk,` + κjk`

) σ0i

σ0

−κi,j
(
σ0iσ0j

σ2
0

−
σ0ij

σ0

)
+ κi,j

σ0i

σ0
Qj

−
1

2
κi,kκj,` ·

1

nσ2
0

(
λTi V

∂W

∂θk
V
∂W

∂θ`
V λj + λTi V

∂W

∂θ`
V
∂W

∂θk
V λj

)]
.
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nE {ẑP − zP} ≈ Φ−1(P )
{
κi,jκk,`σ0`

(
κik,j +

1

2
κijk

)
+

1

2
κi,jσ0ij

}

nE {z̃P − zP} ≈ Φ−1(P )
{
κi,jκk,`σ0`(κik,j + κijk)

+κi,j
(
σ0ij −

σ0iσ0j

σ0

)
+ κi,jQjσ0i

+
1

2
Φ−1(P )

2
κi,j

σ0iσ0j

σ0
+

1

2
κi,j

λTi V λj

σ0

}
.
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These results imply the existence of a “matching prior” for which

the second-order CPB is 0. However we can also manipulate the

asymptotic expressions to obtain a direct estimate of zP with the

same property:

z
†
P = ẑP − n−1Φ−1(P )

{
κ̂i,jκ̂k,`σ̂0`

(
κ̂ik,j +

1

2
κ̂ijk

)
+

1

2
κ̂i,j

(
σ̂0ij −

σ̂0iσ̂0j

σ̂0
Φ−1(P )

2
)
−

1

2σ̂0
κ̂i,jλ̂Ti V̂ λ̂j

−
1

2nσ̂0
κ̂i,jκ̂k,`

(
λ̂Tj V̂

∂Ŵ

∂θi
V̂
∂Ŵ

∂θk
V̂ λ̂` + λ̂Tj V̂

∂Ŵ

∂θk
V̂
∂Ŵ

∂θi
V̂ λ̂`

)}
.
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Application to Network Design

Suppose we use an estimator of zP whose second-order CPB is

0 (e.g. either the Bayes estimator with matching prior, or z†P ).

In either case we have

nE
{
z
†
P − zP

}
≈

1

2σ0
Φ−1(P )

{
κi,jλTi V λj + Φ−1(P )

2
κi,jσ0iσ0j

+κi,kκj,`
(
λTi V

∂W

∂θk
V
∂W

∂θ`
V λj + λTi V

∂W

∂θ`
V
∂W

∂θk
V λj

)}
.

The second line is Abt’s refinement of the Harville-Jeske-Zimmerman-

Cressie correction and will be ignored in subsequent discussion.
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Use this to construct a two-sided prediction interval, with tail

probability 1− P in each tail. The approximate expected length

of this prediction interval is

2Φ−1(P )

√
σ2
0 + n−1κi,jλTi V λj + n−1Φ−1(P )

2
κi,jσ0iσ0j.

In the notation of Zhu and Stein (2004), the quantity under the

square root sign is

V4 = V1 +
Φ−1(P )

2

4
·
V2

σ2
0

.

Recall their own criterion was V3 = V1 + 1
2 ·

V2
σ2
0
.
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Two Design Criteria

V3 = V1 +
1

2
·
V2

σ2
0

(Zhu and Stein)

V4 = V1 +
Φ−1(P )

2

4
·
V2

σ2
0

(this talk)

The present formula V4 has the unusual feature that the design

might depend on the desired coverage probability of a prediction

interval.

It is also tied directly to two specific methods of constructing a

prediction interval whose second-order coverage probability bias

is 0, whereas previous approaches have not shown how to con-

struct such an interval.
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Summary

1. The second-order coverage probability bias of the Bayes es-
timator of zP is smaller than that of the plug-in estimator in
the limit as P → 0 or 1, regardless of the prior.

2. For the Bayesian predictive distribution there is a matching
prior, i.e. one for which the second-order CPB of z̃P is 0.

3. However we can also achieve the same second-order proper-
ties directly, using the estimator z†P .

4. For any of these estimators of predictive quantiles, we have
an approximation for the expected length of a prediction in-
terval, and this can be used as a design criterion.

5. In the case of an estimate whose second-order CPB is 0,
we obtain a design criterion very similar to that of Zhu and
Stein, but adapted to a specific construction of a prediction
interval.
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V. Computations and Applications

First we show the results of a small simulation experiment, to
test the coverage probability formula for REML.

A set of 20 “prediction locations” was chosen. These were pre-
dicted based on respectively 20, 35, 50 observation locations.
For each sample size and prediction location, true coverage prob-
ability was estimated by simulation (10,000 replications). Also
computed was the theoretical coverage probability using the for-
mulae in this talk.

Fig. 2 shows the prediction/observation locations and Fig. 3
shows the simulated v. theoretical coverage probabilities.

For each of the three sample sizes, the correlation between sim-
ulated coverage probability and theoretical coverage probability
was at least 94%.
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Fig. 2. Locations for observations (red circles) and predictions

(blue crosses). One far away prediction location is omitted.

39



Theoretical Coverage Probability
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Fig. 3. Simulated v. theoretical coverage probabilities for

sample sizes 20 (blue crosses), 35 (red circles) and 50 (green

crosses). Based on 10000 simulations fitted by REML.
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Example based on the 38 PM2.5 monitors in North Carolina

Assume the objective is to estimate population-weighted daily

average. Daily data from 2000. Assume individual days’ data

are independent replications of the model

Cov(yi, yj) =

{
θ21 if i = j,

θ3θ
2
1e
−dij/θ2 if i 6= j,

with yi, yj the PM2.5 at locations i and j, dij is distance (units of

100 km.), and we estimated θ1 = 6.495, θ2 = 4.019, θ3 = .9423.

Treat this as the true model, but assume θ1, θ2, θ3 would have to

be re-estimated on any given day.
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Population-weighted averages were calculated using data from

the 2000 U.S. census for the 809 zip code tabulation areas

(ZCTA) in North Carolina. Select 38 ZCTA out of 809 to place

the monitoring station to give most accurate prediction of the

total population PM2.5 exposure defined as

y0 =
∑
i

piyi,

where pi is the population at the i’th ZCTA, and yi is the

PM2.5 level there. V1 and V4 with two-sided tail probabilities

P = 0.1,0.01,0.001 are used as design criteria, and a simulated

annealing algorithm is used to find the designs given in Figure 4.
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Point Predictor
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 Optimal Designs Under Four Criteria

Fig. 4. Four designs selected using criteria of this talk (calcu-

lations due to Zhengyuan Zhu)
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All four designs tend to place monitors in regions of high popu-

lation density (as does the current EPA network, Fig. 1) but it

is noticeable that the criterion V4, especially for smaller P , tends

to favor a network with clusters of nearby monitors, reflecting

the role such clusters play in ensuring good estimation of model

parameters.
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Finally we show the actual EPA map of nonattainment areas.
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Attainment (or Unclassifiable) Areas (2916 counties)
Nonattainment Areas (191 entire counties)
Nonattainment Areas (34 partial counties)

Attainment and Nonattainment Areas in the U.S.
PM2.5 Standards

Fig. 5. Current nonattainment areas (Source: EPA website,

12/18/2004).
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