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Aim of Detection and Attribution (D&A)

General definition from the climate literature:

The aim of Detection and Attribution is to assess whether
observed changes are consistent with internal climate variability
only, or with an expected response to a combination of external

forcings and internal climate variability.
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IPCC statements (loosely quoted)

Warming of the climate system is unequivocal, as is now evident
from observations of increases in average air and ocean
temperatures, widespread melting of snow and ice, and rising
global average sea level. [..]

Most of the observed increase in global average temperatures
since the mid-20th century is likely (TAR 2001) due to the
observed increase in anthropogenic greenhouse gas
concentrations.

... mid-20th century is very likely (AR 2007) due to . ..
... mid-20th century is extremely likely (AR 2013) due to . ...
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Regression-based D&A

m
y = Z_;fi’jxj +u=X38+u
j=1

where

e y: vector of observed signals
Here: observed temperature changes at spatial grid cells

® Xi.....Xm: responses to the m different forcings

Here: temperature changes that would have happened under each
forcing scenario (x1: anthropogenic; x>: natural)

e u: internal climate variability
Usual assumption: u ~ N,(0,C)

GLS solution:

B=(xcix)xCy I NCAR



Detection and Attribution

If a particular coefficient j3; is significantly greater than O, we say that the
Jjth forcing factor has been detected.

Among those forcing factors that are detected, the corresponding [3;s are
then interpreted as the attribution of the observational signal to the
different forcing factors



Challenges

y = Z}ﬂ:l .I,s'f‘gj)(j —u, u-r N,.,(O C)

e The xjs are not actually known (errors-in-variables problem) —
climate scientists have addressed this using the total least squares
algorithm, but there are problems with this approach

e Recently, climate scientists have started to realize that the ys aren't
actually known either
= uncertainty in temperatures are characterized through an ensemble
of possible temperatures

e Uncertainty in parameter estimation not taken into account in current
approaches
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Challenges with the estimation of C

Main challenge: y and xi. ..., x, are high dimensional (typically thousands)

but the number of independent “observations” is comparatively small.
This makes estimation of C difficult.

Solutions used by climate scientists:

e Estimate C from control runs of the climate model

e Expand in empirical orthogonal functions (principal components) and
then truncate (in an ad-hoc fashion)

We will address these challenges by formulating and fitting a Bayesian

hierarchical model
B NCAR




Bayesian D&A regression model

Bayesian regression model:

y|X,3,C ~ Nn(zj;”l Bix;. c)

D&A consists of determining the posterior distribution of the 3; (mainly,
P(!.s'f‘gj > 0|y,X)).

Challenge: y, X = (X1,...,Xm), 3, and C are all unknown



Uncertainty in observed temperature changes

True temperature changes in grid cells over the globe are unknown
But: We have an ensemble of N temperature time series, which can be
converted to an ensemble of N temperature changes

We assume that

where W is a covariance matrix describing the variability of the ensemble
members around the true temperature change
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Uncertainty in temperature under forcing scenarios

The (true) temperature changes due to forcing are also unknown, but we
have an ensemble of GCM outputs for each forcing scenario:

xx;, € % No(x;.C), [=1,....L, j=1....m,

where L; is the number is the number of GCM runs under the jth forcing
scenario, and climate variability is assumed to have covariance matrix C.




Model parameters

e Climate variability: Typically, C is expanded in empirical orthogonal
functions and then truncated:
C = BKB’, where B contains the first r principal components
estimated from control runs, K = diag{e™, ..., e}, and r << n

e Observation uncertainty: Currently, W = 72W, where W is a
diagonal matrix containing the empirical variances of {y(/)}
e Priors:

e Noninformative priors for 3 and o
e Vaguely informative priors for Ay, ..., A,




Inference

MCMC with adaptive Metropolis-Hastings updates
High-dimensional problem — Integrate out y and X

MCMC computations only rely on low-dimensional quantities and are very
fast, even for almost a million data points




Bayesian model averaging

Previous slides assumed r, the number of EOFs, to be fixed.

The number of variables in the model depends on r — standard MCMC
sampler cannot be used to make inference on # and r simultaneously.

Instead we perform Bayesian model averaging (BMA) to average the

posterior results for each value of r using weights automatically chosen by
the data.

BNCAR



Bayesian model averaging (cont.)

The posterior of 3 averaged over the posterior of r (i.e., taking the
uncertainty about the value of r into account) is given by

max

BIY. X1 = > (Bl Y. X][r|y. X],

I=min

Due to the uniform prior on r, the posterior probability of r = r; is given

by [ri| Y, X] o [V]ri, X][ri] oc [V]ri, &,

Fortunately, a good estimate of marginal likelihood [)|r;, X] can be
obtained using the evaluations of the likelihood already performed in the

MCMC procedure as
1 M

Vi, X1 == > Vri. 0V, X][6V)|r]
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Computational considerations

Bayesian modeling averaging approach is ideally suited for parallelization.

Yellowstone Environment

>
& Yellowstone
® Geyser & HPC resource, 1.5 PFLOPS peak
a Caldera o
.8 DAV clusters
2 :
= ; i
: i 5
8 I e &
g L L L L L L
A L =k
& EBEENEE)
g S
7 . el
: S
i
£
<
E —
m" " 10U 44
- & 7
0
v

Science Gateways  Data Transfer \\\

RDA, ESG Services \, -~ W

h NCAR @ RemoteVis  PartnarSites ~ XSEDE DA \*

“\ QU h

Parallelizing over r (16 1EOFs): 40 hours on laptop — 2 hours on &!zyser




The data

o Climate Model Intercomparison project (CMIP5) models: suite of
more than 20 models, of which we use as subset (BCC CSM1, CAN
ESM2, CSIRO, GISS, IPSL, GFDL)

e Remote Sensing Systems temperature retrievals based on microwave
sounding units (MSUs): N = 396 realizations

Based on these sources, we consider the linear trends (slopes) of annual
lower-tropospheric temperatures between 1979 and 2005 in n = 2107
5° x 5° grid cells on the globe (between —70° and 80° latitude with an
altitude lower than 3km)



Linear trends 1979-2005: Natural-only forcing
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Linear trends 1979-2005: Anthropogenic-only forcing
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Linear trends 1979-2005: giss models

Natural-only forcing Anthropogenic-only forcing
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Linear trends in satellite observations 1979—-2005

Average of 396 ensemble members
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Posterior densities for s for all values of r

All available GCM models for forced runs, bcc model for control (18 runs)
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Weights for all values of r

All available GCM models for forced runs, bcc model for control (18 runs)
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Bayesian model averaged posterior densities for [Js

All available GCM models for forced runs, bcc model for control (18 runs)
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Posterior densities using different control runs

Control runs: bcc Control runs: gfdl
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Relation to Method of Hannart
(J. Climate 2016)

Hannart presented an ‘“integrated Optimal Fingerprinting” ap-
proach that has several overlaps with the current method

Not expicitly Bayesian but uses several elements derived from
Bayesian theory, in particular, integrated likelihoods

Initial ¢ = S where S is sample covariance matrix from con-
trol model runs

Improved estimate €, = aA + (1 — «)S for suitably chosen
a, A

Inverse Wishart “prior distribution” on ('; integrate out C
from Likelihood

Didn't take account of observational uncertainty

Open question which method performs better



Summary

e BHM allows natural modeling of uncertainty in all quantities in the
D& A regression model

e Posteriors take all (modeled) uncertainties into account
e Results not sensitive to priors

e BUT results are sensitive to choice of control runs

Future work:
e |nference on EOFs themselves

e Or completely different approach to estimating covariance
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