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The concept of “harvesting,” by whatever name, dates
back to the early days of research on the health effects of air
pollution. For example, Martin (1), summarizing the results
of several London smog studies from the 1950s, noted the
short timescale of response to high-air-pollution events.
Referring specifically to the December 1952 event, Martin
noted that “no cases of sudden death were found which could
not have been explained by previous respiratory or cardio-
vascular lesions” (1, p. 969). Later in the same article, the
author stated, “[S]ome of [those who died] might in the
natural course have died within a few days. This hypothesis
is supported by the compensatory fall of the mortality curve
to subnormal levels often noticed after a pollution incident”
(1, p. 974). Evidently, Martin was talking about what we
now call harvesting, but in a context where both the air
pollution and the consequent mortality were much higher
than in modern US and European cities. The question is
whether similar effects persist under present-day conditions.
The question is important, as I perceive it, not because proof
of a harvesting effect would in any way lessen the need to
take action against air pollution, but because such an effect,
if present, would help us better understand the true meaning
of studies such as the National Morbidity, Mortality, and Air
Pollution Study (NMMAPS), and could help us determine
which pollution control or other kinds of public health strat-
egies are most likely to be effective in reducing deaths due to
air pollution.

Numerous investigators have looked for a harvesting (or
mortality displacement) effect, using a variety of methodol-
ogies, but without finding any convincing evidence in favor
of this hypothesis. Zeger et al. (2) and Smith et al. (3) inde-
pendently proposed a compartment model in which people
pass from a “healthy” state to a “frail” state in which they
eventually die, but this model, even though it is almost
certainly too simple to represent any true harvesting
phenomenon, is extremely hard to fit. Smith et al. (3)

proposed a Markov chain Monte Carlo estimation scheme
that appeared to show evidence of harvesting in Chicago,
Illinois, but when the same model was fitted to simulated
data series without harvesting, in 19 out of 20 cases the
method appeared to provide evidence in favor of harvesting.
Thus, the Markov chain Monte Carlo method does not seem
to be effective in discriminating between a harvesting model
and a standard regression model, and other authors have
rejected this kind of approach in favor of one that examines
timescale effects. Zeger et al. (2) proposed an approach
based on frequency decompositions of both the mortality and
air pollution series, while Schwartz (4) used nonparametric
smoothing techniques to decompose the series into long,
intermediate, and short timescale series and then looked for
pollution-mortality relations in the intermediate timescale
series. Both Zeger et al. and Schwartz concluded that air
pollution effects exist on a timescale of weeks rather than
days and argued that this was inconsistent with a simple
harvesting effect.

In the current issue of the Journal, Dominici et al. (5)
develop a new approach based on a spectral decomposition
of only the pollution series, where different components
correspond to effects at different timescales. This is simpler
both conceptually and for practical implementation than the
procedure of Zeger et al. (2). Dominici et al. have helpfully
provided software with which to perform the decomposition,
and the rest of the analysis uses Poisson regression tech-
niques that are by now totally standard in this field. They
have applied this method to four of the series in the
NMMAPS database—the only four for which daily readings
of particulate matter with an aerodynamic diameter of 10 µm
or less (PM10) are available—as well as some older data from
Philadelphia, Pennsylvania. They conclude that the strongest
effects are those associated with timescales on the order of
1–2 months. This reinforces the conclusions of the earlier
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papers and again seems to contradict the notion of a short-
term harvesting effect.

But does it? Although I applaud both the originality of the
concept and the elegance of its implementation, I am less
convinced about its practical interpretation in the context of
public policy decisions on air pollution.

One issue is the variability of the regression coefficients,
both within each city and in the combined data. Looking at
the individual-city results in Dominici et al.’s table 1, I do
not see any consistent pattern in the coefficients. Only when
the results are combined, in the “pooled” column of table 1,
does an interpretable pattern emerge. However, the results
shown here are for τ = 0 (τ is the assumed between-city stan-
dard deviation of the true regression coefficient, allowing
that it may be different in different cities), and when the
analyses are repeated using different values of τ derived
from previous hierarchical analyses of multicity data
(Dominici et al.’s table 4), the widths of the confidence inter-
vals cast doubt on the statistical significance of any of the
differences between mortality effects at different timescales.
On the basis of current knowledge, the balance of evidence
seems to favor a smaller value of τ rather than a larger value,
but this is clearly one respect in which the results are sensi-
tive to model assumptions.

I am also concerned about how to interpret the frequency-
based decomposition in the context of response to specific
air pollution events. To illustrate the difficulty, I considered
the hypothetical air pollution pattern of a time series of
length 101 days in which the PM10 level is 100 µg/m3 on day
51 and 0 on every other day. This therefore represents the
response to a single high-air-pollution event. The frequency
decomposition from the authors’ website was applied with
breaks at 1, 10, 30, and 50 cycles, 50 being the maximum
number of cycles in this instance. This decomposition repre-
sents the observed signal as a linear combination of cosine

waves, representing three timescales, which are shown in
figure 1. These curves are symmetric about the date of the air
pollution event, so the analysis combines forward-time and
backward-time effects with no discrimination between the
two. Dominici et al. say that this “does not complicate our
inferences” (5, p. 1064), noting, in particular, that the back-
ward-time component of the effect is not physically realistic
and therefore presumably can be ignored in the interpreta-
tion. I am far from convinced: Does it really make sense to
build a regression model that forces the inclusion of physi-
cally unrealistic components? This is a different issue from
running backward-time analyses as a sensitivity check on
forward-time results, as Chock et al. (6) have done, for
instance. In the present context, it seems to me that adoption
of an unrealistic model could both bias the regression coeffi-
cients and increase their standard errors to an unacceptable
extent.

To gain further insight, I used the Philadelphia data set to
conduct both some sensitivity analyses of the models them-
selves and a simulation study. Part A of figure 2 shows the
results of a sensitivity analysis of the dependence of total
mortality on total suspended particulates (TSP) in the Phila-
delphia data set, including a day-of-the-week effect and
nonlinear regression components for the current day’s
temperature, the current day’s dew point, and day, modeled
using natural splines (the “ns” function in S-Plus) with 6, 6,
and 90 degrees of freedom, respectively, and fitting the
model as a maximum likelihood Poisson regression with the
S-Plus “glm” (generalized linear model) function. Note that
this method of fitting the model avoids some of the problems
of establishing suitable convergence criteria that have arisen
in connection with the alternative “gam” (generalized addi-
tive model) function (7); the results given here are robust to
the use of different convergence criteria and have also been
verified using a Newton-Raphson iteration programmed in

FIGURE 1. Timescale decomposition for a 101-day series of particulate matter measurements in which the level of particulate matter with an
aerodynamic diameter ≤10 µm is 100 µg/m3 on day 51 and 0 on every other day.
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FORTRAN. The “breaks” in the authors’ “decompose”
function have been set at 1, 61, 91, 183, 391, 783, 1,565, and
10,958; except for the first and last breaks, these are defined
as 5,479/r, where 5,479 is the length of the series and r = 90,
60, 30, 14, 7, 3.5 defines the timescales of interest (the first
component is supposed to represent the contribution from
≥90 days, the second the contribution from 60–<90 days,
etc.). The coefficients and associated approximate 95
percent confidence intervals are plotted for timescales of 60–
<90 days (timescale 1), 30–<60 days (timescale 2), and so
on, down to 1–<3.5 days (timescale 6); also shown as
“timescale 7” is the regression coefficient from a separate
analysis using just the current-day TSP. Then, in parts B and
C of figure 2, the same analysis has been repeated using
different forms of the meteorologic terms: Part B includes
the current day’s values for temperature and dew point and
also 3-day averages of lagged values (similar to the authors’
analyses of the NMMAPS cities), while part C uses
frequency decompositions of temperature and dew point,
employing the same breaks as those used for TSP and again
treating each term nonlinearly using natural splines.

The purpose of these comparisons was to examine the
sensitivity of the results to different treatments of the meteo-
rologic components. In particular, if meteorology is a
confounder for particulate matter, then a frequency decom-
position of meteorologic data (figure 2, part C) might radi-
cally change the estimated signal for particulate matter. In
fact, the PM10 coefficients increase when frequency-
decomposed meteorologic data are included, which suggests
that this analysis actually helps us separate the time-lagged
PM10 effect from the time-lagged meteorology effect. Apart
from that, it is noticeable that all three response curves in
figure 2 are of the same general shape. The actual analysis

depicted in figure 5 of Dominici et al.’s paper is analogous to
figure 2, part A, but it excludes the ≥65-year age category.
As a matter of fact, any of the curves shown in figure 2
provide clearer evidence of a statistically significant effect
than Dominici et al.’s figure 5.

I also used the Philadelphia data set as the starting point for
a simulation study. First, I reanalyzed the data to obtain esti-
mates of the meteorologic (current-day) and long-term trend
effects, omitting TSP. I then simulated Poisson count data
from four different models including these meteorologic and
trend components, plus a TSP effect. In each case, the
assumed regression coefficient was 1 (percent rise in
mortality corresponding to a 10-µg/m3 rise in TSP). The four
models were: model A, Poisson regression using current
day’s TSP as the exposure variable; model B, Poisson
regression using the average of the last 7 days’ TSP; model
C, Poisson regression using the average of the last 30 days’
TSP; and model D, a compartment model similar to those
described by Zeger et al. (2) and Smith et al. (3), with a mean
time to death in the frail state of 30 days. The last model is
the only one of these four that could truly be called a
harvesting model. For each model, I simulated and analyzed
1,000 replications of the series using the frequency-
decomposition software provided by Dominici et al. I calcu-
lated the mean of each estimated regression coefficient,
averaged over the 1,000 replications for each of the four
models, and the mean of the estimated standard errors for
each regression coefficient and each model. These means
and standard errors were used to calculate “typical confi-
dence intervals” in figure 3. In any single simulation, the
estimated regression coefficient could lie (with 95 percent
probability) anywhere within the indicated confidence

FIGURE 2. Alternative estimates (percentage increase in mortality associated with a 10-µg/m3 rise in total suspended particulate levels) and
95% confidence bands (area between dashed lines) for the effect of total suspended particulates on total mortality in Philadelphia, Pennsylvania,
1973–1988. Timescales 1–6 correspond to the timescale effects 60–<90, 30–<60, 14–<30, 7–<14, 3.5–<7, and 1–<3.5 days, respectively.
Timescale 7 is from a separate analysis based on a single linear regression coefficient for current-day total suspended particulates. All models
included meteorologic and trend effects modeled by natural splines. Part A, model using just current-day values of temperature and dew point;
part B, model using current-day values plus averages of the previous 3 days; part C, model including frequency decomposition of temperature
and dew point data analogous to that used for total suspended particulates.
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interval, while the width of the confidence intervals should
be of the same order as those in figure 3.

For model A, figure 3 shows that the actual frequency-
decomposition coefficients are very nearly constant across
the different frequency ranges, even though the true effect in
this instance is truly “short-term.” For models B and C,
figure 3 shows some evidence that the PM10 effect is stronger
at longer time lags, but not in a way that intuitively corre-
sponds to the true timescale effect. Finally, for model D, the
only one of the four derived from a genuine harvesting
model, figure 3 shows coefficients that are fairly constant
except for the longest time lag (60–90 days). On the basis of
these simulations, it seems to me that one would be hard
pressed in practice to determine the true timescale depen-
dence from the coefficients estimated by the frequency
decomposition method.

Where does this leave us? Perhaps with the need to
perform simpler analyses. One possibility is simply to repeat
the standard regressions but with different covariates to
represent exposure to particulate matter. In figure 4, I have
attempted this using “exposure measures” based on k-day

averages of TSP, for k values from 1 to 30. However, I have
also repeated the analysis for two treatments of the meteoro-
logic components, including only current day’s temperature
and dew point in part A of figure 4 and adding to these the
averages of the past 3 days in part B. As in earlier analyses,
the model included a day-of-the-week effect, and the
temperature and dew point effects were modeled nonlinearly
using natural splines, as was the long-term trend. Both sets
of estimates suggest a peak in the time-dependent TSP effect
at approximately 15 days, but beyond that there are substan-
tial differences between the two plots.

All of my comments should be tempered by the observa-
tion that they are based on a single data set. One would need
to see similar behavior in many different data sets before the
results could be accepted as generic, but with that caveat it
seems justified to draw the following two conclusions. First,
it is very hard to associate the frequency-decomposition
regression coefficients with any specific shape of time-
dependent response to a high-air-pollution event, or to
distinguish true “harvesting” from other forms of time-
lagged response to an air pollution event. Second, the results

FIGURE 3. Simulated results of 1,000 replications for each of four models of the air pollution-mortality relation. Plotted are the mean parameter
estimates (percentage increase in mortality associated with a 10-µg/m3 rise in total suspended particulate levels) from all 1,000 simulations,
together with 95% confidence intervals (bars) derived from the mean standard errors for a single simulation. Timescales 1–6 correspond to the
timescale effects 60–<90, 30–<60, 14–<30, 7–<14, 3.5–<7, and 1–<3.5 days, respectively. Timescale 7 is from a separate analysis based on a
single linear regression coefficient for current-day total suspended particulates.
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are sensitive to the way in which meteorologic confounders
are brought into the analysis.

As an observer of the work of this group of Johns Hopkins
researchers over a number of years, I have been enormously
impressed by the way they have brought some of the most
modern innovations in statistical methodology—such as
hierarchical models, Bayesian Monte Carlo estimation tech-
niques, and spatial statistics—to the analysis of data on air
pollution and health. However, one should not be misled by
the elegance of their analysis into overinterpreting the
results. Dominici et al. (5) have introduced another very
striking innovation to the analysis of epidemiologic data
sets, but the practical problems of drawing statistically valid
conclusions that have meaningful public health implications
remain as difficult as ever.
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FIGURE 4. Results from an alternative analysis of Dominici et al.’s (5) data from Philadelphia, Pennsylvania (1973–1988), in which the usual
long-term trend and meteorologic effects are included, together with levels of total suspended particulates averaged over k days. The figure
shows estimates (percentage increase in mortality associated with a 10-µg/m3 rise in total suspended particulate levels) and 95% confidence
intervals (bars) for all k’s between 1 and 30. Part A, model using just current-day values of temperature and dew point; part B, model using cur-
rent-day values together with the averages of values from the previous 3 days. TSP, total suspended particulates.


