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Abstract

The theory of max-stable processes generalizes traditional univariate and multivariate extreme
value theory by allowing for processes indexed by a time or space variable. We consider a par-
ticular class of max-stable processes, known as M4 processes, that are particularly well adapted
to modeling the extreme behavior of multiple time series. We develop procedures for determin-
ing the order of an M4 process and for estimating the parameters. To illustrate the methods,
some examples are given for modeling jumps in returns in multivariate financial time series. We
introduce a new measure to quantify and predict the extreme co-movements in price returns.

Keywords: multivariate extremes, multivariate maxima of moving maxima, extreme value dis-
tribution, empirical distribution, estimation, extreme dependence, extreme co-movement.

1 Introduction

Extreme value theory is by now well established as a statistical technique for modeling data in which
there is a particular interest in probabilities of very large or very small values. References such
as Leadbetter, Lindgren and Rootzén (1983), Embrechts, Klüppelberg and Mikosch (1997), Coles
(2001) and Smith (2003) have surveyed the theory, and there are many applications to environmental
extremes, insurance and finance, amongst many other fields.

Multivariate extreme value theory is less widely used in practice, but there is still a substantial
statistical theory and literature, see e.g. de Haan and Resnick (1977), Deheuvels (1978), Pickands
(1981), de Haan (1985), Coles and Tawn (1991, 1994) and recent books by Beirlant et al. (2004),
de Haan and Ferreira (2006) and Resnick (2007). These references are all based on the traditional
definition of multivariate extremes, under which maxima or minima are defined componentwise across
a sequence of random vectors. Alternative formulations such as those of Ledford and Tawn (1996,
1997) and Heffernan and Tawn (2004) will not be considered in the present paper. Applications of
multivariate extreme value theory include all problems where there are several variables or processes
being studied, and where an extreme value in any one of these is of interest. As one example, we
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could mention financial data sets where a large price change in any one of several assets could be of
critical importance in managing a portfolio.

Max-stable processes are an infinite-dimensional generalization of multivariate extreme value the-
ory that is particularly applicable in a time series or spatial process context. The applications of
particular interest in the present paper are multiple financial time series where there is dependence
in time as well as across the series. The mathematical theory was first laid out by de Haan (1984)
and has been developed by a number of authors, e.g. Coles (1993), Schlather (2002), de Haan and
Lin (2003), but applications have been relatively limited, despite a few attempts such as Coles and
Tawn (1996).

The purpose of this paper is to develop some statistical theory for a particular class of max-
stable process, known as multivariate maxima of moving maxima, or M4 processes for short (Smith
and Weissman 1996). Although these processes have attractive probabilistic properties, there are
difficulties in applying standard statistical estimation methods such as maximum likelihood. The
general definition of a max-stable process involves a measure known as the spectral measure (de
Haan, 1984) and M4 processes are a subclass for which the spectral measure is discrete. However,
one consequence of this discreteness is that it implies certain degeneracies in the process itself, that
we call signature patterns. It is unlikely that such signature patterns would be observed exactly
in real data, though it is quite plausible that we would observe approximate signature patterns
perturbed by random noise. Therefore, we would like an estimation method that is robust to such
perturbations.

This difficulty has been noted previously for a class of processes closely related to M4 processes,
the so-called max-autoregressive moving average or MARMA processes of Davis and Resnick (1989,
1993). Hall, Peng and Yao (2002) got around this difficulty by defining a class of estimators based
on empirical processes. The method proposed here for M4 processes is similarly motivated.

The paper is organized as follows. In Section 2, we introduce the M4 process and list some key
properties. The estimators and their asymptotic properties are studied in Section 3. In contrast
to the bootstrapped processes which Hall et al. (2002) used to construct confidence intervals and
prediction intervals for moving maxima models, we directly construct parameter estimators and
prove their asymptotic properties for the M4 processes. In Section 4 we provide simulation examples
to show the efficiency of proposed estimating procedure. In Section 5 we explore modeling financial
time series data as M4 processes. Returns of spot exchange rate of Japanese Yen against US dollar
(JPY/USD), Canadian dollar against US dollar (CAD/USD), and British pound against US dollar
(GBP/USD) are studied. Section 6 contains discussion and conclusions. Section 7 contains details
of some of the algebraic derivations which, because of their complexity, are not fully spelled out in
the main text. Section 8 contains detailed technical proofs.

2 The model and its identifiability

Our starting point is a multivariate strongly stationary time series {Xid, i = 0,±1,±2, ..., d =
1, ..., D}, where i is time and d indexes a component of the process.

A standard method of univariate extreme value theory is to model the exceedances above a high
threshold by the generalized Pareto distribution (Davison and Smith, 1990). Assuming this and
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applying a probability integral transformation, it is possible to transform each marginal distribution
of the process, above a high threshold, so that the marginal distribution is unit Fréchet. For the
moment we ignore the high threshold part of the modeling, and assume that the univariate Fréchet
assumption applies to the whole distribution. Thus, we transform each Xid into a random variable
Yid for which Pr{Yid ≤ y} = exp(−1/y), 0 < y < ∞.

The process {Yid} is said to be max-stable if for any finite collection of time points i = i1, i1 +
1, ..., i2 and any positive set of values {yid, i = i1, ..., i2, d = 1, ..., D}, we have

Pr{Yid ≤ yid, i = i1, ..., i2, d = 1, ..., D} = [Pr{Yid ≤ nyid, i = i1, ..., i2, d = 1, ..., D}]n .

This property directly generalizes the max-stability property of univariate and multivariate extreme
value distributions (Leadbetter et al. (1983), Resnick (1987)) and provides a convenient mathematical
framework to talk about extremes in infinite-dimensional processes.

Smith and Weissman (1996) proved the following characterization of max-stable processes: under
some mixing assumptions that we shall not detail here, any max-stable process with unit Fréchet
margins may be approximated by a multivariate maxima of moving maxima process, or M4 for short,
with the representation

Yid = max
l=1,2,...

max
−∞<k<∞

al,k,dZl,i−k, −∞ < i < ∞, d = 1, ..., D,

where {Zl,i, l = 1, 2, ...,−∞ < i < ∞} are independent unit Fréchet random variables and al,k,d are
non-negative coefficients satisfying

∑∞
l=1

∑∞
k=−∞ al,k,d = 1 for each d.

In practice, even this representation is too cumbersome for practical application, involving in-
finitely many parameters al,k,d, so we simplify it by assuming that only a finite number of these
coefficients are non-zero. Thus we have the representation

Yid = max
1≤l≤Ld

max
−K1ld≤k≤K2ld

al,k,dZl,i−k, −∞ < i < ∞, d = 1, . . . , D, (2.1)

where Ld, K1ld, K2ld are finite and the coefficients satisfy
∑Ld

l=1

∑K1ld
k=−K1ld

al,k,d = 1 for each d.
Probabilistic properties of the model (2.1) have been studied in Zhang and Smith (2004), Martins

and Ferreira (2005), among others. We have a general joint probability formula:

Pr{Yid ≤ yid, 1 ≤ i ≤ r, 1 ≤ d ≤ D} = exp
[
−

maxd Ld∑

l=1

r+maxd K1ld∑

m=1−maxd K2ld

max
1−m≤k≤r−m

max
1≤d≤D

al,k,d

ym+k,d

]
, (2.2)

where al,k,d = 0 when the triple subindex is outside the range defined in (2.1). This assumption is held
in the rest of the paper. Besides this general formula, it follows immediately that Pr(Yid ≤ y) = e−1/y,
which establishes that Yid is itself a unit Fréchet random variable, and the following two special cases
which are used extensively in the subsequent discussion:

Pr(Yid ≤ yid, Yi+1,d ≤ yi+1,d) = exp
[
−

Ld∑

l=1

2+K1ld∑

m=1−K2ld

max
{al,1−m,d

yid
,
al,2−m,d

yi+1,d

}]
, (2.3)

Pr(Yid ≤ y1d, Yid′ ≤ y1d′) = exp
[
−

max(Ld,Ld′ )∑

l=1

1+max(K1ld,K1ld′ )∑

m=1−max(K2ld,K2ld′ )

max
{al,1−m,d

y1d
,
al,1−m,d′

y1d′

}]
.

(2.4)
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We also note the following, which is used several times later:

Remark 1 For each l and d, the value of
∑K2ld

k=−K1ld
al,k,d is the asymptotic proportion (as u →∞)

of the total number of clusters of exceedances of a high threshold u by the d’th component process
that are drawn from the lth signature pattern which will be defined next.

Under model (2.1), an extremal event is typically associated with a single very large value of Z,
say Zlk. When this happens, we will have Yid = al,i−k,dZlk for several values of i near k. Thus the
sequence {Yid} is locally proportional to a deterministic sequence al,i−k,d for some l ∈ {1, . . . , Ld},
which we call a signature pattern. Here Ld corresponds to the maximum number of distinct signa-
ture patterns. The constants K1ld and K2ld characterize the range of dependence in each sequence
and (maxl K1ld + maxl K2ld + 1) is the order of the moving maxima processes. We illustrate these
phenomena in Figure 1. Plot (a) shows a simulated sample of length 365 from an M4 process. Plots
(b) and (c) are blown up plots of parts of the series near local maxima at i = 42 and 103 respec-
tively. It can be seen that, even though the y-scales of the two plots are quite different, the shapes
are identical. Plots (d) and (e) illustrate the same phenomenon but where a different value of l is
responsible for the shape. These characteristic shapes are known as signature patterns.
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Figure 1: A demonstration of an M4 process. (a) is a simulated 365 days data for a component
process. (b) - (e) are partial pictures drawn from the whole simulated data showing two different
moving patterns, called signature patterns, in certain time periods when extremal events occur.

In real data, it is unlikely that we would observe exact replicates of a signature pattern as in Figure

4



1. However, the extremal properties of an M4 process are not changed by short-tailed additive noises.
For the robustness of the regular variation property with respect to short-tailed additive noises, we
refer to the appendix in Embrechts et al (1997). We present a proposition which shows that the
asymptotic dependence properties do not change with additive noises in an M4 process.

For any pair of random variables Y1 and Y2 sharing the same marginal distribution with common
upper endpoint yF ≤ ∞, we may define the bivariate tail dependence index (Sibuya, 1960) to be

λ = lim
u→yF

Pr(Y1 > u|Y2 > u). (2.5)

Under Model (2.1), the tail dependence index λdd′ between Yid and Yid′ is:

λdd′ = 2−
max(Ld,Ld′ )∑

l=1

1+max(K1ld,K1ld′ )∑

m=1−max(K2ld,K2ld′ )

max
{
al,1−m,d, al,1−m,d′

}
.

Moreover, for fixed d, Yi1d and Yi2d have positive tail dependence whenever |i1−i2| ≤ k = max1≤l≤Ld
(K1ld+

K2ld), and are therefore said to be lag-k tail dependent. The tail dependence index between Yi1d and
Yi2d, when |i2 − i1| = k, is

λd(k) = 2−
Ld∑

l=1

1+k+K1ld∑

m=1−K2ld

max
{
al,1−m,d, al,1+k−m,d

}
.

Proposition 2.1 Suppose X and Y are asymptotically dependent unit Fréchet random variables,
i.e. λ = limu→∞ Pr(Y > u|X > u) > 0. Suppose P (|Ni| > u) = o(u−1), i = 1, 2, as u → ∞. Then
X∗ = X + N1 and Y ∗ = Y + N2 are asymptotically dependent with the same tail dependence index
λ.

The proof of Proposition 2.1 is elementary and therefore omitted.
An M4 process with noise is much more realistic for practical time series than an unperturbed

M4 process, and is the focus of our subsequent methodology. However, for this reason, we do not
apply the method of maximum likelihood, but instead propose estimators based on using (2.3) - (2.4)
to approximate empirical bivariate distribution functions.

The idea of estimating the {al,k,d} parameters from bivariate distributions naturally raises the
question of whether bivariate distributions identify all the parameters of the process. In the following
discussion we propose sufficient, though not necessary, conditions for that.

The probability evaluated at the points (yid, yi+1,d) in (2.3) depends on the comparison of
al,1−m,d/yid and al,2−m,d/yi+1,d, and similarly in (2.4). By fixing one of yid and yi+1,d — say yid

— then al,1−m,d/(al,2−m,dyid) is the change point of max(al,1−m,d/yid, al,2−m,d/yi+1,d) when yi+1,d

varies. By max-stability, we immediately have

Pr{Yid ≤ u, Yi+1,d ≤ u + x} = Pr{Yid ≤ 1, Yi+1,d ≤ (u + x)/u}(1/u).

So without loss of generality, we can fix yid = 1. In a real data application we might choose a
threshold value u and fix yid = u.
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From (2.3) and (2.4), we have

Pr{Yid ≤ 1, Yi+1,d ≤ x} = exp
[
−

Ld∑

l=1

2+K1ld∑

m=1−K2ld

max(al,1−m,d,
al,2−m,d

x
)
]
,

and

Pr{Yid ≤ 1, Yid′ ≤ x} = exp
[
−

max(Ld,Ld′ )∑

l=1

1+max(K1ld,K1ld′ )∑

m=1−max(K2ld,K2ld′ )

max
(
al,1−m,d,

al,1−m,d′

x

)]
.

Let
bd(x) = − log

[
Pr(Yid ≤ 1, Yi+1,d ≤ x)

]
, bdd′(x) = − log

[
Pr(Yid ≤ 1, Yid′ ≤ x)

]
.

We have

bd(x) =
Ld∑

l=1

[
al,K2ld,d + max(al,K2ld−1,d,

al,K2ld,d

x
) + max(al,K2ld−2,d,

al,K2ld−1,d

x
) (2.6)

+max(al,K2ld−3,d,
al,K2ld−2,d

x
) + · · ·+ max(al,−K1ld,d,

al,−K1ld+1,d

x
) +

al,−K1ld,d

x

]
,

d = 1, . . . , D,

and

bdd′(x) =
max(Ld,Ld′ )∑

l=1

1+max(K1ld,K1ld′ )∑

m=1−max(K2ld,K2ld′ )

max(al,1−m,d,
al,1−m,d′

x
). (2.7)

It is clear that for each d, we can define new piecewise linear functions: qd(x) , xbd(x) and qdd′(x) ,
xbdd′(x), where the notation A , B means that A is denoted as B, and the points where these
piecewise linear functions change slopes are at al,j,d/al,j′,d or al,k,d/al,k,d′ . A typical qd(x) picture
is shown in Figure 2 which is drawn for a particular model that is defined in Example 2.1 which
is presented at the end of this section. This suggests that if we can identify the functions qd(x) or
qdd′(x), we may be able to identify all the parameters al,k,d.
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x

q(
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A typical q(x) picture

Figure 2: The function qd(x) defined for Example 2.1. This is a piecewise linear function with changes
of slope at x = 0.5, 1 and 2.

However, in practice, we do not want to evaluate these functions on a continuum of x values, and
it would be much more convenient if we could get away with evaluating them for a finite set of xs.
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It turns out we can do that and still retain identifiability, provided that the finite set of xs is chosen
appropriately. The following important Proposition 2.2 will show the identifiability. It plays a core
mathematical role in parameter estimation. Its proof is nonstandard and is deferred to Section 8.

Proposition 2.2 Suppose the following three conditions hold:

(i) all nonzero and existing ratios al,j,d

al,j′,d
for all l and j 6= j′ are distinct for each d = 1, . . . , D;

(ii) for all l 6= l′ and, j, j′, al,j,d 6= al′,j′,d when both are greater than zero for each d = 1, . . . , D;

(iii) and nonzero and existing ratios al,k,1

al′,k,d′
for all l, l′ and k are distinct for each d′ = 2, . . . , D;

then bd(x), d = 1, . . . , D, b1d′(x), d′ = 2, . . . , D uniquely determine all values of al,k,d, d =
1, . . . , D, l = 1, . . . , Ld, −K1ld ≤ k ≤ K2ld.

Furthermore, there exist points x1, x2, . . . , xm, m ≤ (2D−1)
∑

d

∑Ld
l (K1ld +K2ld +2)+2D, such

that
bd(xi) and b1d′(xi), i = 1, . . . ,m, d = 1, . . . , D, d′ = 2, . . . , D

uniquely determine all values of al,k,d.

Remark 2 When D = 1 and Ld = 1, the reason why Proposition 2.2 is true is that in this case, any
permutation of the ajd’s must create a new set of values of ratios or jump points which will result in
a different function of qd(x). Condition (ii) assures that any permutation between different signature
patterns will give a different bd(.) function. Condition (iii) combines D univariate processes into a
unique joint M4 process.

This justifies statements like “for almost all (w.r.t Lebesgue measure) choices of coefficients
a−K1ld,d, . . . , aK2ld,d, the model is identifiable from qd(x).”

Remark 3 Only b1d′(x) is used in the proof of model identifiability. In some situations, other bdd′(x)
functions may also be needed in order to prove identifiability or to get estimates of all parameters.
Also, notice that when we have some alkds being zero for some −K1ld < k < K2ld, some of the ratios
may be infinite, and not all coefficients alkd are identifiable by function bd(x). This issue can be
resolved by simply replacing bd(x) by bd(r)(x) = − log

[
Pr(Yid ≤ 1, Yi+r,d ≤ x)

]
for an appropriately

chosen r, where bd(1)(x) is just bd(x) in (2.6). However, these changes do not make any difference
to the format of the results.

Although we believe that the conditions of Proposition 2.2 are general enough to cover most
practical cases, there are cases where the conditions do not hold, for which bivariate distributions
are insufficient to determine all the coefficients. Here is an example.

Example 2.1 Let (a0, . . . , a4) = 1
6(1, 1, 2, 1, 1) and (b0, . . . , b4) = 1

6(1, 2, 1, 1, 1). We consider the two
processes generated by the sequences a0, . . . , a4 and b0, . . . , b4, i.e. Yi = maxk=0,1,2,3,4 akZi−k, −∞ <

i < ∞ and Y ′
i = maxk=0,1,2,3,4 bkZi−k, −∞ < i < ∞. For either process, the function q(x) (Figure

2) is piecewise linear with changepoints at r1 = 1
2 , r2 = 1, r3 = 2 and slopes that are respectively

1
6 , 1

2 , 5
6 , 1 on (0, 1

2), (1
2 , 1), (1, 2), (2,∞). Therefore, the two processes are indistinguishable from the

bivariate distributions. However, we also have

− log(Pr(Y1 ≤ y1, Y2 ≤ y2, Y3 ≤ y3)) = a4
y1

+ max(a3
y1

, a4
y2

) + max(a2
y1

, a3
y2

, a4
y3

) + max(a1
y1

, a2
y2

, a3
y3

)
+max(a0

y1
, a1

y2
, a2

y3
) + max(a0

y2
, a1

y3
) + a0

y3
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so if y1 = 1, y2 = y3 = c > 2, we have − log(Pr(Y1 ≤ y1, Y2 ≤ y2, Y3 ≤ y3)) = 1 + 1
3c but

− log(Pr(Y ′
1 ≤ y1, Y

′
2 ≤ y2, Y

′
3 ≤ y3)) = 1 + 1

2c , so the trivariate distributions are different.

3 The estimators and asymptotics

We now propose estimators for parameters in general M4 processes. The basic idea behind the
estimation technique is to estimate empirical bivariate distribution functions and then solve for the
al,k,d coefficients. The empirical counterparts of bd(x) and b1d′(x) are defined as:

Ud(x) =
1
n

n−1∑

i=1

I{Yid≤1, Yi+1,d≤x}, b̂d(x) = − log
[
Ud(x)

]
, d = 1, . . . , D, (3.1)

U1d′(x) =
1
n

n−1∑

i=1

I{Yi1≤1, Yid′≤x}, b̂1d′(x) = − log
[
U1d′(x)

]
, d′ = 2, . . . , D, (3.2)

where I(.) is an indicator function. Let

x1d, x2d, . . . , xmd, d = 1, . . . , D,

where m ≤ (2D − 1)(maxl K1ld + maxl K2ld + 1) + 2D as described in Proposition 2.2, and

x′1d′ , x′2d′ , . . . , x′m′d′ , d′ = 2, . . . , D,

where m′ ≤ (2D−1)
∑

d

∑Ld
l (K1ld+K2ld+2)+2D, be suitable choices of the points used to evaluate

the functions. Then (3.1) and (3.2) can be written as the following vector forms:

x =
(
x11, x21, . . . , xm1, x12, . . . , xmD, x′12, x′22, . . . , x′m′2, x′13, . . . , x′m′D

)T
,

U =
(
U1(x11), . . . , U1(xm1), U2(x12), . . . , UD(xmD), U12(x

′
12), . . . , U12(x

′
m′2), . . . , U1D(x′m′D)

)T

,

b̂ =
(
b̂1(x11), . . . , b̂1(xm1), b̂2(x12), . . . , b̂D(xmD), b̂12(x

′
12) , . . . , b̂12(x

′
m′2), . . . , b̂1D(x′m′D)

)T

.

In the literature, the central limit theorem for m-dependent sequences is well established, for ex-
ample, Berk (1975), Billingsley (1995), among others. Because of the complexity of some of the
definitions, the calculation of asymptotic covariance matrix is not simple in this study, and we do
not give them all here but refer to Section 7 for full details. One of our main results is:

Lemma 3.1 For the choices of xjd, xj′d′ and with µ, b, Σ, Wk, Θ defined in Section 7, we have

√
n(U− µ) L−→ N

(
0,Σ +

maxl K1ld+maxl K2ld+1∑

k=1

{Wk + W T
k }

)
,

and
√

n(b̂− b) L−→ N
(
0, Θ

[
Σ +

maxl K1ld+maxl K2ld+1∑

k=1

{Wk + W T
k }

]
ΘT

)
,

which establish the asymptotics for the empirical functions b̂d(x), b̂1d′ , d = 1, . . . , D, d′ = 2, . . . , D.
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Proof of Lemma 3.1 is deferred to Section 8.
The results in Lemma 3.1 are for any arbitrary choices of xjd, xj′d′ . In order to construct

estimators in M4 models, these choices must satisfy the identifiability conditions discussed in the
previous section. For the moment we assume these conditions are satisfied — how they are determined
in practice is discussed in Section 4.

The next step in the estimation procedure is that we use the estimated b̂ to solve for the al,k,d

values. Consider the system of non-linear equations formed by (2.6) and (2.7), where x is now
substituted by xjd, j = 1, . . . , m, d = 1, . . . , D in (2.6), and by x′j′d′ , j′ = 1, . . . ,m′, d′ = 2, . . . , D

in (2.7), respectively. The left hand sides of these equations collectively define the vector b, in the
same notation as Lemma 3.1. Let a denote the vector whose elements are all parameters al,k,d. Since
(2.6) and (2.7) uniquely determine the values of all parameters al,k,d, each of the maxima in (2.6)
and (2.7) is determined uniquely (no ties). Therefore, the relation between b and a evaluated based
on Equations (2.6) and (2.7) has the matrix representation

b = Ca, (3.3)

where each element in matrix C belongs to {1, 1/xjd, 1 + 1/xjd, 1/x′j′d′ , j = 1, . . . , m, d =
1, . . . , D, j′ = 1, . . . , m′, d′ = 2, . . . , D}, and CT C is invertible. The following Lemma 3.2 is
important in proving our main Theorem 3.3.

Lemma 3.2 Suppose S is a set with finite number of distinct values, b∗ and a∗ are vectors in Rm.
Suppose C∗ is an l×m matrix whose elements belong to S, C∗T C∗ is invertible, and C∗ is the unique
matrix such that b∗ = C∗a∗. Suppose {b∗n, n = 1, 2, . . . } is a sequence of random vectors, {a∗n, n =
1, 2, . . . } is a sequence of random vectors, and {C∗

n, n = 1, 2, . . . } is a sequence of random matrices
satisfying C∗T

n C∗
n being invertible. Suppose b∗n = C∗

na
∗
n, n = 1, 2, . . . . b∗n

a.s.−→ b∗, C∗
na
∗
n

a.s.−→ C∗a∗,
as n →∞, then C∗

n
a.s.−→ C∗, a∗n

a.s.−→ a∗, as n →∞, and ||C∗
n − C∗|| = op(1).

Proof of Lemma 3.2 is deferred to Section 8.
From the estimate b̂, and (2.6) and (2.7), we have

b̂ = Ĉâ, (3.4)

where each element in matrix Ĉ belongs to {1, 1/xjd, 1 + 1/xjd, 1/x′j′d′ , j = 1, . . . , m, d =
1, . . . , D, j′ = 1, . . . , m′, d′ = 2, . . . , D}, which is a finite set. Since the estimators obey the strong
law of large numbers, b̂ converges to b as n → ∞, and hence (by Lemma 3.2) for sufficiently large
n, we therefore have the representation:

b̂ = Câ,

which is equivalent to
(CT C)−1CT b̂ = â. (3.5)

Summarizing all arguments above, we have obtained the following theorem which is the asymptotic
distribution of the estimators.

Theorem 3.3 For the multivariate processes {Yid}, suppose all three conditions in Proposition 2.2
are satisfied, then there exist

{x1d, x2d, . . . , xmd, d = 1, . . . , D},

9



and
{x′1d′ , x′2d′ , . . . , x′m′d′ , d′ = 2, . . . , D},

such that the estimator â, which is the solution of (3.5), satisfies

√
n(â− a) L−→ N

(
0, BΘ

[
Σ +

maxl,d K1ld+maxl,d K2ld+1∑

k=1

{Wk + W T
k }

]
ΘT BT

)

where B = (CT C)−1CT .

For some examples of M4 processes, Theorem 3.3 is directly applicable. In others, however,
we find that the conditions of Theorem 3.3 are applicable to any of the 1-dimensional component
processes, but not to the joint distributions of the D-dimensional process. A concrete example is in
Section 5. For such cases, we propose an alternative methodology and use an example to illustrate
the idea.

Example 3.1 Suppose, for the dth component process on its own, the coefficients are {a∗l∗,k,d}.
Typically for the full D-dimensional process, for each l and d we have that {al,k,d, k = −K1ld, ..., K2ld}
are proportional to {a∗l∗,k,d, k = −K1ld, ..., K2ld} for some l∗ which is a function of (l, d), but the
number of distinct signature patterns in {a∗l,k,d} is smaller than in {al,k,d}. In this case we write
al,k,d = βl,da

∗
l∗,k,d, βld ≥ 0, a∗l∗,k,d ≥ 0, and the joint model is

Yid = max
1≤l≤L

max
−K1≤k≤K2

al,k,dZl,i−k

= max
1≤l≤L

βld max
−K1≤k≤K2

a∗l,k,dZl,i−k, d = 1, . . . , D (3.6)

where (a∗l,k,d, k = −K1, . . . , K2) = (a∗l′,k,d, k = −K1, . . . ,K2) for some l 6= l′, and
∑

l∈Sl∗d
βld = 1,

Sl∗d contains all ls and l′s such that (a∗l,k,d, k = −K1, . . . , K2) = (a∗l′,k,d, k = −K1, . . . , K2) which is
related to a particular l∗.

This example tells that the exact number of signature patterns in each component process may be
less than L. Some observed signature patterns are matched with other component processes. We
may understand this like: a particular signature pattern is split into several “signature patterns”
based on relative proportion parameters βld. One can see in the above example that not all nonzero
existing ratios al,j,d

al,j′,d
are distinct. However, estimation of alkd can be done via estimating a∗l∗kd and

βld first.
For the present discussion we simplify the problem a little by assuming the βl,d are known though

in practice they would also have to be estimated (Section 5 gives a specific example). The result in
this case is:

Corollary 3.4 Suppose for each d in (3.6), a∗l,k,ds are estimated using observations from the dth
component process. The limiting covariance matrices are denoted as Σ∗1, Σ∗2, . . . ,Σ

∗
D respectively.

Suppose the vector a∗ consists of all the coefficients a∗l,k,d arranged in some order, and the corre-
sponding estimators â∗l,k,d are arranged in â∗ accordingly, then

1.
√

n (â∗ − a∗) L−→ N(0,Σ∗), where the diagonal matrices in Σ∗ are Σ∗1, Σ∗2, . . . ,Σ
∗
D.
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2. There is a matrix Σ (depending on Σ∗ and the coefficients {βl,d}) so that

√
n (â− a) L−→ N(0,Σ).

The proof of this corollary is simply due to the fact that â coefficients are linear combinations of
â∗ which has an asymptotic multivariate normal distribution. The arrangement does not depend on
the sample size n. The form of Σ depends on particular identical signature patterns in {al,k,d}. The
asymptotic standard deviations of {âl,k,d} can be easily obtained from Σ∗1, Σ∗2, . . . ,Σ

∗
D, and βl,ds.

Theorem 3.3 and Corollary 3.4 establish the asymptotic distribution of the parameter estimators.
In the next section we propose a procedure to determine the actual xjd used in the estimating
equations.

4 Determining the xjd values and a simulation example

We propose using a standard cluster analysis method, such as k-means nearest neighbor clustering,
to group very large clustered observations (above certain thresholds) into Ld groups based on the
consecutive ratios of Yi+j−1,d/Yi+j,d, j = 1, ..., K. The proposed procedure to determine the xjd and
x′j′d values is then as follows:

1. For each d, use cluster analysis to group the consecutive ratios of (Yi+j−1,d/Yi+j,d, j = 1, . . . , K)
into Ld groups for all very large clustered observations indexed on i and appearing in K

consecutive days. The tuning parameters Ld and K are assumed known in this section.

2. For all clustered groups, assign the same group number to the cases where the consecutive
ratios of (Yi+j−1,d/Yi+j,d, j = 1, . . . , K) are in the same cluster. The group numbers across
component processes also need to be the same when we observe signature patterns over several
component processes simultaneously.

3. Within each group, take the averages of the ratios as points where the function qd(x) changes
slope. Between any two adjacent points, arbitrarily choose two points as xjd values. For
example, suppose r1, r2 are two adjacent ratios, then a natural choice would be xjd = r1 +
.25(r2 − r1), xj+1,d = r1 + .75(r2 − r1).

4. The choices of x′j′d can be done from averaging the ratios of Yi1/Yid within the same group
numbers obtained in Step 2 between two processes. Then x′j′d can take the middle values of
two adjacent ratios or take two values between two adjacent ratios like the previous step.

5. After choosing xjd and x′j′d values, use them to estimate al,k,d based on b̂d(x) and b̂1d(x)
functions.

Remark 4 In Step 1, we may need to cluster those very large clustered observations into more
than Ld groups since outliers may exist and cause the clustering method to fail to recognize the true
patterns. In our example, we cluster those observations into Ld +3 groups. The 3 groups which have
very small proportions among all those very large clustered observations are not used in determining
xjd values. We note that adding 3 groups works with this particular example. In other examples, we
may need to add different number of groups in clustering analysis.
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Remark 5 In Step 3 and 4, theoretically, we should choose as many points of xjd and x′j′d as
possible, but this is not realistic due to the intensive computation and the complexity of inferences.
The goal is to choose moderate number of points such that the estimated values of parameters are close
to the true parameter values. In our simulation study, we found two times the number of clustered
group patterns works well based on the comparisons between estimated parameter values and their
corresponding true values.

As an illustration of these techniques, we show how they work on a simple simulated process that
follows exactly the model of M4 plus noise. Suppose D = 2 and

Yid = max
1≤l≤3

max
−1≤k≤1

al,k,dZl,i−k + Nid, −∞ < i < ∞, d = 1, 2, (4.1)

where each M4 process has three signature patterns and moving range order of 3, the noises Nid ∼
N(0, 1). The coefficients are listed in Table 1.

The total number of parameters in the M4 process in (4.1) is 18. There is a nuisance parameter
that is the variance of Nid. However, we do not need to estimate the nuisance parameter in order to
estimate the values of M4 model parameters. We first generate data by simulating these bivariate
processes, then based on the simulated data we re-estimate all coefficients simultaneously and com-
pute their asymptotic covariance matrix. Table 1 is obtained using simulated data with a sample
size of 10,000. The xjd and x′j′d values are determined using the procedure described earlier, and

subsequently, values of b̂d(xjd), and b̂1d′(x′j′d) can be estimated.
Now we have a system of nonlinear equations, whose variables are the values of âl,k,d. The

estimates are found through a Monte Carlo optimization algorithm. For all l, k, d, we simulate 5000
vector values of âl,k,ds from which the ratios âl,k+1,d/âl,k,d and âl,k,1/âl,k,d (d > 1), are falling in
the regions determined by xjd, x′j′d computed in Steps 3 and 4. We keep the vector whose ratios
âl,k+1,d/âl,k,d, âl,k,1/âl,k,d have the minimal distance to the averaged ratios (obtained in Steps 3 and
4). We repeat this process 100 times, and hence we get 100 vectors. We keep the vector which gives
the minimal distance between theoretical values of bd(x) and b1d(x) computed using the kept âl,k,d

values to the estimated functions b̂d(x) and b̂1d(x).
In Table 1, the estimated values of almost all cases (except a1,−1,1, a1,0,1) are very close to the

true parameter values. The estimated values in cases of a1,−1,1, a1,0,1 were probably affected by the
added noises Nid and clustering methods. Apart from that, the estimates are close to the true values.
We believe these results demonstrate the efficacy of the proposed estimating procedures.

To examine how sensitive this procedure is to the noise standard deviation σ, the simulation
has been repeated for values of σ from 0.1 to 3.5 in increments of 0.1. The estimation procedure
is reasonably stable up to σ = 2, though the parameter SEs increase with σ. For σ > 2, the
optimization routines failed, mainly because of the initial clustering procedure. Figure 3 illustrates
the increase of the maximum simulated standard error across all parameters as a function of σ.

5 Modeling jumps in returns of financial assets

We consider a trivariate time series of exchange returns from the Japanese YEN against the US
dollar (JPY/USD), the Canadian dollar against the US dollar (CAD/USD), and the British pound
against the US dollar (GBP/USD). They are plotted in Figure 4.
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Parameter True Estimated Standard Parameter True Estimated Standard
value value deviation value value deviation

a1,−1,1 .1500 0.0941 0.0418 a1,−1,2 .0700 0.0379 0.0295
a1,0,1 .2000 0.1258 0.0351 a1,0,2 .0400 0.0231 0.0108
a1,1,1 .0200 0.0101 0.0486 a1,1,2 .0300 0.0166 0.0137
a2,−1,1 .0500 0.0573 0.0573 a2,−1,2 .1000 0.0949 0.0215
a2,0,1 .1000 0.1132 0.0558 a2,0,2 .1300 0.1387 0.0417
a2,1,1 .0300 0.0295 0.0456 a2,1,2 .1700 0.1765 0.0518
a3,−1,1 .1600 0.2091 0.0459 a3,−1,2 .1100 0.1272 0.0323
a3,0,1 .1700 0.2143 0.0610 a3,0,2 .1200 0.1325 0.0318
a3,1,1 .1200 0.1468 0.0582 a3,1,2 .2300 0.2527 0.0707

Table 1: Simulation results for model (4.1). xj1 =(0.0775, 0.1550, 0.2582, 0.4120, 0.6163, 0.8058,
0.9806, 1.1363, 1.2728, 1.5032, 1.8274 , 2.1884). xj2 =(0.4421, 0.6287, 0.7071, 0.8318, 1.0027,
1.1423, 1.2505, 1.3050, 1.3057, 1.4641, 1.7802, 2.1321). x′j′ =( 0.1376, 0.2642, 0.4258, 0.5106,
0.5189, 0.5631, 0.6433, 0.7055, 0.7496, 0.9356, 1.2637, 1.4312, 1.4383, 1.6236, 1.9871, 2.8617,
4.2474, 5.4343). Standard deviations are computed by applying Theorem 3.3.
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Figure 3: Maximal simulated standard error of parameters versus standard deviations of Nid.
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Figure 4: Negative daily returns. The top plot is for JPY/USD, the middle plot is for CAD/USD,
and the bottom plot is for GBP/USD.

There are extremal observed values in each series but there are also changes in volatility. As a
first step in the analysis, we propose a procedure to remove the volatility.

5.1 Data transformation

To remove volatility, we propose a simple application of the GARCH (generalized autoregressive
conditional heteroscedasticity) model, originally proposed by Bollerslev (1986). Lee and Hansen
(1994) discussed maximum likelihood estimation of GARCH model with weak stationary residuals;
Mikosch (2003) gave a very thorough study of GARCH modeling of dependence and tails of financial
time series. Cross-sectional dependencies between GARCH residuals have been studied by McNeil
and Frey (2000) and Engle (2002). For the present analysis, we are not assuming that the series
are GARCH, but we use a GARCH(1,1) model as a tool to model volatilities. The estimated
conditional standard deviations are shown in Figure 5. The original data sets are then divided by
these standard deviations and three new standardized time series – GARCH residuals – are obtained.
The standardized time series (not shown) appear stationary.

The next step is to transform the series to have unit Fréchet marginal distributions. Smith (1989)
showed how a process of exceedances over a high threshold can be modeled in terms of the limiting
generalized extreme value (GEV) distribution function of form

H(x) = exp
{
−

(
1 + ξ

x− µ

ψ

)−1/ξ

+

}
, (5.1)

where µ is a location parameter, ψ > 0 is a scale parameter, and ξ is a shape parameter.
This model is used to fit the data above a certain threshold (.02 for the original data, 1.2 for

the volatility-standardized data) for each series. Standard diagnostics such as those in Smith and
Shively (1995), Tsay (1999) and Smith (2003) show a poor fit to the extreme value model based on
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Figure 5: Estimated volatility by GARCH. The top plot is for JPY/USD, the middle plot is for
CAD/USD, and the bottom plot is for GBP/USD.

the original data, but a much better fit using the standardized data formed from residuals of the
GARCH(1,1) process.

In the finance literature, positive returns and negative returns are often tested to be asymmetric.
We first fitted the standardized positive returns and negative returns to GEV separately, and found
that all fitted return distributions are not significantly different from Gumbel type distributions,
and positive returns and negative returns can be considered approximately symmetric. For this
reason, we fit the standardized absolute returns to GEV. The estimated parameter values of the
GEV distributions are summarized in Table 2.

After completing these transformations we have a devolatized time series of absolute returns
standardized to unit Fréchet margins. The next stage of the analysis will fit an M4 model to this
transformed process.

Series Nu µ log ψ ξ

(SE) (SE) (SE)
JPY/USD 542 0.396463 -0.733705 0.111582

(0.139571) (0.160542) (0.047574)
CAD/USD 539 0.501447 -0.910765 0.142192

(0.127555) (0.170876) (0.050466)
GBP/USD 546 0.352415 -0.710196 0.104102

(0.123285) (0.137673) (0.040217)

Table 2: Estimation of parameters in GEV using standardized absolute return series. The nota-
tion Nu means the number of observations over the threshold u where 1.69 for JPY/USD, 1.63 for
CAD/USD, 1.66 for GBP/USD.
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5.2 Model selection

Key parameters for determining the model are Ld, the number of clusters in the time series for
component d, and the range parameters K1ld and K2ld. In practice, rather than seeking optimal esti-
mates of these parameters, we advocate examining the data for evidence of clustering in exceedances
over a high threshold, then choosing a model that is consistent with the pattern of observed clusters.
We illustrate these ideas based on the transformed JPY/USD data Yi1, CAD/USD data Yi2, and
GBP/USD data Yi3, i = 1, 2, . . . , 5715 (the total number of days on which the prices change).

The threshold for determining the significance of tail dependence is not necessarily the same
as the threshold used for transforming the marginal distributions. As an example, Figure 6 shows
empirical tail dependence indexes (see Section 2) for pairs of series on the same day, computed for a
range of thresholds from 18.5 to 21 (or 94.7 percentile to 95.3 percentile of unit Fréchet distribution
respectively). One can see in this range, the empirical tail dependence indexes suggest variable tail
dependence. Based on this, we select u = 19.5 (or 95th percentile) for subsequent analysis. For that
threshold, we find that the maximal range of consecutive days for which the jumps in returns are
over the threshold value are 2, 2, 3 days (Columns 2, 4 in Table 3) for JPY/USD, CAD/USD, and
GBP/USD respectively.
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Figure 6: Empirical estimates of tail dependence indexes against threshold values. The left panel
(respectively, the middle panel, and the right panel) is for JPY/USD return and CAD/USD return
(respectively, JPY/USD and GBP/USD, and CAD/USD and GBP/USD) at the same day.

A more detailed table of joint exceedances is in Table 3. This can be used to examine which
dependencies are statistically significant. For example, the count of {Yi1 > u, Yi2 > u} is 31. A 2× 2
table classifying all pairs (Yi1, Yi2) according to whether they are below or above the threshold, has
entries 5203, 248, 233, 31. Fisher’s exact test of independence, for this table, has a p-value of about
5 × 10−6. Based on this, we conclude that the dependence between the events Yi1 > u and Yi2 > u

is real. The same conclusion holds for the dependences Yi1 > u and Yi3 > u, and for Yi2 > u and
Yi+1,2 > u, but not the other pairwise dependences in Table 3. Nevertheless, in considering serial
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{Yi1 > u, Yi2 > u} {Yi1 > u, Yi3 > u} {Yi2 > u, Yi3 > u} {Yi1 > u, Yi2 > u, Yi3 > u}
31 68 16 6

{Yi1 > u} {Yi1 > u, Yi+1,1 > u} {Yi1 > u, Yi+1,1 > u, Yi+2,1 > u}
279 12 0

{Yi2 > u} {Yi2 > u, Yi+1,2 > u} {Yi2 > u, Yi+1,2 > u, Yi+2,2 > u}
264 20 0

{Yi3 > u} {Yi3 > u, Yi+1,3 > u} {Yi3 > u, Yi+1,3 > u, Yi+2,3 > u}
291 13 2

Table 3: Counts of days that the absolute returns are over a threshold value in consecutive days. All
counts are mutually exclusive.

dependence within each series, there is no obvious reason why the CAD/USD series should behave
differently from the other two, so in the subsequent discussion we assume lag-1 serial dependence
within each series. We also look at triple exceedances {Yi1 > u, Yi2 > u, Yi3 > u} — in this case
the observed number (6) is also statistically significant based on the null hypothesis of independence
(given the observed frequency of exceedances of the threshold by each of the marginal series, the
expected count of triple exceedances should be about 0.75 under the null hypothesis of independence;
for a Poisson variable of mean 0.75, the probability of observing a value 6 or larger is about 0.0001).
We also checked pairs {Yid, Yi+j,d} for j > 1 and found the number of joint exceedances do not
suggest evidence of dependence. Based on these considerations, we propose a model with L = 10
clusters and the configuration of non-zero coefficients given in Table 4.

The estimates are derived using the methods described in Sections 3 and 4. However, this is a
case where Theorem 3.3 is not directly applicable and we use Corollary 3.4 instead. If signature
pattern 7 in Table 4 were not present, we would be able to use Theorem 3.3 directly, but this does
not seem a realistic model given the evidence that simultaneous exceedances of the threshold by all
three series occur at a greater rate than would be observed by chance.

If we only consider a univariate process, the number of signature patterns is 2 with the first
signature pattern being a 2-day dependence pattern, and the second signature pattern consisting of
a single exceedance of the threshold. Also, Remark 1 determines the relative frequency of the two
signature patterns for a univariate process. Using the D = 1 case of Theorem 3.3, therefore, we
estimate parameters a∗1,−1,d, a∗1,0,d, a∗2,0,d, for each of d = 1, 2, 3. For example, in the case d = 1 we
have â∗1,−1,1 = 0.0165, â∗1,0,1 = 0.0122, â∗2,0,1 = 0.9713. The full set of parameters {al,k,d} is estimated
as described in the discussion preceding Corollary 3.4. For example, we approximate a7,k,1 = 6

279a∗2,k,1

on the basis that, out of all single exceedances of the threshold by component 1, a fraction 6
279 are

triple exceedances by all three components. Thus in this case we write l∗ = 2 and βl,1 = 6
279 . A more

thorough error analysis would also take into account that 6
279 is itself an estimate but we do not do

that here as our main intention is to illustrate the application of the asymptotic formulae of Section
3. To take another example, we approximate a5,k,1 = 62

279a∗2,k,1 on the basis that in counting instances
of signature pattern 5, we do not count the overlap with signature pattern 7. Thus β5,1 = 62

279 . By
proceeding through all 3 components and all 10 signature patterns in similar fashion, the full Table
4 is constructed.
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Table 4: Estimation of parameters in M4 model applied to standardized exchange rate time series.
The values in parentheses are standard errors.

Signature JPY/USD CAD/USD GBP/USD
l al,−1,1 al,0,1 al,−1,2 al,0,2 al,−1,3 al,0,3

1 0.0165 0.0122
(0.1212) (0.0251)

2 0.0304 0.0075
(0.1425) (0.0278)

3 0.0311 0.0170
(0.0398) (0.0267)

4 0.0870 0.0911
(0.0103) (0.0127)

5 0.2159 0.2028
(0.0256) (0.0104)

6 0.0364 0.0327
(0.0051) (0.0017)

7 0.0209 0.0219 0.0196
(0.0025) (0.0031) (0.0010)

8 0.6476
(0.0768)

9 0.8127
(0.1136)

10 0.7196
(0.0356)

5.3 A new co-movement measure and its estimation

As an illustration of how the methods of this paper might be used to calculate quantities of practical
interest, we consider the following extreme co-movement measure:

λ(t, T ) = lim
u↗xF

Pr{ξ(t, T,u) ≥ 2|ξ(0, t,u) ≥ 1} (5.2)

where xF is the right end point of the distribution function F and

ξ(t, T,u) = max
t≤i≤T

D∑

d=1

I(Yid>ud). (5.3)

Thus the idea is to estimate the maximum number of joint exceedances in the time period t to T

given at least one exceedance in (0, t). The case t = T = 0 and D = 2 is the usual tail dependence
function in the literature (Embrechts, Lindskog, and McNeil 2001).

An obvious approach to estimating λ(t, T ) is simply to pick a vector of thresholds u and estimate
(5.2) empirically, by counting exceedances. However, this will not work if u is too high. An alternative
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“model-based” approach is first to fit an M4 process, and then estimate (5.2) from simulations of the
process. In this case, there is no theoretical limit on u, because we may keep simulating the process
until there are sufficient exceedances of the threshold.

In Table 5, we compare the empirical and model-based estimates for thresholds determined as
the 90th and 97.5th percentiles of each component, and show the model-based results for the 99.5th
percentile which is beyond the range of which the empirical estimate may be computed.

Table 5: Computed empirical values of extreme co-movement measure in (5.2), where t = 1.

T − t = 1 2 3 4 5 6 Remark
Data 0.8848 0.9480 0.9535 0.9535 0.9535 0.9535 90th percentile

(.056) (.037) (.032) (.032) (.032) (.032)
Model 0.9088 0.9446 0.9455 0.9455 0.9455 0.9455

(.008) (.006) (.006) (.006) (.006) (.006)
Data 0.8984 0.9805 0.9922 0.9922 0.9922 0.9922 97.5th percentile

(.088) (.048) (.031) (.031) (.031) (.031)
Model 0.9425 0.9801 0.9811 0.9811 0.9811 0.9811

(.014) (.008) (.008) (.008) (.008) (.008)
Model 0.9629 0.9939 0.9956 0.9956 0.9956 0.9956 99.5th percentile

(.066) (.025) (.019) (.019) (.019) (.019)

From Table 5, we see that each row has an increasing order and after 3 days the measures remain
the same. This suggests that after a particular time, the price history does not provide further useful
information for extreme price movements. Also considering the estimated SEs (in parentheses), the
model based measures are good approximations to the data based measures. This suggests that M4
models and our proposed statistical inference methods could be used in risk management where a
large price change in any one of several assets could be of critical importance in managing a portfolio.

6 Discussion

The main contribution of the paper is to propose the use of M4 process for modeling joint extremal
behavior in financial time series that show dependence both between the series and in time. Be-
cause there are many parameters in the model and maximum likelihood methods are not applicable,
identifiability of the model in terms of its bivariate distributions plays a major role in constructing
estimators based on empirical functions. We have given sufficient conditions (Proposition 2.2) using
functions bdd′(x) for d = 1 and d′ variable — more generally, we might need to use the full class of
{bdd′} functions, but Proposition 2.2 is easily extended to that case. Our main estimation results
are in Theorem 3.3 and Corollary 3.4, where the latter is based on a slightly simplified estimation
procedure that avoids some of the identifiability issues. The mathematical theory leaves open the
optimal determination of the various model order parameters and the xjd, x′j′d′ used in Theorem
3.3, but we have tried to show in Sections 4 and 5 how these may be determined in practice.

There are many possible applications to risk management or extensions of the concept of value at
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risk to multiple time series. In Section 5.3, we illustrated this with one possible measure of extreme
co-movements, but there are many other measures of interest for which similar statistical methods
could be applied.

7 Appendix of notations used in Section 3

Notations and their expressions in this section are used to establish Lemma 3.1. These notations
and their expressions are:

µdjd = E
[
Ud(xjd)

]
= Pr(Y1d ≤ 1, Y2d ≤ xjd),

d = 1, . . . , D, j = 1, . . . ,m,

µ1d′j′d′ = E
[
U1d′(x′j′d′)

]
= Pr(Y11 ≤ 1, Y1d′ ≤ x′j′d′),

d′ = 2, . . . , D, j′ = 1, . . . ,m′,

µdjd, d′j′d′ = E
[(

I{Y1d≤1,Y2d≤xjd} − µdjd

)(
I{Y1d′≤1,Y2d′≤xj′d′} − µd′j′d′

)]

= Pr(Y1d ≤ 1, Y2d ≤ xjd, Y1d′ ≤ 1, Y2d′ ≤ xj′d′)− µdjdµd′j′d′ ,

d, d′ = 1, . . . , D, j, j′ = 1, . . . , m,

µdjd, 1d′j′d′ = E
[(

I{Y1d≤1,Y2d≤xjd} − µdjd

)(
I{Y11≤1,Y1d′≤x′

j′d′} − µ1d′j′d′
)]

= Pr(Y1d ≤ 1, Y2d ≤ xjd, Y11 ≤ 1, Y1d′ ≤ x′j′d′)− µdjdµ1d′j′d′ ,

d = 1, . . . , D, j = 1, . . . ,m,

d′ = 2, . . . , D, j′ = 1, . . . , m′,

µ1d′j′d′, djd = E
[(

I{Y11≤1,Y1d′≤x′
j′d′} − µ1d′j′d′

)(
I{Y1d≤1,Y2d≤xjd} − µdjd

)]

= Pr(Y1d ≤ 1, Y2d ≤ xjd, Y11 ≤ 1, Y1d′ ≤ x′j′d′)− µdjdµ1d′j′d′

= µdjd, 1d′j′d′ ,

d = 1, . . . , D, j = 1, . . . , m,

d′ = 2, . . . , D, j′ = 1, . . . , m′,

µ1djd, 1d′j′d′ = E
[(

I{Y11≤1,Y1d≤x′jd} − µ1djd

)(
I{Y11≤1,Y1d′≤x′

j′d′} − µ1d′j′d′
)]

= Pr(Y11 ≤ 1, Y1d ≤ x′jd, Y1d′ ≤ x′j′d′)− µ1djdµ1d′j′d′ ,

d = 2, . . . , D, j = 1, . . . , m′,
d′ = 2, . . . , D, j′ = 1, . . . , m′,

w
(k)
djd, d′j′d′ = E

[(
I{Y1d≤1,Y2d≤xjd} − µdjd

)(
I{Y1+k,d′≤1,Y2+k,d′≤xj′d′} − µd′j′d′

)]

= Pr(Y1d ≤ 1, Y2d ≤ xjd, Y1+k,d′ ≤ 1, Y2+k,d′ ≤ xj′d′)− µdjdµd′j′d′ ,

d, d′ = 1, . . . , D, j, j′ = 1, . . . , m,

w
(k)
djd, 1d′j′d′ = E

[(
I{Y1d≤1,Y2d≤xjd} − µdjd

)(
I{Y1+k,1≤1,Y1+k,d′≤x′

j′d′} − µ1d′j′d′
)]

= Pr(Y1d ≤ 1, Y2d ≤ xjd, Y1+k,1 ≤ 1, Y1+k,d′ ≤ x′j′d′)− µdjdµ1d′j′d′ ,

d = 1, . . . , D, j = 1, . . . ,m,

d′ = 2, . . . , D, j′ = 1, . . . ,m′,
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w
(k)
1d′j′d′, djd = E

[(
I{Y1,1≤1,Y1,d′≤x′

j′d′} − µ1d′j′d′
)(

I{Y1+k,d≤1,Y2+k,d≤xjd} − µdjd

)]

= Pr(Y1,1 ≤ 1, Y1,d′ ≤ x′j′d′ , Y1+k,d ≤ 1, Y2+k,d ≤ xjd)− µdjdµ1d′j′d′ ,

d = 1, . . . , D, j = 1, . . . , m,

d′ = 2, . . . , D, j′ = 1, . . . ,m′,

w
(k)
1djd, 1d′j′d′ = E

[(
I{Y11≤1,Y1d≤x′jd} − µ1djd

)(
I{Y1+k,1≤1,Y1+k,d′≤x′

j′d′} − µ1d′j′d′
)]

= Pr(Y11 ≤ 1, Y1d ≤ x′jd, Y1+k,1 ≤ 1, Y1+k,d′ ≤ x′j′d′)− µ1djdµ1d′j′d′ ,

d = 2, . . . , D, j = 1, . . . , m′,
d′ = 2, . . . , D, j′ = 1, . . . ,m′.

Based on the above quantities we define the following vectors:

µ =




µ111

µ121
...

µ1m1

µ212
...

µDmD

µ1212

µ1222
...

µ12m′2

µ1313
...

µ1Dm′D




=




µ1

µ2
...

µm

µm+1
...

µD×m

µD×m+1

µD×m+2
...

µD×m+m′

µD×m+m′+1
...

µD×m+(D−1)m′




, b =




b1(x11)
b1(x21)

...
b1(xm1)
b2(x12)

...
bD(xmD)
b12(x′12)
b12(x′22)

...
b12(x′m′2)
b13(x′13)

...
b1D(x′m′D)




.

Notice that the subscripts of the elements of vector µ are different in its two vector forms though
the same notation µ is used. To form the above vectors, for example, to get the rth value in the
vector µ, we have used the following index transformation:

{
µdjd → µr, where r = (d− 1)×m + j,

µ1d′jd′ → µr, where r = D ×m + (d′ − 2)×m′ + j,

where [.] takes integer values. We now use the similar relations between the indexes of µdjd and the
indexes of µr to define the following variables:

σrs =





µdjd,d′j′d′ , if r ≤ D ×m, s ≤ D ×m,

µdjd,1d′j′d′ , if r ≤ D ×m, s > D ×m,

µ1djd,d′j′d′ , if r > D ×m, s ≤ D ×m,

µ1djd,1d′j′d′ , if r > D ×m, s > D ×m,
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wrs
k =





w
(k)
djd,d′j′d′ , if r ≤ D ×m, s ≤ D ×m,

w
(k)
djd,1d′j′d′ , if r ≤ D ×m, s > D ×m,

w
(k)
1djd,d′j′d′ , if r > D ×m, s ≤ D ×m,

w
(k)
1djd,1d′j′d′ , if r > D ×m, s > D ×m,

and the matrices:
Σ = (σrs), Wk = (wrs

k ), Θ = (diag{µ})−1 × (diag{x}).

8 Technical arguments

Proof of Proposition 2.2. We first prove qd(x) (or equivalently bd(x)) uniquely determine all coeffi-
cients in dth process. Since all the ratios are different and are points at which qd(x) changes slopes or
q′d(x) has jumps. So based on the jump points of qd(x), the ratios of al,j+1,d

al,j,d
are uniquely determined.

Let’s now rewrite qd(x) as

qd(x) =
Ld∑

l=1

xbld

2+K1ld∑

m=1−K2ld

max
(
cl,1−m,d,

cl,2−m,d

x

)
. (8.1)

where
∑
j

cl,j,d = 1 for each l and all cl,j,d are uniquely determined by the ratios which are the slope

change points of qd(x).
Suppose now qd(x) has a different representation, say

qd(x) =
Ld∑

l=1

xb′ld
2+K1ld∑

m=1−K2ld

max
(
cl,1−m,d,

cl,2−m,d

x

)
(8.2)

then
Ld∑

l=1

(bld − b′ld)
2+K1ld∑

m=1−K2ld

max
(
cl,1−m,d,

cl,2−m,d

x

)
= 0 (8.3)

for all x.
Suppose we have chosen x1, x2, . . . , xLd−1 and formed the matrix

∆d =




2+K1ld∑
m=1−K2ld

max(c1,1−m,d,
c1,2−m,d

x1
) · · ·

2+K1ld∑
m=1−K2ld

max(cLd,1−m,d,
cLd,2−m,d

x1
)

...
. . .

...
2+K1ld∑

m=1−K2ld

max(c1,1−m,d,
c1,2−m,d

xL−1
) · · ·

2+K1ld∑
m=1−K2ld

max(cLd,1−m,d,
cLd,2−m,d

xL−1
)

1 · · · 1




and set


2+K1ld∑
m=1−K2ld

max(c1,1−m,d,
c1,2−m,d

x1
) · · ·

2+K1ld∑
m=1−K2ld

max(cLd,1−m,d,
cLd,2−m,d

x1
)

...
. . .

...
2+K1ld∑

m=1−K2ld

max(c1,1−m,d,
c1,2−m,d

xL−1
) · · ·

2+K1ld∑
m=1−K2ld

max(cLd,1−m,d,
cLd,2−m,d

xL−1
)

1 · · · 1







b1d − b′1d
...
...

bLdd − b′Ldd




= 0.
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|∆d| is the determinant of the system of linear equations. Assume now the Ld determinants of the
(Ld−1)×(Ld−1) matrices formed from the bottom Ld−1 rows are not all zero. Since cl,k,d are known
and

∑2+K1ld
m=1−K2ld

cl,i−m,d = 1, i = 1, 2, then there exist xmin and xmax such that when x1 < xmin or
x1 > xmax, all elements of first row in ∆d are 1

x1
or 1 respectively. This will give two constant rows

in |∆d|, so when x1 < xmin or x1 > xmax, we have |∆d| = 0. When x1 varies in [xmin, xmax], denoting
∆d by ∆d(x1), then

|∆d(x1)| = 1
x1

∑
ci,j,d|∆d|1j +

∑
ci′,j′,d|∆d|1j′ (8.4)

where |∆d|1j 6= 0, |∆d|1j′ 6= 0 are the (1, j) or (1, j′) minors of ∆d. Both summations in the right
hand side of (8.4) are over all non-zero minors of the first row of ∆d and the corresponding ci,j,d

x1

or ci′,j′,d. If |∆d(x1)| = 0, by varying x1 in [xmin, xmax], at some point x, some 1
x1

ci,j,d|∆d|1j of the
summation 1

x1

∑
ci,j,d|∆d|1j change to ci′,j′,d|∆d|1j′ and add to

∑
ci′,j′,d|∆d|1j′ , or vice versa, and

this change results in |∆d(x)| 6= 0. Hence it cannot be true that |∆d| = 0 for all x1. This argument
can be applied to lower dimension matrices. On the other hand, we can start from a 2× 2 matrix
and extend it to Ld ×Ld matrix such that the determinant is not zero as required. Therefore, there
exist constants x1, , . . . , xLd−1 such that each system of linear equations has a unique solution. We
then conclude bld = b′ld, for all l. So qd(x) uniquely determine all al,j,d.

Now, we prove the results for bivariate maxima and moving maxima processes. Since bd(x) and
bd′(x) uniquely determine all values of parameters al,k,d and al,k,d′ respectively, we can get

(al,−K1ld,d, al,−K1ld+1,d, . . . , al,K2ld,d), l = 1, . . . , Ld

and
(al′,−K1ld,d′ , al′,−K1ld+1,d′ , . . . , al′,K2ld,d′), l′ = 1, . . . , Ld.

Since all nonzero existing ratios al,k,d

al,k,d′
are distinct, any permutation of index l or index k in the

triple subindex of al,k,d′ will result in different ratios which will be different from the jump points of
qdd′(x), so the jump points of qdd′(x) uniquely determine

( al,−K1ld,d

al,−K1ld,d′
,

al,−K1ld+1,d

al,−K1ld+1,d′
, · · · ,

al,K2ld,d

al,K2ld,d′

)

for all l. So (2.6) and (2.7) eventually uniquely determine all the true values of all parameters al,k,d

and al,k,d′ .
The reason why x1, x2, . . . , xm uniquely determine all values of al,k,d and al,k,d′ is because qd(x),

qd′(x) and qdd′(x) are piecewise linear functions which can be uniquely determined by a finite number
of points as long as there are at least two points between any two jump points.

Using the same arguments above, we can prove the results for D > 2. 2

Proof of Lemma 3.1. We use Theorem 27.4 in Billingsley (1995), re-stated below as Results TA1.
For a sequence ζ1, ζ2, ... of random variables, let αn be a number such that

| Pr(A ∩B)− Pr(A) Pr(B) |≤ αn

for A ∈ σ(ζ1, ..., ζk), B ∈ σ(ζk+n, ζk+n+1, ...), and k ≥ 1, n ≥ 1. When αn → 0, the sequence {ζn} is
said to be α-mixing. This means that ζk and ζk+n are approximately independent for large n.
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Results TA1 (Theorem 27.4 in Billingsley (1995)). Suppose that Υ1, Υ2, . . . , is stationary and α-
mixing with αn = O(n−5) and that E[Υn] = 0 and E[Υ12

n ] < ∞. If Sn = Υ1 + · · ·+ Υn, then

n−1Var[Sn] → σ2 = E[Υ2
1] + 2

∞∑

k=1

E[Υ1Υ1+k],

where the series converges absolutely. If σ > 0, then Sn/σ
√

n
L→ N(0, 1).

Let x1d, ..., xLd, x
′
1d, ..., x

′
Ld be positive constants which, for the moment, are arbitrary. Let A1d =

(0, x1d)× (0, x′1d), . . . , AL−1,d = (0, xL−1,d)× (0, x′L−1,d) be different sets. Define

ῩAjd
=

1
n

n−1∑

i=1

IAjd
(Yid, Yi+1,d), (8.5)

where IA(.) is an indicator function. Then by the strong law of large numbers (SLLN), we have

ῩAjd

a.s.−→ Pr{Ajd} = Pr{Yid ≤ xjd, Yi+1,d ≤ x′jd} , µjd. (8.6)

Let Υnd = IAjd
{Ynd, Yn+1,d} − µjd, then E[Υnd] = 0 and E[Υ12

nd] < ∞ because Υnd is bounded.
The α-mixing condition is satisfied since Ynd’s are M -dependent, i.e. Yid and Yjd are dependent when
|j − i| ≤ M , while they are independent when |j − i| > M . So the conditions of TA1 are satisfied.
We have

Υ2
1d = IAjd

{Y1d, Y2d} − 2µjdIAjd
{Y1d, Y2d}+ µ2

jd,

EΥ2
1d = µjd − 2µ2

jd + µ2
jd = µjd − µ2

jd,

Υ1dΥ1+k,d = (IAjd
{Y1d, Y2d} − µjd)(IAjd

{Y1+k,d, Y2+k,d} − µjd)
= IAjd

{Y1d, Y2d}IAjd
{Y1+k,d, Y2+k,d}

−µjdIAjd
{Y1d, Y2d} − µjdIAjd

{Y1+k,d, Y2+k,d}+ µ2
jd

and
E(Υ1dΥ1+k,d) = Pr{Y1d ≤ xjd, Y2d ≤ x′jd, Y1+k,d ≤ xjd, Y2+k,d ≤ x′jd} − µ2

jd.

Then applying TA1, we have √
n(ῩAjd

− µjd)
L−→ N(0, σ2

jd),

where µjd is the mean of random variable ΥAjd
. Its value is defined in (8.6). The value of σ2

jd is
defined as:

σ2
jd = µjd−µ2

jd +2
maxl K1ld+maxl K2ld+1∑

k=1

[
Pr

{
Y1d ≤ xjd, Y2d ≤ x′jd, Y1+k,d ≤ xjd, Y2+k,d ≤ x′jd

}−µ2
jd

]
.

We now consider multivariate case. Let

U1d = (IA1d
{Y1d, Y2d} − µ1d, . . . , IAL−1,d

{Y1d, Y2d} − µL−1,d)′,

U1+k,d = (IA1d
{Y1+k,d, Y2+k,d} − µ1d, . . . , IAL−1,d

{Y1+k,d, Y2+k,d} − µL−1,d)′,

and α = (α1d, . . . , αL−1,d)′ 6= 0 be an arbitrary vector.
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Let Υ1d = α′U1d, Υ2d = α′U2d, . . . , then E[Υnd] = 0 and E[Υ12
nd] < ∞. And so TA1 can apply.

We say expectation are applied on all elements if expectation is applied on a random matrix. But
E[Υ2

1d] = α′E[U1dU
′
1d]α = α′Σα, E[Υ1dΥ1+k,d] = α′E[U1dU

′
1+k,d]α = α′Wkdα where

E([IAid
{Y1d, Y2d} − µid][IAjd

{Y1d, Y2d} − µjd]) = µi,j,d − µidµjd

E([IAid
{Y1d, Y2d} − µid][IAjd

{Y1+k,d, Y2+k,d} − µjd])
= Pr{Y1d ≤ xid, Y2d ≤ x′id, Y1+k,d ≤ xjd, Y2+k,d ≤ x′jd} − µidµjd

Applying the Cramér-Wold device, we have

√
n







ῩA1d

...
ῩAL−1,d


−




µ1d
...

µL−1,d





 L−→ N

(
0,Σd +

maxl K1ld+maxl K2ld+1∑

k=1

{Wkd + W T
kd}

)

where the entries σi,j,d of matrix Σd are defined by: µi,j,d = Pr{Y1d ≤ min(xid, xjd), Y2d ≤
min(x′id, x

′
jd)}, σi,j,d = µi,j,d − µidµjd, the matrix Wkd has entries wij

kd = Pr(Y1d ≤ xid, Y2d ≤
x′id, Y1+k,d ≤ xjd, Y2+k,d ≤ x′jd)− µidµjd, µi,i,d = µid.

These arguments and the mean value theorem complete the proof of Lemma 3.1. 2

Proof of Lemma 3.2. Since S is a set with finite number of distinct values, we have

C∗ ∈ S∗, C∗
n ∈ S∗, n = 1, 2, . . .

where S∗ = {D1, D2, . . . , DT } is a set of l ×m matrices Di whose elements belong to S, and T is
finite. DT

i Di is invertible.
Notice that C∗

na
∗
n

a.s.−→ C∗a∗, as n → ∞, implies that there is at least a subsequence nj , j =
1, 2, . . . ,, such that C∗

nj
a∗nj

a.s.−→ C∗a∗, as j →∞, and Cnj = Di for some i, i.e. we have

C∗
nj

a∗nj
= Dia∗nj

a.s.−→ C∗a∗, as j →∞

which implies that Di = C∗, and a∗nj

a.s.−→ a∗, as j →∞, and hence the proof is completed by noticing
that for sufficiently large n, C∗

n = C∗. 2
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