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Abstract

Purpose: To investigate the sensitivity of short-term associations between mortality in the

Medicare population and fine particulate matter (PM) to various statistical modeling assump-

tions. Methods: Mortality data were downloaded from Medicare, particulate matter data from

EPA, temperature and dewpoint from NOAA. The case-crossover method was used to evaluate

the association between mortality and PM (average of lags 0 and 1 day) with comparison days

on the same day of week in fixed 28-day windows. Three concentration-response functions were

considered: linear, nonlinear, and a “broken stick” model hinged at 12 µg/m3. Nonlinear func-

tions of temperature and dewpoint, both on day of death and average of lags 1–3 days, were

also included. Sensitivity analyses included age, sex and region. Results: Significant associa-

tions were found when a linear concentration response function was fitted to the full range of

PM, or in a broken-stick model above 12 µg/m3. No significant association was found below 12

µg/m3. However when lagged meteorology was omitted from the model, the estimated coeffi-

cients greatly increased and were significant at all levels of PM. Conclusions: It is important to

take lagged meteorology into account in investigating short-term associations between PM and

mortality.

1 Introduction

Over the past twenty years, there have been many papers summarizing the association between

airborne concentrations of particulate matter and mortality or other adverse health effects in the
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U.S. or worldwide population. Studies may be broadly divided into two categories: those examining

short-term or acute effects, typically of duration under a week [26, 9, 23, 24, 27, 13, 8, 25, 20, 11,

33, 5, 32, 6], and those concerned with long-term effects [16, 34, 17, 2, 7, 1, 4]. Although both

short-term and long-term effects are important in a regulatory context, the present paper is solely

about short-term effects.

The United States Environmental Protection Agency (EPA) is mandated by the Clean Air Act

to promulgate air pollution standards that are “requisite to protect the public health ... allowing

an adequate margin of safety.” These standards are reviewed every five years to determine whether

they are sufficient to meet that requirement. The current EPA standard for particulate matter of

aerodynamic diameter of 2.5 µm or less (PM2.5) requires an annual average of 12 µg/m3 or less and

a daily maximum of 35 µg/m3 or less in each community. In practice, the daily standard is only

exceeded by a tiny minority of monitored PM2.5 readings, whereas 12 µg/m3 is near the median.

Therefore, there is particular interest in understanding health effects at levels that are at or below

the level of 12 µg/m3. Evidence of a health effect in this range would strengthen the case for a

tightening of the standard.

In this paper, we focus specifically on the short-term mortality effect. Recent studies [6, 10]

have used the “case-crossover” method of statistical analysis and have suggested strong associations

between PM2.5 and short-term mortality even below 12 µg/m3. The objectives of the present paper

are to investigate:

1. Robustness of the results against alternative constructions of the meteorological and air pol-

lution databases;

2. Robustness of the results against the inclusion of alternative lags of meteorology;

3. Alternative concentration-response functions for examining the PM2.5–mortality association

both above and below 12 µg/m3;

4. Regional variations in the associations.

The last of these is motivated by previous research showing strong regional variations in the ozone–

mortality association [3, 30], with effects in the north-east USA being generally stronger than

elsewhere. There has been limited research whether similar regional effects also hold for PM2.5
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(e.g. [34]), and an earlier paper on short-term mortality using data for California [32] claimed

effectively zero association between PM2.5 and mortality over 2000-2012 in that state. Among

other conclusions, the present paper confirms the result of [32], though all three major sources of

data (mortality, meteorology and PM2.5) have been constructed from entirely independent sources

and the method of statistical analysis is also different.

2 Data and Statistical Methods

Medicare data were obtained from the Center for Medicare and Medicaid Services for the years

1999–2013. For each deceased individual, the date of death, zipcode of residence at time of death,

age, sex and race were recorded. Meteorology data was obtained from the National Centers for

Environmental Information. For each zipcode, daily temperature and dewpoint were recorded from

the nearest weather station within 100 km. PM2.5 data were derived from both EPA monitors and

the EPA’s Remote Sensing Information Gateway, which combines information from air quality

models and monitors. Further details of both the data processing are given in Supplementary

Materials, Section 1. The exposure variable in this study is defined as the average of PM2.5 on

day of death and the one day preceding. Temperature and dewpoint data are calculated on day of

death and the mean of three days prior to death (lagged meteorology).

The statistical analysis in this paper is based on the case-crossover method [19, 18, 14, 15, 28].

Each date of death is matched with nearby “referent” dates whose air pollution and meteorology

are compared with those of the day of death. Theoretical analyses have shown the importance

of using predetermined “referent windows” and using all of the dates within a referent window to

avoid biases created by missing data. In this analysis, each date of death is matched with three

other days at seven-day intervals within a fixed window of length 28 days.

Subgroup analyses may be based on sex (separate analyses for male and female beneficiaries);

by race; by age group; and by region of country: whole US, North-East, South-East, North-West,

South-West and a separate analysis for California.

All analyses assume that the logged mortality rate is a function of temperature, dewpoint and

PM2.5. Temperature and dewpoint are both modeled nonlinearly through B-splines with varying

degrees of freedom (DF) with a default DF=6. The models for PM2.5 were (a) linear; (b) nonlinear
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modeled by B-splines; or (c) the “broken stick” formula

f(x) =


β1(x− 12) if 12 < x <= 35,

β2(x− 12) if x <= 12,

(1)

which represents the effect as two straight lines joined at x = 12. The rationale behind (1) is

that the coefficients β1 and β2 represent the PM2.5 effect over the two ranges that are of greatest

regulatory interest: β2 below the long-term standard, and β1 between the long-term and daily

standards. In this way, we hope to get a clear-cut numerical determination (with confidence limits)

of the PM2.5 effect over both of those ranges. All PM2.5 coefficients are expressed in units of percent

rise in mortality per 10 µg/m3 rise in PM2.5.

With monitored PM2.5, we have 1,769,871 complete rows of data (no missing meteorology or

PM2.5 values on either the date of death or the three comparison days). This number rises to

16,196,012 using the downscaled PM2.5 data over 2002–2013. Many PM2.5 monitors only take

readings every third day which limits their use for this kind of analysis.

Summary statistics for meteorology and PM2.5 are contained in Table 1. This table shows the

minimum and maximum values along with their quantiles at the 2.5%, 25%, 50%, 75% and 97.5%

points of the distribution. These refer to day of death only and (except for the last line) the larger

dataset based on downscaled PM2.5. The rows for lagged temperature and lagged dewpoint refer to

three-day averages of daily means prior to the day of death, and are computed separately as it can

be expected that three-day averages would have a less dispersed distribution than single-day means.

For both the monitored and downscaled PM2.5 data, the calculations are for two-day averages, as

these are the values used in our epidemiological models.

Summaries of the deaths are given in Table 2, classified by sex, race, age group and region.

Overall, we have 45.9% male; 84.3% white; division among age groups is 8.4% (under 65); 20.1%

(65–74); 33.5% (75–84); 38.0% (85+); division among regions is 41.3% (North-East); 23.7% (South-

East); 9.7% (North-West); 25.4% (South-West). The total of all individuals in Table 2 is reduced

slightly by the fact that not all individuals are classified by sex and race, and the classification into

regions is restricted to those who live in the continental United States. Some additional summary

tables are given in Supplementary Materials, Section 2.

One peculiarity of the data was identified in the initial data processing: it appears that deaths
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Variable Minimum Q2.5 Q25 Q50 Q75 Q97.5 Maximum

Daily Mean Temperature –37.3 20.3 44.5 59.4 71.9 85.1 109.9

Lagged Temperature –23.8 21.5 44.7 59.2 71.6 84.6 109.2

Daily Mean Dewpoint –45.9 7.8 31.0 46.1 59.2 73.3 86.7

Lagged Dewpoint –31.3 10.2 31.4 45.6 58.7 73.0 83.7

PM2.5 (downscaled) 0.4 3.9 7.1 9.8 13.7 26.0 125.9

PM2.5 (from monitor) 0.0 3.8 7.8 11.2 16.2 33.1 170.1

Table 1: Summary statistics for meteorology and PM2.5 data

Region North-East South-East North-West South-West

Race White Other White Other White Other White Other Totals

M, 0–64 220,942 85,171 147,791 76,134 61,631 9,569 144,607 61,747 807,592

F, 0–64 147,551 59,175 97,485 55,762 43,582 6,151 97,682 42,118 549,506

M, 65–74 568,187 132,750 362,730 103,372 153,027 12,388 381,291 98,365 1,812,110

F, 65–74 460,820 111,065 276,296 85,298 121,991 9,239 297,034 77,867 1,439,610

M, 75–84 942,349 140,404 524,946 102,349 238,628 13,379 554,919 126,568 2,643,542

F, 75–84 996,089 161,201 533,136 120,744 243,249 13,750 569,495 130,025 2,767,689

M, 85+ 817,465 79,903 403,062 62,469 221,147 8,667 465,838 87,069 2,145,620

F, 85+ 1,573,412 169,674 734,133 137,309 394,689 13,739 822,217 141,990 3,987,163

Totals 5,726,815 939,343 3,079,579 743,437 1,477,944 86,882 3,333,083 765,749 16,152,832

Table 2: Classification of Medicare deaths by sex, age group, region and race
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on the last day of each month are substantially higher than on the remaining days of the month (see

Supplementary Materials, Section 3). A reviewer has pointed out that this is a known feature of

Medicare data and can be avoided by using a flag that identifies which dates of death are validated:

however, this was only pointed out after the main analyses of the paper had been completed.

Instead, the analyses used three strategies for correcting for this anomaly: (a) ignore it; (b) omit

the last day of each month; (c) omit the last day of each month and any days matched with the last

day of a month in the case-crossover analysis. Initial results and simulations showed that method

(b) raises significant bias issues that are similar to the phenomenon of “overlap bias” [15], so the

bulk of the following reported results used method (c).

The analysis used a Fortran program to input the data and compute the likelihood function;

maximum likelihood estimation then proceeded using a variable metric algorithm[22]. The main

limitation on this style of analysis was the number of observations that could be processed in

memory; the largest number processed in any single analysis was about 11.3 million. The dataset

consisting of all individuals aged 65 and over contains about 12.4 million individuals; this dataset

was split into male and female and the results combined using a meta-analysis approach.

The bulk of the analyses used daily deaths from 2002-2013 with PM2.5 data from RSIG; tem-

perature and dewpoint were used either with day of death only (the No Lags model) or with day

of death and the mean of the three previous days (the With Lags model). For analyses with a

log-linear relationship between PM2.5 and mortality, the range of PM2.5 was unrestricted. For the

broken stick analyses, the range was confined to 0–35 µg/m3. Because of the extra computational

cost of the broken stick analysis, not all analyses were conducted under both the log-linear and

broken stick models. Unless reported otherwise, all analyses omit the last day of each month and

any other days matched with the last day of a month under the case-crossover analysis. In addition

to analyses for the whole USA, separate analyses were performed for the North-East, South-East,

North-West, South-West and California. Some analyses divided by participants by race, classified

here as either white or non-white (other races were merged into non-white).
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Male 65+

Female 65+

All 65+

All  75+

All  85+

All 65+, NE

Male 65+, No lag met

Female 65+, No lag met

All 65+, No lag met

All  75+, No lag met

All  85+, No lag met

All 65+, NE, No lag met

All 65+, no lags, LDOM

All 65+, with lags, LDOM

All 65+, no lags, Monitors

All 65+, with lags, Monitors

All 65+, 1−day lag met

All 65+, 5−day lag met

−0.5 0.5 1.0 1.5 2.0

Range Unrestricted

Effect Size

−0.5 0.5 1.0 1.5 2.0

Range 12−35

Effect Size

0 1 2 3

Range 0−12

Effect Size

Percent Increased Mortality Per 10 µg/m
3
 Increase in PM2.5

Figure 1: Estimated percent change in mortality and 95% confidence intervals associated with 10

µg/m3 rise in PM2.5 for various subpopulations and statistical models. Left group of plots: linear

concentration-response function fitted to full range of PM2.5. Middle and right groups: “broken

stick” model fitted to ranges 12–35 and 0–12 µg/m3. Top to bottom: models that include lagged

meteorology; models that exclude lagged meteorology; various sensitivity analyses.
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3 Results

Figure 3 shows estimates and 95% confidence intervals of the PM2.5–mortality association under

numerous assumptions. The top block of six rows shows the result in different subpopulations for

our full model that includes lagged meteorology. The second block shows the same estimates for a

model that includes day-of-death meteorology but not lagged meteorology. The third block shows a

few sensitivity analyses: including the last day of month (LDOM) and all comparisons days which

were earlier omitted; using monitors instead of the RSIG to estimate PM2.5; and using 1-day and

5-day averages of lagged meteorology instead of 3-day. For models including lagged meteorology,

the regression coefficients were positive and statistically significant in the linear concentration-

response function fitted to the full range of PM2.5, and for the broken-stick model above 12 µg/m3,

but not for the broken-stick model below 12 µg/m3. When lagged meteorology was omitted, the

coefficients were larger across the board and statistically significant both above and below 12

µg/m3. The sensitivity analyses showed: including the LDOM has little effect on the results; using

monitors instead of RSIG (with correspondingly reduced data coverage) leads to substantially wider

confidence intervals, but still with the same relationship between the results with and without lagged

meteorology; using 1-day lagged meteorology does not fully account for the confounding effect while

5-day lagged meteorology produces results very similar to those for 3-day lags.

Analyses by race and by region are contained in Figure 2; these analyses were conducted only

under the log-linear model but results both excluding and including lagged meteorology are plot-

ted side by side to allow a direct comparison. For the racial comparison, the results show that

non-whites are at a higher risk than whites under both models, but with substantially wider confi-

dence intervals for non-whites reflecting the smaller overall population. For the regional analyses,

excluding the North-East, the results still show a statistically significant positive effect under the

model without lagged meteorology, but this effect disappears under the lagged meteorology model,

where none of the estimated coefficients are significantly different from zero. For the specific case

of California, the estimated linear coefficient was very close to zero, confirming a result of [32] that

was derived using entirely different data and different statistical methodology.

Figure 3 shows plots of the relative risk v. PM2.5 curve both with and without lagged meteo-

rology. This curve was computed for the 75+ age group so that the entire analysis could be fitted
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Whites 65+

Non−whites 65+

All 65+, CA

All 65+, SE

All 65+, NW

All 65+, SW

0.0 0.5 1.0 1.5

No Lagged Meteorology

Effect Size

−0.4 0.0 0.2 0.4 0.6 0.8

With Lagged Meteorology

Effect Size

Figure 2: Analyses using the log-linear model by race and by region (other than North-East).

Figure 3: Left curve: Nonlinear relationship between PM2.5 and mortality based on analysis without

lagged meteorology applied to Medicare enrolees aged 75+. Expressed as percent change in relative

risk to a baseline level of 12 µg/m3 with pointwise 95% confidence limits. Right: Same curve but

including lagged meteorology in the statistical model.
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with a single optimization. These plots have been drawn relative to a reference level of 12 µg/m3,

which seems logical because that is the current standard. Relative risks both above and below that

standard give some indication of the likely costs or benefits of changing the standard. These curves

again demonstrate the importance of taking lagged meteorology into account.

4 Discussion

The results of this paper may be compared with those of an earlier paper [6] that used similar

methodology.

In many respects, these results support and validate those of [6]. The results under the No

Lags model that are directly comparable with results in [6] show very similar point estimates

and confidence intervals. This is despite the fact that the temperature and PM2.5 components of

the data have been constructed from different sources, and there are differences in the statistical

approach as well, including an entirely different computational strategy. The mortality data are

similar but not identical, because of slightly different time periods and the end of month anomaly.

The present results show a stronger effect in women than in men; increasing effects as age increases;

and a stronger association for non-whites than for whites, though with wider confidence intervals

for non-whites reflecting differences in population size. All these results are consistent with [6].

Even in the With Lags model, the present results confirm the statistical significance of an overall

linear effect in all the national analyses and in the regional analysis for the North-East. However,

the results in the 0–12 µg/m3 range are much attenuated and not statistically significant at the

0.05 level, and the nonlinear concentration-response curve in the right hand half of Figure 3 also

implies absence of a statistically significant effect in this range.

There is no clear-cut way of saying which of the two analyses (with or without lagged meteorol-

ogy) is more appropriate. The most familiar interpretation is that lagged meteorology is acting as

a confounder of the PM2.5 effect, but this is unclear as there is no obvious mechanism at work here.

There would be a direct mechanism if lagged meteorology (along with day of death meteorology)

were a reliable predictor of PM2.5; but a direct attempt to verify this, using nonlinear splines of

both lagged and day of death meteorology as a predictor of PM2.5, suggested an R2 of only 0.14,

compared with 0.07 for predicting PM2.5 from day of death meteorology alone. Recalling the size
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of the dataset, even these values are large enough to suggest the possibility of a confounding effect.

It is conceivable that the confounding may be the other way round, that PM2.5 is acting as a

confounder of lagged meteorology, but the statistical significance of lagged meteorology is massive

(deviances of several hundred), so any confounding effect by PM2.5 could be no more than a very

small component of it.

The regional results mimic corresponding results for ozone [30] and are also consistent with

the previous result for California in [32]. Possible explanations include different compositions of

PM2.5 in different parts of the country and also different exposure patterns, e.g. greater use of air

conditioning in western and southern states and higher use of public transport in the North-East.

It is a matter of speculation whether the different results for California are in any way explained

by the fact that California has historically enforced its own air quality standards that are different

from the rest of the USA.

The method of this paper does not use “causal inference” techniques in the sense of for example

[21, 12, 35], but even in the absence of formal proof of causality, there are strong reasons for believing

that the effects are causal. The case-crossover method of analysis, relying on the comparison of

date of death with a set of comparison dates for the same individual, practically eliminates any

possibility of confounding by individual factors such as physical conditioning, weight, smoking

and drug use. There is a possibility of confounding by (a) other meteorological variables besides

temperature and dewpoint, and (b) other air contaminants such as certain components of PM2.5

having a stronger effect than PM2.5 itself. The former possibility has been extensively discussed

without reaching clear-cut conclusions; previous analyses such as [31, 29, 32] used specific and

relative humidity, atmospheric pressure and separate daily minimum and maximum temperatures.

As for the possibility that specific components of PM2.5 may be more strongly associated with

mortality than overall PM2.5, that remains a topic of active research, but at present, only PM2.5

itself has a national network.

Numerous caveats remain. These results apply only to short-term mortality; parallel results for

long-term mortality were published by [7]. The main part of this analysis covers only 2002-2013;

with restrictions due to nonavailability of meteorology and PM2.5 data in all zip codes, and further

deletions resulting from the last day of month artifact, the analysis dataset comprised less than

half the data potentially available from 1999-2018. If all these gaps were filled in with no change
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in the estimated coefficients, the results could be statistically significant even below 12 µg/m3.

This paper confirms the statistical significance and likely causality of the overall association

between PM2.5 and short-term mortality, even under a lagged meteorology model. The possibility

that such effects persist to the range of PM2.5 below 12 µg/m3 is by no means ruled out, but further

analyses with larger datasets would be needed to resolve this question.
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1 Further Details of Meteorological and PM2.5 Data

Meteorology data was obtained from the Global Summary Of the Day (GSOD) database main-

tained by the National Centers for Environmental Information, a branch of the National Oceanic

and Atmospheric Administration (NOAA). GSOD was preferred to the better known Global His-

torical Climatological Network (GHCN), because GSOD includes dewpoint whereas GHCN does

not. Although it is open to discussion whether weather station data is inherently superior to reanal-

ysis data constructions such as NCEP, we note that the NCEP grid resolution is 2.5o latitude and

longitude (roughly 270 × 210 km. at latitude 40oN), most points in the US have several weather

stations within that distance range, so the weather station data should be more sensitive to spatial

variability. The weather variables used for this study were daily mean temperature and dewpoint,

chosen so as to match the variables used in [4]. Other variables available in the database include

daily maximum and minimum temperature, precipitation and air pressure, and all of these could

potentially be included as meteorological covariates as well. [6] found that including daily maximum

and minimum temperature separately gave stronger meteorological associations than daily mean

temperature, but that possibility is not pursued here. Data were downloaded as gzipped directories

(one for each year). Each station is identified by two codes, the USAF code and the WBAN code.
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A separate “isd-history” file is available, which lists the same code with other identifiers including

latitude-longitude coordinates and a country code. Only stations with a country code of “US” are

relevant to the present exercise.

To match the zip code data with weather station and air pollution monitor data, we need

latitude-longitude for each zip code and this was obtained from the file

free-zipcode-database-Primary.csv downloaded from the website

http://federalgovernmentzipcodes.us/. This dataset lists a total of 42,522 zipcodes with name

of city and state, latitude and longitude to the nearest 0.01o, and some other information. Al-

together, 23,796,902 participants out of the original 23,808,244 had zip codes whose geographic

coordinates were identifiable in this way, a coverage rate of 99.95% covering 34,553 zipcodes.

For each participant zipcode for which latitude-longitude coordinates were available, the nearest

weather station in the GSOD database was identified. Zipcodes for which the distance to the

nearest weather station was more than 100 km. were treated as missing — these included data

from noncontinental locations such as Guam, for which the distance to the nearest US weather

station was in some cases several thousand km. However, such individuals comprise only a tiny

fraction of the Medicare database, so their omission should not affect the analysis results in any

meaningful way. The choice of 100 km. as the cutoff distance is somewhat arbitrary of course,

but [4] used 50 km. for a similar cutoff with PM2.5 monitor stations — temperature fields are in

general smoother than PM2.5 fields, and it seemed reasonable to adopt twice as large a cutoff for the

meteorology variables compared with PM2.5. The remainder of the meteorology data construction

consisted of associating each zipcode with daily temperature and dewpoint data from the nearest

weather station, for all days for which these data were available.

This project uses PM2.5 data from two sources. Daily data from monitors are available on

the EPA website https://aqs.epa.gov/aqsweb/airdata/download files.html, together with

ancillary information including latitude-longitude coordinates of the monitors. This was processed

in a similar way to the meteorology data, associating each zipcode with the nearest monitor, using

a cutoff of 50 km. as previous described. This dataset was limited in two ways: first, each zipcode

that is further than 50 km. from the nearest monitor is treated as missing, and second, days where

the monitor data are missing are also treated as missing at the associated zipcode. This is a rather

significant limitation, as EPA regulations require only that PM2.5 be monitored every third day,
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and the method of case-crossover analysis that we are using for the statistical analysis requires

matched PM2.5 values at multiples of seven days before and after the day of death. The conflict

between these two requirements essentially means that only monitors with daily data are usable,

which is a small proportion of the total set of monitors. Therefore, results using PM2.5 monitor

data will be extremely limited, though they are still useful for validating the results from the fused

dataset that is described next.

Figure 1: Downscaled versus monitor plots for three zipcodes, 2002–2013. The correlation coeffi-

cients for (a)–(c) are respectively 0.98, 0.96 and 0.94.

EPA’s Remote Sensing Information Gateway, or RSIG, combines data from monitors and the

CMAQ air quality modeling product through a Bayesian approach due to [3, 1, 2]. Daily datasets

from 2002 onwards are online at the web address

https://www.epa.gov/hesc/rsig-related-downloadable-data-files. The data are at the

spatial resolution of census tracts, and include both posterior means and posterior standard devi-

ations from the Bayesian algorithm. We shall not use the standard deviations. Files identifying

census tracts with zipcodes are available from the website

https://www.huduser.gov/portal/datasets/usps crosswalk.html. For example, zipcode 27514
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(the author’s home zipcode) is identified with 14 census tracts. In this database, the largest num-

ber of census tracts in the continental US associated with a single zipcode is 53 (zipcode 60647,

Chicago, IL).

As illustrations of the agreement between these two datasets, Figure 1 shows three plots that

directly compare the downscaled and monitor data for the zipcodes of 27514 (Chapel Hill, NC),

60647 (Chicago, IL) and 12764 (Narrowsburg, NY), which was picked out because the distance

to the nearest monitor is 49.992 km., very close to our 50 km. cutoff. In all cases, the overall

agreement is good, though it appears that the downscaled PM2.5 is systematically lower than the

monitored PM2.5 in zipcode 12764, which presumably reflects the greater distance to the monitor

for this particular zipcode.

2 Proportions of subjects for which PM2.5 on day of death was

higher than for any of the three matched days in the case-

crossover analysis

Under the case-crossover sampling design, each date of death is matched with three other days in

the same 28-day window. If there were no association with PM2.5, the proportion for which the

day of death has the largest PM2.5, among the day of death and the three matched days, should

average out to 0.25. This proportion was computed, splitting ties at random. Overall, it comes to

0.252. Based on the sample size of nearly 16 million, this is statistically significant with a very low

p-value (z = 18.5, p ≈ 10−76). Even if we restrict to the 4.9 million subjects for whom the day

of death and three matched days are all at or below 12 µg/m3, the observed proportion is 0.251

(z = 4.92, p ≈ 10−6). However there are two caveats about such simplified analyses: the results

are much more variable when broken into categories by age, sex, race and region; and, they take

no account of possible meteorological confounding. Details are as follows.

For each subject, we calculate the mean PM2.5 on the day of death and the day preceding death

(the measure of PM2.5 used throughout this paper), and then make the corresponding calculation

for each of the three matched days. If this value is not available for all four dates, the value is not

used. The proportion of subjects for whom the day of death has the largest PM2.5 among these

four days is calculated. Since PM2.5 values are rounded to only one decimal place, there are many
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ties, but these are resolved by randomly splitting the tie. Thus, if there were no association with

PM2.5, the proportion of subjects for whom PM2.5 on day of death is higher than for any of the

three comparison dates should be one quarter. Observed proportions, broken down by the same

categories as Table 2 of the main paper, are given in Table 2. Two-sided p-values are calculated

assuming binomial sampling. When the calculation is repeated only for days where all four dates

have PM2.5 values ≤ 12µg/m3, the results are in Table 2.

Region Northeast Southeast Northwest Southwest

Race White Other WhiteM Other White Other White Other Totals

M, 0–64 0.2522a 0.2541b 0.2522 0.2504 0.2501 0.2436 0.2526a 0.251 0.252c

F, 0–64 0.251 0.2531 0.2505 0.2519 0.2512 0.259 0.2517 0.2526 0.2516b

M, 65–74 0.2514a 0.2524a 0.2515a 0.2531a 0.2501 0.2499 0.2511 0.2515 0.2514c

F, 65–74 0.2516a 0.254b 0.2516 0.2522 0.2524 0.2461 0.2514 0.2495 0.2517c

M, 75–84 0.2526c 0.2542c 0.2509 0.2538b 0.253c 0.251 0.2512a 0.2499 0.252c

F, 75–84 0.2529c 0.2537c 0.2518b 0.2531a 0.2546c 0.2571 0.2495 0.2514 0.2521c

M, 85+ 0.2521c 0.2537a 0.253c 0.2527 0.253b 0.2618a 0.2504 0.2513 0.2521c

F, 85+ 0.2538c 0.2534b 0.2522c 0.2527a 0.2523b 0.2523 0.2505 0.2491 0.2524c

Totals 0.2527c 0.2536c 0.2518c 0.2526c 0.2526c 0.2523 0.2507b 0.2506 0.252c

Table 1: The proportion of deaths for which PM2.5 (mean of lag 0 and lag 1) on the day of death

was higher than that on any of the three comparison days, splitting ties at random. Bottom right

hand entry (0.252) is for all categories combined; the rest of the table makes the same calculations

for various subcategorizations of the data. Superscripts indicate level of statistical significance,

based on a two-sided significance level of 0.05 (a), 0.01 (b) or 0.001 (c).

3 The “Last Day Of Month” Issue

Initial processing of the data identified an apparent anomaly, that the number of deaths on the

last day of each month is substantially higher than on the remaining days of the month. This

is illustrated in Figure 2 (plotted for 2002–2013, as these are the years for which the downscaled

PM2.5 data are available). The effect declines over time and disappears entirely during the final 1.5
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Region Northeast Southeast Northwest Southwest

Race White Other White Other White Other White Other Totals

M, 0–64 0.2489 0.2549 0.2496 0.2467 0.2513 0.2433 0.2522 0.2495 0.2502

F, 0–64 0.2484 0.2447 0.251 0.2547 0.2522 0.2588 0.252 0.2527 0.2512

M, 65–74 0.2496 0.2452 0.2517 0.2508 0.2515 0.246 0.2534b 0.2529 0.2514a

F, 65–74 0.2503 0.2458 0.2501 0.2486 0.2521 0.2419 0.2516 0.2528 0.2507

M, 75–84 0.25 0.2488 0.2488 0.254 0.2552c 0.2539 0.2506 0.2502 0.2509

F, 75–84 0.2507 0.2535 0.2522a 0.2524 0.2546c 0.2587 0.2486 0.2543a 0.2515b

M, 85+ 0.2494 0.2443 0.2526a 0.2491 0.2537b 0.2601 0.2506 0.2494 0.2511a

F, 85+ 0.2494 0.2487 0.2509 0.25 0.253b 0.2553 0.2506 0.248 0.2506

Totals 0.2497 0.2486 0.251a 0.2508 0.2534c 0.2523 0.2508a 0.2511 0.251c

Table 2: Same as Table 2, but restricted to deaths for which the PM2.5 level on the day of death

and on all three comparisons days was less than 12 µg/m3.

years of data. A reviewer has pointed out that this is a known feature of Medicare data: deaths

without a validated date of death are assigned to the last (or sometimes first) day of the month,

and there is a flag variable in the Medpar file that identifies valid dates of death. This flag was

either missing or overlooked at the time of compiling the data for the present study. As noted in

the main paper, the anomaly was dealt with in our analysis by omitting the last day of month, and

all days paired with a last day in the case-crossover analysis, thereby eliminating the bias.

4 Further details of analytic method

For the ith individual, we have covariates xijk representing covariates j = 1, ..., 5 (four weather

variables and one PM2.5 , which may be either downscaled or monitored — we shall not have

occasion to combine the two) and comparison days k = 1, ..., 4, where k = 1 represents day of death

and k = 2, 3, 4 are the three comparison days (days that are either 7, 14 or 21 days before or after

date of death within the same 28-day referent window). In subsequent analysis we will replace the

individual xijk values by expansions using B-splines to represent nonlinear effects. Assuming for

the moment that these are given, we may assume a vector of covariates xi,k for the ith individual

6



1000 2000 3000 4000 5000

3
0
0
0

4
0
0
0

5
0
0
0

6
0
0
0

7
0
0
0

Day from 1/1/1999

C
o
u
n
t

Figure 2: Number of deaths per day plotted against day since 1/1/1999. Last day of month is

plotted in red.
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on the kth comparison date. The likelihood function [4, 5] is then

L(β) =
N∏
i=1

exp(xT
i,1β)∑4

k=1 exp(xT
i,kβ)

. (1)

Here, N is the number of individuals and β represents a vector of model parameters, whicn include

both meteorological and PM2.5 effects. The function (1) is maximized using standard optimization

algorithms.

For the regional analyses mentioned in Section 2 of the main paper, the following definitions

are used:

1. US — the whole country

2. CA — California only

3. NE — CT,DE,IL,IN,ME,MD,MA,MI,NH,NJ,NY,OH,PA,RI,VT,WI

4. SE — AL,AR,DC,FL,GA,KY,LA,MS,NC,SC,TN,VA,WV

5. NW — CO,IA,ID,MN,MT,ND,NE,OR,SD,UT,WA,WY

6. SW — AZ,CA,KS,MO,NV,NM,OK,TX
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