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ABSTRACT
FRANCISCO CHAMÚ MORALES: Estimation of Max-Stable Processes Using Monte

Carlo Methods with Applications to Financial Risk Assessment
(Under the direction of Richard L. Smith)

Multivariate extreme value theory is concerned with the joint distribution of extremes

of multiple random variables. The theory is used in a number of areas such as finance and

environmental science. For example, empirical observations suggest that extreme events in

financial time series occur in clusters and are dependent across different assets.

It is possible to characterize the extremal behavior of a multivariate stationary time

series in terms of a limiting max-stable process. Our approach for the statistical modeling

of max-stable processes is based on Moving Maxima (MM) processes, and a multivariate

extension known as Multivariate Maxima of Moving Maxima (M4) processes.

This work is concerned with developing Monte Carlo methods for filtering, prediction,

and parameter estimation of M4 processes. The model is a state-space representation,

where the state is an unobserved M4 process, and the observed process is a nonlinear

transformation of the state with additive Gaussian noise.

Our contributions can be divided in three areas. First, we show that two special cases of

moving maxima processes, which we refer to as MM(1) and MM(2) processes, are second-

and third-order Markov, respectively. Second, we propose sequential Monte Carlo methods

to approximate the filtering distributions of M4 processes. Third, we provide Markov chain

Monte Carlo methods for obtaining the posterior distribution of the unknown parameters

in the model.

Accurate financial risk assessment is of major interest for financial institutions and

regulators. For instance, the Basel committee recommends reporting Value at Risk for

a 10-day holding period. We propose simulation-based prediction of M4 processes for

estimating market risk over a multiple-day period, and apply this method to four Nasdaq

sector indices.
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CHAPTER 1

Introduction

Intuitively, the objective of extreme value theory is to study probabilistic and statistical

properties of very large or very small observations from random phenomenona. Multivariate

extreme value theory is concerned with the joint distribution of extremes of multiple random

variables. The theory is used in a number of areas such as finance and environmental

science. For example, empirical observations suggest that extreme events in financial time

series occur in clusters and are dependent across different assets.

We are interested in the extremal properties of multivariate stationary processes. Smith

and Weissman (1996) showed that it is possible to characterize the extremal behavior of

a multivariate stationary time series in terms of a limiting max-stable process. A key

result of Smith and Weissman (1996) is that a large class of max-stable processes may be

approximated by a particular class of max-stable processes known as Multivariate Maxima

of Moving Maxima processes (or M4 processes for short). However, there has been little

work on the statistical modeling of M4 processes. In this work we develop Monte Carlo

methods for filtering, prediction, and parameter estimation of M4 processes.

1.1 Motivation

Some of the largest financial institutions have suffered losses in the hundreds of millions

of dollars in the financial markets, mainly because of the lack of a good financial risk man-

agement system and the misuse of derivative products. This has increased the awareness

of investors and regulators of the financial system to obtain accurate quantitative measures

of financial risks. In particular, there is great concern about measuring market risk, which

arises from fluctuations in the price of assets.



Value at Risk (VaR) has become the most widely accepted tool to measure market risk,

and it is now a standard in the industry. Intuitively, VaR is the maximum loss that the

value of an asset (or a portfolio of assets) can suffer with a given probability and during

a specified time-horizon. In statistical terms the VaR can be thought of as a quantile of

the returns distribution. An alternative measure of market risk with better theoretical

properties is the Expected Shortfall (ES), which is the expected value of the loss given

that the loss has exceeded the VaR. Both VaR and ES are properties of the tails of the

distribution of asset returns, and a large literature in financial econometrics, and more

recently in extreme value theory, has been devoted to the estimation of these quantities.

Empirical evidence suggests that financial time series have time-varying volatility and

heavy tails. Much of the recent developments in financial econometrics have been models for

time-varying volatility, such as ARCH and stochastic volatility models. However, volatility

models are not as heavy-tailed as financial data and these models are fitted to the center

of the distribution, so it is not clear that they also fit in the tails. Hence, the estimation of

the tails of the distribution of asset returns is one of the main problems of current interest

in financial econometrics. The need for accurate measures of financial market risk, such as

VaR, has generated a great deal of attention to this problem.

Consider the standardized residuals from GARCH models fitted to four Nasdaq sector

indices: Bank (BK), Industrial (ID), Insurance (IS), and Transportation (TR). Figure 1.1

shows exceedances of the standardized residuals above a large threshold, which illustrate

two typical features of extremes of financial data. First, assuming that the standardized

residuals are iid we would expect the exceedances to be scattered uniformly over the sample.

However, there are periods where the exceedances in each individual series seem to occur

in clusters, indicating that the extremes are dependent over time. Second, if there is an

exceedance in one of the series on any given day it is likely that there is an exceedance in

at least one of the other series on the same day, suggesting that there is joint dependence

across the extremes of different assets. Hence there is a need for models that take into

account temporal dependence as well as joint dependence in the extremes.

On the other hand, most multivariate extreme value models in the literature are limited

to two or three dimensions. Thus, these models are not useful for typical portfolios, which

2



2

3

4

5

6

Time

B
K

2

3

4

5

6

7

Time

ID

2

3

4

5

6

7

Time

IS

2

4

6

8

10

12

Time

T
R

1985 1990 1995 2000 2005

Exceedances of Std. Residuals (Losses)

Figure 1.1: Threshold Exceedances of GARCH Standardized Residuals.

may include a large number of assets. A challenging problem is the estimation of measures

of risk for the cumulative loss of a portfolio over a multiple-day period. For instance, the

New Basel Capital Accord specifies that financial institutions should report VaR over a

10-day period1.

Contribution

Following the work of Smith and Weissman (1996), Zhang (2002), and Smith (2003) we

propose to model the joint extremal behavior of financial time series under the framework

of extreme value theory for multivariate stationary processes. In particular, our approach

for the statistical modeling of max-stable processes is based on Moving Maxima (MM)

processes, and a multivariate extension known as Multivariate Maxima of Moving Maxima

1see http://www.bis.org/publ/bcbsca.htm
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(M4) processes. The class of M4 processes allows to take into account clustering of extreme

events and extremal dependence across assets that are empirically observed in the data.

One of the main problems in estimating the parameters of M4 processes is that the

joint densities of M4 processes contain singularities because of the presence of deterministic

signature patterns, so it is not possible to apply the method of maximum likelihood for

parameter estimation. A solution to this problem is to write the M4 process as a state-space

model, where the state is an unobserved M4 process, and the observed process is a nonlinear

transformation of the state with small additive Gaussian noise to avoid degeneracies created

by signature patterns. Our main contributions are as follows.

� In a state-space model it is usually assumed that the state is Markov. The theoretical

results of this work show that two special cases of moving maxima processes, known

as MM(1) and MM(2) processes, are second- and third-order Markov, respectively.

� Traditional estimation problems under a state-space framework are prediction, fil-

tering, and smoothing. In this work we develop sequential Monte Carlo methods

(particle filters) for prediction and filtering of M4 processes.

� Parameter estimation of M4 processes is one of the main challenges in applying these

models to real data. In this work we develop Markov chain Monte Carlo algorithms

for parameter estimation of moving maxima processes, which can be extended to M4

processes.

1.2 Outline

The rest of the document is organized as follows.

Chapter 2 provides the basic background for univariate and multivariate extreme value

theory for iid observations, as well as the corresponding theory for stationary processes.

Chapter 3 introduces the class of moving maxima processes and its extensions, which

include M3 and M4 processes. We review the literature on the estimation of M4 pro-

cesses, and provide detailed algorithms for parameter estimation of M4 processes based on

clustering methods, as originally proposed in Smith (2003).
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Chapter 4 presents our theoretical results. We consider probabilistic properties of two

special cases of moving maxima processes, which we refer to as MM(1) and MM(2) pro-

cesses. Our main results show that MM(1) processes are second-order Markov, and MM(2)

processes are third-order Markov.

Chapter 5 introduces the state-space approach for modeling time series, and provides

the background for the class of simulation-based filters known as particle filters.

Chapter 6 is concerned with developing particle filtering methods for max-stable pro-

cesses based on a state-space representation of M4 processes, assuming that the parameters

are known. We start by developing specialized particle filtering methods for MM(1) pro-

cesses based on the results from Chapter 4. We then propose particle filtering methods for

general MM processes. We extend these methods to M3 processes, and finally we present

the extensions to M4 processes.

Chapter 7 provides the background for Markov chain Monte Carlo (MCMC) methods,

and develops detailed MCMC methods for the estimation of moving maxima processes.

The extension of these methods for M4 processes is outlined.

Finally, Chapter 8 presents an overview of financial econometrics and financial risks.

We discuss volatility models, and the definition of two measures of market risk: VaR and

ES. We review other approaches that have been proposed for the estimation of VaR and

ES. We also present our proposed solution to obtain one-step and multiple-step predictive

distributions of M4 processes based on a simulation method. In the last section we apply

our methods to the estimation of VaR and ES of Nasdaq sector indices over a multiple-day

period.
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CHAPTER 2

Extreme Value Theory

In this Chapter we review the basic background for univariate and multivariate extreme

value theory for iid random variables, as well as the corresponding theory for stationary

processes.

There is a rich literature on extreme value theory that goes back to the 1920’s. Recent

introductory books on the subject are Coles (2001), which emphasizes statistical modeling,

and Finkenstädt and Rootzén (2003), which is a collection of accessible contributions with

many applications of extreme value analysis. Embrechts, Klüppelberg and Mikosch (1997)

is a comprehensive reference for the theory and its applications to insurance and finance.

Beirlant, Goegebeur, Segers and Teugels (2004) provides a state-of-the-art review of the

subject, combining theory and applications. Leadbetter, Lindgren and Rootzén (1983) is

mostly concerned with extremes of stationary processes. For the theory of multivariate

extremes we refer to Resnick (1987), Galambos (1987), and Kotz and Nadarajah (2000).

2.1 Univariate Extremes

This section summarizes the fundamental results in classical extreme value theory. We

follow closely Embrechts et al. (1997) and Smith (2003).

2.1.1 Limit Laws for Maxima

Let X1, . . . , Xn be iid random variables with common distribution function F , and let

Mn = max {X1, . . . , Xn}. Classical extreme value theory is concerned with the possible

limit laws for Mn when properly normalized and centered. The main result is the Fisher-

Tippett Theorem, also known as the Three Types Theorem.



Theorem 2.1.1 (Fisher-Tippett). If there exist normalizing constants an > 0, bn ∈ R,

and some non-degenerate distribution function H such that for x ∈ R,

lim
n→∞

P
{
a−1
n (Mn − bn) ≤ x

}
= lim

n→∞
Fn(anx+ bn) = H(x) (2.1)

then H belongs to the type of one of the following three distribution functions:

Gumbel: Λ(x) = exp
{
−e−x

}
, x ∈ R (2.2)

Fréchet: Φα(x) =


0, x ≤ 0,

exp {−x−α} , x > 0,
α > 0 (2.3)

Weibull: Ψα(x) =


exp {− |x|α} , x ≤ 0,

1, x > 0,
α > 0 (2.4)

We refer to Leadbetter et al. (1983), and Resnick (1987) for a proof of Theorem 2.1.1.

The Gumbel, Fréchet, and Weibull distributions are also known as the Extreme Value

Distributions. It is possible to combine the extreme value distributions into a single distribu-

tion, known as the Generalized Extreme Value (GEV) distribution. The GEV distribution

with parameters ξ ∈ R, ψ > 0, µ ∈ R, is defined by

Hξ,ψ,µ(x) = exp

{
−
(

1 + ξ
x− µ
ψ

)−1/ξ

+

}
, (2.5)

where y+ = max(y, 0).

The GEV distribution with ξ > 0 corresponds to the Fréchet distribution with α = 1/ξ;

the limiting case ξ → 0 corresponds to the Gumbel distribution; and the case ξ < 0

corresponds to the Weibull distribution with α = −1/ξ. The parameters µ and ψ are

location and scale parameters, respectively. The shape parameter ξ determines the tail

behavior of the GEV distribution. An intuitive interpretation is that ξ > 0 corresponds to

a long-tailed distribution; the limit ξ → 0 to a distribution with exponential-type tail; and

ξ < 0 to a short-tailed distribution with finite upper endpoint.

A non-degenerate distribution function F is said to be max-stable if for each n = 2, 3, . . .
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there are constants an > 0 and bn ∈ R such that

Fn(anx+ bn) = F (x). (2.6)

The following result identifies the extreme value distributions with the class of max-stable

distributions. This result is stated as Theorem 3.2.2 in Embrechts et al. (1997), and as

Theorem 1.3.1(ii) in Leadbetter et al. (1983).

Theorem 2.1.2 (Limit Property of Max-Stable Laws). The class of max-stable dis-

tributions coincides with the class of all possible (non-degenerate) limit laws for (properly

normalized) maxima of iid random variables.

A distribution function F belongs to the maximum domain of attraction of the extreme

value distribution H, denoted F ∈ MDA(H), if there exist constants an > 0, bn ∈ R such

that for x ∈ R,

lim
n→∞

P
{
a−1
n (Mn − bn) ≤ x

}
= lim

n→∞
Fn(anx+ bn) = H(x). (2.7)

The theory of maximum domains of attraction is concerned with sufficient and necessary

conditions for a distribution function F to satisfy (2.7), and characterizations of the nor-

malizing constants an and bn. For a comprehensive treatment of this subject we refer to

Leadbetter et al. (1983), Resnick (1987), and Embrechts et al. (1997).

2.1.2 Limit Laws for Exceedances Over Thresholds

An alternative approach to study probabilistic properties of extremes of random phe-

nomena is to consider exceedances over high thresholds. In particular this approach offers

many advantages from a statistical point of view.

The excess distribution function over a threshold u > 0 is

Fu(x) = P {X − u ≤ x | X > u} =
F (x+ u)− F (u)

1− F (u)
, (2.8)

where F is a distribution function with finite endpoint xF = sup {x : F (x) < 1}.
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The Generalized Pareto Distribution (GPD) with parameters ξ ∈ R, β > 0 is defined

by

Gξ,β(x) = 1−
(

1 + ξ
x

β

)−1/ξ

+

. (2.9)

The shape parameter ξ has the same interpretation as in the GEV distribution. The case

ξ > 0 corresponds to a long-tailed distribution; the case ξ < 0 to a short-tailed distribution

with finite upper endpoint; and the case ξ = 0 is interpreted as the limit when ξ → 0,

which is an exponential distribution G0,β(x) = 1− exp {−x/β}.

The GPD appears as the limit distribution of scaled excesses over high thresholds, as

shown in the following theorem, which basically states that Fu(x)→ Gξ,β(u)(x) for a large

threshold u. (see Theorem 3.4.5 in Embrechts et al. (1997) and remarks that follow it).

Theorem 2.1.3. Let X be a random variable with distribution function F ∈ MDA(Hξ,1,0),

ξ ∈ R. There exists a positive, measurable function β(u) such that for 1 + ξx > 0,

lim
u↑xF

P

{
X − u
β(u)

> x

∣∣∣∣ X > u

}
= (1 + ξx)−1/ξ

+ . (2.10)

The Poisson-GPD model arises as a limiting form of the joint point process of ex-

ceedance times and excesses over the threshold. Let N be the number of exceedances of

the level u in any one unit of time. In this model N has a Poisson distribution with mean λ,

and conditionally on N ≥ 1, the excess values Y1, . . . , YN are iid with distribution function

Gξ,β . There is a relationship between the parameters of the GEV and the GPD models,

which arises by calculating the distribution of the maximum exceedance in any one unit of

time under the Poisson-GPD model (see also Theorem 3.4.13(d) in Embrechts et al., 1997).

If x > u,

P

{
max

1≤i≤N
Yi ≤ x

}
= P {N = 0}+

∞∑
n=1

P {N = n, Y1 ≤ x, . . . , Yn ≤ x}

= e−λ +
∞∑
n=1

λne−λ

n

[
1−

(
1 + ξ

x− u
β

)−1/ξ

+

]n

= exp

{
−λ
(

1 + ξ
x− u
β

)−1/ξ

+

}
. (2.11)
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By substituting

β = ψ + ξ(u− µ), λ =
(

1 + ξ
u− µ
ψ

)−1/ξ

, (2.12)

(2.11) reduces to the GEV form (2.5). Thus the GEV and GPD models are entirely con-

sistent with one another above the threshold u, and (2.12) gives an explicit relationship

between the two sets of parameters. In particular, the shape parameter ξ is the same in

both models.

2.2 Multivariate Extremes

Multivariate extreme value theory is concerned with the joint distribution of extremes

of multiple random variables. The probabilistic theory is now well developed and it is used

in a number of areas such as finance and environmental science. Multivariate extremes are

discussed in Galambos (1987), Resnick (1987), and Kotz and Nadarajah (2000), among

others. In this section we follow closely Resnick (1987) and Smith, Tawn and Yuen (1990).

The first problem when dealing with multivariate extremes is that there is no natural

extension of a notion of order in higher dimensions. The most widely used definition of

maxima of a random vector is based on componentwise maxima.

In what follows we use boldface to denote vectors x = (x1, . . . , xD)′ ∈ RD. Let

X1, . . . ,Xn be iid D-dimensional random vectors with common distribution function F ,

and define Mnd = max {X1d, . . . , Xnd} for each d = 1, . . . , D. Suppose that for each

d = 1, . . . , D there exist normalizing constants and > 0, bnd ∈ R, and a D-dimensional

distribution function H with non-degenerate marginals such that

lim
n→∞

P
{
a−1
nd (Mnd − bnd) ≤ xd, 1 ≤ d ≤ D

}
= lim

n→∞
Fn(an1x1 + bn1, . . . , anDxD + bnD) = H(x). (2.13)

The possible limit distributions H are called the class of Multivariate Extreme Value

Distributions (MEVDs). The main interest is in characterizing this class, but in contrast

with the univariate case, there is no finite-dimensional parametric family that covers the

whole class.
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As in the univariate case, we say that F ∈ MDA(H) if for each d = 1, . . . , D there exist

constants and > 0, bnd ∈ R such that (2.13) is satisfied.

In a multivariate context, a distribution function F is max-stable if for each d = 1, . . . , D,

and for each n = 2, 3, . . . there are constants and > 0 and bnd ∈ R such that

Fn(an1 x1 + bn1, . . . , anD xD + bnD) = F (x). (2.14)

Parallel to the univariate case, the class of MEVDs is characterized by a max-stability

property. The following is Proposition 5.9 in Resnick (1987).

Theorem 2.2.1. The class of multivariate extreme value distributions is precisely the class

of max-stable distribution functions with non-degenerate marginals.

From the univariate theory for extremes, it follows that the marginals of the limit-

ing distribution H must be a one-dimensional extreme value distribution, but in order to

characterize max-stable distributions it is helpful to standardize the marginals. Resnick

(1987) mentions that different marginal assumptions have led to different representations,

but in the end they are essentially equivalent. Here we assume the marginals of H are unit

Fréchet. There is no loss of generality in assuming unit Fréchet marginals because we can

always apply a transformation to achieve this. Note also that in this case, we may take the

normalizing constants to be and = n, bnd = 0, for each d = 1, . . . , D.

Under this framework any limiting distribution of normalized componentwise maxima,

with unit Fréchet marginals, can be characterized as follows.

Theorem 2.2.2. H(x) is a multivariate extreme value distribution with unit Fréchet mar-

ginals if and only if there exists a finite measure S on ℵ = {x ∈ E : ‖x‖ = 1} , where

E = [0,∞]D \ {0}, satisfying

∫
ℵ
wd dS(w) = 1, d = 1, . . . , D (2.15)

such that for x ∈ RD

H(x) = exp
{
−
∫
ℵ

max
1≤d≤D

wd
xd

dS(w)
}
. (2.16)
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Galambos (1987) reproduces J. Pickands’ proof of Theorem 2.2.2. A different proof can

be found in Proposition 5.11 in Resnick (1987), which is a more general version of The-

orem 2.2.2. Resnick (1987) also discusses in detail other characterizations and properties

of MEVDs, and it also presents a more general characterization based on a point process

representation. For a recent review on multivariate extremes we refer to Fougères (2003).

2.3 Extremes of Stationary Processes

So far we have discussed extreme properties for iid random variables. Many appli-

cations require modeling temporal dependence of extremes, so a natural extension is to

analyze the extremal behavior of stationary stochastic processes. In studying the extremes

of temporal-dependent sequences it is usually assumed there is asymptotic independence

between observations with large time-separation. This idea allows to relate the extremes

of stationary processes to those of iid sequences, by means of a key parameter known as

the extremal index. In this section we follow closely Leadbetter et al. (1983), Smith and

Weissman (1996), and Smith (2003).

2.3.1 The Extremal Index

Let {Xt, t = 1, 2, . . .} be a discrete-time strictly stationary stochastic process with mar-

ginal distribution function F and let Mn = max {X1, . . . , Xn}. Following Leadbetter et al.

(1983) we define the extremal index as follows. The process {Xt} has extremal index

θ ∈ [0, 1] if for each τ > 0 there exists a sequence {un} such that

lim
n→∞

n
(
1− F (un)

)
= τ, (2.17)

and

lim
n→∞

P {Mn ≤ un} = e−θτ . (2.18)

The extremal index does not depend on τ or the sequence {un}, and it is a constant for

the process. Intuitively, the extremal index can be thought of as the inverse of the mean

cluster size in the point process of exceedance times over a high threshold. We refer to

Leadbetter et al. (1983) for a rigorous development of extreme value theory for stationary
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processes.

Let X̃1, X̃2, . . . be the so-called associated sequence of iid random variables with the same

marginal distribution function F as the process {Xt}, and let M̃n = max
{
X̃1, . . . , X̃n

}
.

The following result (Leadbetter et al., 1983, Theorem 3.7.2(i)) illustrates the relationship

between the process {Xt} with extremal index θ, and the associated iid sequence
{
X̃t

}
.

Theorem 2.3.1. Suppose that (2.17) holds, then

lim
n→∞

P{M̃n ≤ un} = e−τ if and only if lim
n→∞

P {Mn ≤ un} = e−θτ . (2.19)

For multivariate processes the parameter of interest is the multivariate extremal index,

originally proposed by Nandagopalan (1990, 1994). Following Smith and Weissman (1996),

let {Xt, t = 1, 2, . . .} be a D-dimensional stationary process with marginal distribution

functions F (x), x ∈ RD, and Fd(x), d = 1, . . . , D. Denote the vector of componentwise

maxima by Mn = (Mn1, . . . ,MnD). Let {X̃t, t = 1, 2, . . .} be the associated sequence of D-

dimensional iid random vectors with the same distribution function F , and let M̃n denote

the corresponding vector of componentwise maxima. Suppose τ = (τ1, . . . , τD) is a vector

of nonnegative finite numbers, and suppose for each d = 1, . . . , D, {und} is a sequence of

thresholds such that

lim
n→∞

n
(
1− Fd(und)

)
= τd. (2.20)

Now consider the following joint limits

lim
n→∞

P {Mnd ≤ und, 1 ≤ d ≤ D} = H(τ ), (2.21)

lim
n→∞

P{M̃nd ≤ und, 1 ≤ d ≤ D} = H̃(τ ). (2.22)

If both (2.21) and (2.22) exist and are non-zero, then the multivariate extremal index θ(τ )

is defined by

θ(τ ) =
logH(τ )

log H̃(τ )
. (2.23)

The multivariate extremal index satisfies 0 ≤ θ(τ ) ≤ 1 for all τ , and it has the property

θ(cτ ) = θ(τ ) for any c > 0. However, the multivariate extremal index is a function of τ ,
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so in contrast to the univariate case it is not constant.

2.3.2 Max-Stable Processes

Following the development of multivariate extremes, it is sufficient to consider processes

with unit Fréchet marginals. A process {Xt} with unit Fréchet marginals is called max-

stable if all its finite-dimensional distributions are max-stable, i.e. for any n ∈ N, r ∈ N,

P {Xt ≤ nxt, 1 ≤ t ≤ r}n = P {Xt ≤ xt, 1 ≤ t ≤ r} . (2.24)

Similarly, a D-dimensional process {Xt} with unit Fréchet marginals is max-stable if for

any n ∈ N, r ∈ N,

P {Xtd ≤ nxtd, 1 ≤ t ≤ r, 1 ≤ d ≤ D}n = P {Xtd ≤ xtd, 1 ≤ t ≤ r, 1 ≤ d ≤ D} . (2.25)

A process {Y t} is said to be in the domain of attraction of a max-stable process {Xt} if

there exist normalizing constants antd > 0, bntd ∈ R such that for any finite r ∈ N,

lim
n→∞

P
{
a−1
ntd (Ytd − bntd) ≤ xtd, 1 ≤ t ≤ r, 1 ≤ d ≤ D

}n
= P {Xtd ≤ xtd, 1 ≤ t ≤ r, 1 ≤ d ≤ D} . (2.26)

Smith and Weissman (1996) made a connection between max-stable processes and the

limiting distributions of extreme values in dependent stochastic processes. This result is

Theorem 2.3 of Smith and Weissman (1996), which states that if (2.26) holds, together with

some mixing conditions on {Y t} and {Xt}, then both processes have the same multivariate

extremal index. Since the multivariate extremal index essentially captures what we need

to know about the extremes of multivariate stationary processes, this result shows that we

can learn about the extremal behavior of a multivariate stationary time series if we look at

the limiting max-stable process. In the following Chapter we consider a particular class of

max-stable processes.
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CHAPTER 3

Representations of Max-Stable Processes

In this Chapter we introduce a particular class of max-stable processes known as Moving

Maxima (MM) processes, and a multivariate extension known as Multivariate Maxima of

Moving Maxima (M4) processes. As previously mentioned, Smith and Weissman (1996)

showed that the extremes of multivariate stationary processes can be characterized in terms

of a limiting max-stable process. Furthermore, Smith and Weissman (1996) showed that

a large class of max-stable processes may be approximated by M4 processes. Thus we

consider M4 processes as the main object of study.

In this Chapter we also discuss a feature of these models called signature patterns, and

we review the literature on the estimation of M4 processes. In particular, we provide full

details of an estimation method originally proposed in Smith (2003), which is based on

clustering methods.

3.1 Moving Maxima (MM) Processes

Let {αk, k ∈ Z} be a sequence of nonnegative constants satisfying
∑

k αk = 1, and let

{Zt, t ∈ Z} be a sequence of iid unit Fréchet random variables. The Moving Maximum

process (MM process for short) is defined by

Xt = max
k∈Z

αkZt−k, t ∈ Z. (3.1)

The finite-dimensional distributions of these processes are, for any r ∈ N,

P {Xt ≤ xt, 1 ≤ t ≤ r} = exp

{
−

∞∑
m=−∞

max
1−m≤k≤r−m

αk
xm+k

}
. (3.2)



It is easily seen from (3.2) that {Xt} is a stationary process with unit Fréchet marginals.

Moreover, (3.2) satisfies (2.24), thus MM processes are max-stable. It can be verified (for

instance, Example 10.5 in Beirlant et al., 2004) that the extremal index of MM processes

is

θ = max
k

αk. (3.3)

Example 3.1.1 (MM(1) Processes). Let α ∈ (0, 1), and let {Zt} be a sequence of iid

unit Fréchet random variables. Define

Xt = max {αZt, (1− α)Zt−1} , t ∈ Z. (3.4)

For convenience we refer to processes defined by (3.4) as MM(1) processes. The extremal

index of MM(1) processes is

θ = max {α, 1− α} > 1
2
. (3.5)

Hence, for these processes 1/2 ≤ θ ≤ 1. The interpretation is that if θ → 1 then we

have independence between contiguous observations, and the mean cluster size is 1. If

θ → 1/2 then we have perfect dependence because for large Xt there is high probability

that Xt+1 = Xt, so the mean cluster size is 2. Simulated sample paths of MM(1) processes

with α = 0.5, 0.7 are shown in Figure 3.1. ‖

3.2 Maxima of Moving Maxima (M3) Processes

Deheuvels (1983) introduced a more general class of max-stable processes based on

superpositions of independent MM processes. Let {α`k, ` ∈ N, k ∈ Z} be a double sequence

of nonnegative constants satisfying
∑

`

∑
k α`k = 1, and let {Z`t, ` ∈ N, t ∈ Z} be a double

sequence of iid unit Fréchet random variables. The Maxima of Moving Maxima process

(M3 process for short) is defined by

Xt = max
`∈N

max
k∈Z

α`kZ`,t−k, t ∈ Z. (3.6)
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α = 0.7

Figure 3.1: Sample Paths of Simulated MM(1) Processes: α = 0.5 (left), and α = 0.7 (right).

The finite-dimensional distributions of these processes are, for any r ∈ N,

P {Xt ≤ xt, 1 ≤ t ≤ r} = exp

{
−
∞∑
`=1

∞∑
m=−∞

max
1−m≤k≤r−m

α`k
xm+k

}
. (3.7)

It can be verified from (3.7) that M3 processes are max-stable stationary processes with

unit Fréchet marginals. The extremal index of M3 processes is

θ =
∑
`

max
k

α`k. (3.8)

Remark. One can think of an M3 process as a superposition of independent MM processes.

For instance, let X(1)
t and X(2)

t be two independent MM processes and consider the process

Yt = max
{
X

(1)
t , X

(2)
t

}
= max

{
max
k

α1,kZ1,t−k, max
j
α2,jZ2,t−j

}
= max

`=1,2
max
k

α`,kZ`,t−k, t ∈ Z. (3.9)

Then Yt is an M3 process.

19



3.3 Multivariate Maxima of Moving Maxima (M4) Processes

Smith and Weissman (1996) introduced a class of multivariate max-stable processes

that are a generalization of M3 processes. These processes are called Multivariate Maxima

of Moving Maxima processes (M4 processes for short), and are defined as follows. Let

{α`kd, ` ∈ N, k ∈ Z, 1 ≤ d ≤ D} be a triple sequence of nonnegative constants satisfying

∑
`

∑
k

α`kd = 1, for each d = 1, . . . , D, (3.10)

and let {Z`t, ` ∈ N, t ∈ Z} be a double sequence of iid unit Fréchet random variables. The

M4 process is defined by

Xtd = max
`∈N

max
k∈Z

α`kdZ`,t−k, t ∈ Z, 1 ≤ d ≤ D. (3.11)

Smith and Weissman (1996) derived the finite-dimensional distributions of these pro-

cesses as follows. For any r ∈ N,

P {Xtd ≤ xtd, 1 ≤ t ≤ r, 1 ≤ d ≤ D}

= P

{
Z`,t−k ≤

xtd
α`kd

, ` ∈ N, k ∈ Z, 1 ≤ t ≤ r, 1 ≤ d ≤ D
}

= P

{
Z`m ≤ min

1−m≤k≤r−m
min

1≤d≤D

xm+k,d

α`kd
, ` ∈ N, m ∈ Z

}
= exp

{
−
∞∑
`=1

∞∑
m=−∞

max
1−m≤k≤r−m

max
1≤d≤D

α`kd
xm+k,d

}
. (3.12)

It can be verified from (3.12) that M4 processes are max-stable stationary processes with

unit Fréchet marginals. Moreover, Smith and Weissman (1996) showed that the multivari-

ate extremal index is,

θ(τ ) =
∑

` maxk maxd α`kdτd∑
`

∑
k maxd α`kdτd

, (3.13)

where τ = (τ1, . . . , τD) is a vector of nonnegative finite numbers.

Example 3.3.1. Figure 3.2 shows T = 500 observations from a simulated M4 process in

D = 3 dimensions with parameters given in Table 3.1. The observations around t = 165
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illustrate typical behavior of M4 processes: extreme values tend to occur in clusters and

are dependent across series. ‖
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Figure 3.2: Sample Path of Simulated M4 Process.

3.4 Signature Patterns

One of the main features of M4 processes is that a single large shock observed in the

process creates a deterministic signature pattern. We illustrate this concept with MM(1)

processes and then define it for M4 processes.

Consider the MM(1) process Xt = max {αZt, (1− α)Zt−1}. Suppose that for some t∗

the value of Zt∗ is much larger than its neighbors Zt∗−1 and Zt∗+1, such that

Xt∗ = αZt∗ and Xt∗+1 = (1− α)Zt∗ . (3.14)

Then the signature pattern of this process is defined as the ratio

St∗+1 =
Xt∗+1

Xt∗
=

1− α
α

. (3.15)
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` α`,−1 α`,0 α`,1

d = 1
1 0.0714 0.2857 0.1143
2 0.1429 0.1429 0.0429
3 0.0143 0.0714 0.0286
4 0.0286 0.0429 0.0143

d = 2
1 0.0488 0.4268 0.1220
2 0.0366 0.0610 0.1220
3 0.0244 0.0488 0.0122
4 0.0122 0.0488 0.0366

d = 3
1 0.0820 0.1639 0.1148
2 0.1475 0.1311 0.0820
3 0.0164 0.0820 0.0492
4 0.0328 0.0328 0.0656

Table 3.1: Parameters of Simulated M4 Process. We assume α`,k,d = 0 for indices (`, k, d) ∈
{(`, k, d) : |k| > 1, ` > 4, 1 ≤ d ≤ 3}.

Solving for α we obtain

α =
Xt∗

Xt∗+1 +Xt∗
. (3.16)

Zhang (2002) showed that (3.16) will hold infinitely often, so if we observe the process for

a long period of time the relationship (3.16) creates a deterministic pattern that identifies

the parameter of the process.

The distribution of Xt∗+1 is a mixture of a continuous random variable (Zt∗+1), and a

degenerate random variable that takes the value 1−α
α xt∗ with probability 1. In principle,

the relationship (3.16) can be used to construct a maximum likelihood approach for the

estimation of the parameter α as follows (see also Hall et al., 2002). If two of the ratios

Xt/Xt+1 and Xs/Xs+1, s 6= t are identical, then the value of α can be identified exactly.

However, in practice we cannot expect an actual time series to follow this model exactly,

so the ratio (3.16) will never give the exact value of α. Therefore, a maximum likelihood

approach is not feasible.

The M4 processes defined by (3.11) have indices ` and k that range over an infinite

(countable) set. In practice it is necessary to restrict the indices ` and k to range over

a finite index set {(k, `) : 1 ≤ ` ≤ L, −K1 ≤ k ≤ K2}, where L, K1 and K2 are known

positive integers. To simplify our notation, and without loss of generality, from here on we
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assume K = K1 = K2. Hence the process we consider is

Xtd = max
1≤`≤L

max
|k|≤K

α`kdZ`,t−k, t ∈ N, 1 ≤ d ≤ D, (3.17)

where
∑

`

∑
k α`kd = 1 for each d = 1, . . . , D.

Following the argument in Smith (2003), consider a situation where some value of {Z`,t},

say Z`∗,t∗ , is much larger than its neighbors {Z`,t∗+k, 1 ≤ ` ≤ L, |k| ≤ K}. Then we have

Xt∗+k,d = α`∗,k,dZ`∗,t∗ , |k| ≤ K, 1 ≤ d ≤ D. (3.18)

Thus the `th signature pattern is defined by

St∗+k,d =
Xt∗+k,d

maxk maxdXt∗+k,d
(3.19)

=
α`∗,k,d

maxk maxd α`∗,k,d
, |k| ≤ K, 1 ≤ d ≤ D. (3.20)

A signature pattern specifies the shape of the process near its local maximum. For any

(`∗, t∗), there is positive probability that (3.19) holds exactly. There are L such determin-

istic signature patterns, and Zhang and Smith (2003) have shown rigorously that each of

the L signature patterns will occur infinitely often. This means that the joint densities of

M4 processes contain singularities because of the presence of these deterministic signature

patterns, so it is not possible to apply the method of maximum likelihood to estimate the

parameters of the model. Therefore alternative estimation methods are required.

3.5 Literature Review on the Estimation of M4 Processes

The results of Smith and Weissman (1996) allow us to characterize the extremal be-

havior of a multivariate stationary time series in terms of a limiting max-stable process.

However, there has been little work on the statistical modeling of max-stable processes.

The key characterization result of Smith and Weissman (1996) is that any D-dimensional

stationary max-stable process with unit Fréchet marginals may be approximated arbitrar-

ily closely as the sum of an M4 process and a deterministic process—a generalization of a

result of Deheuvels (1983) for one-dimensional processes. It is usually assumed that the
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deterministic process is absent, so the practical interpretation is that we can approximate

any max-stable process with unit Fréchet marginals by an M4 process. Hence the problem

of estimating max-stable processes can be reduced to the estimation of M4 processes.

A special class of moving maxima processes called max-autoregressive moving average

(MARMA) processes was introduced in Davis and Resnick (1989). A stationary process

{Xt} is a MARMA(p, q) process if it satisfies

Xt = max {φ1Xt−1, . . . , φpXt−p, Zt, θ1Zt−1, . . . , θqZt−q} , t ∈ N, (3.21)

where φi ≥ 0, i = 1, . . . , p, θj ≥ 0, j = 1, . . . , q, and {Zt} are iid unit Fréchet random

variables. Davis and Resnick (1989) only provided an estimation method for the special

case when q = 1.

Hall, Peng and Yao (2002) considered moving maxima processes and constructed con-

fidence and prediction intervals based on empirical distributions and bootstrap techniques.

Zhang (2002) generalized the approach of Hall et al. (2002) to M4 processes, but without

the use of bootstrap techniques. Zhang (2002) proposed a series of estimating procedures

based on identifying signature patterns, and showed consistency and asymptotic normality

of the parameter estimators.

In practice it is unrealistic to assume that we can observe the exact signature patterns

that are characteristic of M4 processes. The approach of Smith (2003) is to define candidate

signature patterns on blocks of observations, and then use a clustering algorithm to identify

each of the L signature patterns defined by (3.20). However, a precise description of how

to obtain the parameter estimates using this approach has not been discussed elsewhere.

3.6 Clustering-Based Estimation of M4 Processes

In the following sections we provide a detailed description of the method proposed by

Smith (2003) for parameter estimation of M4 processes. To motivate this approach consider

the MM(1) process Xt = max {αZt, (1− α)Zt−1}, and suppose Zt∗ is much larger than its

neighbors Zt∗−1 and Zt∗+1, so that (3.16) holds. Zhang (2002) showed that (3.16) will hold

infinitely often, so in principle we only need two very large observations at different times
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t1, t2 in order to identify the exact value of α via (3.16). However, in practice we cannot

expect for any time series to follow this model exactly, so we proceed as follows. Fix a

large threshold u > 0 and consider a moving window of size 2. Then for t = 1, . . . , T − 1,

if xt > max {u, xt+1} calculate a candidate signature pattern

a(t) =
xt

xt+1 + xt
. (3.22)

Let n be the sample size of the set
{
a(ti)

}
, then the sample mean of the candidate signature

patterns gives an estimate of α:

α̂ =
1
n

n∑
i=1

a(ti). (3.23)

This idea can be easily generalized for the estimation of more general MM processes, as

described in the following section.

3.6.1 Estimation of MM Processes

Consider the MM process

Xt = max
|k|≤K

αkZt−k, t ∈ N, (3.24)

where
∑

k αk = 1.

Suppose Zt∗ is much larger than its neighbors, so that

Xt∗+k = αkZt∗ , −K ≤ k ≤ K. (3.25)

Then the signature pattern St∗ = (St∗−K , . . . , St∗−1, St∗ , St∗+1, . . . , St∗+K)′ is defined by

St∗+k =
Xt∗+k

Xt∗
=
αk
α0
, −K ≤ k ≤ K. (3.26)

The restriction
∑

k αk = 1 gives

K∑
k=−K

St∗+k =
∑K

k=−K Xt∗+k

Xt∗
=

1
α0
. (3.27)
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Defining

X+
t =

K∑
k=−K

Xt+k, (3.28)

and solving for α0 we have

α0 =
Xt∗

X+
t∗
. (3.29)

Substituting (3.29) into (3.26) we obtain

αk = α0
Xt∗+k

Xt∗

=
Xt∗+k

X+
t∗

, −K ≤ k ≤ K. (3.30)

Zhang (2002) showed that (3.30) will hold infinitely often. However, in practice we cannot

expect the actual data to follow this model exactly. This problem is solved by defining

candidate signature patterns for each local maximum.

Definition 3.6.1 (Local Maximum). For a given integer K and a positive threshold u,

consider a block of observations xt−K:t+K = (xt−K , . . . , xt−1, xt, xt+1, . . . , xt+K), K < t <

T −K. We say that xt is a local maximum if xt ≥ max {u, xt−K:t+K}.

Remark. Without loss of generality, we define the local maximum to be at the center of

the block. This means that we are assuming that α0 = maxk αk.

The method to estimate the parameters of MM process is summarized in Algorithm 3.6.2.

Algorithm 3.6.2 (Clustering-Based Estimation of MM Processes).

1. Consider a moving window of size 2K + 1, and fix a large threshold u > 0.

2. For t = K + 1, . . . , T −K, if xt > max {u, xt−K:t+K} then calculate

a
(t)
k =

xt+k

x+
t

, −K ≤ k ≤ K. (3.31)

3. Calculate

α̂k =
1
n

n∑
i=1

a
(ti)
k , −K ≤ k ≤ K. (3.32)

where n is the number of local maxima.
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Example 3.6.3 (MMA(q) Processes). Consider the special case of a max-moving av-

erage MMA(q) process (Davis and Resnick, 1989),

Xt = max {Zt, θ1Zt−1, . . . , θqZt−q} , t ∈ N, (3.33)

where θi > 0, i = 1, . . . , q and {Zi} are iid random variables. The values of θi do not have

to add up to 1, so we set θ0 = 1, C =
∑q

i=0 θi, and write

Xt = Cmax {α̃0Zt, α̃1Zt−1, . . . , α̃qZt−q} , t ∈ N, (3.34)

where α̃i = C−1θi, i = 0, . . . , q. Using this parameterization we can use Algorithm 3.6.2

to obtain estimates of

α̃0 = C−1 (3.35)

α̃i = θi α̃0, i = 1, . . . , q. (3.36)

The estimates of the original parameters are θi = α̃i/α̃0, i = 1, . . . , q. ‖

3.6.2 Estimation of M3 Processes

Consider the M3 process

Xt = max
1≤`≤L

max
|k|≤K

α`kZ`,t−k, t ∈ N, (3.37)

where
∑

`

∑
k α`k = 1.

The M3 process we consider has L signature patterns indexed by `. Smith and Weissman

(1996) pointed out that the relative frequency of the `th signature pattern is

α+
` =

K∑
k=−K

α`k. (3.38)

We can interpret that in the long run, α+
` is the proportion of time that the process is driven

by the `th signature pattern. This is the key feature of the model used in our estimation

procedure.
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Suppose Z`∗,t∗ is much larger than its neighbors, so there is a single index (`∗, t∗), such

that

Xt∗+k = α`∗,kZ`∗,t∗ , −K ≤ k ≤ K. (3.39)

Then we have

S`∗,t∗+k =
Xt∗+k

Xt∗
=
α`∗,k
α`∗,0

, −K ≤ k ≤ K, (3.40)

which defines the `∗th signature pattern

S`∗,t∗ = (S`∗,t∗−K , . . . , S`∗,t∗−1, S`∗,t∗ , S`∗,t∗+1, . . . , S`∗,t∗+K)′. (3.41)

Note that
K∑

k=−K
S`∗,t∗+k =

∑K
k=−K Xt∗+k

Xt∗
=
∑K

k=−K α`∗,k

α`∗,0
. (3.42)

Using the notation α+
` and X+

t defined respectively in (3.28) and (3.38), we can write

α`∗,0 = α+
`∗
Xt∗

X+
t∗
. (3.43)

Substituting (3.43) into (3.40) we obtain

α`∗,k

α+
`∗

=
Xt∗+k

X+
t∗

, −K ≤ k ≤ K, (3.44)

or equivalently,

α`∗,k = α+
`∗
Xt∗+k

X+
t∗

, −K ≤ k ≤ K. (3.45)

The idea proposed by Smith (2003) for estimating the parameters is to use a clustering

algorithm to identify the L signature patterns. Assuming the data are already in the unit

Fréchet scale there are four main steps:

1. For each local maximum calculate a candidate signature pattern according to (3.44).

2. Use a clustering algorithm to group all the candidate signature patterns into L clus-

ters.

3. Estimate α+
` as the proportion of candidate signature patterns in the `th cluster.
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4. Obtain estimates of the individual α`k’s from each cluster center.

Smith (2003) suggested using the K-means clustering algorithm to classify each of the

candidate signature pattern into L clusters. The K-means clustering algorithm is described

in detail by Hartigan (1975). We use the kmeans function implemented in R (R Develop-

ment Core Team, 2004).

The K-means algorithm provides both the cluster sizes, and the cluster centers that we

use in our estimation procedure. Let n` denote the `th cluster size, and denote the cluster

centers by the vector ā` = (ā`,−K , . . . , ā`,K), where

ā`k =
1
n`

n∑̀
i=1

a
(ti)
k , −K ≤ k ≤ K. (3.46)

The cluster centers give estimates of the ratios (3.44), and a natural estimator for α+
` is

n`
n . Finally, estimates of the individual parameters (3.45) are obtained by multiplying each

cluster center by the corresponding n`
n . The details of this method are summarized in

Algorithm 3.6.4.

Algorithm 3.6.4 (Clustering-Based Estimation of M3 Processes).

1. Consider a moving window of size 2K + 1, and fix a large threshold u > 0.

2. For t = K + 1, . . . , T −K, if xt > max {u, xt−K:t+K} then calculate

a
(t)
k =

xt+k

x+
t

, −K ≤ k ≤ K. (3.47)

Denote a(t) =
(
a

(t)
−K , . . . , a

(t)
K

)′.
3. Use the K-means algorithm to classify each a(t) into one of L clusters. Denote the
`th cluster size by n` and the `th cluster center by ā`.

4. For each ` = 1, . . . , L, calculate
α̂+
` =

n`
n
, (3.48)

where n =
∑

` n`.

5. For each ` = 1, . . . , L, calculate

α̂`k =
n`
n
ā`k, −K ≤ k ≤ K. (3.49)
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3.6.3 Estimation of M4 Processes

In this section we develop a generalization of Algorithm 3.6.4 for multivariate processes.

The main differences from the univariate case are the relative frequencies of the signature

patterns and the definition of local maxima.

Consider the M4 process defined by (3.17), i.e.,

Xtd = max
1≤`≤L

max
|k|≤K

α`kdZ`,t−k, t ∈ N, 1 ≤ d ≤ D,

where
∑

`

∑
k α`kd = 1 for each d = 1, . . . , D.

Smith and Weissman (1996) pointed out that for M4 processes the relative frequency

of the `th signature pattern is proportional to
∑

k maxd α`kd. This is the key feature of the

process that is used for identifying the individual parameters.

Now we define local maxima for the multivariate case. Denote xt = (xt,1, . . . , xt,d), so

in the usual notation xs:t = (xs, . . . ,xt) for s < t.

Definition 3.6.5 (Local Maximum for Multivariate Processes). For a given integer

K and a positive threshold u, consider a block of observations xt−K:t+K , K < t < T −K.

We say that xtd is a local maximum if xtd ≥ max {u,xt−K:t+K}.

Remark. Without loss of generality, our definition assumes α`∗,0,d∗ = max(k,d)∈B α`∗,k,d,

where B = {(k, d) : |k| ≤ K, 1 ≤ d ≤ D}.

Suppose Z`∗,t∗ is much larger than its neighbors, so there is a single index (`∗, t∗), such

that

Xt∗+k,d = α`∗,k,dZ`∗,t∗ , (k, d) ∈ B. (3.50)

In this case the `∗th signature pattern is a 2K + 1 by D matrix with elements

S`∗,t∗+k,d =
Xt∗+k,d

Xt∗,d∗
=

α`∗,k,d
α`∗,0,d∗

, (k, d) ∈ B. (3.51)

Define the notation

X‡t =
K∑

k=−K
max
d
Xt+k,d, (3.52)
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α‡` =
K∑

k=−K
max
d
α`,k,d. (3.53)

Now note that
K∑

k=−K
max
d
S`∗,t∗+k,d =

X‡t∗

Xt∗,d∗
=

α‡`∗

α`∗,0,d∗
. (3.54)

Therefore

α`∗,0,d∗ = α‡`∗
Xt∗,d∗

X‡t∗
(3.55)

Substituting (3.55) into (3.51) we obtain

α`∗,k,d

α‡`∗
=
Xt∗+k,d∗

X‡t∗
, (k, d) ∈ B, (3.56)

or equivalently,

α`∗,k,d = α‡`∗
Xt∗+k,d∗

X‡t∗
, (k, d) ∈ B. (3.57)

In analogy to Algorithm 3.6.4, the estimation procedure for M4 processes is based

on calculating (3.56) whenever a local maximum is observed. Then apply the K-means

algorithm to obtain both the cluster sizes and the cluster centers. The cluster centers give

an estimate of (3.56), and a natural estimator of α‡` (up to proportionality) is n`
n . Estimates

of the individual parameters (up to proportionality) are obtained by multiplying the cluster

centers by n`
n . The details of this method are summarized in Algorithm 3.6.6.
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Algorithm 3.6.6 (Clustering-Based Estimation of M4 Processes).

1. Consider a moving window of size 2K + 1, and fix a large threshold u > 0.

2. For t = K + 1, . . . , T −K, if xtd > max {u,xt−K:t+K} then calculate

a
(t)
kd =

xt+k,d

x‡t
, (k, d) ∈ B. (3.58)

Denote A(t) the matrix with columns a
(t)
d =

(
a

(t)
−K,d, . . . , a

(t)
K,d

)′.
3. Use the K-means algorithm to classify each A(t) into one of L clusters. Denote the
`th cluster size by n`; and for each d = 1, . . . , D denote the `th cluster center by ā`d.

4. For each ` = 1, . . . , L, calculate
α̂‡` ∝

n`
n
, (3.59)

where n =
∑

` n`.

5. For each ` = 1, . . . , L, calculate

α̂`kd =
n`
n
ā`kd. (k, d) ∈ B. (3.60)

6. For each d = 1, . . . , D, normalize so that
∑

`

∑
k α̂`kd = 1.

A justification for the clustering-based approach developed in this and preceding sec-

tions is based on Theorem 4.1 of Smith and Weissman (1996). This result essentially states

(with changes in notation) that if xt∗,d is a local maximum, then as u→∞ the probability

that (3.50) holds for some `∗ tends to 1. The implication of this result is that for suffi-

ciently high u, we can assume that every exceedance of u is part of a signature pattern.

The clustering method then determines to which one of the L possible patterns a candidate

belongs to. The justification of the methods for MM and M3 processes are special cases of

this argument.

3.6.4 Simulation Results

We illustrate the clustering-based methods with a simulated path of T = 4000 observa-

tions of an M3 process with k = −1, 0, 1, L = 3 signature patterns, and

α =

0.20 0.30 0.10
0.05 0.15 0.10
0.03 0.04 0.03

 . (3.61)
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The relative frequency of each signature pattern is given by the sum of the entries in

each row of (3.61), i.e.,
∑

k α1,k = 0.6,
∑

k α2,k = 0.3,
∑

k α3,k = 0.1. We add normally

distributed noise with mean zero and standard deviation σ to the simulated data because

in practice the exact signature patterns are never observed.

We estimate the M3 parameters for two levels of noise using a threshold at the 97.5% of

the data in both cases. The estimates corresponding to σ = 0.02 and σ = 0.1 are denoted

α̂(0.02) and α̂(0.1), respectively.

α̂(0.02) =

0.2262 0.3416 0.1130
0.0352 0.1069 0.0707
0.0319 0.0426 0.0319

 , α̂(0.1) =

0.2232 0.3463 0.1114
0.0342 0.1086 0.0700
0.0320 0.0428 0.0316

 .

Figure 3.3 shows the signature patterns of the simulated M3 processes with two different

levels of noise. When the noise is very small the clustering algorithm gives almost exactly

the actual parameters. When the noise is larger, the candidate signature patterns are more

spread out, but the clustering method is still able to identify the clusters correctly.
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Figure 3.3: Signature Patterns of Simulated M3 Processes with Noise. The standard deviations of
the noise are σ = 0.02 (left) and σ = 0.1 (right). The gray filled circles identify the actual value of
α`k/

∑
k α`k, and the stars identify the corresponding estimates from the clustering-based method.

Candidate signature patterns in the same cluster are identified with empty circles, triangles, and
crosses.
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It is important to note that the clustering-based algorithms described in this Chapter

require to specify in advance a threshold u, the number of lags K, and the number of

signature patterns L. In other words, given u, K, and L, the algorithms classify each of the

candidate signature patterns into one of L signature patterns. However these algorithms

do not attempt to determine the number of signature patterns, or the number of lags in

the model. This question of model selection is a topic for future research.
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CHAPTER 4

Markov Property of Moving Maxima Processes

In this Chapter we consider probabilistic properties of two special cases of moving

maxima processes, which we refer to as MM(1) and MM(2) processes. Our main results

show that MM(1) processes are second-order Markov, and MM(2) processes are third-order

Markov. In each case, we provide explicit expressions for the conditional distribution of

the process given a sample path up to time t.

In addition, we develop an algorithm to simulate from the conditional distribution of

MM(1) processes, and we obtain an explicit expression for the quantile function of this

distribution. Applications of these results include sequential Monte Carlo methods to

approximate the filtering distributions of MM(1) processes in a state-space model context,

as discussed in Chapter 6.

4.1 Conditional Distribution of MM(1) Processes

Consider the MM(1) process

Xt = max {αZt, (1− α)Zt−1} , t ∈ Z, (4.1)

where {Zt} are iid unit Fréchet random variables with distribution function Φ1(x) = e−1/x,

x > 0, and α ∈ (0, 1). We are interested in calculating

Ft+1(x) ≡ P {Xt+1 ≤ x | Ft} , (4.2)

where Ft ≡ {Xs = xs : s ≤ t}. Hence, (4.2) is the conditional distribution of Xt+1 given a

sample path up to time t.



Our main result shows that Ft+1(x) may always be calculated as a function of x, xt

and xt−1 (but not using values of xs, s < t − 1). In other words, MM(1) processes are

second-order Markov.

Proposition 4.1.1. Suppose Xt and Ft+1(x) are given by (4.1) and (4.2), respectively.

If xt
xt−1

> 1−α
α then

Ft+1(x) =


0, x < 1−α

α xt,

exp
{
−α
x

}
, x ≥ 1−α

α xt.

(4.3)

If xt
xt−1

= 1−α
α then

Ft+1(x) =


exp

{
− 1
x + α

xt

}
, 0 ≤ x < 1−α

α xt,

exp
{
−α
x

}
, x ≥ 1−α

α xt.

(4.4)

If xt
xt−1

< 1−α
α then

Ft+1(x) =


(1− α) exp

{
− 1
x + α

xt

}
, 0 ≤ x < 1−α

α xt,

exp
{
−α
x

}
, x ≥ 1−α

α xt.

(4.5)

Proof. First consider the following four cases:

1. If Xt = αZt > (1− α)Zt−1 and Xt−1 = αZt−1 > (1− α)Zt−2 then Xt
Xt−1

> 1−α
α .

2. If Xt = (1− α)Zt−1 > αZt and Xt−1 = αZt−1 > (1− α)Zt−2 then Xt
Xt−1

= 1−α
α .

3. If Xt = αZt > (1 − α)Zt−1 and Xt−1 = (1 − α)Zt−2 > αZt−1, then nothing can be

said about the sign of Xt
Xt−1

− 1−α
α .

4. If Xt = (1− α)Zt−1 > αZt and Xt−1 = (1− α)Zt−2 > αZt−1 then Xt
Xt−1

< 1−α
α .

From these four cases we deduce:

Case 1: If xt
xt−1

> 1−α
α then xt = αZt > (1− α)Zt−1.

Case 2: If xt
xt−1

= 1−α
α then xt = (1− α)Zt−1 > αZt.

36



Case 3: If xt
xt−1

< 1−α
α then xt−1 = (1 − α)Zt−2 > αZt−1. However, xt can be either αZt

or (1− α)Zt−1.

We now consider each of these cases in detail.

Case 1: If xt
xt−1

> 1−α
α then Zt = xt

α and

P {Xt+1 ≤ x | Ft} = P {αZt+1 ≤ x, (1− α)Zt ≤ x | Ft}

= P
{
αZt+1 ≤ x, (1− α)Zt ≤ x | Zt =

xt
α

}
= P

{
Zt+1 ≤

α

x

}
I
(
x ≥ 1− α

α
xt

)
= exp

{
−α
x

}
I
(
x ≥ 1− α

α
xt

)
. (4.6)

Case 2: If xt
xt−1

= 1−α
α then Zt < xt

α and

P {Xt+1 ≤ x | Ft} = P {αZt+1 ≤ x, (1− α)Zt ≤ x | Ft}

= P
{
αZt+1 ≤ x, (1− α)Zt ≤ x | Zt <

xt
α

}
= P

{
Zt+1 ≤

α

x

}
P

{
Zt ≤

x

1− α

∣∣∣∣ Zt < xt
α

}

=


exp

{
− 1
x + α

xt

}
, x < 1−α

α xt,

exp
{
−α
x

}
, x ≥ 1−α

α xt.

(4.7)

Case 3: If xt
xt−1

< 1−α
α then Zt−1 <

xt−1

α . However, xt can be either αZt or (1 − α)Zt−1.

Then for infinitesimally small δt,

P

{
Zt ∈

(xt, xt + δt)
α

, Zt−1 <
xt

1− α

∣∣∣∣Ft}
= P

{
Zt ∈

(xt, xt + δt)
α

,Zt−1 <
xt

1− α

∣∣∣∣ Zt−1 <
xt−1

α

}
=
α δt
x2
t

exp
{
− 1
xt

+
α

xt−1

}
, (4.8)

and

P

{
Zt <

xt
α
, Zt−1 ∈

(xt, xt + δt)
1− α

∣∣∣∣Ft}
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= P

{
Zt <

xt
α
,Zt−1 ∈

(xt, xt + δt)
1− α

∣∣∣∣ Zt−1 <
xt−1

α

}
=

(1− α) δt
x2
t

exp
{
− 1
xt

+
α

xt−1

}
. (4.9)

Therefore we have

P
{
Zt ∈ (xt,xt+δt)

α , Zt−1 <
xt

1−α

∣∣∣ Ft}
P
{
Zt <

xt
α , Zt−1 ∈ (xt,xt+δt)

1−α

∣∣∣ Ft} =
α

1− α
. (4.10)

Since the right-hand side of (4.10) does not depend on xt and xt−1, it follows that

P {αZt > (1− α)Zt−1 | Ft} = α. (4.11)

By combining (4.6), (4.7), and (4.11) we obtain

P {Xt+1 ≤ x | Ft} = P
{
Xt+1 ≤ x | Zt =

xt
α
, Ft

}
P
{
Zt =

xt
α

∣∣∣ Ft}
+ P

{
Xt+1 ≤ x | Zt <

xt
α
, Ft

}
P
{
Zt <

xt
α

∣∣∣ Ft}
= P

{
Xt+1 ≤ x | Zt =

xt
α

}
· α+ P

{
Xt+1 ≤ x | Zt <

xt
α

}
· (1− α)

=


(1− α) exp

{
− 1
x + α

xt

}
, x < 1−α

α xt,

exp
{
−α
x

}
, x ≥ 1−α

α xt.

(4.12)

Remark. It is clear that Xt+1 and Xt−1 are unconditionally independent, because Xt+1

depends only on Zt and Zt+1, while Xt−1 depends only on Zt−2 and Zt−1. Similarly,

Xt+1 and Xt−2 are unconditionally independent. However, conditionally on Ft, Xt+1 is

not independent of Xt−1. The surprising result is that conditionally on Ft, Xt+1 is still

independent of Xt−2.

The following corollary gives an explicit expression for the conditional probability of a

signature pattern (a jump) given Ft.

Corollary 4.1.2. Suppose Xt and Ft+1(x) are given by (4.1) and (4.2), respectively. Let
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x∗t = 1−α
α xt, then

P {Xt+1 = x∗t | Ft} =


exp

{
− α
x∗t

}
, xt

xt−1
> 1−α

α ,

0, xt
xt−1

= 1−α
α ,

α exp
{
− α
x∗t

}
, xt

xt−1
< 1−α

α .

(4.13)

Proof. The result follows directly from Proposition 4.1.1 by calculating

P {Xt+1 = x∗t | Ft} = Ft+1(x∗t )− Ft+1(x∗t−), (4.14)

where Ft+1(x−) = limy↑x Ft+1(y) = P {Xt+1 < x | Ft} . For instance, if xt
xt−1

< 1−α
α we

have Ft+1(x∗t−) = (1−α) exp
{
− α
x∗t

}
and Ft+1(x∗t ) = exp

{
− α
x∗t

}
. Therefore, the jump size

is α exp
{
− α
x∗t

}
.

4.1.1 Algorithm for Simulation

In this section we propose an algorithm to simulate from the distribution Ft+1 derived

in Proposition 4.1.1.

First, we introduce the notation used throughout this section. Let Z be a unit Fréchet

random variable with distribution function Φ1(x) = e−1/x, x > 0, and let u > 0, α > 0.

The random variable X = αZ is unit Fréchet with scale parameter α. The distribution

function of X, denoted Φ1,α(x), is

Φ1,α(x) =


0, x ≤ 0,

exp
{
−α
x

}
, x > 0.

(4.15)

The distribution function of X given that X < u is denoted Φ1,α (x | x < u), where

Φ1,α (x | x < u) =


exp

{
−α
x + α

u

}
, 0 ≤ x ≤ u,

1, x > u.

(4.16)

Similarly, the distribution function of X given that X > u is denoted Φ1,α (x | x > u),
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where

Φ1,α (x | x > u) =


0, x ≤ u,
exp

{
−α
x

}
− exp

{
−α
u

}
1− exp

{
−α
u

} , x > u.

(4.17)

See Appendix A for more details about the properties of Fréchet distributions.

Proposition 4.1.3. Suppose that Ft+1(x) is given as in Proposition 4.1.1. Let α ∈ (0, 1),

xt > 0, xt−1 > 0, and x∗t = 1−α
α xt. The following algorithm generates a random variable

X ∼ Ft+1(x).

If xt
xt−1

> 1−α
α then

� generate U ∼ U(0, 1);

� if U ≤ e−α/x∗t set X = x∗t ;

� otherwise, generate X ∼ Φ1,α (x | x > x∗t ).

If xt
xt−1

= 1−α
α then

� generate U ∼ U(0, 1);

� if U ≤ e−α/x∗t generate X ∼ Φ1,1 (x | x < x∗t );

� otherwise, generate X ∼ Φ1,α (x | x > x∗t ).

If xt
xt−1

< 1−α
α then

� generate U ∼ U(0, 1);

� if U ≤ (1− α)e−α/x
∗
t generate X ∼ Φ1,α (x | x < x∗t );

� else, if U ≤ e−α/x∗t set X = x∗t ;

� otherwise, generate X ∼ Φ1,α (x | x > x∗t ).

Proof. Consider the three cases separately:

Case 1: If xt
xt−1

> 1−α
α then we need to show that the distribution function of X is (4.3).

Write

P {X ≤ x} = P
{
X ≤ x

∣∣∣U ≤ e−α/x∗t }P {U ≤ e−α/x∗t}
+ P

{
X ≤ x

∣∣∣U > e−α/x
∗
t

}
P
{
U > e−α/x

∗
t

}
= I (x ≥ x∗t ) e−α/x

∗
t + Φ1,α (x | x > x∗t )

(
1− e−α/x∗t

)
(4.18)
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If x < x∗t then clearly P {X ≤ x} = 0. If x ≥ x∗t then

P {X ≤ x} = 1 · e−α/x∗t +
e−α/x − e−α/x∗t

1− e−α/x∗t

(
1− e−α/x∗t

)
= e−α/x. (4.19)

Case 2: If xt
xt−1

= 1−α
α then we need to show that the distribution function of X is (4.4).

In this case we have

P {X ≤ x} = Φ1,1 (x | x < x∗t ) e
−α/x∗t + Φ1,α (x | x > x∗t )

(
1− e−α/x∗t

)
. (4.20)

If x < x∗t then

P {X ≤ x} = e−1/x+1/x∗t e−α/x
∗
t + 0 ·

(
1− e−α/x∗t

)
= e−1/x+α/xt . (4.21)

If x ≥ x∗t then

P {X ≤ x} = 1 · e−α/x∗t +
e−α/x − e−α/x∗t

1− e−α/x∗t

(
1− e−α/x∗t

)
= e−α/x. (4.22)

Case 3: If xt
xt−1

< 1−α
α then we need to show that the distribution function of X is (4.5).

Write

P {X ≤ x} = P
{
X ≤ x

∣∣∣U ≤ (1− α)e−α/x
∗
t

}
P
{
U ≤ (1− α)e−α/x

∗
t

}
+ P

{
X ≤ x

∣∣∣ (1− α)e−α/x
∗
t < U ≤ e−α/x∗t

}
× P

{
(1− α)e−α/x

∗
t < U ≤ e−α/x∗t

}
+ P

{
X ≤ x

∣∣∣U > e−α/x
∗
t

}
P
{
U > e−α/x

∗
t

}
= Φ1,1 (x | x < x∗t ) (1− α)e−α/x

∗
t

+ I (x ≥ x∗t )α e−α/x
∗
t

+ Φ1,α (x | x > x∗t )
(
1− e−α/x∗t

)
. (4.23)
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If x < x∗t then

P {X ≤ x} = e−1/x+1/x∗t (1− α)e−α/x
∗
t + 0 · α e−α/x∗t + 0 ·

(
1− e−α/x∗t

)
= (1− α)e−1/x+α/xt . (4.24)

If x ≥ x∗t then

P {X ≤ x} = 1 · (1− α)e−α/x
∗
t + 1 · α e−α/x∗t +

e−α/x − e−α/x∗t
1− e−α/x∗t

(
1− e−α/x∗t

)
= e−α/x. (4.25)

4.1.2 Quantile Function

Following Embrechts et al. (1997, p. 130), suppose h is a non-decreasing function on R.

The (left continuous) generalized inverse of h is defined as

h←(p) = inf {x ∈ R : h(x) ≥ p} . (4.26)

By convention, the infimum of an empty set is +∞. The quantile function of a distribution

function F is

F←(p) = inf {x ∈ R : F (x) ≥ p} , 0 < p < 1. (4.27)

The quantity xp = F←(p) defines the p-quantile of F .

Proposition 4.1.4. Suppose that Ft+1(x) is given as in Proposition 4.1.1. Let α ∈ (0, 1),

xt > 0, xt−1 > 0, and x∗t = 1−α
α xt. The quantile function of Ft+1(x) is as follows.

If xt
xt−1

> 1−α
α then

F←t+1(p) =


x∗t , p ≤ exp

{
− α
x∗t

}
,

α
log(1/p) , p > exp

{
− α
x∗t

}
.

(4.28)
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If xt
xt−1

= 1−α
α then

F←t+1(p) =


[
log(1/p) + α

xt

]−1
, p ≤ exp

{
− α
x∗t

}
,

α
log(1/p) , p > exp

{
− α
x∗t

}
.

(4.29)

If xt
xt−1

< 1−α
α then

F←t+1(p) =



[
log(1/p) + α

xt
+ log(1− α)

]−1
, p ≤ (1− α) exp

{
− α
x∗t

}
,

x∗t , (1− α) exp
{
− α
x∗t

}
< p ≤ exp

{
− α
x∗t

}
,

α
log(1/p) , p > exp

{
− α
x∗t

}
.

(4.30)

Proof. Define for x ≥ 0

G1(x) = exp
{
−α
x

}
, (4.31)

G2(x) = exp
{
−1
x

+
α

xt

}
, (4.32)

G3(x) = exp
{
−1
x

+
α

xt
+ log(1− α)

}
. (4.33)

Then

G←1 (p) =
α

log(1/p)
, (4.34)

G←2 (p) =
[
log(1/p) +

α

xt

]−1

, (4.35)

G←3 (p) =
[
log(1/p) +

α

xt
+ log(1− α)

]−1

, (4.36)

Now consider the three different cases.

Case 1: If xt
xt−1

> 1−α
α then Ft+1(x) is given by (4.3), so Ft+1(x) has a jump at x∗t . Then
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by definition (4.27) we have

F←t+1(p) =


x∗t , p ≤ Ft+1(x∗t ),

G←1 (p), p > Ft+1(x∗t ).
(4.37)

Since Ft+1(x∗t ) = exp
{
− α
x∗t

}
we obtain (4.28).

Case 2: If xt
xt−1

= 1−α
α then Ft+1(x) is given by (4.4), so Ft+1(x) is continuous. Thus we

have

F←t+1(p) =


G←2 (p), p ≤ Ft+1(x∗t ),

G←1 (p), p > Ft+1(x∗t ),
(4.38)

which gives (4.29).

Case 3: If xt
xt−1

< 1−α
α then Ft+1(x) is given by (4.5), so Ft+1(x) has a jump at x∗t .

Therefore,

F←t+1(p) =


G←3 (p), p ≤ Ft+1(x∗t−),

x∗t , Ft+1(x∗t−) < p ≤ Ft+1(x∗t ),

G←1 (p), p > Ft+1(x∗t ),

(4.39)

Since Ft+1(x∗t−) = (1− α) exp
{
− α
x∗t

}
, we obtain (4.30).

The median of Ft+1(x) is obtained by a straightforward application of Proposition 4.1.4.

Observe that

1
2
≤ exp

{
− α

x∗t

}
⇐⇒ x∗t ≥

α

log 2
, (4.40)

1
2
≤ (1− α) exp

{
− α

x∗t

}
⇐⇒ x∗t ≥

α

log 2− log(1− α)
. (4.41)

Corollary 4.1.5. The median of Ft+1(x), denoted νt+1 is as follows.
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If xt
xt−1

> 1−α
α then

νt+1 =


α

log 2 , x∗t <
α

log 2 ,

x∗t , x∗t ≥ α
log 2 .

(4.42)

If xt
xt−1

= 1−α
α then

νt+1 =


α

log 2 , x∗t <
α

log 2 ,[
log 2 + α

xt

]−1
, x∗t ≥ α

log 2 .

(4.43)

If xt
xt−1

< 1−α
α then

νt+1 =



α
log 2 , x∗t <

α
log 2 ,

x∗t ,
α

log 2 ≤ x
∗
t <

α
log 2−log(1−α) ,[

log 2 + α
xt

+ log(1− α)
]−1

, x∗t ≥ α
log 2−log(1−α) .

(4.44)

4.2 Conditional Distribution of MM(2) Processes

Consider the MM(2) process

Xt = max {α0Zt, α1Zt−1, α2Zt−2} , t ∈ Z, (4.45)

where {Zt} are iid unit Fréchet random variables with distribution function Φ1(x) = e−1/x,

x > 0, and αk ≥ 0 satisfying
∑

k αk = 1.

Our main goal in this section is to show that MM(2) processes are third-order Markov.

Following the developments in §4.1, we are interested in calculating

Ft+1(x) ≡ P {Xt+1 ≤ x | Ft} . (4.46)

We find that (4.46) depends on the relationship between α1/α0 and α2/α1, and also depends

on past values of the process. In what follows we provide explicit expressions for (4.46) in

each of these cases. We defer the proofs to §4.2.1.
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Result for α2/α1 < α1/α0

If α2/α1 < α1/α0, we claim that Ft+1(x) may always be calculated as a function of x, xt,

and xt−1 (but not using values of xs, s < t − 1). In other words, under this restriction

MM(2) processes are second-order Markov.

Proposition 4.2.1. Suppose α2/α1 < α1/α0, and Xt and Ft+1(x) are given by (4.45) and

(4.46), respectively.

If xt/xt−1 > α1/α0 then

Ft+1(x) =


0, x < α1

α0
xt,

exp
{
−α0

x

}
, x ≥ α1

α0
xt.

(4.47)

If xt/xt−1 = α1/α0 then

Ft+1(x) =


0, x < α2

α1
xt,

exp
{
−α0+α1

x + α0
xt

}
, α2

α1
xt ≤ x < α1

α0
xt,

exp
{
−α0

x

}
, x ≥ α1

α0
xt.

(4.48)

If α2/α1 < xt/xt−1 < α1/α0 then

Ft+1(x) =


0, x < α2

α1
xt,

α1
α0+α1

exp
{
−α0+α1

x + α0
xt

}
, α2

α1
xt ≤ x < α1

α0
xt,

exp
{
−α0

x

}
, x ≥ α1

α0
xt.

(4.49)

If xt/xt−1 = α2/α1 then

Ft+1(x) =


exp

{
− 1
x + α0+α1

xt

}
, x < α2

α1
xt,

exp
{
−α0+α1

x + α0
xt

}
, α2

α1
xt ≤ x < α1

α0
xt,

exp
{
−α0

x

}
, x ≥ α1

α0
xt.

(4.50)
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If xt/xt−1 < α2/α1 then

Ft+1(x) =


α2 exp

{
− 1
x + α0+α1

xt

}
, x < α2

α1
xt,

(α1 + α2) exp
{
−α0+α1

x + α0
xt

}
, α2

α1
xt ≤ x < α1

α0
xt,

exp
{
−α0

x

}
, x ≥ α1

α0
xt.

(4.51)

Result for α2/α1 > α1/α0

If α2/α1 > α1/α0, we claim that Ft+1(x) may always be calculated as a function of

x, xt, xt−1, and xt−2 (but not using values of xs, s < t − 2). In other words, MM(2)

processes are third-order Markov.

Proposition 4.2.2. Suppose α2/α1 > α1/α0, and Xt and Ft+1(x) are given by (4.45) and

(4.46), respectively.

If xt/xt−1 > α2/α1 then

Ft+1(x) =


0, x < α1

α0
xt,

exp
{
−α0

x

}
, x ≥ α1

α0
xt.

(4.52)

If xt/xt−1 = α2/α1 then

Ft+1(x) =


exp

{
− 1
x + α0

xt
+ α0

xt−1

}
, x < α1

α0
xt = α2

α0
xt−1,

exp
{
−α0

x

}
, x ≥ α1

α0
xt = α2

α0
xt−1.

(4.53)

If α1/α0 < xt/xt−1 < α2/α1 and xt−1/xt−2 > α2/α1 then

Ft+1(x) =


0, x < α2

α0
xt−1,

exp
{
−α0

x

}
, x ≥ α2

α0
xt−1.

(4.54)
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If α1/α0 < xt/xt−1 < α2/α1 and xt−1/xt−2 ≤ α2/α1 then

Ft+1(x) =



(
α2

α0+α2

)2
exp

{
− 1
x + α0

xt
+ α0

xt−1

}
, x < α1

α0
xt,

α2
α0+α2

exp
{
−α0+α2

x + α0
xt−1

}
, α1

α0
xt ≤ x < α2

α0
xt−1,

exp
{
−α0

x

}
, x ≥ α2

α0
xt−1.

(4.55)

If xt/xt−1 = α1/α0 then

Ft+1(x) =


0, x < α2

α1
xt = α2

α0
xt−1,

exp
{
−α0

x

}
, x ≥ α2

α1
xt = α2

α0
xt−1.

(4.56)

If xt/xt−1 < α1/α0 then

Ft+1(x) =


α2 exp

{
− 1
x + α0+α1

xt

}
, x < α1

α0
xt,

(α0 + α2) exp
{
−α0+α2

x + α1
xt

}
, α1

α0
xt ≤ x < α2

α1
xt,

exp
{
−α0

x

}
, x ≥ α2

α1
xt.

(4.57)

Result for α2/α1 = α1/α0

If α2/α1 = α1/α0, we claim that Ft+1(x) may always be calculated as a function of x,

xt, xt−1, and xt−2 (but not using values of xs, s < t−2). In other words, MM(2) processes

are third-order Markov.

Proposition 4.2.3. Suppose α2/α1 = α1/α0, and Xt and Ft+1(x) are given by (4.45) and

(4.46), respectively.

If xt/xt−1 > α1/α0; or xt/xt−1 = α1/α0 and xt−1/xt−2 > α1/α0; then

Ft+1(x) =


0, x < α1

α0
xt,

exp
{
−α0

x

}
, x ≥ α1

α0
xt.

(4.58)
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If xt/xt−1 = α1/α0 and xt−1/xt−2 = α1/α0 then

Ft+1(x) =


exp

{
− 1
x + α0+α1

xt

}
, x < α1

α0
xt,

exp
{
−α0

x

}
, x ≥ α1

α0
xt.

(4.59)

If xt/xt−1 = α1/α0 and xt−1/xt−2 < α1/α0 then

Ft+1(x) =


α1

α0+α1
exp

{
− 1
x + α0+α1

xt

}
, x < α1

α0
xt,

exp
{
−α0

x

}
, x ≥ α1

α0
xt.

(4.60)

If xt/xt−1 < α1/α0 then

Ft+1(x) =


α2 exp

{
− 1
x + α0+α1

xt

}
, x < α1

α0
xt,

exp
{
−α0

x

}
, x ≥ α1

α0
xt.

(4.61)

Conditional Probabilities of Jumps

Corollaries 4.2.4, 4.2.5, and 4.2.6 give explicit expressions for the conditional probabil-

ities of a jump in the process given Ft. We use the notation x∗t,0 = α2
α0
xt−1, x∗t,1 = α1

α0
xt,

x∗t,2 = α2
α1
xt. These results follow directly by calculating

pi = P
{
Xt+1 = x∗t,i

∣∣ Ft} = Ft+1(x∗t,i)− Ft+1(x∗t,i−), i = 0, 1, 2. (4.62)

Note that for α2/α1 ≤ α1/α0 we have p0 = 0.

Corollary 4.2.4. Suppose α2/α1 < α1/α0, and Xt and Ft+1(x) are given by (4.45) and

(4.46), respectively.

If xt/xt−1 > α1/α0 then p2 = 0, and

p1 = exp

{
− α0

x∗t,1

}
. (4.63)
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If xt/xt−1 = α1/α0 then p1 = 0, and

p2 = exp

{
−(α0 + α1)2 − α0

α1 x∗t,2

}
. (4.64)

If α2/α1 < xt/xt−1 < α1/α0 then

p1 =
α0

α0 + α1
exp

{
− α0

x∗t,1

}
, (4.65)

p2 =
α1

α0 + α1
exp

{
−(α0 + α1)2 − α0

α1 x∗t,2

}
. (4.66)

If xt/xt−1 = α2/α1 then p1 = p2 = 0.

If xt/xt−1 < α2/α1 then

p1 = α0 exp

{
− α0

x∗t,1

}
, (4.67)

p2 = α1 exp

{
−(α0 + α1)2 − α0

α1 x∗t,2

}
. (4.68)

Corollary 4.2.5. Suppose α2/α1 > α1/α0, and Xt and Ft+1(x) are given by (4.45) and

(4.46), respectively.

If xt/xt−1 > α2/α1 then p0 = p2 = 0, and

p1 = exp

{
− α0

x∗t,1

}
. (4.69)

If xt/xt−1 = α2/α1 then p0 = p1 = p2 = 0.

If α1/α0 < xt/xt−1 < α2/α1 and xt−1/xt−2 > α2/α1 then p1 = p2 = 0, and

p0 = exp

{
− α0

x∗t,0

}
. (4.70)

If α1/α0 < xt/xt−1 < α2/α1 and xt−1/xt−2 ≤ α2/α1 then p2 = 0, and

p0 =
α0

α0 + α2
exp

{
− α0

x∗t,0

}
, (4.71)
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p1 =
α0 α2

(α0 + α2)2
exp

{
−α0 + α2

x∗t,1
+

α0

xt−1

}
. (4.72)

If xt/xt−1 = α1/α0 then p1 = 0, and

p0 = p2 = exp

{
− α0

x∗t,2

}
. (4.73)

If xt/xt−1 < α1/α0 then p0 = 0, and

p1 = α0 exp

{
−α0 + α2

x∗t,1
+

α2

x∗t,2

}
, (4.74)

p2 = α1 exp

{
− α0

x∗t,2

}
. (4.75)

Corollary 4.2.6. Suppose α2/α1 = α1/α0, and Xt and Ft+1(x) are given by (4.45) and

(4.46), respectively.

If xt/xt−1 > α1/α0; or xt/xt−1 = α1/α0 and xt−1/xt−2 > α1/α0; then

p1 = p2 = exp

{
− α0

x∗t,1

}
. (4.76)

If xt/xt−1 = α1/α0 and xt−1/xt−2 = α1/α0 then p1 = p2 = 0.

If xt/xt−1 = α1/α0 and xt−1/xt−2 < α1/α0 then

p1 = p2 =
α0

α0 + α1
exp

{
− α0

x∗t,1

}
. (4.77)

If xt/xt−1 < α1/α0 then

p1 = p2 = (α0 + α1) exp

{
− α0

x∗t,1

}
. (4.78)

4.2.1 Proofs

Proof of Proposition 4.2.1.

Assume α2/α1 < α1/α0. Consider all possible scenarios for the ratio Xt/Xt−1 as shown

in Table 4.1. We deduce that the ratio Xt/Xt−1 can fall into one of the five intervals defined
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by the values (α2/α1, α1/α0), and Table 4.2 summarizes these five cases. In what follows

we consider each of these cases in detail.

Xt Xt−1 Xt/Xt−1

α0Zt α0Zt−1 > α1/α0

α1Zt−2 > α2/α1

α2Zt−3 ?

α1Zt−1 α0Zt−1 = α1/α0

α1Zt−2 (α2/α1, α1/α0)

α2Zt−3 < α1/α0

α2Zt−2 α0Zt−1 (α1/α0, α2/α1)

α1Zt−2 = α2/α1

α2Zt−3 < α2/α1

Table 4.1: Ratio of Contiguous Observations from MM(2) Processes for the Proof of Proposi-
tion 4.2.1.

Case xt/xt−1 Deduction

1 > α1/α0 Zt = xt
α0

and Zt−1 ≤ xt−1

α0

2 = α1/α0 Zt <
xt
α0

and Zt−1 = xt
α1

= xt−1

α0

3 ∈ (α2/α1, α1/α0) Zt−1 <
xt−1

α0
. However, Xt can be either α0Zt

or α1Zt−1.

4 = α2/α1 Zt <
xt
α0

and Zt−1 <
xt
α1

5 < α2/α1 Zt−1 <
xt−1

α0
. However, Xt can be either α0Zt,

α1Zt−1, or α2Zt−2.

Table 4.2: Deduced Cases for the Proof of Proposition 4.2.1.

Case 1: If xt/xt−1 > α1/α0, then Zt = xt
α0

and Zt−1 ≤ xt−1

α0
= min

(
xt
α1
, xt−1

α0

)
. Note that

xt
xt−1

> α1
α0

> α2
α1
⇐⇒ α1

α0
xt >

α2
α0
xt−1, and P

{
Zt−1 ≤ x

α2

∣∣∣ Zt−1 ≤ xt−1

α0

}
= 1 for

x ≥ α1
α0
xt. Then

Ft+1(x) = P

{
Zt+1 ≤

x

α0
, Zt ≤

x

α1
, Zt−1 ≤

x

α2

∣∣∣∣Zt =
xt
α0
, Zt−1 ≤

xt−1

α0

}
= P

{
Zt+1 ≤

x

α0

}
I
(
x ≥ α1

α0
xt

)
P

{
Zt−1 ≤

x

α2

∣∣∣∣ Zt−1 ≤
xt−1

α0

}
= P

{
Zt+1 ≤

x

α0

}
I
(
x ≥ α1

α0
xt

)
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=


0, x < α1

α0
xt,

exp
{
−α0

x

}
, x ≥ α1

α0
xt.

(4.79)

Case 2: If xt/xt−1 = α1/α0, then Zt <
xt
α0

and Zt−1 = xt
α1

= xt−1

α0
. We also have α1

α0
xt >

α2
α1
xt = α2

α0
xt−1. Then

Ft+1(x) = P

{
Zt+1 ≤

x

α0
, Zt ≤

x

α1
, Zt−1 ≤

x

α2

∣∣∣∣Zt < xt
α0
, Zt−1 =

xt
α1

}
= P

{
Zt+1 ≤

x

α0

}
P

{
Zt ≤

x

α1

∣∣∣∣ Zt < xt
α0

}
I
(
x ≥ α2

α1
xt

)

=


0, x < α2

α1
xt,

exp
{
−α0+α1

x + α0
xt

}
, α2

α1
xt ≤ x < α1

α0
xt,

exp
{
−α0

x

}
, x ≥ α1

α0
xt.

(4.80)

Case 3: If α2/α1 < xt/xt−1 < α1/α0, then Zt−1 <
xt−1

α0
and Zt−2 ≤ xt−1

α1
= min

(
xt−1

α1
, xt
α2

)
.

However, Xt can be either α0Zt or α1Zt−1. Then for infinitesimally small δt,

P

{
Zt ∈

(xt, xt + δt)
α0

, Zt−1 <
xt
α1
, Zt−2 <

xt
α2

∣∣∣∣Ft}
= P

{
Zt ∈

(xt, xt + δt)
α0

, Zt−1 <
xt
α1
, Zt−2 <

xt
α2

∣∣∣∣ Zt−1 <
xt−1

α0
, Zt−2 ≤

xt−1

α1

}
= P

{
Zt ∈

(xt, xt + δt)
α0

}
P

{
Zt−1 <

xt
α1

∣∣∣∣ Zt−1 <
xt−1

α0

}
=
α0δt
x2
t

exp
{
−α0 + α1

xt
+

α0

xt−1

}
. (4.81)

Similarly,

P

{
Zt <

xt
α0
, Zt−1 ∈

(xt, xt + δt)
α1

, Zt−2 <
xt
α2

∣∣∣∣ Ft}
=
α1δt
x2
t

exp
{
−α0 + α1

xt
+

α0

xt−1

}
. (4.82)

Define A = {α0Zt > α1Zt−1}. Since Zt−2 <
xt
α2

then {Xt = xt} = A ∪ Ac, and we
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have

P {A | Ft} = P {A | Xt = xt, Ft}

=
P {A | Ft}

P {A ∪Ac | Ft}

=
α0

α0 + α1
. (4.83)

Thus we can write

Ft+1(x) =
α0

α0 + α1
F

(0)
t+1(x) +

α1

α0 + α1
F

(1)
t+1(x), (4.84)

where

F
(i)
t+1(x) = P

{
Xt+1 ≤ x

∣∣∣∣Zt−i =
xt
αi
, Ft

}
, i = 0, 1, 2. (4.85)

Note that If Zt = xt
α0

then Zt−1 <
xt
α1

= min
(
xt
α1
, xt−1

α0

)
(because xt

xt−1
< α1

α0
), so that

F
(0)
t+1(x) is given by (4.79). On the other hand, if Zt−1 = xt

α1
then F (1)

t+1(x) is given by

(4.80). By combining these results into (4.84) we obtain

Ft+1(x) =


0, x < α2

α1
xt,

α1
α0+α1

exp
{
−α0+α1

x + α0
xt

}
, α2

α1
xt ≤ x < α1

α0
xt,

exp
{
−α0

x

}
, x ≥ α1

α0
xt.

(4.86)

Case 4: If xt/xt−1 = α2/α1 then Zt−2 = xt
α2

= xt−1

α1
, Zt < xt

α0
, and since xt

xt−1
= α2

α1
<

α1
α0
⇐⇒ xt

α1
< xt−1

α0
, then Zt−1 <

xt
α1

= min
(
xt
α1
, xt−1

α0

)
. Write

Ft+1(x) = P

{
Zt+1 ≤

x

α0
, Zt ≤

x

α1
, Zt−1 ≤

x

α2

∣∣∣∣Zt < xt
α0
, Zt−1 <

xt
α1

}
= P

{
Zt+1 ≤

x

α0

}
P

{
Zt ≤

x

α1

∣∣∣∣ Zt < xt
α0

}
P

{
Zt−1 ≤

x

α2

∣∣∣∣ Zt−1 <
xt
α1

}
.

(4.87)
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The second product term in (4.87) is

P

{
Zt ≤

x

α1

∣∣∣∣ Zt < xt
α0

}
=


exp

{
−α1

x + α0
xt

}
, x < α1

α0
xt,

1, x ≥ α1
α0
xt,

(4.88)

and the third product term in (4.87) is

P

{
Zt−1 ≤

x

α2

∣∣∣∣ Zt−1 <
xt
α1

}
=


exp

{
−α2

x + α1
xt

}
, x < α2

α1
xt,

1, x ≥ α2
α1
xt.

(4.89)

Therefore

Ft+1(x) =


exp

{
− 1
x + α0+α1

xt

}
, x < α2

α1
xt,

exp
{
−α0+α1

x + α0
xt

}
, α2

α1
xt ≤ x < α1

α0
xt,

exp
{
−α0

x

}
, x ≥ α1

α0
xt.

(4.90)

Case 5: If xt/xt−1 < α2/α1 then Zt−3 = xt−1

α2
and xt−1/xt−2 ≤ α2/α1 < α1/α0. Hence

Zt−2 <
xt−1

α1
= min

(
xt−1

α1
, xt−2

α0

)
and Zt−1 <

xt−1

α0
. However, Xt can be either α0Zt,

α1Zt−1, or α2Zt−2. Then for infinitesimally small δt,

P

{
Zt ∈

(xt, xt + δt)
α0

, Zt−1 <
xt
α1
, Zt−2 <

xt
α2

∣∣∣∣Ft}
= P

{
Zt ∈

(xt, xt + δt)
α0

}
P

{
Zt−1 <

xt
α1

∣∣∣∣ Zt−1 <
xt−1

α0

}
× P

{
Zt−2 <

xt
α2

∣∣∣∣ Zt−2 <
xt−1

α1

}
=
α0δt
x2
t

exp
{
− 1
xt

+
α0 + α1

xt−1

}
. (4.91)

Similar calculations show

P

{
Zt−i ∈

(xt, xt + δt)
αi

, Zt−j <
xt
αj
, j 6= i

∣∣∣∣ Ft} =
αiδt
x2
t

exp
{
− 1
xt

+
α0 + α1

xt−1

}
,

i = 1, 2. (4.92)
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Then it follows that

P

{
αiZt−i > αkZt−k, k 6= i

∣∣∣∣Zt−3 =
xt−1

α2
, Ft

}
= αi, i = 0, 1, 2. (4.93)

Thus we can write

Ft+1(x) = α0F
(0)
t+1(x) + α1F

(1)
t+1(x) + α2F

(2)
t+1(x), (4.94)

where F (i)
t+1(x) is defined by (4.85).

On the other hand, F (0)
t+1(x) is given by (4.79), F (1)

t+1(x) is given by (4.80), and F (2)
t+1(x)

is given by (4.90). Substituting into (4.94) gives

Ft+1(x) =


α2 exp

{
− 1
x + α0+α1

xt

}
, x < α2

α1
xt,

(α1 + α2) exp
{
−α0+α1

x + α0
xt

}
, α2

α1
xt ≤ x < α1

α0
xt,

exp
{
−α0

x

}
, x ≥ α1

α0
xt.

(4.95)

Proof of Proposition 4.2.2.

Assume α2/α1 > α1/α0. Consider all possible scenarios for the ratios Xt/Xt−1 and

Xt−1/Xt−2 as shown in Table 4.3. We deduce six cases as summarized in Table 4.4, and

consider each of these cases in detail.

Xt Xt−1 Xt−2 Xt/Xt−1 Xt−1/Xt−2

α0Zt α0Zt−1 α0Zt−2 > α1/α0 > α1/α0

α1Zt−3 > α1/α0 > α2/α1

α2Zt−4 > α1/α0 ?
α1Zt−2 α0Zt−2 > α2/α1 = α1/α0

α1Zt−3 > α2/α1 (α2/α1, α1/α0)
α2Zt−4 > α2/α1 < α1/α0

α2Zt−3 α0Zt−2 ? (α1/α0, α2/α1)
α1Zt−3 ? = α2/α1

α2Zt−4 ? < α2/α1

Table 4.3: Ratio of Contiguous Observations from MM(2) Processes for the Proof of Proposi-
tions 4.2.2 and 4.2.3.
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Xt Xt−1 Xt−2 Xt/Xt−1 Xt−1/Xt−2

α1Zt−1 α0Zt−1 α0Zt−2 = α1/α0 > α1/α0

α1Zt−3 = α1/α0 > α2/α1

α2Zt−4 = α1/α0 ?
α1Zt−2 α0Zt−2 (α2/α1, α1/α0) = α1/α0

α1Zt−3 (α2/α1, α1/α0) (α2/α1, α1/α0)
α2Zt−4 (α2/α1, α1/α0) < α1/α0

α2Zt−3 α0Zt−2 < α1/α0 (α1/α0, α2/α1)
α1Zt−3 < α1/α0 = α2/α1

α2Zt−4 < α1/α0 < α2/α1

α2Zt−2 α0Zt−1 α0Zt−2 (α1/α0, α2/α1) > α1/α0

α1Zt−3 (α1/α0, α2/α1) > α2/α1

α2Zt−4 (α1/α0, α2/α1) ?
α1Zt−2 α0Zt−2 = α2/α1 = α1/α0

α1Zt−3 = α2/α1 (α2/α1, α1/α0)
α2Zt−4 = α2/α1 < α1/α0

α2Zt−3 α0Zt−2 < α2/α1 (α1/α0, α2/α1)
α1Zt−3 < α2/α1 = α2/α1

α2Zt−4 < α2/α1 < α2/α1

Table 4.3: (continued) Ratio of Contiguous Observations from MM(2) Processes for the Proof of
Propositions 4.2.2 and 4.2.3.

Case xt/xt−1 xt−1/xt−2 Deduction

1 > α2/α1 Zt = xt
α0

and Zt−1 ≤ xt−1

α0
.

2 = α2/α1 Zt <
xt
α0

and Zt−1 <
xt−1

α0
.

3.1 ∈ (α1/α0, α2/α1) > α2/α1 Zt−1 = xt−1

α0
< xt

α1
. However, Xt can be either

α0Zt or α2Zt−2.

3.2 ∈ (α1/α0, α2/α1) ≤ α2/α1 Zt−1 < xt
α1

. However, Xt can be either α0Zt
or α2Zt−2, and Xt−1 can be either α0Zt−1 or
α2Zt−3.

4 = α1/α0 Zt <
xt
α0

and Zt−1 = xt
α1

= xt−1

α0
.

5 < α1/α0 Zt−1 <
xt−1

α0
. However, Xt can be either α0Zt,

α1Zt−1, or α2Zt−2.

Table 4.4: Deduced Cases for the Proof of Proposition 4.2.2.

Case 1: If xt/xt−1 > α2/α1 then Zt = xt
α0

. Since xt
xt−1

> α2
α1

> α1
α0

then Zt−1 ≤ xt−1

α0
=
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min
(
xt
α1
, xt−1

α0

)
and α1

α0
xt >

α2
α0
xt−1. Then

Ft+1(x) = P

{
Xt+1 ≤ x

∣∣∣∣Zt =
xt
α0
, Zt−1 ≤

xt−1

α0

}
= P

{
Zt+1 ≤

x

α0

}
I
(
x ≥ α1

α0
xt

)
P

{
Zt−1 ≤

x

α2

∣∣∣∣ Zt−1 ≤
xt−1

α0

}

=


0, x < α1

α0
xt,

exp
{
−α0

x

}
, x ≥ α1

α0
xt.

(4.96)

Case 2: If xt/xt−1 = α2/α1 then Zt−2 = xt
α2

= xt−1

α1
, so Zt < xt

α0
. Moreover, xt

xt−1
= α2

α1
> α1

α0

implies Zt−1 <
xt−1

α0
= min

(
xt
α1
, xt−1

α0

)
. Then

Ft+1(x) = P

{
Zt+1 ≤

x

α0
, Zt ≤

x

α1
, Zt−1 ≤

x

α2

∣∣∣∣Zt < xt
α0
, Zt−1 <

xt−1

α0

}
= P

{
Zt+1 ≤

x

α0

}
P

{
Zt ≤

x

α1

∣∣∣∣ Zt < xt
α0

}
P

{
Zt−1 ≤

x

α2

∣∣∣∣ Zt−1 <
xt−1

α0

}

=


exp

{
− 1
x + α0

xt
+ α0

xt−1

}
, x < α1

α0
xt = α2

α0
xt−1,

exp
{
−α0

x

}
, x ≥ α1

α0
xt = α2

α0
xt−1.

(4.97)

Case 3.1: If α1/α0 < xt/xt−1 < α2/α1 and xt−1/xt−2 > α2/α1 then Zt−1 = xt−1

α0
< xt

α1
.

However, Xt can be either α0Zt or α2Zt−2. Also note that α1
α0
xt <

α2
α0
xt−1.

We introduce the following notation.

F
(i,j)
t+1 (x) = P

{
Xt+1 ≤ x

∣∣∣∣Zt−i =
xt
αi
, Zt−j =

xt−1

αj
, Ft

}
, i = 0, 1, 2, j = 0, 1, 2.

(4.98)

If Zt = xt
α0

then

F
(0,0)
t+1 (x) = P

{
Zt+1 ≤

x

α0
, Zt ≤

x

α1
, Zt−1 ≤

x

α2

∣∣∣∣ Zt =
xt
α0
, Zt−1 =

xt−1

α0
, Ft

}
= P

{
Zt+1 ≤

x

α0

}
I
(
x ≥ α1

α0
xt

)
I
(
x ≥ α2

α0
xt−1

)

=


0, x < α2

α0
xt−1,

exp
{
−α0

x

}
, x ≥ α2

α0
xt−1.

(4.99)
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On the other hand, if Zt−2 = xt
α2

then

F
(2,0)
t+1 (x) = P

{
Zt+1 ≤

x

α0
, Zt ≤

x

α1
, Zt−1 ≤

x

α2

∣∣∣∣ Zt < xt
α0
, Zt−1 =

xt−1

α0
, Ft

}
= P

{
Zt+1 ≤

x

α0

}
P

{
Zt ≤

x

α1

∣∣∣∣ Zt < xt
α0

}
I
(
x ≥ α2

α0
xt−1

)

=


0, x < α2

α0
xt−1,

exp
{
−α0

x

}
, x ≥ α2

α0
xt−1,

(4.100)

which follows because P
{
Zt ≤ x

α1

∣∣∣ Zt < xt
α0

}
= 1 for x ≥ α2

α0
xt−1. Therefore

Ft+1(x) =


0, x < α2

α0
xt−1,

exp
{
−α0

x

}
, x ≥ α2

α0
xt−1.

(4.101)

Case 3.2: If α1/α0 < xt/xt−1 < α2/α1 and xt−1/xt−2 ≤ α2/α1 then Zt−1 < xt
α1

, and

Zt−2 <
xt−1

α1
. However, Xt can be either α0Zt or α2Zt−2, and Xt−1 can be either

α0Zt−1 or α2Zt−3.

First consider the probability of each of the two possible cases for Xt−1. For infinites-

imally small δt−1, we have

P

{
Zt−1 ∈

(xt−1, xt−1 + δt−1)
α0

, Zt−3 <
xt−1

α2

∣∣∣∣Ft}
= P

{
Zt−1 ∈

(xt−1, xt−1 + δt−1)
α0

∣∣∣∣ Zt−1 <
xt
α1

}
P

{
Zt−3 <

xt−1

α2

∣∣∣∣ Zt−3 ≤
xt−2

α1

}
=
α0δt−1

x2
t−1

exp
{
−α0 + α2

xt−1
+
α1

xt
+

α1

xt−2

}
, (4.102)

and

P

{
Zt−1 <

xt−1

α0
, Zt−3 ∈

(xt−1, xt−1 + δt−1)
α2

∣∣∣∣Ft}
=
α2δt−1

x2
t−1

exp
{
−α0 + α2

xt−1
+
α1

xt
+

α1

xt−2

}
. (4.103)
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Then we have

P {α0Zt−1 > α2Zt−3 | Ft} =
α0

α0 + α2
. (4.104)

Similar calculations give the relative frequencies of each of the two possible cases for

Xt. In other words, we have

P {α0Zt > α2Zt−2 | Ft} =
α0

α0 + α2
. (4.105)

On the other hand, if Zt−1 = xt−1

α0
then we obtain equation (4.101). Thus we can

write

Ft+1(x) =
α0

α0 + α2
exp

{
−α0

x

}
I
(
x ≥ α2

α0
xt−1

)
+

α2

α0 + α2

[
α0

α0 + α2
F

(0,2)
t+1 (x) +

α2

α0 + α2
F

(2,2)
t+1 (x)

]
, (4.106)

where F (i,j)
t+1 (x) is defined in (4.98).

Next, we obtain explicit expressions for F (0,2)
t+1 (x) and F (2,2)

t+1 (x). Note that xt
xt−1

< α2
α1

gives α1
α0
xt <

α2
α0
xt−1, then

F
(0,2)
t+1 (x) = P

{
Xt+1 ≤ x | Zt =

xt
α0
, Zt−1 <

xt−1

α0
, Ft

}
= P

{
Zt+1 ≤

x

α0

}
I
(
x ≥ α1

α0
xt

)
P

{
Zt−1 ≤

x

α2

∣∣∣∣ Zt−1 <
xt−1

α0

}

=


0, x < α1

α0
xt,

exp
{
−α0+α2

x + α0
xt−1

}
, α1

α0
xt ≤ x < α2

α0
xt−1,

exp
{
−α0

x

}
, x ≥ α2

α0
xt−1.

(4.107)

Similarly,

F
(2,2)
t+1 (x) = P

{
Xt+1 ≤ x | Zt <

xt
α0
, Zt−1 <

xt−1

α0
, Ft

}
= P

{
Zt+1 ≤

x

α0

}
P

{
Zt ≤

x

α1

∣∣∣∣ Zt < xt
α0

}
P

{
Zt−1 ≤

x

α2

∣∣∣∣ Zt−1 <
xt−1

α0

}
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=


exp

{
− 1
x + α0

xt
+ α0

xt−1

}
, x < α1

α0
xt,

exp
{
−α0+α2

x + α0
xt−1

}
, α1

α0
xt ≤ x < α2

α0
xt−1,

exp
{
−α0

x

}
, x ≥ α2

α0
xt−1.

(4.108)

Substituting (4.107) and (4.108) into (4.106) gives

Ft+1(x) =



(
α2

α0+α2

)2
exp

{
− 1
x + α0

xt
+ α0

xt−1

}
, x < α1

α0
xt,

α2
α0+α2

exp
{
−α0+α2

x + α0
xt−1

}
, α1

α0
xt ≤ x < α2

α0
xt−1,

exp
{
−α0

x

}
, x ≥ α2

α0
xt−1.

(4.109)

Case 4: If xt/xt−1 = α1/α0 then Zt < xt
α0

and Zt−1 = xt
α1

= xt−1

α0
, therefore

Ft+1(x) = P

{
Zt+1 ≤

x

α0
, Zt ≤

x

α1
, Zt−1 ≤

x

α2

∣∣∣∣Zt < xt
α0
, Zt−1 =

xt
α1

}
= P

{
Zt+1 ≤

x

α0

}
P

{
Zt ≤

x

α1

∣∣∣∣ Zt < xt
α0

}
I
(
x ≥ α2

α1
xt

)

=


0, x < α2

α1
xt = α2

α0
xt−1,

exp
{
−α0

x

}
, x ≥ α2

α1
xt = α2

α0
xt−1.

(4.110)

Case 5: If xt/xt−1 < α1/α0 then Zt−1 <
xt−1

α0
and Zt−2 ≤ min

(
xt−1

α1
, xt−2

α0

)
. However, Xt

can be either α0Zt, α1Zt−1, or α2Zt−2.

First note that xt/xt−1 < α1/α0 implies xt−1/xt−2 ≤ α2/α1. Second, we claim that

α1
α0
xt−1 < min

(
α2
α1
xt−1,

α2
α0
xt−2

)
. This follows because if α1/α0 < xt−1/xt−2 ≤ α2/α1

then α1
α0
xt−1 <

α2
α0
xt−2. On the other hand, if xt−1/xt−2 ≤ α1/α0 then xt−1

α1
< xt−2

α0
,

so α1
α0
xt−1 <

α2
α1
xt−1. Denote x∗ = min

(
xt−1

α1
, xt−2

α0

)
. Then for infinitesimally small δt,

P

{
Zt ∈

(xt, xt + δt)
α0

, Zt−1 <
xt
α1
, Zt−2 <

xt
α2

∣∣∣∣Ft}
= P

{
Zt ∈

(xt, xt + δt)
α0

}
P

{
Zt−1 <

xt
α1

∣∣∣∣ Zt−1 <
xt−1

α0

}
× P

{
Zt−2 <

xt
α2

∣∣∣∣ Zt−2 ≤ x∗
}
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=
α0δt
x2
t

exp
{
− 1
xt

+
α0

xt−1
+

1
x∗

}
, (4.111)

By the same argument used in previous cases it follows that

P

{
αiZt−i > αkZt−k, k 6= i

∣∣∣∣Zt−3 =
xt−1

α2
, Ft

}
= αi, i = 0, 1, 2. (4.112)

Thus we can write

Ft+1(x) = α0F
(0,2)
t+1 (x) + α1F

(1,2)
t+1 (x) + α2F

(2,2)
t+1 (x), (4.113)

where F (i,j)
t+1 (x) is defined in (4.98).

We now consider F (0,2)
t+1 (x), F (1,2)

t+1 (x), and F (2,2)
t+1 (x) in detail:

� If Zt = xt
α0

then Zt−1 <
xt
α1

= min
(
xt
α1
, xt−1

α0

)
and

F
(0,2)
t+1 (x) = P

{
Xt+1 ≤ x | Zt =

xt
α0
, Zt−1 <

xt
α1
, Ft

}
= P

{
Zt+1 ≤

x

α0

}
I
(
x ≥ α1

α0
xt

)
P

{
Zt−1 ≤

x

α2

∣∣∣∣ Zt−1 <
xt
α1

}

=


0, x < α1

α0
xt,

exp
{
−α0+α2

x + α1
xt

}
, α1

α0
xt ≤ x < α2

α1
xt,

exp
{
−α0

x

}
, x ≥ α2

α1
xt.

(4.114)

� If Zt−1 = xt
α1

then

F
(1,2)
t+1 (x) = P

{
Xt+1 ≤ x | Zt <

xt
α0
, Zt−1 =

xt
α1
, Ft

}
= P

{
Zt+1 ≤

x

α0

}
P

{
Zt ≤

x

α1

∣∣∣∣ Zt < xt
α0

}
I
(
x ≥ α2

α1
xt

)

=


0, x < α2

α1
xt,

exp
{
−α0

x

}
, x ≥ α1

α0
xt.

(4.115)

62



� If Zt−2 = xt
α2

then Zt < xt
α0

, Zt−1 <
xt
α1

, and

F
(2,2)
t+1 (x) = P

{
Xt+1 ≤ x | Zt <

xt
α0
, Zt−1 <

xt
α1
, Ft

}
= P

{
Zt+1 ≤

x

α0

}
P

{
Zt ≤

x

α1

∣∣∣∣ Zt < xt
α0

}
P

{
Zt−1 ≤

x

α2

∣∣∣∣ Zt−1 <
xt
α1

}

=


exp

{
− 1
x + α0+α1

xt

}
, x < α1

α0
xt,

exp
{
−α0+α2

x + α1
xt

}
, α1

α0
xt ≤ x < α2

α1
xt,

exp
{
−α0

x

}
, x ≥ α2

α1
xt.

(4.116)

Substituting (4.114), (4.115), and (4.116) into (4.113) gives

Ft+1(x) =


α2 exp

{
− 1
x + α0+α1

xt

}
, x < α1

α0
xt,

(α0 + α2) exp
{
−α0+α2

x + α1
xt

}
, α1

α0
xt ≤ x < α2

α1
xt,

exp
{
−α0

x

}
, x ≥ α2

α1
xt.

(4.117)

Proof of Proposition 4.2.3.

Assume α2/α1 = α1/α0. Consider all possible scenarios for the ratios Xt/Xt−1 and

Xt−1/Xt−2 as shown in Table 4.3. We deduce five cases as summarized in Table 4.5, and

consider each of these cases in detail.

Case xt/xt−1 xt−1/xt−2 Deduction

1 > α1/α0 Zt = xt
α0

and Zt−1 ≤ xt−1

α0
.

2.1 = α1/α0 > α1/α0 Zt <
xt
α0

and Zt−1 = xt
α1

= xt−1

α0
.

2.2 = α1/α0 = α1/α0 Zt <
xt
α0

and Zt−1 <
xt
α1

.

2.3 = α1/α0 < α1/α0 Zt <
xt
α0

. However, we can have either Zt−1 =
xt
α1

= xt−1

α0
or Zt−2 = xt

α2
= xt−1

α1
.

3 < α1/α0 Zt−1 <
xt−1

α0
. However, Xt can be either α0Zt,

α1Zt−1, or α2Zt−2.

Table 4.5: Deduced Cases for the Proof of Proposition 4.2.3.
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Case 1: If xt/xt−1 > α1/α0, then Zt = xt
α0

and Zt−1 ≤ xt−1

α0
= min

(
xt
α1
, xt−1

α0

)
. Note that

xt
xt−1

> α1
α0

= α2
α1
⇐⇒ α1

α0
xt >

α2
α0
xt−1, and P

{
Zt−1 ≤ x

α2

∣∣∣ Zt−1 ≤ xt−1

α0

}
= 1 for

x ≥ α1
α0
xt. Then

Ft+1(x) = P

{
Zt+1 ≤

x

α0
, Zt ≤

x

α1
, Zt−1 ≤

x

α2

∣∣∣∣Zt =
xt
α0
, Zt−1 ≤

xt−1

α0

}
= P

{
Zt+1 ≤

x

α0

}
I
(
x ≥ α1

α0
xt

)
P

{
Zt−1 ≤

x

α2

∣∣∣∣ Zt−1 ≤
xt−1

α0

}
= P

{
Zt+1 ≤

x

α0

}
I
(
x ≥ α1

α0
xt

)

=


0, x < α1

α0
xt,

exp
{
−α0

x

}
, x ≥ α1

α0
xt.

(4.118)

Case 2.1: If xt/xt−1 = α1/α0 and xt−1/xt−2 > α1/α0 then Zt < xt
α0

and Zt−1 = xt
α1

= xt−1

α0
.

Then

Ft+1(x) = P

{
Zt+1 ≤

x

α0
, Zt ≤

x

α1
, Zt−1 ≤

x

α2

∣∣∣∣Zt < xt
α0
, Zt−1 =

xt
α1

}
= P

{
Zt+1 ≤

x

α0

}
P

{
Zt ≤

x

α1

∣∣∣∣ Zt < xt
α0

}
I
(
x ≥ α1

α0
xt

)

=


0, x < α1

α0
xt,

exp
{
−α0

x

}
, x ≥ α1

α0
xt.

(4.119)

Case 2.2: If xt/xt−1 = α1/α0 and xt−1/xt−2 = α1/α0 then Zt <
xt
α0

and Zt−1 <
xt
α1

=

min
(
xt
α1
, xt−1

α0

)
. Then

Ft+1(x) = P

{
Zt+1 ≤

x

α0
, Zt ≤

x

α1
, Zt−1 ≤

x

α2

∣∣∣∣Zt < xt
α0
, Zt−1 <

xt
α1

}
= P

{
Zt+1 ≤

x

α0

}
P

{
Zt ≤

x

α1

∣∣∣∣ Zt < xt
α0

}
P

{
Zt−1 ≤

x

α2

∣∣∣∣ Zt−1 <
xt
α1

}

=


exp

{
− 1
x + α0+α1

xt

}
, x < α1

α0
xt,

exp
{
−α0

x

}
, x ≥ α1

α0
xt.

(4.120)

Case 2.3: If xt/xt−1 = α1/α0 and xt−1/xt−2 < α1/α0 then Zt <
xt
α0

. However, we can
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have either Zt−1 = xt
α1

= xt−1

α0
(Case 2.1) or Zt−2 = xt

α2
= xt−1

α1
(Case 2.2).

Since Zt−3 <
xt−1

α2
we only need to consider, for infinitesimally small δt−1,

P

{
Zt−1 ∈

(xt−1, xt−1 + δt−1)
α0

, Zt−2 <
xt−1

α1

∣∣∣∣Ft}
= P

{
Zt−1 ∈

(xt−1, xt−1 + δt−1)
α0

, Zt−2 <
xt−1

α1

∣∣∣∣ Zt−2 <
xt−2

α0

}
=
α0δt−1

x2
t−1

exp
{
−α0 + α1

xt−1
+

α0

xt−2

}
, (4.121)

and

P

{
Zt−1 <

xt−1

α1
, Zt−2 ∈

(xt−1, xt−1 + δt−1)
α0

∣∣∣∣ Ft}
=
α1δt−1

x2
t−1

exp
{
−α0 + α1

xt−1
+

α0

xt−2

}
. (4.122)

Then it follows that

P {α0Zt−1 > α1Zt−2 | Ft} =
α0

α0 + α1
. (4.123)

By combining (4.119), (4.120) and (4.123) we obtain

Ft+1(x) =
α0

α0 + α1
F

(1,0)
t+1 (x) +

α1

α0 + α1
F

(2,1)
t+1 (x)

=


α1

α0+α1
exp

{
− 1
x + α0+α1

xt

}
, x < α1

α0
xt,

exp
{
−α0

x

}
, x ≥ α1

α0
xt.

(4.124)

Case 3: If xt/xt−1 < α1/α0 then Zt−3 = xt−1

α2
, Zt−2 < xt−1

α1
= min

(
xt−1

α1
, xt−2

α0

)
, and

Zt−1 <
xt−1

α0
. However, Xt can be either α0Zt, α1Zt−1, or α2Zt−2. Then as shown in

Case 5 of the proof of Proposition 4.2.1 we have

P

{
αiZt−i > αkZt−k, k 6= i

∣∣∣∣Zt−3 =
xt−1

α2
, Ft

}
= αi, i = 0, 1, 2. (4.125)
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Thus we can write

Ft+1(x) = α0F
(0)
t+1(x) + α1F

(1)
t+1(x) + α2F

(2)
t+1(x), (4.126)

where F (i)
t+1(x) is defined in (4.85).

On the other hand, F (0)
t+1(x) is given by (4.118), F (1)

t+1(x) is given by (4.119), and

F
(2)
t+1(x) is given by (4.120). Substituting all of these into (4.126), gives

Ft+1(x) =


α2 exp

{
− 1
x + α0+α1

xt

}
, x < α1

α0
xt,

exp
{
−α0

x

}
, x ≥ α1

α0
xt.

(4.127)
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CHAPTER 5

State-Space Models and Particle Filters

Many time series models can be represented as a state-space model, where there is an

underlying unobserved state process evolving according to a known stochastic law, and an

observation process that is dependent on the state process. The main goal is to estimate

the unobserved state process in terms of the observed process. There are three estimation

problems associated with the state-space model: prediction, filtering, and smoothing. In

this Chapter we restrict our exposition to the filtering problem.

It is well known that when the state and the observation equations are both linear and

Gaussian then the Kalman recursions (Kalman, 1960) can be used to obtain the optimal

filter. The literature on linear state-space models is extensive, for instance Harvey (1989)

and West and Harrison (1997). A good introduction is Chapter 12 of Brockwell and Davis

(1993).

However, in the presence of nonlinearities or when the process is non-Gaussian there is

no closed-form solution for the optimal filter and approximations have to be made. Particle

filters are a class of simulation filters that approximate the optimal filter by a discrete set

of particles. Finding the probabilistic and statistical properties of particle filters is a topic

of current research. In this Chapter we describe filtering and particle methods for filtering.

Our exposition is mainly based on Doucet, De Freitas and Gordon (2001).

5.1 Filtering

Let {xt} be the unobserved state process, and let {yt} be the observed process (data).

The standard formulation of the state-space model assumes that the state is first-order

Markov, i.e. xt is conditionally independent of past states and observations given xt−1.



However, some of the models considered in this work are not Markov, hence we need to keep

both cases in mind. We introduce the notation x0:t = (x0, x1, . . . , xt) and y1:t = (y1, . . . , yt).

In general, the state-space model we consider is

f (x0) , (5.1)

f (xt | x0:t−1) for t ≥ 1 (state transition equation), (5.2)

f (yt | xt) for t ≥ 1 (observation equation). (5.3)

In this model each yt is conditionally independent of past states and observations given

the current state xt, and the transition equation of the states depends only on past values

of the state. If we assume the state is first-order Markov then we substitute (5.2) with

f (xt | xt−1).

We are interested in the joint distribution of the states given the observations

f (x0:t | y1:t) =
f (y1:t | x0:t) f (x0:t)

f (y1:t)
, (5.4)

the marginal f (xt | y1:t), and expectations of the form

E (h(x0:t) | y1:t) =
∫
h(x0:t)f (x0:t | y1:t) dx0:t, (5.5)

for an integrable function h.

Recursive Formula for f (x0:t+1 | y1:t+1)

It is possible to write a recursive formula for the posterior distribution f (x0:t+1 | y1:t+1).

Assuming the state is Markov we have

f (x0:t+1 | y1:t+1) =
f (y1:t+1 | x0:t+1) f (x0:t+1)

f (y1:t+1)

=
f (yt+1 | x0:t+1, y1:t) f (y1:t | x0:t+1) f (xt+1 | x0:t) f (x0:t)

f (yt+1 | y1:t) f (y1:t)

=
f (yt+1 | xt+1) f (y1:t | x0:t) f (xt+1 | xt) f (x0:t)

f (yt+1 | y1:t) f (y1:t)

= f (x0:t | y1:t)
f (yt+1 | xt+1) f (xt+1 | xt)

f (yt+1 | y1:t)
, (5.6)
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which follows by independence of the yt’s and the fact that yt+1 only depends on xt+1. On

the other hand, if the process is not Markov, but the observations yt are still conditionally

independent given xt, i.e.

f (y1:t | x0:t) =
t∏

s=1

f (ys | xs) , (5.7)

then we have

f (x0:t+1 | y1:t+1) = f (x0:t | y1:t)
f (yt+1 | xt+1) f (xt+1 | x0:t)

f (yt+1 | y1:t)
. (5.8)

Recursive Formula for f (xt+1 | y1:t+1)

Usually the interest is on the marginal f (xt+1 | y1:t+1), which is known as the filtering

distribution. Recalling the identity

f (x | y) =
∫
f (x, y, z)
f (y, z)

f (y, z)
f (y)

dz =
∫
f (x | y, z) f (z | y) dz, (5.9)

the prediction equation when the state is Markov is

f (xt+1 | y1:t) =
∫
f (xt+1 | xt, y1:t) f (xt | y1:t) dxt

=
∫
f (xt+1 | xt) f (xt | y1:t) dxt. (5.10)

If the state is not Markov the prediction equation is

f (xt+1 | y1:t) =
∫
f (xt+1 | x0:t, y1:t) f (x0:t | y1:t) dx0:t

=
∫
f (xt+1 | x0:t) f (x0:t | y1:t) dx0:t. (5.11)

Once the new observation yt+1 has arrived, the prediction equation is updated via

f (xt+1 | y1:t+1) =
f (xt+1, y1:t+1)
f (y1:t+1)

=
f (yt+1 | xt+1, y1:t) f (xt+1 | y1:t) f (y1:t)

f (y1:t+1)
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=
f (yt+1 | xt+1) f (xt+1 | y1:t)

f (yt+1 | y1:t)
, (5.12)

and since

f (yt+1 | y1:t) =
∫
f (yt+1 | xt+1, y1:t) f (xt+1 | y1:t) dxt+1

=
∫
f (yt+1 | xt+1) f (xt+1 | y1:t) dxt+1, (5.13)

the updating equation is

f (xt+1 | y1:t+1) =
f (yt+1 | xt+1) f (xt+1 | y1:t)∫

f (yt+1 | xt+1) f (xt+1 | y1:t) dxt+1
. (5.14)

Therefore the marginal f (xt+1 | y1:t+1) satisfies the following two-step recursion:

Prediction: f (xt+1 | y1:t) =
∫
f (xt+1 | x0:t) f (x0:t | y1:t) dx0:t (5.15)

Updating: f (xt+1 | y1:t+1) =
f (yt+1 | xt+1) f (xt+1 | y1:t)∫

f (yt+1 | xt+1) f (xt+1 | y1:t) dxt+1
(5.16)

5.2 Particle Filters

When the state-space is nonlinear and non-Gaussian, there is no exact solution for the

filtering distribution f (xt+1 | y1:t+1). Particle filters (also known as sequential Monte Carlo

methods) are simulation based filters that can be used to solve this problem. There is now

a large literature on particle filter methods. A comprehensive overview of particle filters

can be found in Doucet et al. (2001). Good introductory references are Gordon, Salmond

and Smith (1993), Kitagawa (1996), and Arulampalam et al. (2002).

To simplify the exposition, in what follows we restrict ourselves to the Markov case,

though the methods can still be applied in the more general setting. Following Pitt and

Shephard (1999a, 2001), filtering can be thought of as the repeated application of the

iteration

f (xt+1 | y1:t+1) ∝ f (yt+1 | xt+1)
∫
f (xt+1 | xt) f (xt | y1:t) dxt. (5.17)
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Suppose that at time t, the filtering distribution f (xt | y1:t) is approximated by a discrete

sample
{
x

(i)
t , i = 1, . . . , N

}
(called particles) with probability masses

{
w

(i)
t , i = 1, . . . , N

}
.

Particle filters are the class of simulation filters that recursively approximate the filtering

distribution (5.17) by

f̂ (xt+1 | y1:t+1) ∝ f (yt+1 | xt+1)
N∑
i=1

f
(
xt+1

∣∣∣x(i)
t

)
w

(i)
t . (5.18)

The basic particle filter algorithm, known as the bootstrap filter, as described in Doucet

et al. (2001) is presented in Algorithm 5.2.1.

Algorithm 5.2.1 (Bootstrap Filter).

1. Initialization, t = 0

� For i = 1, . . . , N , sample x(i)
0 ∼ f (x0).

2. Importance Sampling Step

� For i = 1, . . . , N , sample x̃(i)
t+1 ∼ f

(
xt+1

∣∣∣x(i)
t

)
.

� For i = 1, . . . , N , evaluate the importance weights

w̃
(i)
t+1 = f

(
yt+1

∣∣∣ x̃(i)
t+1

)
, w

(i)
t+1 =

w̃
(i)
t+1∑N

i=1 w̃
(i)
t+1

.

3. Selection Step

� Resample with replacement N particles
{
x

(i)
t+1, i = 1, . . . , N

}
from the set{

x̃
(i)
t+1, i = 1, . . . , N

}
according to the importance weights.

� Set t← t+ 1 and go to step 2.

The algorithm described above is an application of the weighted bootstrap algorithm

(Smith and Gelfand, 1992) to obtain a sample that is approximately distributed according

to f (xt+1 | y1:t+1). This is a variant of the well known bootstrap (Efron, 1982). Rubin

(1988) refers to this procedure as sampling/importance resampling (SIR). The weighted

bootstrap algorithm is described in §B.2 for reference.

The weighted bootstrap is not an essential assumption for particle filters to work. We

can also use rejection sampling or Markov chain Monte Carlo (MCMC), see Pitt and Shep-
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hard (1999a, p. 591).

5.3 Auxiliary Variable Based Particle Filters

The basic particle algorithm often fails in practice because the presence of an outlier

makes the importance weights very unevenly distributed, so after a few time steps there

are only few different particles, and eventually the particles degenerate to a single value.

Auxiliary particle filters were introduced by Pitt and Shephard (1999a) to improve the

sampling from the target distribution. Pitt and Shephard (1999a), define

f (xt+1, J | y1:t+1) ∝ f (yt+1 | xt+1) f
(
xt+1

∣∣∣x(J)
t

)
w

(J)
t , J = 1, . . . , N. (5.19)

The idea is to sample from the joint density (5.19) where J ∈ {1, . . . , N} is an index from

the mixture (5.18), and then discard the index J to produce a sample from the empirical

filtering density (5.18) as required. The justification of this approach is that by integrating

out J in (5.19) we have

f (xt+1 | y1:t+1) ∝ f (yt+1 | xt+1)
N∑
J=1

f
(
xt+1

∣∣∣x(J)
t

)
w

(J)
t . (5.20)

The index J is called an auxiliary variable because it is present simply to aid the task of

the simulation. Generic particle filters of this type are called auxiliary particle filters.

It is possible to sample from f (xt+1, J | y1:t+1) using weighted bootstrap, rejection

sampling or MCMC. Using the weighted bootstrap we need to make N proposals

(
x

(i)
t+1, J

(i)
)
∼ g (xt+1, J | y1:t+1) , i = 1, . . . , N

and then construct resampling weights

w
(i)
t+1 ∝

f
(
yt+1

∣∣∣x(i)
t+1

)
f
(
x

(i)
t+1

∣∣∣x(J(i))
t

)
g
(
x

(i)
t+1, J

(i)
∣∣∣ y1:t+1

) , i = 1, . . . , N.

A convenient generic suggestion for the choice of g (·) given by Pitt and Shephard
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(1999a) is to approximate (5.19) by

g (xt+1, J | y1:t+1) ∝ f
(
yt+1

∣∣∣ ν(J)
t+1

)
f
(
xt+1

∣∣∣x(J)
t

)
w

(J)
t , J = 1, . . . , N,

where ν(J)
t+1 is the mean, the mode, a draw, or some other likely value associated with the

density of
(
xt+1

∣∣∣x(J)
t

)
. Note that

g (J | y1:t+1) ∝ w(J)
t

∫
f
(
yt+1

∣∣∣ ν(J)
t+1

)
f
(
xt+1

∣∣∣x(J)
t

)
dxt+1

= w
(J)
t f

(
yt+1

∣∣∣ ν(J)
t+1

)
.

So we can sample first from g (J | y1:t+1) and then given J , sample from f
(
xt+1

∣∣∣x(J)
t

)
.

In this case

g (xt+1, J | y1:t+1) ∝ g (xt+1 | J, y1:t+1)︸ ︷︷ ︸
f

“
xt+1 |x(J)

t

” g (J | y1:t+1) .︸ ︷︷ ︸
w

(J)
t f

“
yt+1 | ν(J)

t+1

”
The corresponding weights become

w
(i)
t ∝

f
(
yt+1

∣∣∣x(i)
t+1

)
f
(
x

(i)
t+1

∣∣∣x(J(i))
t

)
g
(
x

(i)
t+1, J

(i)
∣∣∣ y1:t+1

)
=

f
(
yt+1

∣∣∣x(i)
t+1

)
f
(
yt+1

∣∣∣ ν(J(i))
t+1

) , i = 1, . . . , N.

5.4 Particle Filters and Unknown Parameters

Usually there are unknown parameters in the state-space formulation. Particle filtering

algorithms dealing simultaneously with both fixed model parameters and state variables

have been proposed in the literature. However, estimation of static parameters with particle

filters is not recommended, as pointed out in Crisan and Doucet (2002, Remark 2, p. 745).

Doucet and Tadić (2003) propose particle methods for maximum likelihood estimation

of fixed parameters using gradient-type algorithms. This approach requires calculation of

derivatives of the state transition distribution.
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Liu and West (2001) consider the following state-space model:

f (x0, θ) , (5.21)

f (xt | xt−1, θ) for t ≥ 1 (state transition equation), (5.22)

f (yt | xt, θ) for t ≥ 1 (observation equation). (5.23)

Each yt is conditionally independent of past states and observations given the current state

xt, and the parameter θ; and xt is conditionally independent of past states and observations

given xt−1 and θ. In this model the state vector at time t is a combined (augmented) space

(xt, θ). By Bayes’ theorem we have

f (xt+1, θ | y1:t+1) =
f (y1:t+1, xt+1, θ)

f (y1:t+1)

=
f (yt+1 | xt+1, θ, y1:t) f (xt+1 | θ, y1:t) f (θ | y1:t) f (y1:t)

f (y1:t+1)

∝ f (yt+1 | xt+1, θ) f (xt+1 | θ, y1:t) f (θ | y1:t) .

Liu and West (2001) proposed an auxiliary particle filter on the augmented space. The

distribution f (xt+1, θ | y1:t+1) is approximated by particles

(
x

(i)
t+1, θ

(i)
t+1

)
, i = 1, . . . , N,

with corresponding weights w(i)
t+1, i = 1, . . . , N . The parameter θ is static, so the t + 1

suffix on the θ samples only indicate that they are from the time t+ 1 posterior, not that

θ is time-varying.

5.5 Likelihood Approximation

Given the observations y1:T , the likelihood of the parameter θ of the model is obtained

by a prediction error decomposition

f (y1, . . . , yT | θ) =
T∏
t=1

f (yt | y1:t−1, θ) , (5.24)
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where f (y1 | y0, θ) = f (y1 | θ). We may write (5.24) as a log likelihood in the form

logL(θ) = log f (y1, . . . , yT | θ)

=
T∑
t=1

log f (yt | y1:t−1, θ) . (5.25)

Kitagawa (1996) suggests that by using the approximation

f (yt | y1:t−1) =
∫
f (yt | xt) f (xt | y1:t−1) dxt

≈ 1
N

N∑
i=1

f
(
yt

∣∣∣ x̃(i)
t

)
=

1
N

N∑
i=1

w̃
(i)
t , (5.26)

a pointwise approximation of the log likelihood can be obtained by

logL(θ) =
T∑
t=1

log f (yt | y1:t−1) ≈
T∑
t=1

log

(
N∑
i=1

w̃
(i)
t

)
− T logN. (5.27)

Therefore, the maximum likelihood estimate θ̂ can be estimated by maximizing the approx-

imate log likelihood with respect to θ. However, Hürzeler and Künsch (2001) pointed out

two disadvantages of this approximation. First, if we want to evaluate the likelihood at a

different value of θ, then new filter and prediction samples have to be generated. On the

other hand, the approximation is very noisy and some smoothing has to be applied before

finding the maximum.

The likelihood approximation can also be used to evaluate the goodness of fit of several

candidate models (Kitagawa, 1996), using the AIC criterion

AIC = −2 logL(θ) + 2np, (5.28)

where np is the number of unknown parameters in the model.

Summarizing, in this Chapter we have presented state-space models and simulation-

based methods known as particle filters for recursively approximating the filtering distribu-
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tion. We apply these ideas in Chapter 6, where we propose state-space representations of

max-stable processes and develop suitable particle filtering algorithms for these processes.
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CHAPTER 6

Particle Filtering of Max-Stable Processes

In this Chapter we propose a state-space representation of M4 processes, where the

state is an unobserved M4 process, and the observed process is a nonlinear transformation

of the state with small additive Gaussian noise, to make the process nondegenerate. Our

goal is to develop particle filter algorithms to approximate the filtering distributions of an

unobserved M4 process from an observed sequence of real data.

This Chapter is organized as follows. In §6.1 we present a state-space representation of

MM(1) processes, and develop three particle filtering algorithms based on the results from

Chapter 4. One of the key ideas is the design of importance densities for extreme events

based on local maxima. In §6.2 we provide particle filtering methods for more general MM

processes. These methods are then extended for M3 and M4 processes in §6.3 and §6.4.

Throughout this Chapter we assume the parameters of the process are known. In

Chapter 7 we discuss estimation of unknown parameters in the model using the same

state-space representations presented here.

6.1 Particle Filtering of MM(1) Processes

In this section we concentrate on the special case of MM(1) processes, which has been

discussed in detail in §4.1. We first present a state-space representation of these processes,

then we develop three particle filtering algorithms based on the results from Chapter 4,

and finally we present simulation results.



6.1.1 State-Space Representation

Let {Xt, t = 1, 2, . . .} be an MM(1) process as defined in (4.1), i.e.,

Xt = max {αZt, (1− α)Zt−1} .

A state-space representation of this process is motivated by the following:

1. We do not expect to observe the deterministic signature pattern of MM(1) processes

in any time series data. However, we may assume that the observed process is an

MM(1) process with additional measurement error.

2. It is unrealistic to expect the data to have unit Fréchet marginal distributions. How-

ever, this can be achieved after a marginal transformation based on the GEV distri-

bution.

3. In the spirit of threshold models, we assume that the model holds only for observations

above a high threshold u > 0. The motivation for the threshold approach is that

the max-stable process is only derived as a representation for the extremes of the

process, so it would not be reasonable to assume it holds for the whole process. The

observations below the threshold are treated as censored. In other words, we assume

that if Yt < u we have no further information about Yt.

In summary, the observed process {Yt, t = 1, 2, . . .} is obtained from {Xt} after a

marginal transformation for observations above a specified threshold, and the addition

of measurement error. We now present a precise description of this model.

First suppose there is no observational noise. The natural marginal distribution to

consider for observations above a high threshold is the GEV distribution (2.5), i.e.,

Hξ,ψ,µ(x) = exp

{
−
(

1 + ξ
x− µ
ψ

)−1/ξ

+

}
,

where y+ = max(y, 0). On the other hand, it is straightforward to verify that if X is

a random variable with unit Fréchet distribution function, then the transformed random
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variable

X̃ = µ+ ψ
Xξ − 1
ξ

, (6.1)

has distribution function GEV with parameters ξ, ψ, µ. The marginal distribution of the

state process {Xt} is unit Fréchet, so it follows that the relationship between {Xt} and

{Yt} is given by (6.1).

Now assume that the process is observed with additional measurement error. Then the

state-space representation of the MM(1) process is

Xt = max {αZt, (1− α)Zt−1} , t ∈ N, (6.2)

Yt = µ+ ψ
Xξ
t − 1
ξ

+ εt, t ∈ N, (6.3)

where {Zt} is a sequence of iid unit Fréchet random variables, and {εt} is a sequence of iid

normally distributed random variables with mean 0 and variance σ2 > 0. The parameter

of the MM(1) process is α ∈ (0, 1), and the parameters of the observed process are ξ ∈ R,

ψ > 0, and µ ∈ R. The vector

θ = (α, µ, logψ, ξ, log σ)′ (6.4)

denotes all the parameters in this model.

The state equation (6.2) describes the dynamics of the process {Xt}, which is a second-

order Markov process by Proposition 4.1.1. The observation equation (6.3) gives the like-

lihood of the observation Yt given the state variable Xt.

6.1.2 Likelihood

We assume that the model defined by (6.2) and (6.3) only holds for observations above

a high threshold; the observations below the threshold need to be treated as censored

observations. Following Smith, Tawn and Coles (1997, p. 252), if Yt < u the likelihood con-

tribution is P {Yt ≤ u}, otherwise we can use the normal density. Therefore the likelihood
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of the observation given the state variable is

f (yt | xt, θ) =


1
σφ
(
yt−x̃t

σ

)
, yt > u,

Φ
(
u−x̃t
σ

)
, yt ≤ u,

(6.5)

where x̃t is given by (6.1), and φ(·) and Φ(·) denote the standard normal density and

distribution function, respectively. It should be noted that the symbols Φ(·) and Φ1(·) are

not related at all.

6.1.3 Basic Particle Filter

The evolution of the state process is described by the conditional distribution Ft+1(x) =

P {Xt+1 ≤ x | Ft}, which only depends on xt and xt−1 by Proposition 4.1.1. In what

follows we denote the density function of Ft+1(x) by ft+1 (x | xt−1:t) or f (xt+1 | xt−1:t),

interchangeably depending on the context.

We are interested in estimating the filtering distribution

f (xt+1 | y1:t+1) ∝ f (yt+1 | xt+1)
∫
f (xt+1 | xt−1:t) f (xt | y1:t) . (6.6)

The Kalman recursions and its extensions cannot be applied because the model described

by (6.2) and (6.3) is nonlinear in both the state and the observation equations, and is

non-Gaussian in the state. Thus our approach is to estimate (6.6) using particle filters.

We can write a basic bootstrap particle filter for MM(1) processes based on Proposi-

tion 4.1.3, which provides an algorithm to sample directly from Ft+1(x), and the likelihood

defined by (6.5). This is described in Algorithm 6.1.1.

6.1.4 Auxiliary Particle Filter

Auxiliary particle filters require a likely value of the state transition equation, such as

the mean or the median, in order to generate an auxiliary variable that helps to improve

the sampling. This likely value is denoted by νt+1. We write an auxiliary particle filter for

MM(1) processes based on the conditional median of Ft+1(x) derived in Corollary 4.1.5.

The importance sampling step is described in Algorithm 6.1.2.
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Algorithm 6.1.1 (Bootstrap Filter for MM(1) Processes).

� Initialization, t = 0.

– For i = 1, . . . , N , sample
(
x

(i)
−1, x

(i)
0

)
∼ f (xt, xt+1).

� Importance Sampling Step

1. For i = 1, . . . , N , sample x(i)
t+1 ∼ f

(
xt+1

∣∣∣x(i)
t−1:t

)
according to Proposition 4.1.3.

2. For i = 1, . . . , N , evaluate the importance weights w(i)
t+1 ∝ f

(
yt+1

∣∣∣x(i)
t+1, θ

)
,

where f (yt+1 |xt+1, θ ) is given by (6.5).

� Selection Step

– Resample with replacement N particles from the set
{
x

(i)
t:t+1, i = 1, . . . , N

}
ac-

cording to the importance weights.

– Increase t by 1 and go to the importance sampling step.

6.1.5 Particle Filter for Local Maxima

Following Definition 3.6.1, in the case of MM(1) processes we say that yt+1 is a local

maximum if yt+1 ≥ max {u, yt}, for some large u. If yt+1 is a local maximum it is often the

case that the importance weights in both Algorithms 6.1.1 and 6.1.2 are all very close to

zero, so the filtering distribution is inadequately represented by a few or a single particle

with non-zero importance weights. One reason for this behavior is that the particles are

generated independently of yt+1 so these algorithms do not take into account that a local

maximum has been observed. A second reason is that a local maximum is most likely

caused by a new independent large shock, so the conditional median of the process gives

little information about it. Our approach to solve this problem is to generate particles

from an importance density that takes directly into account the observed yt+1 whenever

a local maximum has been observed. In this case we do not need an auxiliary particle

filter because the particles generated with this approach are close to the regions of high

likelihood.

The motivation for our approach is that a local maximum represents an event in the tail

of the filtering distribution. The idea is to generate particles for Xt+1 from an importance
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Algorithm 6.1.2 (Auxiliary Particle Filter for MM(1) Processes).
Importance Sampling Step

1. For i = 1, . . . , N , obtain ν
(i)
t+1, given by the conditional median of Ft+1(x) derived in

Corollary 4.1.5.

2. Sample an auxiliary integer variable J from the set {1, . . . , N} with probabilities
proportional to

g
(i)
t+1 ∝ f

(
yt+1

∣∣∣ ν(i)
t+1, θ

)
,

where f (yt+1 | νt+1, θ ) is given by (6.5).

3. Sample x(J)
t+1 ∼ f

(
xt+1

∣∣∣x(J)
t−1:t

)
according to Proposition 4.1.3.

4. Evaluate the importance weight

w
(J)
t+1 ∝

f
(
yt+1

∣∣∣x(J)
t+1, θ

)
f
(
yt+1

∣∣∣ ν(J)
t+1, θ

) ,
where f (yt+1 |xt+1, θ ) is given by (6.5).

5. Repeat steps 2–4 to produce
{(
x

(i)
t+1, w

(i)
t+1

)
, i = 1, . . . , N

}
as required.

density that is concentrated in the tail. A natural choice is Φ1,α

(
x | x > u∗t+1

)
defined in

(A.10), which is the distribution of a unit Fréchet with scale parameter α given that it has

exceeded some threshold u∗t+1 (this threshold is a function of yt+1 and we discuss how it is

defined later). However, the support of the distribution Φ1,α (x | x > v) for some v > 0 does

not contain the support of Ft+1(x), so in order to apply importance sampling we define a

proposal distribution of the form

Q1,α (x | v) = γFt+1(x) + (1− γ)Φ1,α (x | x > v) , (6.7)

where 0 < γ < 1. We set γ to be close to zero, e.g. γ = 0.05, so that (6.7) is concentrated

on the right-tail. If we define

γ2(v) = γ +
1− γ

1− exp {−α/v}
, (6.8)
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then the corresponding density function can be written

q1,α (x | v) = γft+1 (x | xt−1:t) + (1− γ)ϕ1,α (x |x > v )

=


γ ft+1 (x | xt−1:t) , 0 ≤ x < v,

γ2(v)ϕ1,α(x), x ≥ v,
(6.9)

where

ϕ1,α(x) =
α

x2
exp

{
−α
x

}
, x > 0. (6.10)

We now describe how to define a suitable threshold u∗t+1. If yt+1 is a local maximum

then the noise term in the observation equation is small compared to the unobserved state

variable Xt+1, so we can approximate

X∗t+1 ≈
(

1 + ξ
yt+1 − µ

ψ

)1/ξ

+

. (6.11)

Now assume that X∗t+1 is the median of a distribution Φ1,α

(
x | x > v∗t+1

)
defined by (A.10)

for some threshold v∗t+1. Then by (A.15) we have

X∗t+1 ≈ 2v∗t+1 +
α

2
, (6.12)

from which we obtain

v∗t+1 ≈
1
2

(
X∗t+1 −

α

2

)
. (6.13)

Hence, we define

u∗t+1 = max
{
v∗t+1,

1− α
α

xt

}
. (6.14)

This definition ensures that the importance weights are easy to compute.

In summary, if yt+1 is a local maximum then our approach is to generate particles for

x
(i)
t+1, i = 1, . . . , N from the distribution Q1,α

(
x
∣∣∣u∗(i)t+1

)
. The importance weights for this

algorithm are evaluated as follows. From Proposition 4.1.1 it is straightforward to verify

that

ft+1 (x | xt−1:t) = ϕ1,α(x) x ≥ 1− α
α

xt. (6.15)
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Therefore the importance weights are

w
(i)
t+1 ∝

f
(
yt+1

∣∣∣x(i)
t+1, θ

)
f
(
x

(i)
t+1

∣∣∣ x(i)
t−1:t

)
q1,α

(
x

(i)
t+1

∣∣∣ u∗(i)t+1

)

=


f
(
yt+1

∣∣∣x(i)
t+1, θ

)/
γ, 0 ≤ x(i)

t+1 < u∗
(i)

t+1,

f
(
yt+1

∣∣∣x(i)
t+1, θ

)/
γ2

(
u∗

(i)

t+1

)
, x

(i)
t+1 ≥ u∗

(i)

t+1.

(6.16)

The importance sampling step for local maxima is summarized in Algorithm 6.1.3.

Algorithm 6.1.3 (Particle Filter for Local Maxima of MM(1) Processes).
Importance Sampling Step
For i = 1, . . . , N ,

1. Calculate u∗
(i)

t+1 according to (6.14).

2. Generate x(i)
t+1 ∼ Q1,α

(
x
∣∣∣u∗(i)t+1

)
, where Q1,α (x | v) is defined by (6.7).

3. Evaluate the importance weights w(i)
t+1 according to (6.16).

6.1.6 Simulation Results

We compare the particle filters for MM(1) processes with simulated data. In what

follows we refer to Algorithm 6.1.1 as the basic particle filter, and we refer to Algorithm 6.1.3

as the improved particle filter for local maxima.

We simulate a sample path of size T = 1000 of an MM(1) process and the corresponding

observed process. We use α = 0.8, µ = 0, ψ = 0.5, ξ = 0.18, and σ = 0.2. We obtain

filtering distributions from each method using a threshold u set at the 0.97 quantile of the

observed process, and N = 2000 particles.

Figure 6.1 shows part of the observed exceedances over the threshold (top); and the

corresponding filtered process in log scale (solid line) from the particle filter for local max-

ima, including 95% posterior bands (dotted), and the actual simulated process (dashed)

for reference. The filtered process follows closely the actual process whenever there is an

exceedance above the threshold. On the other hand, the median of the filtered process for

observations below the threshold is expected to fluctuate around 1/ log 2 (the median of
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the unit Fréchet distribution function) because the only information available for censored

observations is that they are below the threshold. However, the confidence bands are wide

enough to accommodate the fluctuations of the actual process.

In order to compare the different methods, we concentrate on the filtered process corre-

sponding to exceedances over the threshold. It is expected that the filtered process above

the threshold agrees with the actual process, so a scatter plot of the filtered against the

actual process should lie on the 45 degree reference line. Figure 6.2 shows this plot for both

the basic particle filter (left) and the improved particle filter (right). The line segments

show pointwise 95% intervals of the posterior distribution of the filters.

In some of the confidence intervals from the basic particle filter, especially for very large

observations, the endpoints of the intervals coincide with the median—an indication of a

degenerate distribution. On the other hand, there are no degenerate confidence intervals

from the improved particle filter, and all of these intervals intersect the 45 degree reference

line. These results support that the particle filter for local maxima is doing a better job at

approximating the filtering distribution.

In summary, we propose Algorithm 6.1.3 for filtering local maxima of MM(1) processes,

and either Algorithm 6.1.1 or Algorithm 6.1.2 for the rest of the series. The results from

our simulation experiments suggest that there are no gains from using the auxiliary particle

filter over the basic particle filter because these are mainly used for censored observations.

The same behavior will be observed for more general processes in the following sections.
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Figure 6.1: Observed Exceedances and Filtered MM(1) Process.
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Figure 6.2: Scatter Plots of Filtered vs. Actual MM(1) Process. Basic particle filter (left) and
improved particle filter for local maxima (right).
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6.2 Particle Filtering of MM Processes

In this section we propose particle filtering algorithms for MM processes. The methods

are developed separately from the MM(1) case because of the lack of explicit expressions

for the conditional distributions of general MM processes.

As in §6.1, we first present the state-space representation, then we develop particle

filtering algorithms, and finally we present simulation results.

6.2.1 State-Space Representation

Following the developments in §6.1, the state-space representation of MM processes is

Xt = max
0≤k≤K

αkZt−k, t ∈ N, (6.17)

Yt = µ+ ψ
Xξ
t − 1
ξ

+ εt, t ∈ N, (6.18)

where {Zt} is a sequence of iid unit Fréchet random variables, and {εt} is a sequence of iid

normally distributed random variables with mean 0 and variance σ2 > 0. The vector

θ = (α, µ, logψ, ξ, log σ)′ (6.19)

denotes all the parameters in this model, where α = (α0, α1, . . . , αK)′ satisfies αk ≥ 0 and∑
k αk = 1, ξ ∈ R, ψ > 0, and µ ∈ R.

Remark. To simplify the exposition we only consider models where αk = 0 for k < 0.

However, it is straightforward to generalize the algorithms for models with forward lags.

6.2.2 Basic Particle Filter

The conditional distribution of a general MM process is not known explicitly. However,

we can describe the evolution of the state in terms of the independent shocks {Zt}. The

idea is that given the sequence {Zt}, the process {Xt} is completely determined.

The prediction step in this case is to obtain the distribution of Xt+1 given Zt−K+1:t,

which only requires sampling a new innovation Zt+1 and then applying (6.17). The advan-

tage of using this approach is that the extension for M4 processes is straightforward. The
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likelihood of MM processes is still given by (6.5). A basic bootstrap particle filter for MM

processes is described in Algorithm 6.2.1.

Algorithm 6.2.1 (Bootstrap Filter for MM Processes).

� Initialization, t = 0.

– For i = 1, . . . , N , sample
(
Z

(i)
−K+1, Z

(i)
−K+2, . . . , Z

(i)
0

)
∼ Φ1(x).

� Importance Sampling Step

1. For i = 1, . . . , N , sample Z(i)
t+1 ∼ Φ1(x) and combine with Z

(i)
t−K+1:t to obtain

x
(i)
t+1 from (6.17).

2. For i = 1, . . . , N , evaluate the importance weights w(i)
t+1 ∝ f

(
yt+1

∣∣∣x(i)
t+1, θ

)
,

where f (yt+1 |xt+1, θ ) is given by (6.5).

� Selection Step

– Resample with replacementN particles from the set
{
Z

(i)
t−K+2:t+1, i = 1, . . . , N

}
according to the importance weights.

– Increase t by 1 and go to the importance sampling step.

6.2.3 Auxiliary Particle Filter

An auxiliary particle filter for MM processes is based on Proposition 6.2.2, which shows

that MM processes have an upper bound given by a max-autoregressive process. This result

can be applied to obtain likely values for the auxiliary particle filter.

Proposition 6.2.2. Suppose {Xt} is an MM process as defined in (6.17). Then

Xt+1 ≤ max {α0Zt+1, βXt} , (6.20)

where

β = max
0≤k<K

αk+1

αk
. (6.21)

Proof. By definition of the process we have Zt−k ≤ Xt/αk for each k = 0, 1, . . . ,K. Then

Xt+1 = max {α0Zt+1, α1Zt, . . . , αKZt−K+1}
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≤ max
{
α0Zt+1,

α1

α0
Xt, . . . ,

αK
αK−1

Xt

}
= max

{
α0Zt+1, max

0≤k<K

αk+1

αk
Xt

}
= max {α0Zt+1, βXt} , (6.22)

where β is given by (6.21).

We obtain likely values for the auxiliary particle filter as follows. Given Xt, generate

Z∗ from a unit Fréchet distribution and define

νt+1 = max {α0Z
∗, βXt} . (6.23)

Alternatively, since the median of a unit Fréchet is 1/ log 2, we can define

νt+1 = max
{

α0

log 2
, βXt

}
. (6.24)

The importance sampling step of the auxiliary particle filter for MM processes is de-

scribed in Algorithm 6.2.3. This algorithm suffers from the same drawback than the cor-

responding method for MM(1) process. If a local maximum is observed then often the

importance weights are all zero.

6.2.4 Particle Filter for Local Maxima

In this section we discuss a method to improve the auxiliary particle filter for observa-

tions that are identified as local maxima according to Definition 3.6.1. We follow closely

§6.1.5, where we develop particle filters for local maxima of MM(1) processes.

If yt+1 is a local maximum then it represents a tail event of the filtering distribution.

If we do not take into account yt+1 to draw the proposals for the filtering distribution then

this tail event is poorly represented by the particles. Hence, we have to move the particles

close to yt+1, so that the likelihood of yt+1 given the particles is not negligible.

Our importance sampler is based on a proposal distribution of the form

Q (z | v) = γΦ1(z) + (1− γ)Φ1,1 (z | z > v) , (6.25)
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Algorithm 6.2.3 (Auxiliary Particle Filter for MM Processes).
Importance Sampling Step

1. For i = 1, . . . , N , obtain ν(i)
t+1 from (6.23) or (6.24).

2. Sample an auxiliary integer variable J from the set {1, . . . , N} with probabilities
proportional to

g
(i)
t+1 ∝ f

(
yt+1

∣∣∣ ν(i)
t+1, θ

)
,

where f (yt+1 | νt+1, θ ) is given by (6.5).

3. Sample Zt+1 ∼ Φ1(x) and combine with Z(J)
t−K+1:t to obtain x(J)

t+1 from (6.17).

4. Evaluate the importance weight

w
(J)
t+1 ∝

f
(
yt+1

∣∣∣x(J)
t+1, θ

)
f
(
yt+1

∣∣∣ ν(J)
t+1, θ

) ,
where f (yt+1 |xt+1, θ ) is given by (6.5).

5. Repeat steps 2–4 to produce
{(
x

(i)
t+1, w

(i)
t+1

)
, i = 1, . . . , N

}
as required.

where 0 < γ < 1, Φ1(z) = exp {−1/z}, z > 0, and Φ1,1 (z | z > v) is defined in (A.10), i.e.,

the distribution of a unit Fréchet random variable given it has exceeded some threshold v.

We set γ to be close to zero, e.g. γ = 0.05, so that (6.25) is concentrated on the right-tail.

If we define

h(z, v, γ) = γ +
1− γ

1− exp {−1/v}
I (z ≥ v) . (6.26)

then the corresponding density function can be written

q (z | v) = γϕ1(z) + (1− γ)ϕ1 (z | z > v)

= ϕ1(z)h(z, v, γ). (6.27)

where ϕ1(z) = z−2 exp {−1/z}, z > 0, is the unit Fréchet density.

We now construct a suitable threshold, denoted u∗t+1, for the proposal distribution

(6.25). If yt+1 is a local maximum then the noise term in the observation equation (6.18)
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is small compared to the state variable Xt+1, so we can approximate

X∗t+1 ≈
(

1 + ξ
yt+1 − µ

ψ

)1/ξ

+

. (6.28)

Furthermore, if yt+1 is a local maximum then we assume that X∗t+1 comes from a new large

shock Z∗t+1, so that

X∗t+1 = α0Z
∗
t+1 > max

1≤k≤K
αkZt−k, (6.29)

which gives

Z∗t+1 =
X∗t+1

α0
. (6.30)

The value Z∗t+1 gives a rough estimate of the location of the actual shock that generated

the local maximum. Hence, our approach is to assume that Z∗t+1 is the median of the

distribution of a unit Fréchet random variable given it has exceeded the threshold u∗t+1.

Then by (A.15) we have

Z∗t+1 ≈ 2u∗t+1 +
1
2
, (6.31)

from which we obtain

u∗t+1 ≈
1
2

(
Z∗t+1 −

1
2

)
. (6.32)

Note that h(γ, z, v) > 0, and u∗t+1 > 0 is a constant for all the particles. The importance

weights for this algorithm are

w
(i)
t+1 ∝

f
(
yt+1

∣∣∣x(i)
t+1, θ

)
ϕ1

(
z
(i)
t+1

)
q
(
z
(i)
t+1

∣∣∣ u∗t+1

)
=
f
(
yt+1

∣∣∣x(i)
t+1, θ

)
h
(
z
(i)
t+1, u

∗
t+1, γ

) . (6.33)

We summarize the importance sampling step of the algorithm for local maxima in

Algorithm 6.2.4. This algorithm generates particles for extreme events (local maxima) that

are closer to the current observation. The advantage is that the importance weights have

less variability. It is important to note that Algorithm 6.2.4 only applies to observations

that are identified as local maxima. If an observation is not a local maximum then we can
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use Algorithm 6.2.1 or Algorithm 6.2.3.

Algorithm 6.2.4 (Particle Filter for Local Maxima of MM Processes).
Importance Sampling Step

1. Calculate u∗t+1 according to (6.32).

2. For i = 1, . . . , N , generate x(i)
t+1 as follows.

� Generate Z(i)
t+1 ∼ Q

(
z
∣∣u∗t+1

)
, where Q (z | v) is defined by (6.25).

� Combine Z(i)
t+1 with Z(i)

t−K+1:t to obtain x(i)
t+1 from the state equation (6.17).

3. For i = 1, . . . , N , evaluate the importance weights w(i)
t+1 according to (6.33).

6.2.5 Simulation Results

We compare the particle filters for MM processes in the same way as for MM(1) pro-

cesses. In this case we compare Algorithm 6.2.1 (basic) and Algorithm 6.2.4 (improved).

We simulate a sample path of size T = 1000 of an MM(2) process with parameter

α = (0.6, 0.3, 0.1), and the corresponding observed process with µ = 0, ψ = 0.5, ξ = 0.18,

and σ = 0.2. We obtain filtering distributions from each method using a threshold u set at

the 0.97 quantile of the observed process, and N = 2000 particles.

Figure 6.3 shows part of the observed exceedances over the threshold (top); and the

corresponding filtered process in log scale (solid line) from the particle filter for local max-

ima, including 95% posterior bands (dotted), and the actual simulated process (dashed)

for reference.

Figure 6.4 shows scatter plots of the filtered against the actual process for both the

basic particle filter (left) and the improved particle filter (right). The improved particle

filter performs better as expected.
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Figure 6.3: Observed Exceedances and Filtered MM(2) Process.

10
0

20
0

30
0

40
0

50
0

60
0

70
0

100

200

300

400

500
600
700

Actual

F
ilt

er
ed

Basic

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

20 50 10
0

20
0

50
0

10
00

20

50

100

200

500

1000

Actual

F
ilt

er
ed

Improved

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 6.4: Scatter Plots of Filtered vs. Actual MM(2) Process. Basic particle filter (left) and
improved particle filter for local maxima (right).
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6.3 Particle Filtering of M3 Processes

In this section we develop particle filtering methods for M3 processes by extending the

methods for MM processes.

6.3.1 State-Space Representation

The state-space representation of the M3 process is

Xt = max
1≤`≤L

max
0≤k≤K

α`kZ`,t−k, t ∈ N, (6.34)

Yt = µ+ ψ
Xξ
t − 1
ξ

+ εt, t ∈ N, (6.35)

where {Z`t} is a sequence of iid unit Fréchet random variables, and {εt} is a sequence of

iid normally distributed random variables with mean 0 and variance σ2 > 0. The vector

θ = (α, µ, logψ, ξ, log σ)′, (6.36)

denotes all the parameters in this model, where α = {α`k} is a sequence of nonnegative

constants satisfying
∑

`

∑
k α`k = 1, ξ ∈ R, ψ > 0, and µ ∈ R.

Remark. To simplify the exposition we only consider models where α`k = 0 for k < 0.

However, it is straightforward to generalize the algorithms for models with forward lags.

6.3.2 Basic Particle Filter

A straightforward extension of Algorithm 6.2.1 gives the basic particle filter algorithm

for M3 processes. In this case we have L signature patterns, so at each time t prediction

of the new state requires generating L new shocks Z`,t+1, ` = 1, . . . , L.

To initialize the algorithm generate
{
Z

(i)
`,j

}
for 1 ≤ ` ≤ L, −K + 1 ≤ j ≤ 0, and

i = 1, . . . , N . The importance sampling step is described in Algorithm 6.3.1.

6.3.3 Auxiliary Particle Filter

In this section we derive an extension of the inequality derived in Proposition 6.2.2, and

present an auxiliary particle filter for M3 processes.
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Algorithm 6.3.1 (Bootstrap Filter for M3 Processes).
Importance Sampling Step

1. For i = 1, . . . , N , sample Z`,t+1 ∼ Φ1(x), ` = 1, . . . , L and combine with Z
(i)
`,t ,

Z
(i)
`,t−1, . . . , Z

(i)
`,t−K+1, ` = 1, . . . , L to obtain x(i)

t+1 from (6.34).

2. For i = 1, . . . , N , evaluate the importance weights w(i)
t+1 ∝ f

(
yt+1

∣∣∣x(i)
t+1, θ

)
, where

f (yt+1 |xt+1, θ ) is given by (6.5).

Proposition 6.3.2. Suppose {Xt} is an M3 process as defined in (6.34). Then

Xt+1 ≤ max
1≤`≤L

{α`,0Z`,t+1, βXt} , (6.37)

where

β = max
1≤`≤L

max
0≤k<K

α`,k+1

α`k
. (6.38)

Proof. By definition of the process we have Z`,t−k ≤ Xt/α`k for each pair (`, k). Then

Xt+1 = max
`
{α`,0Z`,t+1, α`,1Z`,t, . . . , α`,KZ`,t−K+1}

≤ max
`

{
α`,0Z`,t+1,

α`,1
α`,0

Xt, . . . ,
α`,K
α`,K−1

Xt

}
= max

`

{
α`,0Z`,t+1, max

`
max

0≤k<K

α`,k+1

α`k
Xt

}
= max

`
{α`,0Z`,t+1, βXt} , (6.39)

where β is given by (6.38).

We obtain likely values for the auxiliary particle filter as follows. Given Xt, generate

iid innovations Z∗1 , . . . , Z
∗
L from a unit Fréchet distribution and then set

νt+1 = max
`
{α`,0Z∗` , βXt} . (6.40)

Alternatively, we can obtain a likely value for the auxiliary particle filter by taking the
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maximum of the median from each innovation and the current state, i.e.,

νt+1 = max
`

{
α`,0
log 2

, βXt

}
. (6.41)

The importance sampling step of the auxiliary particle filter for M3 processes is described

in Algorithm 6.3.3.

Algorithm 6.3.3 (Auxiliary Particle Filter for M3 Processes).
Importance Sampling Step

1. For i = 1, . . . , N , obtain ν(i)
t+1 from (6.40) or (6.41).

2. Sample an auxiliary integer variable J from the set {1, . . . , N} with probabilities
proportional to

g
(i)
t+1 ∝ f

(
yt+1

∣∣∣ ν(i)
t+1, θ

)
,

where f (yt+1 | νt+1, θ ) is given by (6.5).

3. Sample Z`,t+1 ∼ Φ1(x), ` = 1, . . . , L and combine with Z
(J)
`,t , Z

(J)
`,t−1, . . . , Z

(J)
`,t−K+1,

` = 1, . . . , L to obtain x(J)
t+1 from (6.34).

4. Evaluate the importance weight

w
(J)
t+1 ∝

f
(
yt+1

∣∣∣x(J)
t+1, θ

)
f
(
yt+1

∣∣∣ ν(J)
t+1, θ

) ,
where f (yt+1 |xt+1, θ ) is given by (6.5).

5. Repeat steps 2–4 to produce
{(
x

(i)
t+1, w

(i)
t+1

)
, i = 1, . . . , N

}
as required.

6.3.4 Particle Filter for Local Maxima

We propose an algorithm based on local maxima to improve the sampling. The dif-

ference from MM processes is that M3 processes have L signature patterns, which means

that a local maximum may arise from a single large shock in one of the L independent

innovation sequences.

In analogy with Algorithm 6.2.4, we make use of the importance density Q
(
z | u∗t+1

)
defined by (6.25). In this case u∗t+1 is calculated as follows. First obtain X∗t+1 from (6.28),
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then define

Z∗t+1 =
X∗t+1

max` maxk α`k
, (6.42)

and then obtain u∗t+1 from (6.32). 1

If a local maximum is observed then the algorithm we propose is to randomly sample an

index `∗ from the set {1, . . . , L}, where each ` can be chosen with probability α+
` =

∑
k α`k,

which is the relative frequency of the `th signature pattern. Then given `∗, sample a large

candidate shock Z`∗,t+1 ∼ Q
(
z | u∗t+1

)
, where Q (z | v) is defined by (6.25). Finally, sample

the remaining Z`,t+1, ` 6= `∗ from a unit Fréchet distribution.

The effect of randomly generating `∗ is that the importance density is of the form

q (z`, 1 ≤ ` ≤ L | u) =
∑
`

α+
` q (z` | u)

∏
j 6=`

ϕ1(zj)

=
∑
`

α+
` h(z`, u, γ)ϕ1(z`)

∏
j 6=`

ϕ1(zj)

=
∑
`

α+
` h(z`, u, γ)

L∏
j=1

ϕ1(zj)

=
L∏
j=1

ϕ1(zj)
∑
`

α+
` h(z`, u, γ), (6.43)

where h(z, u, γ) is defined by (6.26). Hence the importance weights are

w
(i)
t+1 ∝

f
(
yt+1

∣∣∣x(i)
t+1, θ

)∏L
`=1 ϕ1

(
z
(i)
`,t+1

)
q
(
z
(i)
`,t+1, 1 ≤ ` ≤ L

∣∣∣ u∗t+1

)
=

f
(
yt+1

∣∣∣x(i)
t+1, θ

)
∑

` α
+
` h
(
z
(i)
`,t+1, u

∗
t+1, γ

) . (6.44)

The details of the importance sampling step of this algorithm are given in Algorithm 6.3.4.

1Note that there is nothing special about (6.42) – we only need a rough estimate of the shock inducing
the local maximum, so alternative definitions may be used. For example, if we assume that the shock comes
from a specific `, say `∗, then an alternative definition for the denominator of (6.32) is maxk α`∗,k. However,
we do not consider this.
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Algorithm 6.3.4 (Particle Filter for Local Maxima of M3 Processes).
Importance Sampling Step

1. Calculate u∗t+1 according to (6.42) and (6.32).

2. For i = 1, . . . , N , generate x(i)
t+1 as follows.

� Generate an index `(i)
∗

from the set {1, . . . , L} with probability α+
` =

∑
k α`k.

� Generate Z(i)∗

`(i)
∗
,t+1
∼ Q

(
z
∣∣u∗t+1

)
, where Q (z | v) is defined by (6.25).

� Generate Z(i)∗

`,t+1 ∼ Φ1(x), for ` 6= `(i)
∗
.

� Combine Z(i)
`,t+1, ` = 1, . . . , L with Z(i)

`,t , Z
(i)
`,t−1, . . . , Z

(i)
`,t−K+1 to obtain x(i)

t+1 from
the state equation (6.34).

3. For i = 1, . . . , N , evaluate the importance weights w(i)
t+1 according to (6.44).

6.4 Particle Filtering of M4 Processes

In this section we present two particle filtering algorithms for M4 processes based on

extensions of the algorithms developed in §6.3. The major differences from the univariate

case are the evaluation of the likelihood, the definition of local maxima, and the relative

frequency of the signature patterns.

6.4.1 State-Space Representation

The state-space representation of the M4 process is

Xtd = max
`

max
k

α`kdZ`,t−k, t ∈ N, 1 ≤ d ≤ D, (6.45)

Ytd = µd + ψd
Xξd
td − 1
ξd

+ εtd, t ∈ N, 1 ≤ d ≤ D, (6.46)

where {Z`t} is a sequence of iid unit Fréchet random variables, and {εtd} is a sequence

of iid normally distributed random variables with mean 0 and variance σ2
d > 0 for each

d = 1, . . . , D. The vector θ is used to denote all of the parameters in this model, where

α = {α`kd} is a sequence of nonnegative constants satisfying

∑
`

∑
k

α`kd = 1, for each d = 1, . . . , D, (6.47)
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and ξd ∈ R, ψd > 0, and µd ∈ R for each d = 1, . . . , D.

We assume that for fixed t, {εtd} are independent for each d, so the likelihood is the

product of the individual components, i.e.,

f (yt | xt, θ) =
D∏
d=1

f (ytd | xtd, θ) , (6.48)

where f (ytd | xtd, θ) is given by (6.5).

6.4.2 Basic Particle Filter

To initialize the algorithm generate
{
Z

(i)
`,j

}
for 1 ≤ ` ≤ L, −K + 1 ≤ j ≤ 0, and

i = 1, . . . , N . The importance sampling step is described in Algorithm 6.4.1.

Algorithm 6.4.1 (Bootstrap Filter for M4 Processes).
Importance Sampling Step

1. For i = 1, . . . , N , sample Z`,t+1 ∼ Φ1(x), ` = 1, . . . , L and combine with Z
(i)
`,t ,

Z
(i)
`,t−1, . . . , Z

(i)
`,t−K+1, ` = 1, . . . , L to obtain x(i)

t+1,d, d = 1, . . . , D from (6.45).

2. For i = 1, . . . , N , evaluate the importance weights w(i)
t+1 according to (6.48).

6.4.3 Particle Filter for Local Maxima

From Definition 3.6.5, we say that ytd is a local maximum if ytd ≥ max
{
u,yt−K:t+K

}
.

If a local maximum is observed then we proceed as in Algorithm 6.3.4, however in this case

the relative frequency of the `th signature pattern is proportional to α‡` =
∑

k maxd α`kd.

A suitable threshold u∗t+1 for the proposal distribution (6.25) is calculated as follows.

Suppose the local maximum is yt+1,d then we approximate

X∗t+1,d ≈
(

1 + ξd
yt+1,d − µd

ψd

)1/ξd

+

, (6.49)

then define

Z∗t+1 =
X∗t+1,d

max` maxk α`kd
, (6.50)

and then obtain u∗t+1 from (6.32).
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The importance weights are

w
(i)
t+1 ∝

f
(

yt+1

∣∣ x
(i)
t+1, θ

)∏L
`=1 ϕ1

(
z
(i)
`,t+1

)
q
(
z
(i)
`,t+1, 1 ≤ ` ≤ L

∣∣∣ u∗t+1

)
=

f
(

yt+1

∣∣ x
(i)
t+1, θ

)
∑

` α
‡
` h
(
z
(i)
`,t+1, u

∗
t+1, γ

) , (6.51)

where h(z, u, γ) is defined by (6.26).

The importance sampling step of this algorithm is given in Algorithm 6.4.2.

Algorithm 6.4.2 (Particle Filter for Local Maxima of M4 Processes).
Importance Sampling Step

1. Calculate u∗t+1 according to (6.50) and (6.32).

2. For i = 1, . . . , N , generate x(i)
t+1,d, d = 1, . . . , D as follows.

� Generate an index `(i)
∗

from the set {1, . . . , L} with probability proportional to
α‡`.

� Generate Z(i)∗

`(i)
∗
,t+1
∼ Q

(
z
∣∣u∗t+1

)
, where Q (z | v) is defined by (6.25).

� Generate Z(i)∗

`,t+1 ∼ Φ1(x), for ` 6= `(i)
∗
.

� Combine Z
(i)
`,t+1, ` = 1, . . . , L with Z

(i)
`,t , Z

(i)
`,t−1, . . . , Z

(i)
`,t−K+1 to obtain x

(i)
t+1,d,

d = 1, . . . , D from the state equation (6.45).

3. For i = 1, . . . , N , evaluate the importance weights w(i)
t+1 according to (6.51).
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CHAPTER 7

Estimation of Max-Stable Processes Using MCMC
Methods

Markov chain Monte Carlo (MCMC) methods are now widely used in statistics, and

the literature has grown enormously in the last years. In this Chapter we propose MCMC

algorithms for estimating the posterior distributions of the unknown parameters and states

in the state-space representation of M4 processes.

This Chapter is organized as follows. In §7.1 we review the background for MCMC

methods. In §7.2 and §7.3 we provide full details for estimation of Moving Maxima (MM)

processes. We outline the methods for estimation of M3 and M4 processes in §7.4.

Throughout this Chapter, we use the notation x1:t = (x1, . . . , xt)′ for t > 1, and x\j =

(x1, . . . , xj−1, xj+1, . . . , xt)′ to denote the vector x1:t without the jth component.

7.1 Markov Chain Monte Carlo Methods

In this section we present the basic background of MCMC methods, following closely

Robert and Casella (2004). For a comprehensive treatment of the subject we refer to Gilks,

Richardson and Spiegelhalter (1996), Robert and Casella (2004), and Gelman, Carlin, Stern

and Rubin (1995).

A Markov chain Monte Carlo (MCMC) method to simulate from a distribution f is

any method producing an ergodic Markov chain
{
x(i), i = 1, 2, . . .

}
whose stationary dis-

tribution is f . Here we consider two well known MCMC methods: the Metropolis-Hastings

algorithm (Metropolis et al., 1953; Hastings, 1970), and the Gibbs sampler (Geman and

Geman, 1984; Gelfand and Smith, 1990).



7.1.1 The Metropolis-Hastings Algorithm

The goal of the Metropolis-Hastings algorithm is to simulate from a target distribution

with density f , based on draws from a proposal distribution with density q(y | x). The

algorithm is described by the following transition from x(i) to x(i+1):

Algorithm 7.1.1 (Metropolis-Hastings Algorithm).
Given x(i),

1. Generate y ∼ q
(
y | x(i)

)
.

2. Take

x(i+1) =

{
y with probability ρ(x(i), y),
x(i) with probability 1− ρ(x(i), y),

where

ρ(x, y) = min
{
f(y)
f(x)

q(x | y)
q(y | x)

, 1
}
. (7.1)

7.1.2 The Gibbs Sampler

The Gibbs sampler is an alternative form of the Metropolis-Hastings algorithm. The

Gibbs sampler is particularly important when the goal is to simulate from a multivariate

distribution. Following Robert and Casella (2004), suppose that the random vector X can

be written as X = (X1, . . . , Xp) for some p > 1, where the Xj ’s are either univariate or

multivariate. Suppose that we can simulate from the full conditional densities:

fj(xj | x\j), j = 1, . . . , p.

The Gibbs sampling algorithm (or Gibbs sampler) is given in Algorithm 7.1.2.

7.1.3 Metropolis-within-Gibbs Algorithm

Sometimes it is not possible to simulate from one or more of the full conditional densities

in the Gibbs sampler. In this case it is possible to use a Metropolis-Hastings step to

substitute a draw from the full conditional density. This algorithm is called a hybrid

MCMC or a Metropolis-within-Gibbs algorithm, and it is shown in Algorithm 7.1.3, which

is adapted from Robert and Casella (2004, p. 393).
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Algorithm 7.1.2 (The Gibbs Sampler).
Given x(i) =

(
x

(i)
1 , . . . , x

(i)
p

)
, generate

1. x(i+1)
1 ∼ f1

(
x1

∣∣∣x(i)
2 , . . . , x

(i)
p

)
;

2. x(i+1)
2 ∼ f2

(
x2

∣∣∣x(i+1)
1 , x

(i)
3 . . . , x

(i)
p

)
;

...

p. x(i+1)
p ∼ fp

(
xp

∣∣∣x(i+1)
1 , . . . , x

(i+1)
p−1

)
.

Algorithm 7.1.3 (Metropolis-within-Gibbs Algorithm).
For j = 1, . . . , p, given

(
x

(i+1)
1:j−1, x

(i)
j:p

)
=
(
x

(i+1)
1 , . . . , x

(i+1)
j−1 , x

(i)
j , . . . , x

(i)
p

)
:

1. Generate x∗j ∼ qj
(
xj
∣∣x(i+1)

1:j−1, x
(i)
j:p

)
.

2. Take

x
(i+1)
j =

{
x∗j with probability ρ(x(i)

j , x
∗
j ),

x
(i)
j with probability 1− ρ(x(i)

j , x
∗
j ),

where

ρ(xj , yj) = min

 fj

(
yj

∣∣∣x(i+1)
1:j−1, x

(i)
j+1:p

)
fj

(
xj

∣∣∣x(i+1)
1:j−1, x

(i)
j+1:p

) qj
(
xj

∣∣∣ yj , x(i+1)
1:j−1, x

(i)
j+1:p

)
qj

(
yj

∣∣∣xj , x(i+1)
1:j−1, x

(i)
j+1:p

) , 1

 . (7.2)

Remark. As pointed out in Robert and Casella (2004), it is important to note that the

Metropolis-Hastings step is used to generate a single x∗j to substitute a draw from the full

conditional distribution fj , as opposed to generate multiple draws to approximate fj .

7.2 Estimation of MM Processes

Following the approach of Chapter 6, the estimation method is based on a state-space

representation of MM processes, where the state equation is an unobserved MM process,

and the observed process is a nonlinear transformation of the state with a small additive

Gaussian noise, to make the process nondegenerate.
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The state-space representation of the MM process is

Xt = max
|k|≤K

αkZt−k, t ∈ N, (7.3)

Yt = µ+ ψ
Xξ
t − 1
ξ

+ εt, t ∈ N, (7.4)

where {Zt} is a sequence of iid unit Fréchet random variables, and {εt} is a sequence of iid

normally distributed random variables with mean 0 and variance σ2 > 0. The vector

θ = (α, µ, logψ, ξ, log σ)′ (7.5)

denotes all the parameters in this model, where α = (α−K , . . . , α−1, α0, α1, . . . , αK)′ satis-

fies αk ≥ 0 and
∑

k αk = 1, ξ ∈ R, ψ > 0, and µ ∈ R.

The likelihood contribution of the observation given the state variable is

f (yt | xt, θ) =


1
σφ
(
yt−x̃t

σ

)
, yt > u,

Φ
(
u−x̃t
σ

)
, yt ≤ u,

(7.6)

where x̃t is given by

x̃t = µ+ ψ
xξt − 1
ξ

, (7.7)

and φ(·) and Φ(·) denote the standard normal density and distribution function, respec-

tively. It should be noted that the symbols Φ(·) and Φ1(·) are not related at all.

We assume that given the state and the parameters, the observations are independent.

Therefore the likelihood of the model is

L (θ | y1:T ) = f (y1:T | x1:T , θ) =
T∏
t=1

f (yt | xt, θ) . (7.8)

GPD-Based Parameterization

All of the methods developed in this Chapter can be written in terms of the GPD model

for exceedances over thresholds. The only difference is the marginal transformation in the

observation equation.
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The GPD model can be written in terms of λ = P {Y > u} and

P {Y > y | Y > u} =
(

1 + ξ
y − u
β

)−1/ξ

+

,

so that

P {Y ≤ y} = 1− λ
(

1 + ξ
y − u
β

)−1/ξ

+

. (7.9)

If X has unit Fréchet distribution, then for X ≥ −1/ log(1− λ) the transformation

Y = u+
β

ξ

(1− e−1/X

λ

)−ξ
+

− 1

 (7.10)

induces a random variable Y with distribution (7.9). Hence, a state-space representation of

the MM process based on the GPD parameterization is obtained by replacing the marginal

transformation (6.1) with (7.10).

7.2.1 Target Distribution

In a Bayesian framework it is of interest to obtain the joint posterior distribution of the

states Z1:T and the parameter θ. The target distribution is

f (z1:T , θ | y1:T ) ∝ f (y1:T | x1:T , θ) f (z1:T | θ) f (θ) (7.11)

∝ f (y1:T | x1:T , θ) f (z1:T ) f (θ) . (7.12)

We sample from the target distribution using a Gibbs sampler that iterates between

the states and parameters. The parameter is divided into three components: the MM

parameter α, the GEV parameters (µ, logψ, ξ), and the noise parameter log σ. Given the

states, each of these components is updated using the hybrid MCMC (Algorithm 7.1.3).

On the other hand, given the parameters, the states are updated using an algorithm that

combines single-move and block-move updating of the states, as proposed in Shephard and

Pitt (1997).

The general structure of our Gibbs sampler is to iterate between the following steps:
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1. Generate Z(i+1)
1:T from f

(
z1:T

∣∣ θ(i), y1:T

)
.

2. Generate α(i+1) from f
(
α
∣∣∣ y1:T , z

(i+1)
1:T , µ(i), ψ(i), ξ(i), σ(i)

)
.

3. Generate µ(i+1), ψ(i+1), ξ(i+1) from f
(
µ, ψ, ξ

∣∣∣ y1:T , z
(i+1)
1:T , α(i+1), σ(i)

)
.

4. Generate σ(i+1) from f
(
σ
∣∣∣ y1:T , z

(i+1)
1:T , α(i+1), µ(i+1), ψ(i+1), ξ(i+1)

)
.

In the following sections we discuss the updating steps in detail.

7.2.2 Updating MM Parameters

In this step the parameter of interest is α = (α−K , . . . , α0, . . . , αK). We assume a

uniform (Dirichlet) prior on α with density

f (α) = (2K)! ∝ constant, αk ≥ 0,
∑
k

αk = 1. (7.13)

See §B.3 for details about the Dirichlet distribution. The full conditional distribution in

this step is

f (α | y1:T , z1:T , µ, ψ, ξ, σ) ∝ f (y1:T | x1:T , θ) f (α)

∝ f (y1:T | x1:T , θ) . (7.14)

In other words, from z1:T we calculate x1:T , which depends on α, and then evaluate the

likelihood. Since it is not possible to sample from this distribution directly, we update α

using a Metropolis-Hasting step where the proposal distribution has density of the form

q
(
α
∣∣α(i)

)
, αk ≥ 0,

∑
k

αk = 1. (7.15)

Suppose at iteration i we have current estimates Z(i+1)
1:T , θ(i). Our approach is to generate

proposals for each component αk from a uniform distribution centered at α(i)
k , i.e.,

α∗k ∼ U
(
l
(i)
k , u

(i)
k

)
, −K ≤ k < K, (7.16)
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where

l
(i)
k = max

(
0, α(i)

k − εα
)
, (7.17)

u
(i)
k = min

(
1, α(i)

k + εα

)
, (7.18)

and εα is a tuning parameter. We repeat this procedure until
∑

k 6=K α
∗
k ≤ 1, and then set

α∗K = 1−
∑

k 6=K α
∗
k. In general, εα should be small in order to accept proposals more often.

However, choosing this value is a trial-and-error process.

The density of the kth component of α is

q
(
αk
∣∣α(i)

k

)
=

1

u
(i)
k − l

(i)
k

, (7.19)

so the density of the proposal distribution is

q
(
α∗
∣∣α(i)

)
=

K−1∏
k=−K

1

u
(i)
k − l

(i)
k

. (7.20)

Then we have
q
(
α(i)

∣∣α∗)
q
(
α∗
∣∣α(i)

) =
K−1∏
k=−K

u
(i)
k − l

(i)
k

u∗k − l∗k
. (7.21)

Therefore, the probability of acceptance for the Metropolis-Hastings step is

ρ
(
α(i), α∗

)
= min

{
f
(
y1:T

∣∣x∗1:T , θ∗)
f
(
y1:T

∣∣x(i)
1:T , θ

(i)
) q(α(i)

∣∣α∗)
q
(
α∗
∣∣α(i)

) , 1

}

= min

{
T∏
t=1

f
(
yt
∣∣x∗t , θ∗)

f
(
yt
∣∣x(i)

t , θ
(i)
) K−1∏
k=−K

u
(i)
k − l

(i)
k

u∗k − l∗k
, 1

}
. (7.22)

7.2.3 Updating GEV/GPD Parameters

We assume uniform distributions over a large interval as priors for each of the GEV

parameters (µ, logψ, ξ). The full conditional distribution in this step is

f (µ, logψ, ξ | y1:T , z1:T , α, σ) ∝ f (y1:T | x1:T , θ) f (µ, ψ, ξ)

∝ f (y1:T | x1:T , θ) . (7.23)
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We sample from this distribution using a Metropolis step. For each of the GEV param-

eters we generate a proposal from a uniform distribution centered at the current value of

the parameter. For the ξ parameter we reject any proposal that lies outside the interval

[−1, 1]. For instance, given µ(i) generate a proposal µ∗ ∼ U
(
µ(i) − εµ, µ(i) + εµ

)
, where εµ

is a tuning parameter. Since the proposal density is symmetric, and the prior is uniform,

the probability of acceptance for a Metropolis step is

min

{
T∏
t=1

f
(
yt
∣∣x∗t , θ∗)

f
(
yt
∣∣x(i)

t , θ
(i)
) , 1

}
. (7.24)

The results from a large number of simulations suggest that the algorithm does not

converge using the GEV parameterization. Hence, our approach is to work directly with

the model in terms of the GPD parameters (λ, β, ξ) as defined by (7.10), and update the

parameters using small uniform perturbations, as explained above.

An alternative approach (only discussed here for reference) was suggested in Coles

(2003) for modeling daily rainfall data. Coles (2003) suggested transforming the GEV

parameters as follows.

λ = 1− exp

{
− 1

366

(
1 + ξ

u− µ
ψ

)−1/ξ
}
, (7.25)

β = log {ψ + ξ(u− µ)} . (7.26)

Taking a first order expansion of (7.25) and (7.26) gives back the usual parameterization

of the GPD model, see (2.12). The number 366 is chosen because there are usually 366

daily observations per year for rainfall data. For financial data we would take 252.

7.2.4 Updating Noise Parameter

We assume a uniform distribution over a very large interval as prior for the noise

parameter log σ. The updating is performed in the same way as for the scale parameter in

§7.2.3.
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Alternative Updating

An alternative updating scheme for the σ parameter requires two steps: 1. Imputing

the censored observations. 2. Updating using a conjugate prior. In this case the natural

prior for σ2 is an inverse gamma distribution. The inverse gamma distribution is denoted

IG(a, b), and the corresponding density is

f(σ) =
1

Γ(a)ba
1

σa+1
exp

{
− 1
bσ

}
, σ ≥ 0. (7.27)

For a diffuse prior, we specify shape parameter a = 0.001 and scale parameter b = 1/a.

Given current values of states and parameters, we can generate the censored values

from a normal distribution with mean x̃(i+1) and standard deviation σ(i). Then given the

observed and imputed data σ can be updated by a standard analytical method. Assuming

that the prior is given by (7.27), the posterior of σ2 is

IG
(
a+

n− 1
2

,

[
n− 1

2
s2 +

1
b

])
,

where s2 is the sample standard deviation of all observed and imputed data. Then the

updated value of σ for the Gibbs sampler is just the posterior mean.

7.3 Updating States of MM Processes

In this section we describe the methods for updating the states of MM processes given

the parameters.

There are two main difficulties for designing an efficient sampler for updating the states.

First, the state-space representation of MM processes is only valid for observations above

a high-threshold, so even if the original sample size is large, we have limited information

for extreme events. Second, the state is very high-dimensional and the components are

dependent. Hence the sampler should take into account the time-series structure of the

states.

In the stochastic volatility literature it is common to see that the volatility process is

updated with the forward filtering backward sampling algorithm originally proposed by
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Carter and Kohn (1994) and described in West and Harrison (1997). However, alternative

approaches are needed when the state is inherently non-linear. Shephard and Pitt (1997)

and Pitt and Shephard (1999b) propose methods that are possible to extend to non-linear

state-space, and we follow closely their approach.

There is a trade-off between updating all the components of the state vector at the same

time, or updating one component at a time. The former approach generates proposals that

are accepted with very small probability, so there is small autocorrelation, but the chain

moves very slowly and does not converge. On the other hand, updating one component at

a time moves the chain, but the chain has high autocorrelation, hence convergence is also

questionable. An intermediate approach is to consider blocks of observations, and update

all of the corresponding states at the same time. Following Shephard and Pitt (1997), a

single-move sampler updates one component of the state vector at a time. A multi-move

(or block) sampler updates all of the components in a block of contiguous states at the

same time.

The state vector for the MM process defined by equation (7.3) is Z(−K+1):(T+K) =

(Z−K+1, . . . , Z0, Z1, . . . , ZT+K). To simplify the exposition, and without loss of generality,

in what follows we refer to the state vector as Z1:T = (Z1, . . . , ZT ).

7.3.1 Target Distribution

The natural prior for the state vector Z1:T is a product of unit Fréchet densities, i.e.,

f (z1:T ) =
T∏
t=1

ϕ1(zt) =
T∏
t=1

z−2
t exp {−1/zt} . (7.28)

Then the full conditional distribution of the states given the data and parameters is

f (z1:T | y1:T , θ) ∝ f (y1:T | x1:T , θ) f (z1:T )

=
T∏
t=1

f (yt | xt, θ)ϕ1(zt). (7.29)
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7.3.2 Proposal Distributions

The design of a proposal distribution for the states is a critical part of the sampling

algorithm, especially for observations over a high threshold.

From Definition 3.6.1 recall that for a given integer K and a positive threshold u, we

say that xt is a local maximum if xt ≥ max {u, xt−K:t+K}.

In what follows, and in subsequent sections, we frequently refer to the ratio of the prior

density of the states (ϕ1, the unit Fréchet density) and the proposal density (q) that is used

to generate candidate moves. It is convenient to define

$ (x, y) =
ϕ1(y)
q(y | x)

. (7.30)

Importance Sampling

Given Z
(i)
t and the current observation yt, our approach is to generate from different

proposal densities according to the following:

� If yt is not a local maximum1 then generate a proposal Z∗t ∼ Φ1(x). Then we have

$
(
z
(i)
t , z∗t

)
= 1.

� If yt is a local maximum then generate a proposal from an importance density. This is

essentially the same approach we use in §6.2.4: If yt is a local maximum, then we take

the current Z(i)
t as the median of the distribution function of a unit Fréchet random

variable given that it has exceeded a high threshold u
(i)
t , where u

(i)
t is calculated

according to (6.32). Then we generate Z∗t ∼ Q
(
z
∣∣u(i)

t

)
as defined in (6.25), and by

(6.26) we have

$
(
z
(i)
t , z∗t

)
=

ϕ1(z∗t )

q
(
z∗t
∣∣u(i)

t

)
= h

(
z∗t , u

(i)
t , γ

)
(7.31)

1These are mostly observations below the threshold, which are treated as censored. However there are
also observations above the threshold that are not local maxima.
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Following this approach, we can write for any t

$
(
z
(i)
t , z∗t

)
=


h
(
z∗t , u

(i)
t , γ

)
, yt ≥ max {u, yt−K:t+K} ,

1, otherwise.
(7.32)

Then the Metropolis-Hastings step for updating a single component Zt is as follows.

Given Z(i)
t and yt, generate Z∗t as described above. Then take

Z
(i+1)
t =


Z∗t with probability ρ

(
Z

(i)
t , Z∗t

)
,

Z
(i)
t with probability 1− ρ

(
Z

(i)
t , Z∗t

)
,

where

ρ
(
z
(i)
t , z∗t

)
= min


t+K∏
j=t−K

f
(
yj
∣∣x∗j , θ(i)

)
f
(
yj
∣∣x(i)

j , θ
(i)
)$(z(i)

t , z∗t
)

$
(
z∗t , z

(i)
t

) , 1

 . (7.33)

Remark. It is important to note that updating the component Zt has an effect on the

likelihood contribution of all the observations yt−K:t+K . Furthermore, f (yt | xt, θ) is a

function of Zt−K:t+K = (Zt−K , . . . , Zt, . . . , Zt+K). Hence, the evaluation of (7.33) requires

implicitly that Z(i)
t−K:t+K are also given.

Uniform Proposal

A second approach for updating states at local maxima is to generate proposals from a

uniform distribution centered at the current value of the state.

Given Z(i)
t and the current observation yt, generate proposals according to the following:

� If yt is not a local maximum then generate a proposal Z∗t ∼ Φ1(x). Then we have

$
(
z
(i)
t , z∗t

)
= 1.

� If yt is a local maximum then generate Z∗t ∼ U
(
Z

(i)
t − εz, Z

(i)
t + εz

)
, where εz is a

tuning parameter. Since the proposal density is

q
(
z∗
∣∣ z(i)

)
= (2εz)−1,

∣∣∣z∗ − z(i)
∣∣∣ ≤ εz, (7.34)
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in this case we have

$
(
z
(i)
t , z∗t

)
=

ϕ1(z∗t )

q
(
z∗t
∣∣ z(i)
t

)
= 2εz (z∗t )

−2 exp {−1/z∗t } . (7.35)

Following this approach, we can write for any t

$
(
z
(i)
t , z∗t

)
=


2εz (z∗t )

−2 exp {−1/z∗t } , yt ≥ max {u, yt−K:t+K} ,

1, otherwise.
(7.36)

The corresponding Metropolis-Hastings step is the same as before.

One-Sided vs. Two-Sided Models

There are some minor differences when considering a one-sided model (αk = 0 for k < 0)

or a two-sided model (αk > 0 for k < 0). Suppose a single state Zt is updated at a time.

Updating Zt has an effect on the likelihood contribution of a block of observations that

depend on Zt. Table 7.1 shows the observations and states that are to be considered when

updating the state Zt, for both one-sided and two-sided models.

t = 1, . . . ,K t = K + 1, . . . , T −K t = T −K + 1, . . . , T

one-sided
yt:t+K
zt−K:t+K

yt:t+K
zt−K:t+K

yt:T
zt−K:T

two-sided
y1:t+K

z−K+1:t+2K

yt−K:t+K

zt−2K:t+2K

yt−K:T

zt−2K:T+K

Table 7.1: Observations and States for a Single-Move Update.

7.3.3 Multi-Move Sampler

We have mentioned that there is a trade-off between updating all of the components of

the state vector at the same time, or updating one component at a time. An alternative

algorithm is to consider blocks of contiguous states and update all of the components in

a block at the same time. Following Shephard and Pitt (1997) this approach is called a

multi-move (or block) sampler.
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Stochastic Knots

According to Shephard and Pitt (1997) a stochastic knot is a time period that separates

one block from another. The knots are stochastic because they are generated randomly at

each iteration of the Gibbs sampler.

The blocks are of the form (Zbi+1, Zbi+2, . . . , Zbi+1
)′, where {bi, i = 1, . . . , B} are indices

that determine the knots of the blocks. Hence, the multi-move sampler requires a tuning

parameter B, which is the number of stochastic knots to use. Shephard and Pitt (1997)

suggest selecting stochastic knots at times b = (b1, . . . , bB)′, where

bi =
⌊
T × i+ Ui

B + 2

⌋
, i = 1, . . . , B, (7.37)

T is the sample size, Ui ∼ U(0, 1), and bxc denotes the greatest integer less than or equal

to x. Then at each iteration of the Gibbs sampler, we generate the knots by (7.37), and

update B + 1 blocks. A block can be visualized as a row of the matrix

Z1, Z2, . . . , Zb1

Zb1+1, Zb1+2, . . . , Zb2

Zb2+1, Zb2+2, . . . , Zb3
...

...
...

...

ZbB−1+1, ZbB−1+2 . . . , ZbB

ZbB+1, ZbB+2, . . . , ZT

Metropolis-Hastings Step

To simplify notation write Im =
{
bm + 1, bm + 2, . . . , b(m+1)

}
, so for each bm, m =

1, . . . , B the states to be updated are

ZIm = (Zbm+1, Zbm+2, . . . , Zb(m+1)
)′.

We also need to consider beginning and end conditions, which are the vectors Z(i)
bm+1−2K:bm

and Z(i)
b(m+1)+1:b(m+1)+2K , respectively.
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The strategy for our multi-move sampler is as follows. Given Z
(i)
t , and beginning and

end conditions, generate a proposal Z∗t for each Zt, t ∈ Im according to the methods

described in §7.3.2. Then take

Z
(i+1)
Im

=


Z∗Im with probability ρ

(
Z

(i)
Im
, Z∗Im

)
,

Z
(i)
Im

with probability 1− ρ
(
Z

(i)
Im
, Z∗Im

)
,

where

ρ
(
z
(i)
Im
, z∗Im

)
= min


b(m+1)+K∏
j=bm+1−K

f
(
yj
∣∣x∗j , θ(i)

)
f
(
yj
∣∣x(i)

j , θ
(i)
)$(z(i)

j , z∗j
)

$
(
z∗j , z

(i)
j

) , 1

 . (7.38)

Combining Single-Move and Multi-Move Samplers

In practice we combine single-move updates with multi-move updates. This approach

is suggested by Shephard and Pitt (1997) because sometimes the multi-move sampler can

move slowly in the state-space, so in order to guarantee that the sampler moves, it is

suggested to use the multi-move sampler, and perform a single-move update at every k,

say 10, iteration of the Gibbs sampler.

7.4 Estimation of M3 and M4 Processes

In this section we outline extensions of the algorithms developed for estimation of MM

processes to the case of M3 and M4 processes.

7.4.1 Updating M3 Parameters

The parameter for M3 processes is a matrix of L rows and 2K + 1 columns:

α =



α1,−K · · · α1,−1 α1,0 α1,1 · · · α1,K

α2,−K · · · α2,−1 α2,0 α2,1 · · · α2,K

...
...

...
...

...

αL,−K · · · αL,−1 αL,0 αL,1 · · · αL,K


.
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Assume a uniform prior on α, with density

f (α) = Γ(L(2K + 1)) ∝ constant, α`k ≥ 0,
∑
`

∑
k

α`k = 1. (7.39)

Then the full conditional distribution in this step is

f
(
α | y1:T , z1:T , θ\α

)
∝ f (y1:T | z1:T , θ) f (α) (7.40)

= f (y1:T | z1:T , θ) (7.41)

We sample from the full conditional distribution of α by using a Metropolis-Hasting

step where the proposal distribution is uniform centered at the current value of α. Suppose

at iteration i we have current estimates Z(i+1)
1:T , α(i), θ(i)

\α. We would like sample proposals

for α from a distribution with density function of the form

q
(
α
∣∣α(i)

)
=

L∏
`=1

K∏
k=−K

q
(
α`k

∣∣α(i)
`k

)
α`k ≥ 0,

∑
`

∑
k

α`k = 1. (7.42)

A simple proposal generates each component α`k based on α
(i)
`k , but independently of the

other α’s. If the generated α’s do not add up to 1 then we reject. This is the same method

used for MM processes.

If all the entries of α are updated at once, there will be many rejections in the Metropolis-

Hastings step because α is very high-dimensional. A sensible strategy is to update two

entries of the matrix at a time and then take a Metropolis step. One could randomly select

two entries or process the entries in order. Another sensible blocking strategy is to consider

updating one row of the matrix at a time.

7.4.2 Updating States of M3 Processes

The updating of states is based on the importance density defined for local maxima

in Algorithm 6.3.4. The idea is that if yt is a local maximum, then it defines a candidate

signature pattern, and we need to identify which of the patterns is driving the process for

that particular time period.

The states of M3 processes can be represented as a matrix of L rows and T + 2K + 1
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columns:

Z =



Z1,−K+1 · · · Z1,−1 Z1,0 Z1,1 · · · Z1,T · · · Z1,T+K

Z2,−K+1 · · · Z2,−1 Z2,0 Z2,1 · · · Z2,T · · · Z2,T+K

...
...

...
...

...
...

ZL,−K+1 · · · ZL,−1 ZL,0 ZL,1 · · · ZL,T · · · ZL,T+K


.

The proposals {Z∗`t, ` = 1, . . . , L} for updating the states of M3 processes at time t are

generated as follows.

� If yt is a local maximum then

1. generate an index `∗ ∈ {1, . . . , L}, where each ` ∈ {1, . . . , L} can be selected

with probability α+
` =

∑
k α`k;

2. given `∗, generate Z∗`∗,t using the methods described in §7.3.2;

3. given `∗, generate Z∗`t ∼ Φ1(x) for ` 6= `∗.

� If yt is not a local maximum then generate Z∗`t ∼ Φ1(x) for ` = 1, . . . , L.

7.4.3 Updating States of M4 Processes

In analogy with the particle filtering method in §6.4, it is straightforward to extend the

method to generate proposals for the states of M4 processes. Again, the minor differences

from M3 processes are the definition of local maximum, which is given by Definition 3.6.5,

the likelihood evaluations, and the relative frequency of the signature patterns.

7.5 Simulation Results

In this section we summarize simulation results for the MCMC algorithm for MM

processes. The results presented are representative of our findings in many simulation

experiments. The main goal in this section is to compare the estimated parameters and

states with the actual values from the simulated process.

We simulate a sample path of T = 3000 observations from the model defined by (7.3)

and (7.4). We set the parameter of the MM process to (α−1, α0, α1) = (0.1, 0.7, 0.2). The
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GEV marginal transformation has location, scale, and shape parameters µ = 0, ψ = 0.5,

and ξ = 0.2, respectively. The noise parameter is σ = 0.2. This model has a total of 6

parameters because of the restriction
∑
αk = 1.

We assume that only the exceedances above the threshold u = 1.7 are observed. This

threshold corresponds to the 0.925 empirical quantile of the simulated process and it is

chosen arbitrarily. The results are not affected as long as we select a large enough threshold,

say no smaller than the 0.9 empirical quantile of the simulated data.

Our strategy for initializing the chain is as follows. For the MM parameter use the

fitted parameters from the clustering-based algorithm. For the GPD parameters we use

the maximum likelihood estimates. For the noise parameter we use an arbitrary number

smaller than the GPD scale parameter. For the states we use unit Fréchet draws for

censored observations, and an approximation to the exceedance in unit Fréchet scale for

the observed exceedances.

Note that the data is generated using the GEV as the marginal distribution, however

the estimation is performed in terms of the GPD parameterization. This is possible because

the two models are consistent above the threshold u, as discussed in Chapter 2. Many simu-

lation experiments show divergence of the chain using the GEV parameterization, however

the mixing properties of the chain seem much better with the GPD parameterization.

We let the chain run for a burn-in period of 20,000 iterations. After that, we let the

chain run for another 100,000 iterations, but we only record observations every 10 iterations,

so the final MCMC output is a sample of size 10,000.

The length of the uniform density that we use for the proposal distributions of the

parameters is a tuning parameter that can be selected by trial-and-error. After a few

experiments we select tuning parameters that produce a chain that seems to have reasonable

mixing properties.

For updating the states corresponding to local maxima we use proposals from the ex-

ceedances over a threshold of a unit Fréchet, as described in §7.3.2. In order to prevent

the chain to get stuck in any particular region of the state-space, we combine single-move

and multi-move updating, i.e., at every iteration we use multi-move updating, and at every

10 iterations we perform a single-move updating. For the multi-move updating we select
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B = 30 random knots, which is equivalent to updating on average 100 state variables at

each time.

7.5.1 Monitoring Convergence

We analyze the MCMC output for the marginal posterior distributions of parameters

and states. In order to analyze convergence to the posterior distributions we provide the

usual convergence diagnostics:

� Acceptance rate, which is the number of times a proposal is accepted divided by the

number of iterations. If the acceptance rate is too small then it indicates poor mixing

of the chain. If the rate is too high then it indicates that the chain is only exploring

a small region of the space.

� Time plot, which displays the mixing properties of the chain as a function of the

number of iterations.

� Autocorrelation plot, which displays the autocorrelation function of the chain.

� Density plot, which displays the estimated posterior distribution based on a kernel

density estimate of the chain.

Table 7.2 shows the acceptance rates for the parameters and states. Table 7.3 shows

the actual values of the parameters, and estimated quantiles of the marginal posterior

distributions of the parameters.

Figure 7.1 and Figure 7.2 show diagnostic plots for the parameters. The time plots

show good mixing in all parameters. The autocorrelation plots include significant lags for

very high lags, but they eventually decay. The density plots show the marginal posterior

distribution of each parameter, with a vertical reference line indicating the actual value of

the parameter. The actual value of the parameter is covered by the posterior distribution

in all cases, except for the λ parameter.

Figure 7.3 shows the observed exceedances over the threshold, and the actual states

that generated the process for the time period 521 ≤ t ≤ 550. We choose this interval

because it illustrates the estimation of a local maximum at y527. Note that the observation
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y528 exceeds the threshold, but it is not a local maximum, hence it is very likely that it was

caused by the lagged effect of the shock z527.

It is difficult to visualize convergence of the state vector because of its high-dimensionality.

In order to get an idea of the convergence of states we select three states—corresponding

to z526, z527, and z528—and show diagnostic plots in Figure 7.4. Note that z527 is a very

large shock and the posterior distribution captures this correctly.

Furthermore, we estimate the overall acceptance rate of states corresponding to local

maxima to be 0.0304, while the acceptance rate for the rest of the observations is 0.1016.

Parameter Acceptance Rate
α 0.0899
ξ 0.3026
β 0.1501
λ 0.0776
σ 0.3420

Table 7.2: Acceptance Rates of Parameters from MCMC Output.

Parameter Actual Quantiles
0.005 0.025 0.500 0.975 0.995

α−1 0.1 0.0830 0.0876 0.1002 0.1122 0.1156
α0 0.7 0.6726 0.6783 0.6988 0.7208 0.7263
α1 0.2 0.1842 0.1881 0.2010 0.2139 0.2177
λ 0.075 0.0375 0.0419 0.0528 0.0622 0.0676
β 0.84 0.7365 0.7513 0.8263 0.9144 0.9493
ξ 0.2 0.1482 0.1622 0.2097 0.2601 0.2759
σ 0.2 0.1574 0.1646 0.1952 0.2360 0.2515

Table 7.3: Quantiles of Posterior Distribution from MCMC Output. Actual values shown in first
column.
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Figure 7.1: MCMC Output for MM Process Parameters. From top to bottom: α−1, α0, and α1.
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Figure 7.4: MCMC Output for Selected States of Simulated MM process. From top to bottom: z526,
z527, and z528.
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CHAPTER 8

Financial Econometrics and Risk Assessment

In this Chapter we review the basic background for financial econometrics, with em-

phasis on volatility models. We discuss financial risks, and introduce common measures

of market risk, namely Value at Risk (VaR) and Expected Shortfall (ES). We propose

simulation-based prediction of M4 processes, and apply our methods to estimate market

risk of a hypothetical portfolio of Nasdaq sector indices.

8.1 Financial Econometrics

Financial econometrics is concerned with the modeling of financial data using statistical

(econometric) tools. Engle (2001) mentions that a central concern of financial econometrics

is to discover the joint conditional density of asset prices observed at time t given the

information set at time t which must include these prices. Usually the analysis is carried

out in terms of log-returns because they have better statistical properties than prices.

The models in financial econometrics attempt to capture “stylized facts” of financial

time series, such as time-varying volatility, non-normality and heavy-tailedness of the dis-

tribution of asset returns, and long-range dependence. We refer to Bollerslev, Engle and

Nelson (1994) or Shephard (1996) for a more extensive discussion.

8.1.1 Returns and Portfolios

Following Chapter 2 of Campbell, Lo and MacKinlay (1997), suppose that Pt is an asset

price at date t and assume this asset pays no dividends. The log return (or continuously



compounded return) is defined by

rt = log
(

Pt
Pt−1

)
. (8.1)

The log return over the most recent h periods is

rt(h) = log
(

Pt
Pt−h

)
= log

(
Pt
Pt−1

Pt−1

Pt−2
· · · Pt−h+1

Pt−h

)
= rt + rt−1 + · · ·+ rt−h+1. (8.2)

In words, the multi-period log return is the sum of the single-period log returns, so log

returns are time-additive.

A portfolio is simply a collection of assets owned by an investor. The value of a portfolio,

denoted Pt,p, composed of D assets at time t is

Pt,p =
D∑
d=1

wdPt,d, (8.3)

where Pt,d is the market price of asset d and wd is the proportion invested in that asset.

We assume wd > 0 and
∑
wd = 1. Usually portfolios have a risk-free asset, such as a

short-term Treasury bill. The log return of a portfolio is denoted rt,p. It is important to

note that rt,p is not the weighted sum of individual log returns, however, in practice the

following approximation is commonly used

rt,p ≈
D∑
d=1

wdrt,d. (8.4)

8.2 Volatility Models

Time series models that allow for the modeling of time varying variances and covariances

are called volatility models. Much of the research in volatility models has been motivated

by empirical “stylized facts” of financial time series and the pricing of contingent assets.
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The assumption of a continuous time model for option pricing is commonly used in

financial econometrics. The main assumption is that the value of some underlying security,

P , follows a geometric diffusion, e.g.

dP = mPdt+ sPdW, (8.5)

where W is a standard Brownian motion.

An asset c whose value is a function of P is called contingent or derivative. The standard

example is a European option. The classical theory for pricing European options is based

on the Black-Scholes formulas. However, this pricing scheme relies on the assumption of

constant variance, which is inconsistent with the data. This has motivated extensions to

the Black-Scholes approach for option pricing, including the modeling of second-order pro-

cesses with diffusions, and the incorporation of jumps, both in the mean and the volatility

diffusions. A recent survey of the large literature on the subject is Garcia, Ghysels and

Renault (2005).

Shephard (1996) adopts a classification that divides these models into “observation-

driven” and “parameter-driven” models. Broadly speaking, this classification reduces to

two groups: the class of autoregressive conditional heteroskedastic (ARCH) models and

their generalizations, and stochastic volatility (SV) models. More recently, a new class of

models, known as MIDAS models have been introduced.

8.2.1 ARCH Models

The ARCH class of models was introduced by Engle (1982). We follow closely the

definition in Bollerslev et al. (1994). Let {εt} be a discrete time stochastic process in R,

and let Ft−1 be the sigma-field generated by the past observations and any other information

available at time t− 1. Then {εt} is defined to follow an ARCH model if

E (εt | Ft−1) = 0, t = 1, 2, . . . , (8.6)

127



but the conditional variance,

s2t ≡ E
(
ε2t
∣∣ Ft−1

)
, t = 1, 2, . . . , (8.7)

depends non-trivially on the sigma-field generated by the past observations. We consider

ARCH models of the form:

rt = mt + stZt, (8.8)

where

� {Zt} are iid with distribution function FZ(z), E (Zt) = 0, and E
(
Z2
t

)
= 1.

� mt and st are Ft−1-measurable; in other words, mt and st depend non-trivially on

the sigma-field generated by past observations.

The GARCH(1, 1) model introduced by Bollerslev (1986) is probably the most used in

practice. This model is defined by (8.6) and

s2t = β0 + β1ε
2
t−1 + β2s

2
t−1, (8.9)

where β0 > 0, β1 ≥ 0, and β2 ≥ 0. This process is strictly stationary if β1 + β2 < 1.

For a comprehensive survey on ARCH models refer to Bollerslev et al. (1994) and

Shephard (1996).

8.2.2 SV Models

SV models are usually defined in a state-space framework. A simple example of an SV

model given in Taylor (1986) is

Yt = εt exp {Xt/2} , (8.10)

Xt = γ0 + γ1Xt−1 + ηt, (8.11)

where εt ∼ N (0, 1), ηt ∼ N (0, σ2
η), and εt, ηt are independent. Properties of this model

are discussed in Taylor (1986) and Shephard (1996). The latter points out that the main

problem with these models is the lack of analytic one-step-ahead forecasting densities.
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However, these models have nice properties and it is easier to generalize them to the

multivariate case. Estimation methods for these models include Generalized Method of

Moments (Andersen and Sorensen, 1996), quasi-maximum likelihood (Harvey, Ruiz and

Shephard, 1994), MCMC (Jacquier, Polson and Rossi, 1994), and particle filters (Pitt and

Shephard, 1999a).

8.2.3 MIDAS Models

Ghysels, Santa-Clara and Valkanov (2004a,b) introduced Mixed Data Sampling (hence-

forth MIDAS ) models for time-varying volatility. The MIDAS approach combines data

sampled at different frequencies to predict volatility. For example, prediction of daily

volatility is based on intra-daily returns.

The MIDAS models is a regression of the form

V
(hm)
t+h,t = µh + φh

kmax∑
k=0

bh(k, θ)X̃
(m)
t−k,t−k−1 + εht, (8.12)

where X̃(m)
t−k,t−k−1 are the regressors, and the lag coefficients bh(k, θ) are nonnegative and

satisfy
∑

k bh(k, θ) = 1. A parsimonious specification is to assume θ = (θ1, θ2), and

bh(k, θ) ∝ f
(

k

kmax
, θ1, θ2

)
, (8.13)

where f(z, a, b) is the Beta function given by

f(z, a, b) =
Γ(a)Γ(b)
Γ(a+ b)

za−1(1− z)b−1. (8.14)

The choice of regressors is the object of current research, for example, past values of

the absolute returns can be used (Ghysels et al., 2004a). A MIDAS model of the form (8.8)

based on daily absolute returns can be written

s2t+1 = µ+ φ

kmax∑
k=0

b(k, θ) |rt−k|+ εt+1. (8.15)
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8.3 Financial Risks

Financial risk management has evolved rapidly during the last couple of decades. A

number of factors combined have produced this boom, such as the growth of the financial

markets, the introduction of derivatives, and recent financial disasters. Some of the largest

financial institutions have suffered losses in the hundreds of millions of dollars in the fi-

nancial markets, which are believed to be because of the misuse of derivative products and

the lack of a good financial risk management system. This has increased the awareness of

investors and regulators of the financial system to obtain accurate quantitative measures

of financial risks. These measures are routinely used for internal risk management, for

investment decisions and for regulation of financial institutions, among others.

One of the main concerns has been the measurement of market risk, which is defined as

the possible loss due to fluctuations in the prices of the assets. The Bank of International

Settlements (BIS, 1993) defines many other types of financial risks, such as credit risk,

operational risk, and systemic risk. We refer to (BIS, 1993) for a detailed list of financial

risks and their definitions. In this work we will only focus on market risk.

8.3.1 Coherent Measures of Risk

Artzner, Delbaen, Eber and Heath (1999) provide an axiomatic framework for risk

management. Four of the axioms state the desirable properties that measures of risk should

satisfy if they are to be used for setting capital requirements. Let X and Y be the future

net worth of two market positions. Let r be a risk-free rate, a ∈ R, and λ > 0. A measure

of risk ρ is called coherent if it satisfies the following properties:

ρ(X + Y ) ≤ ρ(X) + ρ(Y ) (subadditivity) (8.16)

ρ(λX) = λρ(X) (homogeneity) (8.17)

ρ(X) ≥ ρ(Y ) if X ≤ Y (monotonicity) (8.18)

ρ(X + ra) = ρ(X)− a (risk-free condition) (8.19)

The subadditivity condition is a natural requirement that ensures that the measure of
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risk behaves reasonably when adding positions. For instance, Artzner et al. (1999) argue

that it would be unreasonable for an exchange to require more margin for the sum of two

positions than the sum of the margins required for each individually. Both subadditivity

and homogeneity imply that the function ρ is convex. The monotonicity condition implies

that if X ≤ Y , then an investor would prefer Y , so a coherent measure of risk has to assign

less risk to Y . The risk-free condition states that if the amount a is added to a position,

and invested at a risk-free rate r, then the risk is reduced in the amount of a.

Value at Risk (VaR) has become the most widely accepted tool to measure market

risk, and it is now a standard in the industry. The so-called Expected Shortfall (ES) is an

alternative measure with better theoretical properties.

8.3.2 Value at Risk and Expected Shortfall

Intuitively, the Value at Risk is the maximum loss that the value of an asset (or a

portfolio of assets) can suffer with a given probability and during a specified time-horizon.

According to the BIS regulations, the VaR is the capital that a bank needs to hold to

cover possible losses on its trading portfolio over a 10 day period in 99% of the occasions.

Formulated as a statistical problem, the VaR is defined as a quantile of the distribution of

portfolio’s return over the specified time horizon. Let X = −rt+h(h) be the negative of the

cumulative log return over the time interval (t, t+ h). The conditional VaR is defined by

VaRq,t+h(h) = inf
{
x ∈ R : FX|Ft

(x) ≥ q
}
, (8.20)

where q is a specified probability, usually 0.95 or 0.99.

The conditional Expected Shortfall is a tail conditional expectation, defined as the

average of the negative returns given that they exceed the conditional VaR, i.e.,

ESq,t+h(h) = E (X |X ≥ VaRq,t+h(h), Ft ) . (8.21)

To simplify notation, when the time horizon is one day we denote these quantities as

VaRq,t+1 and ESq,t+1, respectively.

Although VaR is very popular among practitioners, it has several disadvantages. For
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instance, estimating the VaR at very high confidence levels is too volatile. On the other

hand, the VaR only provides the probability of a “bad” event, but it does not tell how large

that event is going to be. Furthermore, Artzner et al. (1999) have criticized the use of VaR

because it is not subadditive, hence it is not a coherent measure of risk. Dańıelsson et al.

(2001) discuss other issues of using VaR for setting capital requirements.

On the other hand, the Expected Shortfall is a coherent measure and it is sensitive to

very large events in the tail, which allows to distinguish between two distributions with the

same quantile, but different tail.

8.3.3 Risk Assessment Based on ARCH-GPD Models

The approach of McNeil and Frey (2000) is to combine ARCH and GPD models for

estimating VaR and ES. The relevance of the work by McNeil and Frey (2000) is that it

provides explicit formulas for the estimation of VaR and ES, and it combines two important

features of financial data in the model, namely time-varying volatility and heavy tails.

McNeil and Frey (2000) assume a model of the form (8.8), where mt and st are an AR(1)

process and a GARCH(1, 1) model, respectively. After fitting this model, the standardized

residuals zt = (rt − m̂t) /ŝt are assumed to be iid, but with unknown distribution function.

The standardized residuals above a high threshold are then used in a second stage to fit

a GPD model for the tails of the error distribution. Measures of risk are based on the

one-step predictive distribution of the asset return, given by

P {rt+1 ≤ x | Ft} = P {st+1Zt+1 +mt+1 ≤ x | Ft}

= FZ

(
x−mt+1

st+1

)
. (8.22)

Therefore the conditional VaR (quantile) is

VaRq,t+1 = mt+1 + st+1zq, (8.23)

where zq is the upper qth quantile of Z. The conditional ES is

ESq,t+1 = mt+1 + st+1E (Z | Z > zq) . (8.24)
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Based on the GPD assumption, the estimated conditional VaR is

V̂aRq,t+1 = m̂t+1 + ŝt+1ẑq, (8.25)

and the estimated conditional ES is

ÊSq,t+1 = m̂t+1 + ŝt+1ẑq

[
1

1− ξ̂
+
β̂ − ξ̂ẑ

(k+1)

(1− ξ̂)ẑq

]
, (8.26)

where k is the index of the kth largest order statistic, and

ẑq = z(k+1) +
β̂

ξ̂

[(
1− q
k/n

)−ξ̂
− 1

]
. (8.27)

Simulation approaches to obtain estimates of VaRq,t+h(h) and ESq,t+h(h), for h > 1

have been proposed independently by McNeil and Frey (2000) and Dańıelsson and de Vries

(2001).

8.4 Prediction of M4 Processes

Accurate assessment of financial risks is of great importance for both investors and

regulators. A challenging problem is to estimate measures of risk for the cumulative loss

over a multiple-day period of a portfolio containingD assets. In particular, we are interested

in estimating VaR and ES over a period of H = 10 days. For instance, the New Basel

Capital Accord specifies that financial institutions should report VaR over a 10-day period.

In this section we propose a simulation-based method based on M4 processes to obtain

the joint predictive distribution of future losses over a multiple-day period. Measures of

risk (VaR and ES) can then be obtained directly from this simulated distribution.

Previous work on modeling financial data with M4 processes include Zhang and Smith

(2001), Zhang (2002) and Smith (2003). However, these works do not discuss the estimation

of measures of risk.
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8.4.1 Model Description

Let {rt = (rt,1, . . . , rt,D)′, t = 1, . . . , T} be daily returns on D assets. The portfolio

return from time t− 1 to time t is given by (8.4), i.e.,

rt,p ≈
D∑
d=1

wt,drt,d, (8.28)

where wt,d is the proportion of wealth invested in asset d at time t. Recalling that log

returns are time-additive, the cumulative portfolio return over an horizon of H days is

rt,p(H) = rt+1,p + rt+2,p + · · ·+ rt+H,p

=
H∑
h=1

rt+h,p. (8.29)

The relevant question for obtaining multiple-day period measures of risk is

What is the distribution of the cumulative loss between day t and t+H?

We consider this question in detail in §8.4.4.

Our strategy to analyze returns is a three-stage approach, similar to McNeil and Frey

(2000), Zhang (2002) and Smith (2003). First fit a volatility model to remove the mean and

volatility effects. Second, fit an extreme value model to the standardized residuals from

the first stage and transform to unit Fréchet scale. Third, fit an M4 process model to the

variables in the unit Fréchet scale.

Our model takes into account several empirical facts of financial time series, such as

time-varying volatility, heavy tails, and extremal dependence across assets.

Let rt be the conditional return given past information Ft, then assume

rt = mt + stYt. (8.30)

It is usual to assume an AR(1) model for the conditional mean mt, of the form

mt = φ0 + φ1mt−1, (8.31)
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where φ0 ∈ R, |φ1| < 1. The volatility effect can be modeled with a GARCH(1,1) model,

s2t = β0 + β1ε
2
t−1 + β2s

2
t−1, (8.32)

where εt = rt −mt, and β0 > 0, β1 ≥ 0, and β2 ≥ 0.

The first stage is basically the same as in previous works. The idea is to estimate mt

and st using a quasi-maximum likelihood approach and then work with the standardized

residuals

Yt =
rt − m̂t

ŝt
. (8.33)

However, unlike conventional GARCH models, in our approach we do not assume the

standardized residuals are iid—there is dependence in the tails that is not captured by the

GARCH model and it will be modeled in the third stage of the procedure.

The second stage is to fit GPD models to the exceedances of Yt over a large threshold

u. Let λ = P {Yt > u}, and let β and ξ be the scale and shape parameters of the GPD

given by (2.9). Then we have the approximation

1− F (y + u) = P {Yt > y + u | Yt > u}P {Yt > u}

≈ λ
(

1 + ξ
y

β

)−1/ξ

+

. (8.34)

The marginal transformation to the unit Fréchet scale is carried out as follows. If Y has

the distribution function F given by (8.34), the transformation

X =

[
− log

{
1− λ

(
1 + ξ

Y − u
β

)−1/ξ

+

}]−1

(8.35)

induces a random variable X that satisfies

P {X ≤ x} = exp {−1/x} , x ≥ −1/ log(1− λ). (8.36)

After applying the marginal transformation to the exceedances of each of the D series

we obtain a process {Xt = (Xt,1, . . . , Xt,D)′, t = 1, . . . , T}, such that each {Xt} has unit
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Fréchet marginals.

The third stage is to assume that the process {Xt} can be approximated by an M4

process

Xtd = max
`

max
k

α`kdZ`,t−k, t ∈ N, 1 ≤ d ≤ D. (8.37)

The parameters of this model are then estimated using the clustering based method de-

scribed in Algorithm 3.6.6. This allows us to model the clustering of extreme events (tem-

poral dependence) as well as joint dependence in the extremes across different assets.

8.4.2 One-Step Prediction

In this section we assume that all model parameters have been estimated, so to simplify

the exposition we assume the parameters are known.

The prediction of risk is based on the predictive distributions of future losses. Our

prediction methods are based on a state-space model representation of M4 processes, given

by

Xtd = max
`

max
k

α`kdZ`,t−k, t ∈ N, 1 ≤ d ≤ D, (8.38)

Ytd = X̃td + εtd, t ∈ N, 1 ≤ d ≤ D, (8.39)

where

X̃ = µ+ ψ
Xξ − 1
ξ

(8.40)

is the marginal transformation from the unit Fréchet to the GEV scale.

Our approach is as follows. Given the parameters of the model, we obtain the filtering

distributions of the states {Z`t} using particle filters. Then we use the filtering distribution

to simulate the predictive distributions of future states, which in turn is used to obtain

the predictive distribution of future losses. This approach is used for both one-step and

multiple-step predictions.

The one-step prediction equation is

f (xt+1 | y1:t) =
∫
f (xt+1 | x0:t) f (x0:t | y1:t) dx0:t. (8.41)
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It is not possible to compute this expression explicitly, however a Monte Carlo sample from

this distribution can be obtained with the following procedure:

1. Run a particle filter to obtain a sample from the filtering distribution of the last K

states, i.e.,
{
Z

(i)
`,t−K+1:t

}
, 1 ≤ ` ≤ L, 1 ≤ i ≤ N .

2. Generate innovations Z(i)
`,t+1 ∼ Φ1(x), 1 ≤ ` ≤ L, 1 ≤ i ≤ N .

3. Given α and
{
Z

(i)
`,t−K+1:t+1

}
, obtain X

(i)
t+1, 1 ≤ i ≤ N from (8.38).

Then X
(i)
t+1, 1 ≤ i ≤ N can be considered as a sample from f (xt+1 | y1:t).

8.4.3 Multiple-Step Prediction

To obtain the two-step predictive distribution consider the joint prediction

f (xt+1, xt+2 | y1:t) = f (xt+2 | xt+1) f (xt+1 | y1:t) . (8.42)

In general, the joint H-step predictive distribution is

f (xt+1:t+H | y1:t) =
H−1∏
h=1

f (xt+h+1 | xt+h) f (xt+1 | y1:t) . (8.43)

Our approach to simulate the multiple-step predictive distribution is a straightforward

extension of the methods for one-step predictions. In this case generate innovations

Z
(i)
`,t+h ∼ Φ1(x), 1 ≤ ` ≤ L, 1 ≤ h ≤ H, 1 ≤ i ≤ N. (8.44)

Given these innovations and the particle filtering sample
{
Z

(i)
`,t−K+1:t

}
, use (8.38) to obtain

sample paths

X
(i)
t+1, . . . ,X

(i)
t+H , 1 ≤ i ≤ N. (8.45)

8.4.4 Risk Assessment Based on M4 Processes

In this section we address the question

What is the distribution of the cumulative loss between day t and t+H?
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More precisely, we need to analyze the predictive distribution of the cumulative portfolio

return.

We propose to use predictions from an M4 process to approximate the joint extremal

behavior of future losses. However, since the goal is to obtain a sample from the distribution

of cumulative returns, we also need to account for the center of the distribution. To achieve

this we adapt an approach previously proposed by McNeil and Frey (2000) and Dańıelsson

and de Vries (2001).

The idea is to fit two independent M4 process
{

x
(L)
t

}
and

{
x

(P)
t

}
, for the lower tail

(losses) and upper tail (profits), respectively. Then obtain bootstrap samples from the

center of the standardized residuals for the center of the distribution. The steps for this

procedure are as follows.

1. Generate a sample path x
(L)
t+1, . . . ,x

(L)
t+H from the fitted M4 process for the lower tail

(losses) and transform to the GEV scale, i.e., x̃
(L)
t+1, . . . , x̃

(L)
t+H .

2. Generate a sample path x
(P)
t+1, . . . ,x

(P)
t+H from the fitted M4 process for the upper tail

(profits) and transform to the GEV scale, i.e., x̃
(P)
t+1, . . . , x̃

(P)
t+H .

3. Obtain a bootstrap sample et+1, . . . ,et+H , where each et+h,d, 1 ≤ h ≤ H, 1 ≤ d ≤ D

is one of the standardized residuals (8.33).

4. For h = 1, . . . ,H:

� set Y t+h = et+h;

� if x̃(L)
t+h,d > u(L) set Yt+h,d = x̃

(L)
t+h,d, d = 1, . . . , D;

� if x̃(P)
t+h,d < −u

(P) set Yt+h,d = x̃
(P)
t+h,d, d = 1, . . . , D.

We simulate N sample paths from the procedure described above, i.e.,

Y
(i)
t+1,Y

(i)
t+2, . . . ,Y

(i)
t+H , 1 ≤ i ≤ N, (8.46)

which combined with mean and volatility predictions

m̂t+h,d, ŝt+h,d, 1 ≤ h ≤ H, 1 ≤ d ≤ D, (8.47)
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give N simulated paths of returns

r
(i)
t+h,d = m̂t+h,d + ŝt+h,dY

(i)
t+h,d, 1 ≤ h ≤ H, 1 ≤ d ≤ D, 1 ≤ i ≤ N. (8.48)

Finally, for each simulated path, we calculate the approximate portfolio return by (8.28),

and the cumulative return by (8.29). Measures of risk can then be obtained directly from

this simulated distribution.

8.5 Data Analysis of Nasdaq Sector Indices

In this section we analyze four Nasdaq sector indices1: Nasdaq Bank (BK), Nasdaq

Industrial (ID), Nasdaq Insurance (IS), and Nasdaq Transportation (TR). The data are

5848 daily negative log returns from January 4, 1982 to March 18, 2005. A plot of negative

returns calculated from the data is given in Figure 8.1. Percentiles of the negative returns

are shown in Table 8.1.

Our goal is to obtain multiple-day measures of risk for a hypothetical portfolio of these

assets. In particular we are interested in the distribution of the cumulative loss over a 10-

day period. We follow the approach described in the preceding section: First, we simulate

sample paths of the predictive distribution of the multivariate time series based on M4

processes fitted to the tails. Then we combine the multiple simulated paths to obtain a

sample of the predictive distribution of the cumulative return of the portfolio up to time

T + 10. Measures of risk can be obtained directly from this simulated distribution.

8.5.1 Mean and Volatility Models

In the first stage of modeling we fit AR(1)-GARCH(1,1) models defined by (8.30)–(8.32)

to each of the individual series in order to remove trend and volatility effects. Then we

calculate standardized residuals according to (8.33), which are shown in Figure 8.2.

The choice of GARCH-type models can be replaced by other volatility model, such as a

MIDAS model. We believe that the choice of volatility model does not have any qualitative

effect on later modeling stages, however a proper comparison and further research is nec-

1Refer to http://dynamic.nasdaq.com/reference/IndexDescriptions.stm for a description
of the data. The data source is http://finance.yahoo.com .
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essary in this respect. We choose to fit GARCH models for convenience because software

is readily available in the S+FinMetrics module of S-PLUS.

The top part of Table 8.2 shows the correlation between standardized residuals from

GARCH models. Linear dependence is weak as the correlation between variables ranges

from 0.5 (BK vs. TR) to 0.67 (BK vs. ID). The bottom part of Table 8.2 shows correlation

for standardized residuals where at least one of the variables exceeds the threshold u = 1.45.

Linear dependence is very weak, the smallest being BK vs. TR and the strongest ID vs

TR with an estimate of 0.43. Even though there is some linear dependence that we are not

taking into account in our model, this dependence is rather small in the tails.

8.5.2 Empirical Evidence for M4 Processes

We obtain estimates of the extremal index of the standardized residuals using the runs

method (Smith and Weissman, 1994). We choose r = 2 consecutive observations below the

threshold u = 1.45 as separating two clusters of exceedances. Table 8.3 shows that these

estimates fluctuate around 0.8068 and 0.9156, so the mean cluster size of exceedances is in

the interval (1.10, 1.24), which indicates that there is clustering of extremal events that is

not captured by the volatility model. However this time-dependence is not very strong.

Plots of the exceedances over the threshold of the standardized residuals are shown

in Figure 8.4 (losses) and Figure 8.5 (profits). These plots show that there are joint ex-

ceedances over the threshold, suggesting joint extremal dependence across series.

The next step is to fit univariate extreme value models to each of the series in order

to transform the marginals to the unit Fréchet scale. We fit models for both tails (losses

and profits) of the standardized residuals from GARCH models. Figure 8.3 shows mean

excess plots with approximate 95% confidence intervals for each of the variables. These

plots are reasonably linear above the threshold u = 1.45, which suggests that the data can

be modeled with a GPD above this threshold. Hence we select a threshold of u = 1.45 for

all variables.

Parameter estimates of the point process models based on the threshold u = 1.45 and

252 observations per year are shown in Table 8.4. Since there are usually 252 trading

days in a year, these estimates correspond to the parameters of the limiting distribution of
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annual maxima of each series.

Table 8.5 shows the parameters of the GPD models fitted to the data. As expected the

estimates of the shape parameter ξ are the same for the point process and the GPD models.

In what follows, we use the GPD parameter estimates because the GPD parameterization

is more convenient for daily data, and also because the two sets of parameters (λ, β, ξ) and

(µ, ψ, ξ) are consistent above the threshold, as shown by (2.12) in Chapter 2. Diagnostic

plots for each of the GPD models are shown in Figures 8.6 and 8.7. Each column shows

diagnostic plots for one variable, where the diagnostics correspond to a plot of the excess

distribution (first row), a plot of the tail of underlying distribution (second row), a scatter

plot of residuals (third row), and a Q-Q plot of residuals (fourth row). These plots indicate

good fits for all 8 variables.

We use the GPD parameter estimates for transforming the exceedances over the thresh-

old u = 1.45 to the unit Fréchet scale. Note that the estimate of λd, d = 1, 2, 3, 4 is differ-

ent for each of the variables, so the transformed variables are exceedances over a threshold

−1/ log(λd), d = 1, 2, 3, 4 in the unit Fréchet scale shown in Table 8.6.

Figures 8.8–8.11 show scatter plots of joint exceedances. The numbers at the top-right

corner show the number of expected joint exceedances under the assumption of indepen-

dence, and the actual number of observed exceedances, which is the number of points in

the plot.

Figure 8.8 shows scatter plots of joint exceedances at 1, 2, and 3 lags of the same

series. The difference between expected and observed exceedances do not suggest strong

dependence in time.

Figure 8.9 shows scatter plots of joint exceedances across variables in the same day. The

lower diagonal corresponds to losses, and the upper diagonal corresponds to profits. The

large differences between expected and observed exceedances do suggest strong evidence of

dependence across series.

Figure 8.10 shows scatter plots of joint exceedances across variables at different lags.

There is no strong evidence of lag dependence across series.

We are also interested to find if there is extremal dependence between the upper and

lower tails. The question is based on the observation that if there is a large event on
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any given day, then it may be likely to observe an extreme event in the same or opposite

direction during the following days. Figure 8.11 shows scatter plots of joint exceedances

of the upper and lower tails of individual series at 1 and 2 lags. Again, there is not much

difference between expected and observed exceedances, except for the ID variable.

8.5.3 Estimation of M4 Processes

We specify an M4 process model in 4 dimensions with L = 10 signature patterns

and 5 lags |k| ≤ 2, and we fit this model using the clustering-based method described

in Algorithm 3.6.6. Table 8.7 shows the parameter estimates {α`kd} of the M4 process

model fitted to the upper tail of the Nasdaq Indices data (losses). Table 8.8 shows the

within-cluster sum of squares and the cluster size for each signature pattern identified by

K-means. We also fit a model for the lower tail (losses) with the same number of lags and

signature patterns, but omit the corresponding tables. Figures 8.12–8.13 show plots of the

parameter estimates of these two fitted M4 process models.

An alternative model is to fit an M4 process in 8 dimensions that accounts for extremal

dependence across the two tails. Even though there is not much empirical evidence that

suggest there is extremal dependence across tails, we fit this model to illustrate its main

features. We choose L = 5 signature patterns and 5 lags |k| ≤ 2. Figure 8.14 shows

the parameter estimates for this model, where each signature pattern is displayed with a

different line pattern. For instance, consider the signature pattern that is displayed with

a solid line. In this case the parameters corresponding to losses have an A-shaped form,

while the parameters corresponding to profits have a V-shaped form. The opposite shape

of parameters for losses and profits is consistent across all signature patterns.

The estimated M4 parameters (Table 8.7) are used to obtain estimates of the extremal

indices of the individual series and of the multivariate extremal index by a direct application

of (3.13). The results are shown in Table 8.9. It is important to remember that the

univariate extremal index does not depend on the threshold chosen, but the multivariate

extremal index does. The estimate of the multivariate extremal index is evaluated at

τ = (1, 1, 1, 1), however we have tried other values of τ and the estimate is not very

sensitive to the choice of τ .
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8.5.4 Risk Assessment

We use the data and the parameters of the two fitted M4 processes (L = 10, |k| ≤ 2)

to obtain filtering samples of the unobserved states. We select N = 1000 so the number

of particles is relatively small. Then we simulate N = 1000 sample paths of the predictive

distribution over a period of 10 days as described in §8.4, and obtain the corresponding VaR

and ES. Our results are shown in Table 8.10. We present the individual and hypothetical

portfolio risks at the 95%, 97.5%, 99%, 99.5%, and 99.9% levels.

8.5.5 Backtesting

We perform backtesting to assess the effectiveness of our methods in predicting future

losses at 10-day horizons. The idea is to obtain in-sample estimates of VaR and ES over a

10-day period as described in §8.4. Then compare them with the cumulative loss that was

actually observed over the same period. If the VaR and ES estimated for that period is

smaller than the actual value then we say there has been a violation.

We consider blocks of 3839 observations at a time, and for each block obtain measures

of risk using N = 1000, consequently we end up with a total of n = 2000 comparisons.

Under the assumption that our method estimates the quantile q without bias, the expected

number of violations is (1 − q)n where n is the number of backtest experiments. For the

ES we do not have a benchmark for expected violations. For n = 2000, and levels of 0.95,

0.975, 0.99, 0.995, and 0.999, the expected number of violations are 100, 50, 20, 10, 2,

respectively.

The number of VaR violations is presented in Table 8.11. For comparison we fit three

different types of models. First, a model where events in the tails are generated as iid

observations from a GPD distribution, similar to the method described in McNeil and Frey

(2000). Second, a model where separate M4 process are fitted to the upper and lower

tails, i.e., two different four-dimensional processes. Third, a joint M4 process model for the

upper and lower tails, i.e., a single process in eight dimensions. These models are labeled

in Table 8.11 as “iid”, “M4 (4-D)”, and “M4 (8-D)”, respectively. The main observations

from these tables are as follows.

The risk of BK is overestimated at any level of risk by all of the methods. Similarly,
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the risk of ID is overestimated at levels of 97.5% and 99% by all of the methods. However,

the M4 process models seem to estimate the risk of ID without bias at levels of 99.5%

and 99.9%. The risk of IS is correctly estimated by all of the methods. The risk of TR

is underestimated by the iid method, especially for levels above 99%; the M4 processes

perform better for the TR variable because the violations of M4 process models are much

closer to the expected number, even for very high quantiles. On the other hand, the

portfolio risk is underestimated by all of the methods. However, the violations with the iid

method are always more than any of the M4 process models, suggesting that there is an

improvement by modeling the joint extremes with M4 processes.

The corresponding results for the ES are shown in Table 8.12. In this case we do not

have a benchmark for expected violations, but the results are consistent with the results

for VaR. In particular, the violations of the portfolio ES from the iid method are always

more than those from M4 processes.

8.5.6 Conclusions

We have successfully applied the methods developed in this work to estimating measures

of risk of financial portfolios.

Risk assessment based on M4 processes gives the advantage of modeling clustering of

extremes and extremal dependence across variables, which are features empirically observed

in financial data, but not captured by ARCH-type models.

M4 process models are promising models for portfolios of many variables, which are

typical in financial applications. In this work we consider a portfolio of four variables, but

there is no restriction on the number of assets that can be included in the analysis.

Even though we have made progress in fitting these models to real data, there are a

number of alternative analyses and comparisons that need to be explored.
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Percentile Bank Industrial Insurance Transport.
0% −0.0807 −0.1052 −0.0536 −0.0852
1% −0.0210 −0.0352 −0.0234 −0.0279

2.5% −0.0153 −0.0251 −0.0173 −0.0213
5% −0.0119 −0.0187 −0.0133 −0.0169
8% −0.0093 −0.0147 −0.0108 −0.0136

10% −0.0083 −0.0130 −0.0097 −0.0123
25% −0.0042 −0.0067 −0.0051 −0.0063
50% −0.0008 −0.0010 −0.0007 −0.0004
75% 0.0027 0.0051 0.0039 0.0051
90% 0.0078 0.0140 0.0090 0.0115
92% 0.0091 0.0159 0.0104 0.0130
95% 0.0117 0.0204 0.0131 0.0163

97.5% 0.0161 0.0279 0.0174 0.0214
99% 0.0236 0.0379 0.0240 0.0287

99.9% 0.0417 0.0787 0.0410 0.0507
100% 0.0922 0.1419 0.1000 0.1399

Table 8.1: Percentiles of Negative Returns of Nasdaq Indices.

Bank Industrial Insurance Transport.

All Observations
1.0000 0.5854 0.5805 0.5005
0.5854 1.0000 0.6266 0.6722
0.5805 0.6266 1.0000 0.5335
0.5005 0.6722 0.5335 1.0000

At Least One Exceedance
1.0000 0.2503 0.3243 0.1563
0.2503 1.0000 0.3126 0.4292
0.3243 0.3126 1.0000 0.1903
0.1563 0.4292 0.1903 1.0000

Table 8.2: Correlation Between Standardized Residuals. Top part shows correlation coefficients
computed using all observations. Bottom part shows correlation coefficients computed using only
rows of observations where at least one of the variables exceeds the threshold u = 1.45.
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Bank Industrial Insurance Transport.
Losses 0.8368 0.8068 0.8241 0.8627
Profits 0.9070 0.9156 0.8506 0.8827

Table 8.3: Estimates of the Extremal Index of Standardized Residuals. Estimates obtained with the
runs method, where runs are defined whenever r = 2 consecutive observations fall below the threshold
of u = 1.45.

Series Number of µ ψ ξ
Exceedances (s.e.) (s.e.) (s.e.)

Losses
Bank 386 3.6423 0.9180 0.1195

(0.1528) (0.1168) (0.0597)
Industrial 471 3.4846 0.8066 0.1212

(0.1307) (0.0910) (0.0469)
Insurance 432 3.3887 0.7791 0.1135

(0.1285) (0.0939) (0.0533)
Transport. 386 3.3270 0.8175 0.1493

(0.1333) (0.0967) (0.0521)

Profits
Bank 344 2.9017 0.5701 0.0429

(0.0929) (0.0613) (0.0526)
Industrial 308 2.5555 0.4126 −0.0273

(0.0670) (0.0398) (0.0508)
Insurance 348 2.7960 0.4922 −0.0073

(0.0809) (0.0551) (0.0579)
Transport. 358 2.7977 0.5238 0.0455

(0.0856) (0.0579) (0.0538)

Table 8.4: Parameter Estimates of Poisson Process Models. Models Fitted to Nasdaq Indices Stan-
dardized Residuals. Threshold is u = 1.45, and number of observations per year are 252. Standard
errors in parenthesis.
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Series Number of λ β ξ
Exceedances (s.e.) (s.e.)

Losses
Bank 386 0.06601 0.6562 0.1195

(0.0514) (0.0599)
Industrial 471 0.08054 0.5602 0.1209

(0.0367) (0.0469)
Insurance 432 0.07387 0.5592 0.1133

(0.0401) (0.0533)
Transport. 386 0.06601 0.5373 0.1492

(0.0389) (0.0521)

Profits
Bank 344 0.05882 0.5080 0.0426

(0.0383) (0.0526)
Industrial 308 0.05267 0.4428 −0.0273

(0.0338) (0.0508)
Insurance 348 0.05951 0.5019 −0.0071

(0.0396) (0.0579)
Transport. 358 0.06122 0.4625 0.0456

(0.0349) (0.0538)

Table 8.5: Parameter Estimates of GPD Models. Models Fitted to Nasdaq Indices Standardized
Residuals. Threshold is u = 1.45. Standard errors in parenthesis.

Bank Industrial Insurance Transport.
Losses 14.6446 11.9091 13.0306 14.6446
Profits 16.4949 18.4825 16.2995 15.8299

Table 8.6: Thresholds in Unit Fréchet Scale.
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` α`,−2 α`,−1 α`,0 α`,1 α`,2

Bank
1 0.0000 0.0001 0.0078 0.0004 0.0011
2 0.0012 0.0000 0.1218 0.0002 0.0000
3 0.0011 0.0057 0.0178 0.0060 0.0008
4 0.0000 0.0000 0.4410 0.0010 0.0007
5 0.0082 0.0021 0.0231 0.0038 0.0038
6 0.0030 0.0021 0.0087 0.0133 0.0003
7 0.0047 0.0004 0.0185 0.0000 0.0016
8 0.0000 0.0008 0.1065 0.0000 0.0000
9 0.0065 0.0080 0.0147 0.0083 0.0042

10 0.0018 0.0108 0.1194 0.0116 0.0067

Industrial
1 0.0003 0.0003 0.0089 0.0000 0.0006
2 0.0007 0.0000 0.0462 0.0005 0.0000
3 0.0039 0.0020 0.1382 0.0028 0.0040
4 0.0004 0.0009 0.0462 0.0000 0.0012
5 0.0017 0.0043 0.4502 0.0000 0.0071
6 0.0102 0.0018 0.0066 0.0154 0.0084
7 0.0021 0.0001 0.0970 0.0000 0.0023
8 0.0006 0.0000 0.0454 0.0000 0.0000
9 0.0041 0.0118 0.0213 0.0049 0.0095

10 0.0055 0.0063 0.0069 0.0088 0.0106

Insurance
1 0.0010 0.0009 0.3871 0.0004 0.0000
2 0.0027 0.0003 0.1252 0.0004 0.0000
3 0.0000 0.0037 0.0188 0.0045 0.0016
4 0.0019 0.0014 0.0132 0.0010 0.0003
5 0.0057 0.0048 0.0207 0.0092 0.0088
6 0.0034 0.0053 0.0971 0.0017 0.0060
7 0.0011 0.0000 0.1173 0.0000 0.0000
8 0.0015 0.0004 0.0455 0.0000 0.0015
9 0.0063 0.0039 0.0433 0.0009 0.0053

10 0.0047 0.0087 0.0184 0.0061 0.0085

Transport.
1 0.0013 0.0000 0.0167 0.0004 0.0021
2 0.0003 0.0009 0.0137 0.0006 0.0000
3 0.0030 0.0008 0.1769 0.0063 0.0019
4 0.0006 0.0003 0.0084 0.0002 0.0010
5 0.0074 0.0032 0.0230 0.0027 0.0039
6 0.0044 0.0000 0.0023 0.0119 0.0053
7 0.0003 0.0008 0.0292 0.0000 0.0000
8 0.0000 0.0000 0.1000 0.0000 0.0000
9 0.0051 0.0086 0.5186 0.0003 0.0009

10 0.0085 0.0059 0.0067 0.0035 0.0123

Table 8.7: Parameter Estimates of M4 Process Model (Losses). Model Fitted to Nasdaq Indices
Standardized Residuals with Clustering-Based Method, −2 ≤ k ≤ 2, L = 10.
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` Cluster Size Within-Cluster SS
1 88 2.6396
2 33 6.6856
3 51 10.0044
4 97 7.7971
5 120 12.2522
6 37 7.6160
7 31 6.3058
8 26 7.1899
9 126 15.8855

10 45 9.3575

Table 8.8: Within-Cluster Sum of Squares and Cluster Size of Signature Patterns. Model Fitted to
Nasdaq Indices Standardized Residuals with Clustering-Based Method, −2 ≤ k ≤ 2, L = 10.

Multiv. Bank Industrial Insurance Transport.
Losses 0.9285 0.8840 0.8795 0.8866 0.9106
Profits 0.9551 0.9265 0.9420 0.9060 0.9159

Table 8.9: Estimates of the Extremal Index Based on M4 Process Parameters. The first column is
the estimate of the multivariate extremal index evaluated at τ = (1, 1, 1, 1).
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Level Bank Industrial Insurance Transport. Portfolio

95.0%
VaR 0.0303 0.0355 0.0319 0.0508 0.0205

ES 0.0436 0.0497 0.0562 0.0687 0.0275

97.5%
VaR 0.0408 0.0427 0.0435 0.0611 0.0251

ES 0.0523 0.0607 0.0746 0.0817 0.0324

99.0%
VaR 0.0511 0.0620 0.0548 0.0796 0.0331

ES 0.0624 0.0748 0.1129 0.1006 0.0377

99.5%
VaR 0.0551 0.0681 0.0900 0.0935 0.0366

ES 0.0710 0.0831 0.1582 0.1116 0.0405

99.9%
VaR 0.0803 0.0793 0.1754 0.1113 0.0427

ES 0.0989 0.1012 0.1944 0.1444 0.0437

Table 8.10: Value at Risk and Expected Shortfall over a 10-Day Horizon. Estimates Based on M4
Processes. The portfolio column is the risk of an hypothetical portfolio of these assets.
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VaR Level Bank Industrial Insurance Transport. Portfolio

95.0%, Expected: 100
iid 54 70 91 94 267
M4 (4-D) 60 91 107 110 240
M4 (8-D) 67 81 100 104 222

97.5%, Expected: 50
iid 23 28 44 53 177
M4 (4-D) 21 31 40 51 148
M4 (8-D) 20 27 39 47 139

99.0%, Expected: 20
iid 4 13 17 23 116
M4 (4-D) 2 12 13 22 81
M4 (8-D) 3 12 11 16 71

99.5%, Expected: 10
iid 3 9 9 16 79
M4 (4-D) 1 7 7 9 54
M4 (8-D) 1 8 4 8 58

99.9%, Expected: 2
iid 1 5 2 5 51
M4 (4-D) 0 2 3 3 31
M4 (8-D) 0 3 1 2 26

Table 8.11: Number of Value at Risk Violations from Backtesting. n = 2000 models, T = 3839,
N = 1000
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ES Level Bank Industrial Insurance Transport. Portfolio

95.0%
iid 12 21 28 39 154
M4 (4-D) 9 20 28 33 122
M4 (8-D) 11 17 25 31 116

97.5%
iid 3 13 13 22 110
M4 (4-D) 2 9 12 18 76
M4 (8-D) 3 11 9 14 69

99.0%
iid 1 8 6 12 68
M4 (4-D) 1 3 5 7 44
M4 (8-D) 1 6 1 6 48

99.5%
iid 1 6 3 7 51
M4 (4-D) 0 2 3 4 35
M4 (8-D) 0 2 1 3 30

99.9%
iid 1 2 1 4 38
M4 (4-D) 0 2 0 2 23
M4 (8-D) 0 2 0 1 20

Table 8.12: Number of Expected Shortfall Violations from Backtesting. n = 2000 models, T = 3839,
N = 1000
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Figure 8.1: Daily Negative Log Returns of Nasdaq Indices.
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Figure 8.2: GARCH Standardized Residuals of Nasdaq Indices.
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Figure 8.3: Mean Excess Plots of Nasdaq Indices Standardized Residuals. Reference line at u = 1.45.
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Figure 8.6: Diagnostic Plots for GPD Models (Losses).
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Figure 8.7: Diagnostic Plots for GPD Models (Profits).
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Figure 8.8: Joint Exceedances at Different Lags of the Same Series. Variables are transformed to
unit Fréchet scale. From top to bottom: BK, ID, IS, and TR. From left to right: 1, 2, and 3 lags.
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Figure 8.9: Joint Exceedances Across Series in the Same Day. Variables are transformed to unit
Fréchet scale. Lower diagonal (circles) corresponds to losses and upper diagonal (crosses) corre-
sponds to profits.
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Figure 8.10: Joint Exceedances at Different Lags Across Series. Variables are transformed to unit
Fréchet scale. Lower diagonal corresponds to yt vs. xt−1 (yt in y-axis, xt−1 in x-axis). Upper
diagonal corresponds to xt vs. yt−1 (xt in y-axis, yt−1 in x-axis).
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Figure 8.11: Joint Exceedances of Upper and Lower Tails at 1 and 2 Lags. Variables are transformed
to unit Fréchet scale.
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Figure 8.12: Parameter Estimates of M4 Process Model (Losses). Model Fitted to Nasdaq Indices
Standardized Residuals with Clustering-Based Method, −2 ≤ k ≤ 2, L = 10.
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Figure 8.13: Parameter Estimates of M4 Process Model (Profits). Model Fitted to Nasdaq Indices
Standardized Residuals with Clustering-Based Method, −2 ≤ k ≤ 2, L = 10.
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Figure 8.14: Parameter Estimates of joint M4 Process Model for Profits and Losses. Model Fitted
to Nasdaq Indices Standardized Residuals with Clustering-Based Method, −2 ≤ k ≤ 2, L = 5.
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APPENDIX A

Properties of the Fréchet Distribution

The Fréchet distribution is frequently used throughout this work. We state some of its

properties for convenience.

The Fréchet distribution function with shape parameter ζ > 0 is

Φζ(x) =


0, x ≤ 0,

exp
{
−x−ζ

}
, x > 0.

(A.1)

A random variable Z with this distribution is called a Fréchet random variable. The

corresponding density is

ϕζ(x) =


0, x ≤ 0,

ζ x−ζ−1 exp
{
−x−ζ

}
, x > 0.

(A.2)

This density has a maximum at

x∗ =
(

ζ

1 + ζ

)1/ζ

. (A.3)

It can be shown that all the moments of a Fréchet random variable do not exist. The

quantiles xq, 0 ≤ q ≤ 1, satisfy

xq =
ζ

log(1/q)
. (A.4)

In particular the median is

x0.5 =
ζ

log 2
. (A.5)



Unit Fréchet Distribution

A Fréchet distribution with ζ = 1 is called unit Fréchet or standard Fréchet. Its

distribution function is

Φ1(x) =


0, x ≤ 0,

exp
{
− 1
x

}
, x > 0.

(A.6)

Truncated Fréchet

Let Z be a unit Fréchet random variable with scale parameter α, and let u > 0. The

distribution function of Z given that Z < u, denoted Φ1,α (x | x < u), is

Φ1,α (x | x < u) ≡ P {Z < x | Z < u} =


exp

{
−α
x + α

u

}
, 0 ≤ x ≤ u,

1, x > u.

(A.7)

The corresponding density function is

ϕ1,α(x | x < u) =


α
x2 exp

{
−α
x + α

u

}
, 0 ≤ x ≤ u,

0, x > u.

(A.8)

Hence, the median of this distribution is

xu,0.5 = α
(
log 2 +

α

u

)−1
. (A.9)

Fréchet Exceedances

Let Z be a unit Fréchet random variable with scale parameter α, and let u > 0. The

distribution function of Z given that Z > u, denoted Φ1,α (z | z > u), is

Φ1,α (x | x > u) ≡ P {Z < x | Z > u} =


0, x ≤ u,
exp

{
−α
x

}
− exp

{
−α
u

}
1− exp

{
−α
u

} , x > u.

(A.10)
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The corresponding density function is

ϕ1,α(x | x > u) =


0, x ≤ u,

α

x2

exp
{
−α
x

}
1− exp

{
−α
u

} , x > u.

(A.11)

For x > u the median of this distribution, denoted m(u), satisfies

exp
{
− α
m(u)

}
− exp

{
−α
u

}
1− exp

{
−α
u

} =
1
2
, (A.12)

from which we obtain

m(u) =
α

log 2− log
(
1 + exp

{
−α
u

}) . (A.13)

A first-order Taylor expansion of (A.13) as u→∞ gives

m(u) = 2u+
α

2
+
α2

8u
+O

(
1
u2

)
. (A.14)

For sufficiently large u, a rough approximation of m(u) is given by

m(u) ≈ 2u+
α

2
. (A.15)

Simulation

Algorithm A.0.1. The following generates a random variable Z with distribution function

(A.7).

1. Generate U ∼ U(0, e−α/u).

2. Set Z = −α/ logU .

Proof.

P {Z ≤ z} = P {logU ≤ −α/z}

= P
{
U ≤ e−α/z

}
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= Φ1,α (z | z < u) . (A.16)

Algorithm A.0.2. The following generates a random variable Z with distribution function

(A.10).

1. Generate U ∼ U(e−α/u, 1).

2. Set Z = −α/ logU .

Proof.

P {Z ≤ z} = P {logU ≤ −α/z}

= P
{
U ≤ e−α/z

}
= Φ1,α (z | z > u) . (A.17)
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APPENDIX B

Sampling Techniques

Consider a function f(·) > 0, such that
∫
f(x)dx <∞. Suppose we can sample from a

density g(·) and we know f(·) up to proportionality. The task is to simulate samples from

h(x) =
f(x)∫
f(x′)dx′

. (B.1)

We review two different approaches to solve this problem: importance sampling, and

weighted bootstrap (sampling/importance resampling).

B.1 Importance Sampling

The goal is to estimate

E (φ(x)) =
∫
φ(x)h(x)dx. (B.2)

Define w(x) = f(x)/g(x), then we can write

E (φ(x)) =
∫
φ(x)f(x)dx∫
f(x)dx

=
∫
φ(x)w(x)g(x)dx∫
w(x)g(x)dx

(B.3)

If we obtain a sample X1, X2, . . . , Xn ∼ g(·) then we can estimate

̂E (φ(x)) =
1
N

∑N
i=1 φ(xi)w(xi)

1
N

∑N
i=1w(xi)

=
∑N

i=1 φ(xi)w(xi)∑N
i=1w(xi)

. (B.4)



In other words,

F (x) = P {X ≤ x} =
∫

I (X ≤ x)h(x)dx

≈
∑N

i=1 I (X ≤ x)w(xi)∑N
i=1w(xi)

, (B.5)

so that

ĥ(x) ≈
∑N

i=1w(xi)δ(xi − x)∑N
i=1w(xi)

, (B.6)

where δ(·) is the Dirac delta measure

δ(x) =


0, x 6= 0,

1, x = 0.
(B.7)

The following example illustrates importance sampling, and it also motivates an im-

proved particle filtering algorithm for MM processes.

Example B.1.1 (Importance Sampling for Tail Probabilities). Let Z be a unit

Fréchet random variable with density ϕ1(x). The goal is to estimate, for large z∗,

ζ = P {Z > z∗} =
∫ ∞

0
I (x > z∗)ϕ1(x)dx. (B.8)

The true value is ζ = 1− e−1/z∗ . For example, when z∗ = 100, ζ = 0.00995.

We compare two approaches to this problem, one based on direct sampling, and a second

based on importance sampling.

Direct Approach: Sample zi ∼ Φ1(x), i = 1, . . . , N , then

ζ̂ =
1
N

N∑
i=1

I (zi > z∗) . (B.9)

However, this estimate converges very slowly because any sample will have very few

observations in the tail.

Importance Sampling Approach: Denote by ϕ1(x | x > u) the density of the excess
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distribution above a high threshold u of a unit Fréchet random variable as defined in

(A.10). Define

w(x) =
ϕ1(x)

ϕ1(x | x > u)
=


∞, x ≤ u,

1− e−1/u, x > u.

(B.10)

For z∗ > u we can write

ζ =
∫ ∞

0
I (x > z∗)ϕ1(x)dx

=
∫ ∞

0
I (x > z∗)w(x)ϕ1(x | x > u)dx (B.11)

Therefore, we can obtain a sample zi ∼ Φ1 (x | x > u) , i = 1, . . . , N , and then

ζ̂ =
1
N

N∑
i=1

I (zi > z∗)w(zi)

=
(
1− e−1/u

) 1
N

N∑
i=1

I (zi > z∗) . (B.12)

The weights do not have to be standardized because the normalizing constant for

ϕ1(x) is known. If u = z∗ then I (zi > z∗) = 1 for all i, so the estimate is the true

value regardless of the sample size.

Figure B.1 illustrates the estimates obtained with both methods as a function of the

sample size. The importance sampling estimate converges to the true value around N =

100. The direct method converges very slowly to the true value and the variance of the

estimate is much larger than the variance of the importance sampling method. ‖

B.2 Weighted Bootstrap

The weighted bootstrap algorithm is described in Smith and Gelfand (1992). This is a

variant of the well known bootstrap (Efron, 1982). Rubin (1988) refers to this procedure

as sampling/importance resampling (SIR). The algorithm is as follows.
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Figure B.1: Estimates of Tail Probability.

1. Simulate a sample from g(·)

x̃(1), x̃(2), . . . , x̃(N) ∼ g(·).

2. For each x̃(i), i = 1, . . . , N calculate

w̃(i) =
f(x̃(i))
g(x̃(i))

, w(i) =
w̃(i)∑N
i=1 w̃

(i)
.

3. Draw samples with replacement from the set
{
x̃(1), x̃(2), . . . , x̃(N)

}
, according to the

probabilities w(i) to obtain a sample

x(1), x(2), . . . , x(N).

This sample is approximately distributed as h(x).

A modification described by Rubin (1988) is to start with R > N samples and then

resample N of them. Rubin (1988) explains that the rationale for this is that as R/N →∞,

the N values x(1), x(2), . . . , x(N) are drawn with probabilities given by

g(x)
w(i)(x)∫
g(x)w(x)dx

=
f(x)∫∞

−∞ f(x)dx
= h(x).
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Justification of the Weighted Bootstrap Algorithm

Suppose the random variable X is obtained with the algorithm described above. Given

the sample
{
x̃(i)
}
, i = 1, . . . , N from g(·), we have

P
{
X = x̃(i)

∣∣∣ x̃(i), w(i)
}

= w(i).

Following the argument in Smith and Gelfand (1992),

P
{
X ≤ x | x̃(i), w(i)

}
= E

(
I (X ≤ x)

∣∣∣ x̃(i), w(i)
)

=
N∑
i=1

w(i)I
(
x̃(i) ≤ x

)
=

1
N

∑N
i=1 w̃

(i)I
(
x̃(i) ≤ x

)
1
N

∑N
i=1 w̃

(i)
. (B.13)

The numerator in (B.13) is the sample mean of the iid random variables w̃(i)I
(
x̃(i) ≤ x

)
,

hence by the strong law of large numbers the numerator converges to

E
(
w̃(i)I

(
x̃(i) ≤ x

))
=
∫
f(u)
g(u)

I (u ≤ x) g(u)du

=
∫ x

−∞
f(u)du.

Similarly, the denominator converges to
∫∞
−∞ f(u)du. Therefore, as N →∞

E
(
I (X ≤ x)

∣∣∣ x̃(i), w(i)
)

a.s.→

∫ f(u)
g(u) I (u ≤ x) g(u)du∫ f(u)

g(u)g(u)du

=

∫ x
−∞ f(u)du∫∞
−∞ f(u)du

=
∫ x

−∞
h(u)du.

Therefore, conditionally on the sample from g(·), as N → ∞, X will be approximately

distributed as h(·).
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B.3 Dirichlet Distribution

Following Gelman et al. (1995, p. 76), a random vector X = (X1, . . . , Xk)′, satisfying

Xj ≥ 0 and
∑

j Xj = 1 is said to have a Dirichlet distribution with parameters θ1, . . . , θk,

where θj > 0 if X has the density function

f(x) =
Γ(θ1 + · · ·+ θk)
Γ(θ1) · · ·Γ(θk)

xθ11 · · ·x
θk
k , xj ≥ 0,

∑
j

xj = 1. (B.14)

Define θ0 =
∑k

j=1 θj . The first- and second-order moments of X, and its mode are

E (Xj) =
θj
θ0

(B.15)

Var (Xj) =
θj(θ0 − θj)
θ2
0(θ0 + 1)

(B.16)

Cov (Xi, Xj) = − θiθj
θ2
0(θ0 + 1)

(B.17)

mode(Xj) =
θj − 1
θ0 − k

(B.18)

If θj = 1 for all j then X has a uniform distribution; i.e., a distribution that asigns the

same density to any vector x satisfying xj ≥ 0 and
∑

j xj = 1. In this case the density is

f(x) = (k − 1)!, xj ≥ 0,
∑
j

xj = 1. (B.19)

The mode is not defined (is of the form 0/0), and the first- and second-order moments are

E (Xj) =
1
k

(B.20)

Var (Xj) =
k − 1

k2(k + 1)
(B.21)

Cov (Xi, Xj) = − 1
k2(k + 1)

(B.22)
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