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Abstract

This article reviews the literature on health effects of air pollution, with a primary focus
on time series studies but also covering prospective studies and case-crossover designs. It also
covers some of the controversies created by these studies and concludes with a brief review of
air pollution standards in the U.S.
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Concern about air pollution risk takes two main forms. The first is the greenhouse effect —
the collective contribution of a group of gases (known as greenhouse gases), which results in global
warming and has potentially catastrophic consequences for our climate. The best known greenhouse
gas, and the one on which most emission-reduction attempts are focussed, is carbon dioxide (CO2).
However, since this encyclopedia contains a separate entry on global warming, we shall not consider
it any further here. The second major risk, and the focus of this article, is the effect of air pollution
on human health.

As an illustration of one of the major recent studies of this phenomenon, Fig. 1 (taken from
[1]) shows the results of a time series study based on 88 U.S. cities. For each city, plotted is the
regression coefficient and 95% confidence interval for the estimated percentage increase in mortality
corresponding to a 10 µg/m3 rise in particulate matter of aerodynamic diameter less than 10 microns
(PM10), a size at which particles are capable of penetrating directly into the lungs. Other studies
have focussed on PM2.5, which has the same definition with a maximum diameter of 2.5 microns.

The cities are grouped into seven regions, and the figure also shows a posterior mean and 95%
posterior interval of the pooled effect across each region. Finally, at the bottom the figure shows the
estimated national effect: this shows a posterior mean increased mortality of 0.21% with a posterior
standard deviation of 0.06%. Other results from the so-called NMMAPS (National Morbidity and
Mortality Air Pollution Study) have included a similar study of ozone [2] and the effect of PM2.5

on hospital admissions [3]. These and other results have been extensively cited in recent years as
evidence for tightening the U.S. air pollution standards.

The remainder of this article covers the background and history of this subject, followed by a
detailed description of time series studies. Other study designs are also covered, followed by some
of the caveats that have been expressed about this whole area of research.

1 Background and History

The first studies of the human health impact of air pollution were done in the 1950s, as a result of
several dramatic incidents of extremely high air pollution causing widespread death. Possibly the
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best known of these incidents was the London “smog” of December 5–8, 1952, during which the
level of “British Smoke” rose to over 3,000 µg/m3 and the result was around 4,000 excess deaths
over what would normally have been expected during this period. Similar incidents in other places
led to global concern about the consequences of high air pollution, and motivated the introduction
of legislation such as the (British) Clean Air Act of 1956 and the (U.S.) Clean Air Act of 1970,
which were the first attempts to deal with the issue by regulation.

Despite the success of these early attempts at eliminating very high pollution events, concern
persisted that even at much lower levels, pollution was still responsible for adverse health effects,
including premature death. Analysis of long-term data records from London ([4], [5], amongst
others) prompted researchers to start compiling and analyzing time series from several U.S. cities
(e.g. [6], [7], [8], [9]). Most of these showed that after adjusting for effects due to seasonal variation
and meteorology, a strong correlation remained between PM and mortality. Other studies showed
similar associations with various measures of morbidity, for example, hospital admissions or asthma
attacks among children. However, some authors focussed on the sensitivity of these results to
modeling assumptions and suggested they were not statistically reliable [10,11].

This background led to a number of large-scale research efforts, of which NMMAPS is the best
known. In the next section, we outline the methodology behind these studies.

2 Time Series Analyses

Although there are many variants on the basic methodology, most are close to the following.
The analyses depend on multiple regressions in which the dependent variable yt, t = 1, ..., n is

either the death count or some measure of morbidity (e.g. hospital admissions) on day t. Typically
the death counts exclude accidental deaths and they may be stratified by cause of death or by
age group. The regression may be ordinary least squares (sometimes yt is transformed, e.g. log
or square root deaths) but a more common analysis assumes that yt has a Poisson distribution
with mean µt, expressed in terms of covariates xtj by a formula such as log µt =

∑
βjxtj , and

fitted through generalized linear model (GLM) software. Some studies include a correction for
overdispersion (Var(yt) = cµ(t), some c > 1) or for autocorrelation, but these are usually not
major issues.

The regressors xtj , j = 1, ..., p typically represent three types of explanatory variable: (a) air
pollution, (b) meteorology, (c) seasonality and long-term trends. Of course (a) is the main object
of interest but (b) and (c) are included as well to adjust for possible confounding: deaths are higher
in extreme meteorological conditions and there are seasonal effects or long-term trends caused by
factors such as flu epidemics, demographic changes, etc.

For (a), the covariate is usually the air pollution variable of interest (e.g. PM10 or ozone) taken
from the nearest monitor or the average over all monitors within a given study area. Very often
lagged variables are included to allow for the possibility of delayed effects of up to 7 days. In recent
years the “distributed lag model” has become fashionable, in which a separate covariate is included
for each lag (typically up to day 7) and the sum of corresponding regression coefficients taken as
the overall pollution-mortality effect. Some attempts have been made to model longer-term lagged
effects and to deal with the so-called “harvesting” issue. (Harvesting refers to the possibility that
those killed by a high air pollution event are already very sick and would have died anyway within a
few days. However if such an explanation were true, there should be observed negative correlations
to account for the temporary decrease in the population of susceptible individuals. Studies have
repeatedly failed to demonstrate such correlations [12,13].) Sometimes other pollutants than the
main one of interest are included as possible “co-pollutants”, e.g. in a study of PM10, we may
include SO2 as a co-pollutant to adjust for the possible confounding of those two effects.

For (b), temperature is almost always included, as well as at least one variable representing
humidity, and there may also be lagged values as well. The NMMAPS papers have used temperature
and dewpoint as the two variables of interest, both current day and the average of the three previous
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days to accommodate lagged effects. Other authors have used either specific or relative humidity
instead of dewpoint, and some have also included atmospheric pressure.

For (c), it is conventional to assume that one component of the regression function is some
nonlinear function of time, that has sufficient degrees of freedom to incorporate both seasonal and
long-term trend effects. The nonlinear effect may be modeled as a linear sum over K spline basis
functions [14]; here K is the number of “knots” and is the most critical parameter. Typically
authors use between 4 and 12 knots per year. Similar representations are sometimes used to treat
other variables nonlinearly, such as temperature and dewpoint, though typically with much smaller
K (in the range 3–6).

In addition to the above covariates, the NMMAPS analyses have typically included a day-of-
week effect and additional nonlinear terms to represent the interaction of long-term-trend with age
group.

The alternative “generalized additive model” or GAM approach [15] has also been used for non-
linear effects. Some erroneous results were reported due to inappropriate use of default convergence
criteria and standard error formulae [16], though subsequent research resolved these difficulties and
strengthened the methodology [17].

2.1 Combining Estimates Across Cities

Although the initial application of time series regression analysis was to one city at a time, it
has been generally recognized that to obtain definitive results, it is necessary to combine analyses
across many cities. A typical assumption is that the critical parameter of interest (for example,
the regression coefficient relating mortality to PM10) is a random effect for each city, say, θc in
city c, drawn independently from a normal distribution with mean θ∗ and variance τ2. However
the estimate in city c, denoted θ̂c, is also treated as random with mean θc with a presumed known
standard error. Based on these assumptions we could, for example, estimate the national parameters
θ∗ and τ2 by restricted maximum likelihood, followed by smoothed (or “shrinkage”) estimates of the
individual θc’s. Alternatively, researchers have taken a Bayesian approach to the whole analysis, for
example using the TLNISE software of Everson and Morris [18]. Some attempts have been made
to extend the basic random effects model to allow for spatially dependent effects (see e.g. [19]).

The results of Fig. 1 result from application of this methodology to data on 88 U.S. cities from
1987–2000. The air pollution variable was daily PM10, lagged one day. Other covariates at each
city include long-term trend, temperature and dewpoint (current day plus average of the three
previous days, using splines to allow for a nonlinear effect), day of week and an interaction term
between the long-term trend and age group. Most of the attention has focussed on the regional
and national “overall” results, in which point and interval estimates are given for θ∗.

3 Alternative Study Designs

3.1 Prospective studies

Apart from time series analysis, there are two other commonly used study designs. Prospective
studies take a specific cohort of individuals and follow them through a long time period. This has
the advantage of allowing researchers to measure long-term effects, which time series studies do not.
However, unlike time series studies in which regression parameters are computed for each city, and
only later combined across cities to achieve greater precision, in prospective studies the regressions
themselves rely on between-city comparisons, typically estimating a standardized mortality rate for
each city and regressing on some city-wide measure of air pollution. This raises issues associated
with ecological bias, or in other words, the possibility that between-city variations may be due to
effects that have nothing to do with air pollution.

The paper [20] presented results from the Harvard Six Cities study, a long-term study of over
8,000 individuals in six U.S. cities. Survival rates were conducted using the Cox regression model
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and showed that., after adjusting for smoking and other known risk factors, there was a statisti-
cally significant association between air pollution and mortality. A subsequent paper [21] showed
similar results based on a much larger study (the American Cancer Society or ACS study), which
involved over 500,000 individuals from 154 U.S. cities. However, although the study involved many
more participants, in other respects it was inferior to the Six Cities study, for example in using
participants recruited by volunteers rather than a randomized sample, and in relying essentially on
air pollution measures at a single point in time. A third study is the Adventist Health Study of
Smog (AHSMOG) which showed similar results for a cohort of over 6,000 nonsmoking California
Seventh-day Adventists [22].

Given the importance of these studies for regulation, the Health Effects Institute commissioned
an independent reanalysis of the six-cities and ACS studies [23]. This study recreated the datasets
and largely confirmed the correctness of the original analyses. However, they also conducted many
sensitivity analyses, some of which raised doubts about the interpretation of results. We refer to
these in more detail in Section 4.

3.2 Case-crossover studies

A third paradigm for the design of air pollution-mortality studies is the case-crossover design. The
idea is that the exposure of an individual to a pollutant immediately prior to some catastrophic
event (e.g. death, heart attack) is compared with the exposure of the same individual to the
same pollutant at other, control or “referent” times. Making plausible assumptions about how the
risk of the catastrophic event depends both on time and covariates, it is possible to write down
likelihood estimating equations (for a regression coefficient between the pollutant and the risk of
the catastrophic event) that look very similar to the Poisson regression equations that arise in time
series studies. However, a source of bias is the time interval between the catastrophic event and
the selected referent times: too long and the analysis may be biased due to trend, too short and it
could be affected by autocorrelation. The papers [24] and [25] used (respectively) simulation and
theoretical arguments to examine the bias issue. The case-crossover methodology was applied [26]
to out-of-hospital sudden cardiac arrest in the Seattle region, finding no significant relationship
between high air pollution and mortality, which the authors attributed to the lack of prior history
of coronary artery disease in the subjects under study, in contrast with other studies that have
included patients with such history.

4 Issues and Controversies

Despite the enormous amount of research that has been done on air pollution and health, the scien-
tific community is by no means unanimous about the interpretation of these studies, especially in
the context of regulations about air quality standards. Extended commentaries have been provided
[27,28]; here we summarize a few of the issues that have been raised.

None of the study designs we have discussed are controlled, randomized studies of the sort that
are common in, for instance, drug testing. Therefore, they are all vulnerable to possible confounders
or “effect modifiers”. Despite serious efforts to include such effects as covariates in the regression
analyses, the results typically remain sensitive to exactly which covariates are included or certain
ad hoc decisions about how to include them (for example, when long-term trends are modeled
nonlinearly using splines, how many degrees of freedom to include in the spline representation).
See [11,29] for issues related to model selection or model averaging; the recent paper [30] contains
a particularly comprehensive discussion of the degrees of freedom issue.

Most studies have assumed a linear relationship between dose and response (possibly after
transformation, e.g. log µt in the case of Poisson-regression time series analysis). But this is
arguably inappropriate for regulatory decisions in which it is critical to assess the likely benefit of
a specific reduction in pollution (for example, if the 8-hour ozone standard were reduced from 80
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to 60 parts per billion). [31] presented nonlinear models for ozone; earlier authors did the same for
PM [32,33,34] with varying conclusions.

The question of “fine or coarse particles?” is another one that has caused much argument.
Much of the research and regulatory effort over the past decade has been focussed on fine particles
(PM2.5), which penetrate deeper into the lungs and are therefore widely believed to have a more
significant health effect. But to take one example, [34] reached the opposite conclusion in analyzing
epidemiological data from Phoenix, Arizona.

The criticisms that have been raised of cohort studies are somewhat different, but ultimately
raise similar issues over whether the associations found in studies are indicative of a true causal
effect. [23] introduced a number of “ecological covariates” at a city-wide scale to try to determine
whether the inter-city PM effects that had been observed in earlier studies could be due to other
sources. In the case of the ACS dataset, they examined some 20 possible ecological covariates; all
but two were not statistically significant, but one of those that was significant was gaseous sulfur
dioxide (SO2). The picture was further clouded when spatial correlations were introduced into the
model; in one analysis, involving both SO2 and sulfate particles in a model with spatial dependence,
the “particles” effect was not statistically significant, though the SO2 effect still was significant. It
has been speculated [35] that these inconsistencies in the results of different cohort studies may be
due to an inappropriate assumption of proportional hazards in the Cox regression model.

5 Summary and Conclusions

At the time of writing, the EPA has recently finalized a new PM2.5 standard — controversially from
the point of view of some epidemiologists, it did not lower the long-term average level permitted
from the standard of 15 µg/m3 that was introduced in 1997. A possible lowering of the ozone
standard, from its present value of 80 parts per billion, is still under consideration. Other countries
have similar standards in force that in some cases are lower than in the U.S. Both advocates
and opponents of tightened standards draw heavily on the epidemiological studies that have been
discussed in this article, so their interpretation has significant political and societal implications.
In the view of the present writer, new research over the past decade has added enormously to the
information available about health effects, but there remain fundamental controversies that may
never be fully resolved.
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