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ABSTRACT

Petruta C. Caragea: Approximate Likelihoods for Spatial Processes

(Under the direction of Dr. Richard L. Smith)

Many applications of spatial statistics involve evaluating a likelihood over sam-
ples of several hundred data locations. If the underlying field is Gaussian with some
spatial covariance structure, this evaluation involves calculating the inverse and de-
terminant of the covariance matrix. Although this is feasible for up to about 100
observations, it is often troublesome for sample sizes larger than 100. To take advan-
tage of the benefits of maximum likelihood estimates for large arrays of data, it is
necessary to establish efficient approximations to the likelihood. We consider several
such approximations based on grouping the observations into clusters and building
an estimating function by accounting for variability both between and within groups.
This way, the estimation becomes practical for considerably larger data sets. In this
thesis we present the proposed alternatives to the likelihood function, and an anal-
ysis of the asymptotic efficiency of the estimators yielded by them. The theoretical
method applies to any kind of spatial process, but an analogous time series model
is used for illustration and explicit computation. In this context, since the standard
Fisher information techniques of calculating the asymptotic variance of the alterna-
tive estimators would not lead to correct conjectures, we employ a method based
on the “information sandwich” technique and a Corollary to the Martingale Cen-
tral Limit Theorem (application to quadratic forms of independent normal random
variables). Furthermore, we illustrate the asymptotic behavior of the alternative

parameters in the spatial setting with results from a simulation study.
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Chapter I

Introduction

1.1 Motivation

Many applications of spatial statistics involve evaluating a likelihood function
over a sample with an increasing number of data locations. For example, Holland et.
al. (2002) analyzed the Clean Air Status and Trends Network (CASTNet) data set,
which was developed by the U.S. Environmental Protection Agency (EPA) in con-
junction with National Oceanic and Atmospheric Administration (NOAA) in order
to monitor air quality and meteorological measurements across the United States.
Established in 1987, CASTNet almost doubled the number of site locations from 38
in 1989 (35 in the Eastern part of the U.S.) to 70 sites across the U.S. in 2001. Hol-
land et. al. focused on establishing a spatial map for trends in two pollutants: sulfur
dioxide (SOs), and sulfate particles (SO37); that is, the paper estimated the spa-
tial parameters associated with these trends. To estimate these spatial parameters,
the authors developed and used an algorithm which involved maximum likelihood
estimation. In fact, the underlying field was assumed to be Gaussian with a spatial
covariance function in some given family. The evaluation of the likelihood function
involved calculating the inverse and determinant of the covariance matrix. Although
this analysis is computationally feasible for CASTNet, it would not be so for a much
larger network. Experience shows that by the time the number of locations increases
to be in the hundreds, the impact of the high dimensionality on calculating the
inverse and the determinant of the covariance matrix makes computing maximum

likelihood estimates intractable. Moreover, data sets that encompass hundreds if not



thousands of location sites are becoming more prevalent. For example, the Historical
Climate Network (HCN) developed and maintained by NOAA now has near 6000
location sites. In order to be able to take advantage of the benefits of maximum like-
lihood estimates in the setting of such high dimensionality, it is necessary to establish
efficient approximations to the likelihood.

In this thesis, we consider several approximate likelihoods based on grouping
the observations into clusters and building an estimating function by accounting for
variability both between and within clusters. Theoretical results derived for an anal-
ogous time series problem allow us to compare the three approximation schemes.
These results are built around the general idea that calculations for the variance of
the alternative estimator can be performed using the “information sandwich” prin-
ciple, after we have expressed the derivatives of the pseudo-likelihood function as a
quadratic sum of independent normal random variables. We conclude by illustrating

the new method with simulations.

1.2 OQOutline

This thesis is made up of four distinct parts. Chapter II introduces some the-
oretical concepts necessary for evaluating the approximations. The application of
the Central Limit Theorem for Martingales to quadratic forms of normal random
variables plays a central role in the evaluations. Given its prominent function, we
review the theorem and one of its corollaries.

Chapter III is the most mathematically intensive. We first propose an alterna-
tive calculation for the asymptotic variance of the maximum likelihood estimator in
the classical case (i.e. the estimator obtained by maximizing the exact likelihood
function). This method involves the use of the application of the Martingale Central
Limit Theorem to quadratic forms of independent normal random variables and the
“information sandwich” technique. We call this technique the expansion method.
This method occupies a central place throughout this work and we apply its prin-
ciples for all the alternative estimation methods we propose. Next we analyze in
detail three approximation schemes — Big Blocks, Small Blocks, and Hybrid — for
an AR(1) model. All three estimation methods are based on the concept of dividing
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the original time series in a number of blocks containing an equal number of sample
points.

The first estimator, “Big Blocks”, is the most simplistic of all. We first compute
the mean value for each block. Assuming the original covariance structure is known,
it is routine algebra to compute the variance covariance matrix for the block means
and hence the underlying likelihood function for the means process. This is the
function we maximize in order to obtain the estimator. To compare its efficiency
with the classical case, we calculate the asymptotic variance following the expansion
method.

The second estimator is called the “Small Blocks”. We derive this estimator under
the assumption that there is independence between blocks. We calculate the likeli-
hood function for each block, which is readily available since the original covariance
structure is known. The function to be minimized under the block independence
assumption is obtained by multiplying the individual block-likelihoods. The last
step is to compare this estimator with the classical MLE. In order to measure its
efficiency we need to calculate its asymptotic variance. This is performed applying
the principles outlined in the expansion method.

The last estimator is based on a combination of the two schemes mentioned above.
Naturally, we expect the “Big Blocks” estimator to exhibit some loss in efficiency
due to representing the whole block through its mean only, while the assumption
of independence between blocks in the second case will also induce some efficiency
reduction, although not as large as for the previous estimator. We construct the “Hy-
brid” estimation function as follows: first compute the block means, their covariance
structure and their underlying likelihood function. Then, assume that given the
block mean, the blocks are independent. Although this assumption cannot always
be verified in practice, it is a reasonable working assumption. The next step is to
compute the conditional likelihood of each block, given its mean. This step involves
calculation of the conditional mean and variance-covariance matrix, and it is a di-
rect application of general multivariate normal techniques. Based on the conditional
block independence, we construct the pseudo-likelihood function to be the product
of the block means likelihood and the individual conditional block likelihoods. This

is not an exact likelihood, due to the conditional independence. As in the previ-



ous cases, we want to compare the efficiency of this estimator to the classical case,
and thus we need to compute its asymptotic variance. This is performed using the
expansion method.

As a check, we calculate the relative efficiencies of these three estimators on sim-
ulated data sets and compare the results with the ones obtained through theoretical
derivations.

Chapter IV opens with a brief overview of spatial statistics with emphasis on
the statistical concepts utilized in the development of the approximations. Next
we present a theoretical description of the alternative estimation schemes adapted
to the spatial setting. We conclude by illustrating the asymptotic behavior of the
estimators through a simulation study.

Chapter V consists of an application of the proposed approximations to the like-
lihood to a large spatial data set. This concludes the presentation of this thesis,
by illustrating the performance of the estimators when dealing with a real data set,
presenting the impact of these methods on practical issues.

Chapter VI presents an extension for the time series problem to its spatial equiv-

alent and describes a promising approach for the more general case.



Chapter 11

Theoretical Background

2.1 Some Properties of the Multivariate Normal
Distribution

Throughout this work we refer to properties of the multivariate normal Distribu-
tions. This section is intended as a very brief summary of these properties relevant
to this work. For a more detailed description of these results see, for example, the
Appendix A in Mardia, Kent and Bibby (1979).

The random vector X of length m is said to follow a multivariate normal distri-
bution if a’X follows a univariate normal distribution for every a € R™.

Every multivariate normal distribution has a well-defined mean vector and covari-
ance matrix. Furthermore, if X is a multivariate normal random vector of length m
with E[X] = u and covariance matrix Cov[X,X”] = X and if ¥ is positive definite,
then X has density

1 1 T1 }
X) = exp{ —=(x — Y (x— . 2.1

PO = s P g R ) 1)
Suppose the multivariate normal random vector X is partitioned into two com-
ponents: X = (XT XT)T where X; has m; components and X5 has m, components.

Then we can write the distribution of (X7, X2)7 as

50 Y11 i2

H2 Yo1 X2

N (2.2)



where for ¢ = 1,2, y; has length m;, and for 7,5 = 1,2, ¥j; is a m; X m; matrix.

Then, we have the following theorem:

Theorem 2.1 (Multivariate Normal Conditional Distribution). The condi-

tional distribution of X1 given Xq = Xg 1S

N (1 + Xq2 2521 (X2 — p2), 11— 12 2521 3o1). (2.3)

In a few cases we work with covariance matrices of a particular structure, and
make use of the following basic linear algebra facts:
Let A be a (n X n) non-singular matrix and let a and b be n-dimensional

vectors. Then the following identities are satisfied:
|A4+a b"| = |A] (1+b"A7 ) (2.4)

and
(A+ab) =41 {(A7"%) B"A™") 1 +b"A7a)™? (2.5)

2.2 “Information Sandwich” Formula

Throughout this thesis we refer to what has come to be known as the “infor-
mation sandwich” approach. This method is a technique used when calculating the
theoretical covariance matrix of estimators yielded by pseudo-likelihood functions.
This method is illustrated, among others, by Liang and Zeger (1986) and White

(1982). We present here a general discussion of this technique.

2.2.1 Asymptotic Normality

Suppose we have a statistical model indexed by a finite-dimensional parameter 6,
and suppose an estimate 0, is constructed by minimizing a criterion function S, (6).
The parameter n is just an index which we shall let tend to co; in most cases, however,
n will represent the sample size. The expression S,(f) will denote some “measure

of fit” such as sum of squares, a likelihood or a pseudo-likelihood. We assume the



true parameter value is 6y and that 0~n is a consistent estimator. We also assume
that S, () is at least twice continuously differentiable in 6, and that its underlying
distribution is sufficiently smooth so that the function H(f), defined below, is also
continuous in a neighborhood of 6. Let V f(#) for any function f denote the vector
of first-order partial derivatives of f with respect to the components of #, and V2f
the matrix of second-order partial derivatives.

By a Taylor expansion, we have
0= VSu(0n) = VSn(bo) + V25 (6};) (6 — bo)
where @7 lies on the straight line joining 0,, to ;. Hence
O = 0y — {V°5,(6;;)} "V Sn(6o) - (2.6)

We assume

(SA1) LiV25,(6) % H(#) as n — oo uniformly on some neighborhood of ,, where

H(-) is a matrix-valued function, continuous near 6y, with H(f,) invertible,

(SA2) -LVS,(6,) % N(0,V(6)) for some covariance matrix V (6p).

==
Assumptions (SA1) and (SA2) are satisfied for regular maximum likelihood prob-
lems in which S, (#) is the negative log likelihood for the parameter 6, since this case
reduces to dealing with a sum over n i.i.d. terms. However, these assumptions are

also valid much more generally for a wide variety of estimation criteria.

Since H(6) is continuous in 6 and invertible at 6, it follows that H ()" is con-

tinuous near 6y, and hence that

1 —1
{—VQSH(HZ)} 2 H(h,) ™. (2.7)
n
To reach the final conclusion, we refer to Slutsky’s Theorem (a reference would be,
for example, Casella and Berger (1990), Theorem 5.3.5):

Theorem 2.2. If X, L X and Y, 5 ¢, where ¢ is a constant, then

7



(i) Yo Xp S cX
(i) Xo+Yy 5 X +¢

Therefore, combining (SA1), equation (2.7) and conclusion (i) in Theorem 2.2,

we conclude that

Vb, —60) = - {%VQSn(H;*L)}_ X % VS, (6o)
& N0, H(6) ™ V(6y) H(6p) ") . (2.8)

In standard maximum likelihood theory, V and H both define the Fisher information
matrix so (2.8) is just a restatement of the well-known asymptotic normality of the
maximum likelihood estimator. In general, however, V and H are not the same, and

the phrase information sandwich has been coined to describe the matrix H~'VH™!.

2.2.2 Consistency Assumption

One of the assumptions of the argument in section 2.2.1 is the consistency of the
estimators. As a general comment, criterion functions for the general processes that
we describe in this work are complicated, there is no guarantee about their convexity,
and it is unreasonable to try to prove that S, attains its global maximum near 6.
Therefore we concentrate on verifying consistency of a local maximum. Takeshi
Amemiya (1985) states the general conditions under which we have local consistency

of the estimators (Theorem 4.1.2):
Theorem 2.3. Assume:

(A) © is an open subset of the Fuclidean p-space (the true value 6y is an interior

point of ©)

(B) The criterion function S,(0) is a measurable function for all 0 € ©, and VS,

exists and is continuous in an open neighborhood of 0,

(C) %Sn(ﬁ) converges in probability uniformly to a nonstochastic function S() in

an open neighborhood of 6y, and S(0) attains a strict local mazimum at 6y

8



Then there is a consistent root of the equation V.S, =0

(i.e. for some sequence €, — 0,
P{30"st.|0"— 0y |< €,VS, (") =0} -1, asn—o0.)

The conditions of Theorem 2.3 are not too difficult to check. For the most
general cases, we illustrate the method here. Note first that assumptions (A) and
(B) are immediately satisfied by the criterion functions. To verify the assumption
(C), suppose that the first order derivatives of S,, are bounded on a neighborhood of
B, and that ZE|V.S,(¢)| < K, on a neighborhood of 6. Using a first order Taylor’s

expansion, it is clear that for some 6} and 6;* between 6, and 6, we have

$u0) = S5ul00) = - VSA(0)(0—00) (29
S(6) ~ S() = VSO0~ 0) (2:10)

1
n

Therefore the difference between (2.9) and (2.10) is

H (25,0 = 50)) - (25,000 - 5100 H <rTlo—6| (1)

where I' has finite expectation. Note that the right-hand side of the equation (2.11)
converges to 0 uniformly over a decreasing sequence of neighborhoods of the form
|| @ — 6y ||< €, for any sequence of ¢, tending to 0.

Also, note that

1
,Sn(60) = S(60) =0

by the Law of Large Numbers. Therefore,

n

converges to 0 uniformly on a neighborhood of 6, such that ||  — 6, ||< €,, which

proves condition (C) in Theorem 2.3.



2.3 A Central Limit Theorem for Martingales

An important tool in computing the asymptotic variances for the proposed alter-
native estimators is based on an application of the Martingale Central Limit Theorem
to quadratic forms. Here we give a brief description of this CLT and the application

we utilize throughout this work.

Suppose we have a discrete-time stochastic process {X,, n = 0,£1,£2,...,;} and

also an increasing sequence of o-fields F,,.

We say that X, is a martingale with respect to {F,} if
(i) X, is measurable with respect to F, for each n,

(ii) E{X,|Fn.—1} = X,—1 for each n.

If X,, is a martingale then we say that the process Y,, = X,, — X,,_1 is a martingale

difference sequence, or MDS for short.

Billingsley (1995, Theorem 35.12, page 476) gives the following discrete-time Mar-

tingale Central Limit Theorem:

Suppose {Yr, k& > 1} is a MDS with respect to {F,x} for each n, and o2, =
E{YZ|Fnpi). If

(1) 32,02, B o?>0asn— oo,
(2) Sop2  E{Y2I(|Ynk| > €)} — 0 as n — oo for each € > 0,

then Y 72 Yo 4 N0, 0?).

10



2.3.1 Application to Quadratic Forms in Normal Random

Variables

Consider the sequence

Sp = Z ni,5&i&5, (2.12)

{ij: i<y}
where {&;} are independent N[0, 1], coefficients {a,;;} are defined for each n. We
are interested in limits as n — oo. In principle the sum in (2.12) extends across
1 <14 < j < oo though in practice the sum is often truncated, with n denoting the
length of the sequence.

To calculate the mean,
Mo =B{S,} =) an; . (2.13)
For the variance,

vy, = Var[S,] = Z n,ij Onke Cov[E &5, &k &l

{i.g,k,l: i<y, k<t}

However, to compute Cov[§; &;, & &, we note four cases, where the covariance does

not automatically equal 0:

(a) i=j=k=¢
(b) i=j, k=0CH#i
(€ i=k j=C+#i
d) i=¢ j=k#i. (2.14)

Under the additional condition that i < j and k& < /¢, case (d) is vacuous. In case (b),
Covl[&; &, & &) reduces to Cov[€Z, £2], which is 0 since & and &, are independent. For
case (a), we note that Var[¢?] = 2, while for case (c), Cov[£:&;, &&] = Varlg; & =
B[§ &1 = 1.

11



Therefore,

Up = 2 Z a,?z,i,i —+ Z afl,i,j' (215)
g

This implies the natural conjecture that with m,, and v, defined by (2.13) and (2.15),

Sn —Mp d
o < N0,1]. (2.16)

Theorem 2.4. Suppose

Al)  maxa?,;/v, = 0asn— oo
; N,1,%
(A2) max ( Z ai’i’k> /v, — 0 as n — 0o
it i<k

Then (2.16) holds.

Proof. Define

1
Yor = o Z n,ij&i &G — Z ni,j€i € — On ke

{i,g: i<i<k} {ig: i<j<k—1}

and F, the o-field generated by all {&;, ¢ < k}. We can rewrite this in the form

Yoo = \/1?)7 {an,k,k(&% -1)+ Z i ki fk}

i 1<k

= Auép + Bupbr + Cui  say,

where A, By, and Cyy, are F, _1-measurable random variables with A +Cpix = 0.
However, we immediately have E{Y,,x|F, x—1} = 0, so {Yyx} is a martingale difference

sequence, and

Uik = E{Yfﬂ}—n,k—l}

12



2
1
= o 2a; kg + (Z an,i,ké})

iz i<k

Then

Z Onk = 7~ 2 Z O ke ke + Z ap z,ké.z? +2 Z an,i,kan,j,kfi 6.7' : (217)

{ik: i<k} {i,j,k: i<j<k}

From (2.17) and (2.15) it is clear that E{}", 02, } =1

The variance of Y, 02, can be broken up into three terms:

Var

1
Sob| = Gow| 3 g ¥ aug|+  ew
k

" {i,k: i<k} {4,k j<k}

4
— Cov Z a'n,i,kan,j,kgi fja Z an,r,kan,s,ké-r fs (219)

2
’U
{3,4,k:i<j<k} {r,s,k:r<s<k}

+ COV{ Z aj k67, Z an,r,kan,s,kfrfs}- (2.20)

U2
{i,k:i<k} {r,s,k:r<s<k}

The expression in (2.20) is identically 0, but for (2.18) and (2.19) to tend to 0 as

n — oo (a sufficient condition for 3, 02, % 1), we require

1
_2 Z an i,k — O (221)
Yn {i,k: i<k}
1
v2 Z O ipp i — 0 (2.22)
n

gk i<j<k}

13



Now (2.22) follows from (2.21) by the Cauchy-Schwartz inequality. Moreover, if
(A2) holds, we have

i? Z a’nzk = Z Z nzk
Un,

{i,k: i<k} i i<k
1 2
2
< Y (A
k n 1 1<k
1
< S0 (T ) e (X
i i<k Un i i<k
S maXU_ (Z anzk)
™o\ i<k
— 0

Therefore, (A2) is sufficient for both (2.21) and (2.22) to be true.

This proves that condition (1) of the Martingale Central Limit Theorem is true,

with 02 = 1. To prove condition (2), we note that

BV > 9} <B{ S 1(vul > 0} < JE0),
and therefore it suffices to prove
ZE{ it — 0. (2.23)
Now, Yo, = Ank(&2 — 1) + Bui&y, using the inequality (a + b)* < 8(a* + b*) shows

that
Yoo < 8An. (& — 1)* + 8By,

14



Since Ank = @k x/+/Un is non-random, B, and &, are independent and Ef,f < 00,

it suffices for (2.23) to show

» An =0, (2.24)
k
> E{B;,} —0. (2.25)
k
For (2.24), we have
1
ZAik = 2 ai,k,k
k nok
1 1
< o ;ai,k,k X o max Up 1k
< 2 2
— maxa
= v, k n,k,k
— 0

by (AL). For (2.25), since By ~ A" [0, (5, e 2,.,)/va], we have

;E{Bfm} = Z% (Z ai,i,k)

k" \i i<k
3 2 1 2
< E,_ E:anik X ——max E:anik
,Un e 2%y ,Un k - 19y
k i 1<k 2 1<k
1 2
< 3 max— E Ay ik
k Un . - 19y
i 1<k
—0 ,

by (A2). Hence both conditions (1) and (2) of the Martingale Central Limit Theorem

have been verified, and Theorem 2.4 follows.

Remark 1. The method does not critically rely on the Gaussian assumption and

would extend to other distributions with suitable moment restrictions.
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Remark 2. There are other methods of proof for the result stated before, for
Gaussian random variables, but the martingale technique has been presented here

because of its elegance and generality.

Remark 3. It is possible to restate the result the following way. Suppose a,;; =

Qn,j,i for all n,4,j and define S, by
Sn = E E an,i,j& fj . (226)
(N

In other words, in contrast to (2.12), the sum is over all pairs (7,7) and not just

i < j. Define m,, again by (2.13), and v, by
Ua =2 Y al (2.27)
i J

Also, combine conditions (A1) and (A2) of Theorem 2.4 into a single condition:
(A3) maxy Y, a2 ;. /vn — 0.

Then Theorem 2.4 holds under these revised conditions.

This is just a restatement of Theorem 2.4, since we rewrite (2.26) as
Sn = Z an,z’,j 612 + 2 Z an,z’,j é-z gj
i i<j
which is of the form (2.12). Therefore, (2.15) becomes
Up = 2 Zai,i,i +4 Z Upij =2 Zai,i,j
i {i,j: i<j} 0]

and conditions (A1) and (A2) follow from (A3); therefore, under the conditions of

Remark 3, Theorem 2.4 applies to show S"”‘# LN [0, 1] as before.

One attractive feature of this revised form of Theorem 2.4 is that it is no longer

dependent on any ordering of the indices. In this setting there is no need for the
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indices to represent positive integers — they could be an arbitrary countable set. This
is relevant to later work, because for the random field context, we are interested in

cases where the index set is a subset of ®¢, d > 1.

2.4 Autocovariance functions for ARMA(1,1) and
AR(1) time series

Throughout the following discussion, we often refer to the structure and proper-
ties of AR(1) and ARMA(1,1) time series. Therefore, we give here a brief description
of these two processes and their covariance structures. Detailed results and deriva-

tions can be found, for example, in Brockwell and Davis (1991).

The process {X;, t =0,41,+2,...} which can be represented as
X =0Xi1 + &

where the coefficient satisfies |¢| < 1 and {¢;} are independent random errors such
that ¢, ~ N0,0?] is said to be the autoregressive process of order 1, AR(1). We

call ¢ the AR(1) coefficient. From standard time series theory (see Wei (1989)), the

autocovariance structure has the form:

[ ! ]02 if m =0

1—¢2 €
Tm =
"o ifm>1.

Similarly, a process {X;, t = 0,%+1,+2,...} which has the following property:
X =0 Xi 1+ — 064

where both coefficients satisfy |0;| < 1, |#2] < 1 and {e;} are independent random
errors such that ¢, ~ N0, 0?] is said to be the mized autoregressive moving average

process of order 1, ARMA(1, 1). We call #; the AR coefficient and f; the MA

coefficient.
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Following routine time series calculations one obtains the autocovariance struc-

ture of an ARMA(1, 1) process (for a complete derivation see, for example, Wei

(1989)):

Ym = $

[(91 +6,) + (

Gl

{
[1 n ‘aif(;%)Q] o

2
€

02+01)261
1-6?
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Chapter 111

Expansion Technique for AR(1) Time

Series

One of the practical challenges of the maximum likelihood estimation, in spite
of its merits, is the computational consequences of the high dimensionality of many
data sets. While maximizing the log-likelihood function, one needs to invert the
covariance matrix, and calculate its determinant. This is often intractable for large
samples, and this problem manifests itself rather rapidly in spatial settings. To avoid
this problem, we propose here a series of approximations of the likelihood function,
which we use as estimating functions. The idea that links these approximations is
grouping the observations into blocks of approximately same size. All these methods
significantly reduce the dimensionality of the original problem, but they do not always
lead to reasonable estimators. As theoretical calculations become very involved in the
general spatial setting, we begin by analyzing these block methods for time series
problems. This will give us some insight into how these approximation methods
would apply for spatial processes. As an example, we are going to examine in detail
the special case of a first order autoregressive process.

Maximum likelihood methods of estimating the autoregressive parameter of an
AR(1) time series achieve asymptotic efficiency under suitable regularity conditions
when the size of the sample tends to infinity. Chapter 3 of Akahira and Takeuchi
(1981) discusses in detail the asymptotic efficiency in an autoregressive process.
We compare the asymptotic performance of the estimators of the AR(1) parameter
yielded by the alternative methods with that of the maximum likelihood estimator.

We consider as measure of fit the asymptotic relative efficiency, defined as the ratio



between the asymptotic variance of the MLE and the asymptotic variance of the
alternative estimators.

In order to calculate the asymptotic variance of the proposed estimators, we use
both the properties specific to an AR(1) process (which enable us to use an applica-
tion of the Martingale Central Theorem to compute the variance of a quadratic form
in normal random normal variables), as well as the “information sandwich” formula,
which combines the expected value of the second derivative and the variance of the
first derivative of the pseudo-likelihood function. Since a critical step in the analysis
is to expand the process in terms of independent random variables, we refer to this
method as the expansion technique.

The three methods proposed here vary from making strong independence assump-
tions to incorporating both variability between and among groups in the pseudo-
likelihood function. The efficiency of the estimates vary from very poor to very
good.

We begin by illustrating how our alternative approach works in the “classical”
case, using the exact maximum likelihood function. This will allow us to go through
all the theoretical derivations in a widely studied case. Thus we have the advantage of
comparing our conjecture with the ones based on Fisher information approximations,
for example. The other major advantage we have in this case is that we know the
exact forms of the determinant and inverse covariance matrix, hence we are able to
find the MLE estimators even for very large data sets, and compare them with the
ones obtained through one of the alternative methods.

We continue with the method expected to yield the least efficient estimators.
The fundamental idea of this approach is summarizing each block through its mean,
constructing the likelihood of the means time series and maximizing this alternative
function. We call this method “Big Blocks”. The loss of information will in some
cases be rather significant, this method being expected to lose efficiency with any
increase in the block size.

The next method makes the assumption that the blocks are independent (but us-
ing the correct dependence structure within blocks) and the pseudo-likelihood func-
tion is calculated by multiplying the individual likelihoods for each block. Although

the independence assumption is a rather strong one, the loss of efficiency is usually
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smaller than in the previous case. It is interesting to note that this technique be-
comes more efficient with the increase of block size. We call this method “Small
Blocks”.

The last method, called the “Hybrid”, is a combination of the above proposed
alternatives. The basic principle for constructing the estimating function is incorpo-
rating both correlation between blocks and among blocks. The assumption made in
this case, although not necessarily verifiable in practice, is a reasonable working as-
sumption: the blocks are independent given the block means. Hence, in constructing
the pseudo-likelihood here we multiply the conditional likelihood functions of each
block given their means with the likelihood of the means. This method is expected
to yield the most efficient estimator among the three approximations considered,

comparable with the exact maximum likelihood estimator.

3.1 Classical Maximum Likelihood Estimator

Consider an AR(1) process, which is represented as z;11 = ¢z; + €41, where
|#| < 1 and €; ~ N[0, 0?] is independent of z;,;. Defining 02 = 02/(1 — ¢?), this also
has the representation

i

mi=0c Yy, 0T =019 Y ¢77E, (3.1)

r=—00 r=—0oC

with & independent N[0, 1].

Cochrane and Orcutt (1949) write U, the covariance matrix of X = (x1, ..., Z,)

as:
(1 ¢ & ... ... ¢!
P b . .. P2
U =% ¢ 1 .. .. 2, (3.2)
\o" ! o2 g ]
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and

—¢ 1+¢* —¢ 0
IEEE X (3.3)
0 0 0 1+¢* —¢
\0 0 0 ¢ 1
It can also be shown that on
Ul=1%0

For simplicity of subsequent calculations, assume o2 is known (this assumption will
have little bearing on the final result). The negative log-likelihood function has

therefore the following form:

(X"UT'X —log|U'|)

N =

t(¢) =

and thus the MLE for ¢ minimizes this function. In the standard fashion, we compute
the first derivative of the negative log likelihood function and the MLE is the solution
for the equation 0,¢(¢) = 0 where, modulo fixed constants,

1 fn—1 n—1
Ipl(9) = 1—¢¢2_F inxi+l_¢2$?]
Li=1 =2

[n—1
= - = Z%(%H—ﬁb%i)‘*‘ﬁb@"%
Li=1

Note immediately that E [0,¢(¢)] = 0 and we are interested in calculating its vari-

ance, Var [0,¢(¢)]. For simplicity of notation, let us denote

n—1
Sp = sz (Tiv1 — O x;) + @
i=1
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and thus
1
Var [8¢,€(¢)] = —4Var[Sn] .

g

Using (3.1), we rewrite S,, as

n i—1 1 i—1 1
Sn = o; (Z DTG F2 Y Y STTEE+ Y ¢3—”5?>-

1=2 j=—o0 1=—00 r=—00 1=—00

This is of the form (2.12), with

( .
o2gd % itr=:i<1
20203 ifi<landr<i-—1
Qnir = < ) (34)
o¢rt . if2<i<n—2andr<i—1
L0, elsewhere.
Then
— B[S = 2 o
my = n| = 1_7& (o

(which confirms that the expected value of the first derivative of the negative log-

likelihood is 0). Furthermore,

i

i<j
1 n i1 1 -1
— 0,21 9 Z ¢2(3—2i) + Z Z ¢2(i—1‘—1) + Z Z 4 ¢2(3—i—'r‘)
1=—00 1=2 r=—00 1=—00 '=—00

B n—1—(n-3)¢* ,

T e
Hence 9

n—1—-(n-3
Var [0,6(6)] = (n—3)¢

(1-9¢%)?
Note here that for any fixed r, we have that >
therefore the condition (A2) in Theorem 2.4 is satisfied, and so is (Al). Therefore

2 .
i<r Ui, 18 bounded by a constant,

we can deduce that

8¢£(¢) — N(O, Un) .
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To complete the calculations of the asymptotic variance of the ML estimator, we
follow the “information sandwich” technique for which we need to calculate the

mean of the second derivative of the negative log-likelihood function:

1+ ¢2 1 «
2 —
8¢€(¢) - ( o2 Z
e
Note first that the second derivative is always positive, indicating that the solution of

the equation 0,¢(¢) = 0 will indeed minimize the negative log-likelihood. Proceeding
further, note that

1+gb 1 —1)—(n—3)¢?
E[03(9)] = = S Bt - e
(1922 " 02 & (1-¢?)
This confirms that when using the likelihood function as the estimating criterion,
the expected value of the second derivative equals the variance of the first derivative
of the likelihood. Further we apply the “information sandwich” formula to obtain

the asymptotic variance of the MLE estimator:

Varldpl(@) _ (1 4%’
B(320(g)] n—1-¢’n—3)’

Var[g] & (3.5)

which agrees with the asymptotic variance derived by Brockwell and Davis (1991),
pages 258—259.

3.2 Analysis of Means Time Series: Big Blocks
Method

Consider the first alternative method of estimation. Let us assume we can divide
the entire time series in b blocks, of length k. The next step is to compute the mean

of each block and let us denote by {X} } the time series consisting of these means.
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In other words,
k

Xo= 1 > Xm-tjks; where 1<m <b. (3.6)

i=1

Therefore, the covariance structure of this new time series is characterized by

Ek
* * * 1
Tm—1 = Cov[XT{, X7 ] = 72 ZZV(M—l)kH—i- (3.7)

i=1 j=1

Routine algebra manipulations show that

2051 — 29 — k@ + k
75 = Cov[XT, X{] = [ g?@(l — qj;(l _gbq;_) ] o2 (3.8)
(3.9)
1— k\2
/Yik = COV[Xi*aXi*—I—l] = [k2 (1¢_( ¢)2¢21)_ ¢2):| 052 (310)
and that
Vi = "y form >2. (3.11)

Thus, following (3.8), (3.10) and (3.11) we conclude that {X} } has the following

covariance structure:

[ [2¢k+! 20 ko> +k .
i) ot itm=0

* — k)2 .
Ym = 3 [%}03, ifm=1

\ (dF)m 1oy, ifm > 2.

According to equation (2.28), this covariance structure corresponds to an ARMA(1,1)
process.

The next step is to compute the likelihood function. Since the goal here is to find
the value of ¢ which maximizes the likelihood function, one could first identify the
ARMA(1,1) coefficients as functions of the original AR(1) parameter ¢ and then use
already established results (Brockwell and Davis, 1991, page 258) for the asymptotic
covariance matrix for the ARMA(1,1) parameters to derive the variance of the Big

Blocks estimator. However, the identification of the autoregressive coefficient is very
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involved. Another weakness of this approach is that since it is so specific, it would not
be of any help in the development of Small Blocks and Hybrid methods. Therefore,
we illustrate here how the expansion method is applied.

First we calculate the likelihood function for the means time series, using the
covariance structure derived in equation (3.12). Since we have recognized the means
time series to be an ARMA(1,1) process, we expect the Big Blocks estimator to be
unbiased. We compute the variance of the estimator using the “information sand-

wich” technique.

Recall the definition
X ={X],XJ,.... X} },

where
Th(j—1)+1 T Th(j—1)+2 T - - - T Th(j—1)+k

J
Therefore the likelihood function is given by

X7 =

1 1 1 Ty — *
Lmeans - (27T)b/2 |Vmeans‘1/2 exp { 2X VmeunsX } .
Define
9 1
V= 6_¢Vmeans - (Uij)1§ 1,5 <b

and assume that o2 is known (this assumption will have little bearing on the final
result and it considerably simplifies the computations). Then the first derivative of

the negative log-likelihood function, modulo fixed constants, is given by

1 [ * * a Vmeans
dpl(p) = 5 Xy X —%}

b b ko k
a means
= % %szzjzzxz 1)k+€ L(j— 1)k+m_% . (3.12)

Again, there is no apparent closed form solution for the equation 9,¢(¢) = 0. We
compute the variance of the first derivative of the negative log-likelihood function

and the expected value of the second derivative. As before, in order to compute the
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aforementioned quantities, we rewrite the expression in (3.12) using the representa-

tion of z; as an AR(1) process. Thus

zi=0c Y 677

rT=—00

and it follows that

(z Dk+L (j—1)k+m

T (1) kLT (1) ktm = Z Z PUHI—DhFlEm=r=s¢ ¢

r=—oo §=—00

Define
b

1 b

=1 j=

kE  k
Uz‘jE E T(i—1)k+L T(j—1)k+m
1 =1

=1 m=1

and thus rewrite it as

(i—1)k+L (j—1)k+m

b b k k
Su=TE D 0000 D D wel IR g

i=1 j=1 4=1 m=1 r=—oc0 s=—00

(LI V]

This is equivalent to

Sp= a)&+2) ) & ¢

T r<s
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where

afy) = S

g b b k k i+7—2)k+04+m—2 . o
Iz 2121 Zj:l 2121 Em:1 Vij (b(Z =2 m=ar if s=r <1,

< b b k k i+5—2)k+l+m—2
2_2 Zi:n-l-l ijn-l-l 24:1 Zm:l Vij ¢(Z+J Yetttm "+

o: k k 2r1—2)k+L4+m—2r
k2 Zl:’r2 Zm:rz UTI;"'I ¢( ) +

o2 b k k i+r1—2)k++m—2r . _
2 k_2 Zi:r1—|—1 ZZ:I Zm:rz U’L"/'l ¢( ! ) 5 lf 2 S r = S’
oo b b k k (i+j—2)k+l+m—r—s if <1
k2 Zi:l Zj:l Ze:1 Zmzl Vij ¢ ) nmr<s<il,
o2 b b k k (i+j—2)k+l+m—r—s
¥ Dio1 Zj:sl—i—l D1 Dme Vig @ +
02 b ek ok 51— 2k :
75 Doimt Dote1 Dames, Visy GUTIITIRHEMIITS ifr<l<s,

Z b b k k i+j—2)k+0+m—7r—
I Zi:n+1 Zj:slﬂ D b=1 D m—1 Yij ¢H7=2) B
k k _ _r—
% ZE:rQ Zm:SQ Vry 51 ¢(7‘1+s1 2)k++m—r sy
2 b k k i+51—2)k-+lt-m—r—
5 Zi:rl—i—l 22:1 Zm:SQ Vi sy ¢(z—|—s1 Vk+{+m—r s

o2 b k k r1+j—2)k+l+m—r—s :
k2 Zj281+1 ZZ:']? Zm:l v"'l \J ¢( ) ) lf 2 S r<s.

(3.13)

Notations: vy = [r/k], s1 = [s/k] andro =7 —(r1 — 1)k, so=s5— (51— 1) k . !

Next we apply the Martingale Central Limit Theorem to .S,, which is a quadratic

form of independent normal random variables and we obtain

mn = E[S;] =) al) =0

' By [z]

we mean the smallest integer greater than or equal to x, and by | x| we mean the largest

integer smaller than or equal to x.
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and

—Var[S]—QZa(l) + 3 44, (3.14)

r,s:1r<s
and the variance for the first derivative of the log-likelihood function follows from
(3.12).

To compute the expected value for the second derivative of the pseudo-likelihood

function, note from (3.12) that

b

11
2 —
G Ue) = 5 ;?Z

E k
!
UijE E T(i—1)k4+L T(j—1)k+m
1 =1

=1 m=1

62 Vmeans Vmeans - a Vmeans 2
(95 [Vincans]) [Vineans| — (] \>]' 6515

‘ Vmeans |2

Hence to calculate the expected value of the above function, one has two alternatives:
either expand it as a quadratic form of independent normal random variables, identify
the coefficients and apply the Central Limit Theorem for quadratic forms, or take

advantage of the underlying AR(1) correlation structure and compute it as:

BI 60 = 5 |0 D S v pkrem

i=1 j=1 ¢=1 m=1

(83) ‘Vmeans‘) |Vmeans| - (8¢‘Vmeans‘)2:|

| 2

(3.16)

| Vmeans

keeping in mind that .
P
T g %

To conclude the calculations, we apply the “information sandwich” formula and

obtain the asymptotic variance of the estimator q§1 as

Un

Varlow = Ee e
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10) b=>5 k=100 b=10 k=50 b=50 k=10

Theory ‘ Sim | Theory ‘ Sim | Theory ‘ Sim

-0.750 || 0.00214 | 0.002 | 0.00330 | 0.003 | 0.00549 | 0.005
-0.250 || 0.01166 | 0.013 | 0.02265 | 0.020 | 0.08982 | 0.080
-0.010 || 0.01925 | 0.018 | 0.03773 | 0.036 | 0.15929 | 0.158
0.010 | 0.02003 | 0.019 | 0.03929 | 0.039 | 0.16702 | 0.165
0.250 || 0.03280 | 0.032 | 0.06434 | 0.055 | 0.27280 | 0.269
0.750 || 0.13367 | 0.132 | 0.25465 | 0.255 | 0.73897 | 0.724

Table 3.1: Time Series: Big Blocks Asymptotic Relative Efficiency

where v, is given by equation (3.14) and E[03 £(¢)] by equation (3.16). As a measure
of performance for the estimator d;h we compute the relative efficiency with respect

to the classical maximum likelihood estimator for an AR(1) process,

€1 (éa ¢Al) = \\;::[[2]]
1

A

where Var[¢] is the asymptotic variance of the MLE.

One issue here is to calculate the inverse covariance matrix. Due to the complex
nature of this matrix, it would be natural to compute its inverse using numeri-
cal algorithms like the Cholesky decomposition. However, there is one property of
this matrix that leads us to computing its inverse analytically, and this is the fact
that it is a Toeplitz matrix (this is obvious, since it is the covariance matrix of an
ARMA(1,1) process). Trench (1964) proposes an algorithm that enables us to com-
pute analytically the inverse of an n x n Toeplitz matrix. His algorithm presents
another appealing feature, in the sense that it requires an order O(n?) calculations,
compared to O(n?) required by the Cholesky decomposition.

For a Toeplitz matrix of the form

by 0, 0, oo Oy
0, 0 0 N -

r=| 0 0 (3.17)
011 On—l 0n—2 00



denote by B = T~!. Then we have:
® Yoo =0d1; Ao =1
o A= (1~ ¢3n—1,m—1)Am—1

- ¢m+1*2;n:_01 "ps,m—ld)m—s
o Vi = o !

L w'r,m = wr,mfl - wm,mwmfrfl,mfla for 0 <r<m-1
The last three formulas are used for 1 < m < n—1. To obtain B, compute as follows:

_ 1
'boo—A—n

o bo=—Y=tl for1<r<n

_ PYr—1,n-1Ps—1,n—1—Pn—rn—lyyn—sn—1
L4 brs _bT717871+ = o An ’ ’

and further exploit the symmetry about the principal diagonal and secondary diago-
nal to complete the calculations for the inverse Toeplitz matrix. However, although
we can obtain the exact formula for the inverse, we have to calculate the first and
second derivatives of the inverse matrix using numerical procedures.

Given the intractable analytical structure of the relative efficiency, we analyze its
values numerically for a few particular cases. We proceed in the following manner.
We first compute matrix V numerically, then use its elements to evaluate each of
the coefficients a,s. Each coefficient consists of a finite sum, thus its evaluation is
routine algebra. The next step is to calculate the sum over these coefficients. Note
first that the indices  and s have b as an upper bound. Then, taking a closer look
at the structure of the coefficients, we distinguish two cases. For all r, s > 2 we
need to evaluate a finite sum, therefore this case comes down to a standard finite
summation. In the other case, when at least r or s are less than or equal to 1, we
take advantage of the fact that we can separate the sums containing r and s from
the other sums, and simply compute these infinite sums (over r and s) as geometric
series. We conclude by combining all the above sums to obtain the final result.

As a side comment, note that for the theoretical calculations the bias for both
the MLE and Big Blocks is 0, therefore the ratio between their mean squared errors

is identical to the ratio between their variances.
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Table 3.1 presents values of el(qAS, (51) for different ¢ and k, the number of obser-
vations per block (the columns labeled as “Theory”).

Parallel to the theoretical calculations we also perform a simulation study to
analyze the asymptotic relative efficiency for the Big Blocks estimator. In order to
do this, we simulate an AR(1) time series of length n, which we divide in b blocks
of equal length, say k. We start by computing the likelihood function for the entire
time series, maximize it and obtain the classical ML estimator. Next step is to
calculate the mean value for each block, as well as the correlations between the block
means. Thus we obtain the means likelihood, as a function of the autoregressive
parameter ¢. We maximize this pseudo-likelihood through an iterative numerical
procedure, and obtain an estimator for ¢. We replicate this process 1000 times, for
each choice of b and ¢ and conclude by computing the means and variances for each
of the two vectors of estimators, MLE and Big Blocks. The measure of efficiency we
are interested in is the ratio between the mean squared errors of the two estimators.
We report these results in Table 3.1 under the column labeled “Sim”.

We note from this analysis that the Big Blocks estimator is not very efficient
compared to the maximum likelihood estimator. It seems to be more efficient only
for the cases where the number of blocks is large in which case the method is not
attractive from the computational point of view. Table 3.1 also provides a verification
of the validity of the theoretical results, by comparing theoretically obtained values

with their analogous results obtained through simulations.

3.3 Small Blocks Method

As seen in the previous section, the “Big Blocks” estimator, although appealing
for its simplicity and considerable dimension reduction, tends to be very inefficient
for even moderate block sizes. This caveat makes it unfit for realistic problems.
Therefore we need to alter the way we compute the minimizing criterion, and take
into account more adequately the underlying correlation structure. We therefore
define the second alternative estimator, which we call “Small Blocks”. In this sec-
ond approach, we ignore the correlation between blocks but take into account the

true dependence structure within blocks. Therefore, the assumption under which
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we develop this scheme is that blocks are independent. We construct the pseudo-
likelihood in this case as the product between the b individual block likelihoods, each
block containing k£ sample points.

We shall proceed in two steps. The first stage is to compute the likelihood for each
block. In the second stage we construct the maximization criterion by multiplying
the individual block-likelihoods.

Consider the j™ block, which we denote by X,Z = (T(j—1)k+1,-- - Tjk). Since the
complete process is an AR(1) time series, the covariance matrix for this block is given

by:

(1 ¢ & . ¢
0] 10) B L
j o7 2 k-3
Uk:1—¢2 ) 1) 1 cee e O (3.18)
\ .¢k—1 -¢k—2 .qsk—?) 1 /
and hence
(1 -6 0 0 )
—¢ 1+¢*> —0 0
_ 2
| D (319
0 0 0 14+¢* —¢
K 0 O 0 —¢ 1
and also o
Uil =175

We note immediately that the covariance matrix is the same for all blocks, hence
we can drop the index j from now on. We are now in the position to calculate the

likelihood function for each block, L; :
1 1 .7 ;
Li=——7—— =X U'X] ) . 3.20
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If we define L = H?:l L; then the pseudo-likelihood to be maximized with respect
to ¢ is:

b
~ 1 1 T —1+v-j
j=1

Assume here that o2 is known, for simplicity of calculations. This assumption has

little bearing on the final results. Then the MLE for ¢ minimizes

b
1 N R
Jj=1

On the other hand, it easily follows from “block-calculations” that

X['U X =

k—1 k—1
(1+¢%) in(jq)ﬂ' - 2¢Z xk(j—1)+i$k(j_1)+i+1] Jo?
1=2

i=1
and hence the MLE for ¢ minimizes the following estimating function:
b

h(@) = —blog (1 — ¢)+ Ui 3

=1

k-1 k-1
(1+ ¢2) in(]’—l)—ki —29¢ Z $k(j—1)+i$k(j—1)+i+1] .
i=2

i=1
The derivative of the estimating function is of the form

Sy — 8
W) = byt PP (3.23)

where
n

n—1
Sl = Z SE?, SQ = Z TiTit+1 (324)

i=1
i€ My, My+1 ig My,

(where My + j is the set of m k + j for any integer m).
A local minimum of (3.22) must satisfy the equation

¢ ¢ S1—5
b & + o = 0. (3.25)
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There is not an obvious closed form solution for(3.25), so we proceed asymptotically.

Let us write ¢ for the true value of ¢. As n — oo, b — oo we have

51 2 52

p
b—202 " b-Do2

Of course, both o2 and ¢, are unknown at this point but the purpose of the calcu-
lation is to understand how the solution of (3.25) actually behaves in limiting cases.

As a side calculation, we note from (3.23) that

b(1+¢%) S
hll(¢) = m + 52
and therefore in the limit,
L) » % (1 @4 (b -2)) = DR
b o2 0 1—¢2

Note that the above expression is always positive, indicating that the solution of
(3.25) is indeed a local minimum for the estimating function.

Returning to (3.25) and taking the expected value, we obtain

¢

2(k—2)¢— (k—1)do _
-

bo, po =0.

b

Dividing throughout by a%, the equation to be solved becomes

0 = 1_;%(1 —¢2)+ (k—2)¢— (k—1) ¢ or equivalently,
0 = (fo__qbf [(k—=2)¢* — pdo— (k—1)] (3.26)

If we denote by hy(d) = [(k — 2) ¢* — é ¢o — (k — 1)], it follows that
hk(l) =-1- QSO and hk(—l) = ¢0 —1.

Therefore, since hy — 0o as ¢ — too , hg(1) <0, hg(—1) < 0 and hy is a quadratic

function of ¢, it follows that either both its roots are greater than 1 or both are
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smaller than —1.

To proceed, we assume

Sl 52

i (k—2)1+€), bl (k —1)(do + €2) (3.27)

and look for a solution to the equation g(¢s,€) = 0, where

¢
(1—-¢?)

We know g(¢o,0) = 0 and calculate

9(¢,€) = (L—¢p) +6(k—2)(1+e)— (k—1)(¢o+e2). (3.28)

0g _ 243 . 09 . o %9 .
56 =T Tl gL =hk=2, 5o=—-(k-1) (329

where all the partial derivatives are evaluated at ¢ = ¢y, € = 0. Therefore, asymp-

totically, we have
¢(k 2)61 — (]C — 1)62

$2_¢0£'_ )
e k-1

(3.30)

where X 2 Y means that the ratio X /Y converges in probability to 1 under some

suitable limiting operation (here, n — 00).

From now on, there is no need to distinguish between ¢ and ¢, so we just write
¢. From (3.30), we see that the asymptotic distribution of v/b(¢y — ¢) is the same
as that of

1 n n—1 p
_\/Bo (2¢2 +k—1) {¢ Z ;- Z$i$i+1+0?b 1_¢2}. (3.31)

1 ¢2 . i=1 . i=1
@My, Mp+1 igMy,

Define

n

T(¢) = Y (627 — mimip) — ¢ Z z?

i=1
i My z—Mk—i—l
n
= E (¢ — TiTip1) — ¢ E xmk:+1 .
i=1
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Since the observations come from an AR(1) model, we can use the following repre-

sentation: .
1
i—7r
T = O¢ E ¢ é-r
r=—00
and hence , ,
1 1
2 2 } : E : i—r+i1—s+1
(/b "L'i - ae ¢ é-r 65
r=—00 §=—00
and
i i+1
2 1—r+i—s+1
Tilit1 = O E E ¢ & s -
T=—00 §=—00
Also,

O T — Tiy1 = —0c&i

and therefore

A
2 —
pr] — T =—00 Y L

r=—00

Also, note that
mk+1 mk+1

¢ x?nk—l—l — 052 Z Z ¢2mk+3—r—s§r gs )

T=—00 §=—00

Thus

b—1 mk+1 mk+1

T(¢) = —0; Z Z FTEL Y DD T

i=1 r=—00 m=0r=—oo0 s=—o0

z;éMk

or

b—1 mk+1 mk+1

T(¢) = —o? Z Z FTTIEE YD Y g g | L (3.32)

=2 r=—00 m=07r=—00 s=—00
s;é/\/[k-l—l

Our goal now is to express T(¢) as a quadratic form, in the sense that we rewrite it

= Z Z arsfrgs

S=E—0 Tr=—00

as
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so that we can apply the quadratic forms Corollary of the Martingale Central Limit
Theorem and compute its mean and variance.

Due to the specific form that 7T'(¢) has in equation (3.32) above, we rewrite

T(¢) = Z nEl + Z Z al, + 2al)& &

S§=—00 =0 Tr=—00

where
—o2¢s T ifr<s, 2<s<mn, s#pk+1, 1<p<b-—1,
o = (3.33)
0, otherwise
and
o ¢*~ 25%22():11, if s=r<1,
_0€2¢372s%7¢i21mk, ifr=s, (im—1)k+2<r=s<mk+1,
1<m<b-1,
—g? s ‘3}2;:__11 , ifr<s<1,
"
a =
o= 2 13— p2k—g2mk :
—O'€¢ W’ 1f7"§1,7"<8,

m-—1k+2<s<mk+1, 1<m<b-—1,

2 3—pr—g ¢2bk_¢2mk
_0'6 QS

R ifr<s, (p—1)k+2<r<pk+1,

m-1k+2<s<mk+1,

(3.34)

Hence the expected value can be computed as

my, = Zaw: ZaﬁT:—031_¢2

r=—00 r=—00
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which confirms the result obtained earlier, and the variance as

n n s—1
2 Z a?s—i— Z Z a?

vy, =

= 2 Z a"2—|- Z Z a., +2al,)?

n s—1
= 2 Z a"z—i-z Z a?+4 Z Z a’?+4 Z Z s
§=—00 $§=2 r=—00 S=—0 Tr=—00 §=—00 r=—00

= 2Ti(8) +To(9) + 4 T3(¢) + 4 Tu(0)

where . I
Ti(¢)= Y dl’, T(@)=> > a,

n 2
-y Z

S=E—R0Tr=—00

Therefore, calculating each partial sum

) 4

-y ijsm

S=E—R0Tr=—00

separately we obtain

¢2(¢2bk _ 1)2
16 = ot [ gy
¢4k —1 ¢4bk:+2 o ¢4k—|—2 ¢2bk+2 _ ¢2k+2
(9% = 1)°(1 - ¢%) ( o1 e T 1”’2” |
b(k—1
T2(¢) 21 1(_7¢2) )
¢4(¢2bk _ 1)2
L) = o [(cb”“ “ A=) A=
¢4(¢2k+1) ((¢2bk_¢2k)(¢2bk_¢2k_2) +b_1):|
(0% —1)(1 = ¢*)(1 — ¢*) ot —1
and
2 2k+2k __ 12k
1) = 0! i { - D@ - )T
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. b(k _ 1)¢2k(¢2 _ 1)¢21_ - (d)%k —¢2113(j§21k — d)Q) + b(¢2 _ ¢2k):| } )

Hence

Un = (1- ¢2)2(€1 — g2k)2 {-4¢*(¢*"F = 1) [=¢" + ¢**(1 — ¢°)*(k — 1)]

+ b —1)[1-3¢" —4¢* —k + k¢

+ ¢F(-14+k+¢>Bk—14+4¢°(—2+¢")(k—1))]}.

Now recall from equation (3.31) that the asymptotic distribution of vb(¢y — ¢) is

the same as that of

1 , bo
Vo (22 + k — 1){T(¢) T ¢2}'

which according to Theorem 2.4 is asymptotically normal, with mean 0 and variance

———m——. Thus the asymptotic variance of the Small Blocks estimator is given
bod (2225 +k—1)

by

Un, (1 _ ¢2)2

2
b? ot (12_¢;2 + k — 1)

Var[@] =

(recall here that n = bk, in other words b is a function of n as well, so maybe it
would be appropriate to think of it as b,).
Therefore the asymptotic relative efficiency of this estimator is given by the ratio

e2(3, bs) = Vva[f]]
2

where by Var[¢] we denote the asymptotic variance of the MLE.
Since the expression for the relative efficiency as defined above is not simple
enough to allow us study its limiting behavior analytically, we compute it for a

few particular cases. These results are summarized in Table 3.2, under the column
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0] b=5 k=100 b=10 k=50 b=50 k=10

Theory ‘ Sim Theory ‘ Sim Theory ‘ Sim

-0.750 || 0.98998 | 0.999 | 0.97878 | 0.990 | 0.92595 | 0.934
-0.250 || 0.99292 | 0.991 | 0.98407 | 0.977 | 0.91329 | 0.898
-0.010 || 0.99199 | 0.990 | 0.98197 | 0.980 | 0.90182 | 0.891
0.010 || 0.99199 | 0.990 | 0.98197 | 0.989 | 0.90182 | 0.892
0.250 || 0.99292 | 0.992 | 0.98407 | 0.985 | 0.91329 | 0.912
0.750 || 0.98998 | 0.993 | 0.97878 | 0.992 | 0.92595 | 0.942

Table 3.2: Time Series: Small Blocks Asymptotic Relative Efficiency

labeled “Theory”. Again, note here that the asymptotic bias for both the MLE and
Small Blocks estimators is 0, therefore the ratio of asymptotic variances corresponds
to the ratio of asymptotic mean squared errors.

One method to check the validity of the theoretical results is to complement the
exact calculations with a simulation study. For one iteration, we simulate an AR(1)
time series of length n, which we subsequently divide in b disjoint blocks of equal
length k. As in Section 3.2, we first calculate the ML estimator for the autoregressive
parameter. The pseudo-likelihood under the assumption of independence between
blocks is simply the product between the block likelihoods, which are just the autore-
gressive likelihoods for each block. Through maximization of the pseudo-likelihood
function we obtain the Small Blocks estimator. For each choice of ¢ and b, we repeat
the process 1000 times, and store the values of the two estimators. We compute
the mean squared errors for both of them, and report their ratio as the measure for

asymptotic relative efficiency in Table 3.2.

We observe that the asymptotic performance of the Small Blocks estimator is
very good, comparable to the classical maximum likelihood estimator. As expected,
the method leads to a slightly less efficient estimator when the blocks are smaller.
Therefore, we can conclude that the Small Block estimating technique is not only
computationally very efficient, but performs very well according to statistical mea-

sures as well.

41



As a side note, we consider here the issue of consistency of the Small Blocks
estimator. Although the general theory, as stated before, holds in this case, we
take advantage of the simplicity of the criterion function in this case, and derive the
consistency results for this particular case. We apply Lemma 5.10 of A.W. van der
Vaart (1998). It should be noted that this result does not extend to the more general
two-dimensional cases, since one of the hypotheses involves the monotonicity of the

criterion function, which is, by its nature, one-dimensional.

Lemma: Let © be a subset of the real line and let 1, be random functions and
¥ a fixed function of # such that t,(8) 2 (8) for every . Assume that each map
¥n(0) is nondecreasing with 1,(6,) = o0,(1) or is continuous and has exactly one

zer Let 6y be a point such that ¢(6y —€) < 0 < ¢(6p +¢€) for every € > 0. Then

~

0, 0,.
6, 2 6,.

In this case, both the interest parameter ¢, and the true value of the parameter

¢o lie in the parameter set (—1,1). The estimating equation in this case is given by:

b k—1 k—1
é 1
Yn(¢) = 20— pe + D 120> 3 1y — 2D Th(G-1)iTh(G-1)4it1

=2 =1

and denote by qgn the approximate solution of the equation ¢, (¢$) = 0.
Following the CLT, 1, (¢) 2 1(¢) = E[thn(¢)] for every ¢, where

_ ¢ 1 b ) k—1 0_62 2k—1 0_62 ¢0
e AR LM A e

1=2 =1

AN e
o[

Note that
1+ ¢? k—2

+
o7 "1 g
We immediately note that 1 (¢) = 0 and since 1 is a continuous nondecreasing

function of ¢, it follows that for every € > 0, ¥(¢g —€) < 0 < (g + €).

] >0, for every ¢.
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Also, computing

! 1 + ¢2 1 d 2
Yn(9) =20 (1 - ¢2)2 + o2 Z Tr(-1y+i| 2 0, forevery ¢
it follows that ¢, (¢) is nondecreasing.

Since all the conditions of the Lemma are satisfied, consistency of qgn follows.

3.4 Hybrid Method

This section computes a hybrid estimator by relaxing the independence between
blocks imposed in the previous section and including information about block means,
as described in the Big Blocks section. The assumption here is that given the block
means, the blocks are independent. In this context we first compute a pseudo-
likelihood function as the product between the means likelihood and the conditional
likelihood for each block. Then we find the parameter (;;3 which maximizes this func-
tion. The last step is to calculate the asymptotic variance of this estimator, using

the expansion method.

The pseudo-likelihood function is of the form

b
Ly = Lmeans X | [ Leond, - (3.35)

j=1
where Lycans is the likelihood of the means process and Lcong; is the conditional

likelihood for block j given its mean.

To calculate the likelihood function for the means time series, we take advantage
of the fact that in the Big Blocks stage of the analysis we showed that this time
series is an ARMA(1,1) process whose coeflicients we could derive as functions of the

parameter of interest, ¢. Recall the definition

X ={X{,X;,...,X;}
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where

Th(j—1)+1 + Th(j—1)+2 T - - - + Th(j—1)+k
J

and therefore the likelihood function of the means is

X =

bl

1 1 1 T -1 *
Lineans = (27T)b/2 |Vmeans‘1/2 exp {_§X Vmeans X } )

where the inverse covariance matrix is calculated following Trench’s algorithm for

inversion of Toeplitz matrices, as described in Section 3.2.

Block-Conditional Likelihoods: The next step is to calculate the block-
likelihoods conditional on the block mean, and compute their product. We concen-
trate on the first block and then generalize the procedure to all blocks.

Consider the vector of observations for the first block, say X¥ ! = (2, 29,..., 7%_1)
and {X7} = £ S°F | #;. It follows that the joint distribution of (z1,zs, ..., z5_1, X7)

has mean 0 and covariance matrix:

Uk*l T

o

ijointl -

where Uy 1 is just the covariance matrix for an AR(1) model as described in (3.18),

whose inverse is given in (3.19) and the determinant is

2(k—1)

O¢
\Uy—1| = 1_o2

7 (3.36)

m% o as given in (3.12), and

7; = Cov[Xj, Xi]. By standard algebraic manipulations, one obtains

Also, we know 1 = Var[X;] = v =

Yi-t FYie ot AN A Ve
k

T =

_ 1+¢_¢i_¢kﬂ'+1
S E@-D oD (397
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Hence following standard multivariate normal results, the conditional distribution of

(1,2, ...,2k_1) given X has mean
T *
Meond; = _Xl
n

and covariance matrix

‘/;ond1 = Uk*l - TnilTT . (338)

To compute the likelihood function, a potential difficulty lies in calculating the
inverse of V4, and its determinant. From standard linear algebra results, as stated
in Section 2.1, we calculate the determinant of V,y,q, . Thus, if in equation (2.4) we

use U,_1 as the matrix A, and b = Z it is immediate that

Vv

T —1
3 n—71"U T
Veondy| = [Up—1 — 7777 | = |Up | ——F2

After simplifications we obtain, for three or more observations per block,

2q5k+1 —k¢? =20+ k
062(1671) (1 _ (/5)2

Veona, | = (3.39)

Also, from equation (2.5), with the same notations as before, the inverse of V,pq,

can be calculated as:

Ulrstu!t
V-l (U — )l =l g Tkl k=l
cond; ( k—1 n ) k—1 n— T Uk__llT

After more algebra calculations and simplifications we obtain an exact form of the in-

verse conditional covariance matrix for the first block as a function of ¢, the unknown
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parameter:

(2 1-¢ 1 .. ..1 1 1+¢ )
1—¢ 2+¢?> 1—¢ ... ... 1 1 1+ ¢
1 1—¢ 2+¢* ... ... 1 1 1+ ¢

Vcoid1=a%2 : : : R : : 3.40)
1 1 1 cee s 240 1—¢ 1+
1 1 1 cee 1= 2497 1
\1+¢ 14¢ 1+¢ ... ... 14¢ 1 ¢’ +20+2 |

Note that the above calculations of the conditional covariance matrix are the same
for all blocks, therefore for each block j, Veond; = Veona;- To simplify notation, we

denote ‘/;ondl by ‘/cond-

We are now in the position to calculate the block-product part of the negative log-

likelihood as

b
1 1
> —1og Leona, = —blog[(%)(k_wzWcond|1/2 (3.41)

i=1

(Xfil - ,u’cund1)T ‘/;;nld (leyil - ,U'condl)

b
=1

(NN

J

b(k—1
= YD yogom) - 2 1og

J

1 b . T T
k—1 * —1 k—1 *
=1
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Note that from (3.40) it follows immediately that

(0 10 0 .....0 0 1
12 10 ......0 0 1
0 —-12 -1 ... ... 0 0 1
0,0 _ 1 S
a_¢ condzg (342)
0 0 0 0 ... ..2 -11
0 0 0 0 ... .. —-12 0
\1 1 11 10 20+2 )
and that
(000 ..00
) 020 0 0
o o Lo
vand = 2 - (3.43)
000 2 0
X y

[a)
ja)
[a)

We assume from here on that o2 is known, since it leads to significant computational
simplifications and has not much bearing on the final result. In other words, denot-
ing the inverse covariance matrix for the Big Blocks process by V(¢), the inverse
covariance matrix for each individual block, conditional on the corresponding mean
by W () (given by (3.40)) and by p?(¢) the conditional mean for block j, we obtain,
modulo some fixed constants, the following form for the pseudo-likelihood function

which needs to be maximized with respect to ¢:

p(¢) = —log|V(e)|+ XV (g) X"

— blog|W (@) + 3 (X} = 17(9)) W(8) (X7 = 19 (8) . (3.44)

Recall that
X' ={X],X5,..., X5}
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where
X — Tk(j—1)+1 + Th(j—1)+2 T - - - + Th(j—1)+k
5 k

and hence we obtain

b k k
T
X V - 2 E E Uzy E E T(i—1)k+£ T(j—1)k+m -

i=1 j=1 £=1 m=1

On the other hand,

Xf_l = (x(j—l)k+1a T(j—1)k+25 - - - ,x(j—1)k+k_1)

and therefore

ST (XET = (9) W(g) (X5 — 4 (9))

j=1
b k-1 k-1
Wer (9) [(x(j—l)kH - M(j—1)k+e(¢))
j=1 £=1 m=1
X (@(-1ksm = HGG-1ktm(@))] (3.45)

To simplify notation, we denote V = V(¢), W = W(¢) and p; = p/(¢). Thus the

expression in (3.45) becomes

b k-1 k—1
E , E :Wm [(@G-1p+e = BG-1yk+e) (BG—1kem — BG-1)+m) ]
j=1 ¢=1 m=1
b k-1 k—1 b k—1 k—1
= Wem T(j—1)k+€ T(j—1)k+m — 2 E Wem T(j—1)k+£ H(i—1)k+m
j=1 ¢=1 m=1 j=1 ¢£=1 m=1
b k-1 k-1
+ Wem H(j—1)k+€ H(j—1)k+m -
j=1 t=1 m=1

Therefore we rewrite (3.44) as

p(¢) = —(log|V]+blog|W])
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1

b k k
E E E Vi T(i—1)k4+L L (j—1)k+m

HMG‘

2
k j=1 =1 £=1 m=1
b k—1 k—1 b k-1 k—1
+ Z Werm T(j—1)k+£ L(—1)k+m — 2 Z Z Z Wem T(j—1)k+£ (G —1)k+m
j=1 £=1 m=1 j=1 £=1 m=1
b k—1 k—1
+ Z Wem H(j—1)k+£ K(5—1)k+m (3.46)
j=1 4=1 m=1

and further define
9(¢) = —(log [V + blog [W])

where | V' | is the determinant of the covariance matrix given in (3.17) and | W |
is given by (3.39) (as functions of ¢). Since the hybrid estimator, let us call it @s,

maximizes the estimation function defined by (3.46), it is a solution of the equation

P(6)=0. (3.47)

There is not an apparent closed form solution for equation (3.47). In order to quantify
the efficiency of the hybrid estimator we need to compute the variance of the hybrid
estimator. To do so, we make use of the “information sandwich” method. The key
elements for this technique are the expected value of the second derivative and the
variance of the first derivative of the estimating function, p(¢).

Since we need to compute the expected value and variance of the first and second
derivative of the pseudo-likelihood function, and since the derivation computations
are more complicated, we derive them first.

The first derivative is given by:

b b k k
OIEITORES ) 99 B) B ST

b k=1 k—1
!
+ E Wem, L(j—1)k+£ L(j—1)k+m
j=1 ¢=1 m=1
b k-1 k-1 b ok—1 k—1
! !
- 2 E Wer T(G— 1)k MG —ktm — 2 E Wem T(j—1)k+£ K(j—1)k+m
j=1 £=1 m=1 j=1 £=1 m=1
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k-1 k-1 k-1

b
Wemn ,LL G—1)k+e K1 Ic—|—m E K1)+ B(j—1)k+m
1

?r

-1

b
+2Z

j=1 £=1 m=1 j=1 £=1

3
Il

while the second derivative is:

b bk k
1
p'(¢) = 9”(@"‘@2 E E E Vi (i—1)k+£ T(j—1)k+m
=1

b k—1 k—1
n
+ E Worn T(j—1)k+€ T(j—1)k+m
j=1 £=1 m=1
k-1 k—1 b k—1 k—1
! !
- 2 g g E wemx(] Dk+e MG 1)ktm — 4 E E E :wemx(jfl)k+f“(j—1)k+m
j=1 £=1 m=1 j=1 £=1 m=1
k-1 k—1 b k—1 k—1
! !
- 2 E E E Werm TG 1)+ H(j—1)ktm T 4 E : E :wﬁm Pi—1)k+e H(G—=1)k+m
j=1 {=1 m=1 j=1 £=1 m=1
k-1 k—1 b k—1 k—1
n
+ QZ wamﬂu e+ G-k + 2 Wem MG—1)k+e K- 1)k+m
j=1 =1 m=1 j=1 =1 m=1
b k—1 k—1
+ E wgmu(g Dk+e M(Gj—1)k+m -

Also, recall that by definition that

Ty 1
HG-1Dk+e = 7 § :$(j*1)k+l’
nki=

and denote by
Te

% .

*

TZ:

(3.48)

Thus, for example, one can express the last term of the sum above as:

B

-1

B

-1 k-1 k-1 k

b k
H(i=1)k+€ H(j—1)k+m = Z Z

1 j=1 £=1 m=1 p=1 ¢=

b
n * __%k i .
WernTe T T(j—1)k+p L(j—1)k+q
j=1 1

o~
Il

1

3
Il

and similarly all the other factors containing the conditional mean.
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We are now in the position to calculate the expected value of the second derivative:

Py(¢) = E[p"(¢)] -

Since {X;} is just the original AR(1) time series, we use its covariance structure to

deduce that:

b b k k
ER" ()] = ")+ D > > i Ni-pktt-m
j=1 i=1 f=1 m=1
k—1 k-1
+ b Z wé’m V|e—m|
£=1 m=1
b k-1 k-1

k
Em m%e —p|

<
Il
—
o~
Il
—

I
N
g

o
ol
|
—
i
—
3
Il
—

ilNg
M-

ki
L

! * !
Worn T, ’Y\Efp\

<
Il
—
&~
Il
—

b k-1k-1 &k
x I
— 2 E E WemTy, V|e—p|
j=1 £=1 m=1 p=1
b k-1k-1 &k k
! x 1 __x
+ 4 § : E :E :wéme Te Vlp—q|
b k—-1k-1 &k k
+ 2 E ,E :wng 7 Yip—d
7=1 f=1 m=1p=1 ¢
b k—1k-1 &k k
+ 2 E :wémT 7 Yp—al

k k
E : 2 : no_x__x
WernTe T ’Y|IJ*(I‘ )

" we mean the first

where 7; is given by (3.37), 7, given by (3.48), by 7;' and 7/
and second derivatives of 7, with respect to ¢. Also, recall that W denotes the
matrix Vond given by (3.40), with entries wy, and w},, w,, are the first and second
derivatives of wy, with respect to ¢. Also, by ¢'(¢) and ¢g”(¢) we mean the first and

second derivatives of g(¢) with respect to ¢. The main feature of the AR(1) time

o1



series that enables us to complete computing E[p”(¢)], is that
Y
W= g

Next, consider the first derivative, p'(¢), and define

Py(¢) = Var[p'(¢)] (3.49)

To compute P;(¢), we first rewrite the first derivative as:

() =

!
Vi T(i—1)k-+€ T(j—1)k+m

I
—

lQ\

S

_|_
M-
-
M=
E

&~
l
-
3
I
R

B
|
—
E S
|
—

!
Wy T(j-1)k+£ L(j—1)k+m

+
M-

j=1 £=1 m=1
b k-1k-1 &k
2 ! * X i
- Wom Te T(j-1)k+L L(j—-1)k+p
j=1 =1 m=1 p=1
b k-1 k-1

x/
Wem Ty T(j—1)k+€ T(j—1)k+p

Il
—

]
ilNg
M-

<.
Il
—

=3
Il
—

o
ESBIERSN
|
—
B
|
—

*! %
Wem Ty Ty T(j—1)k+p T(j—1)k+q

M=
M=

<
Il
—
~
Il
—
Il
—
=3
Il
—
)
Il
—

ko k
! * * ) )
Worm Ty T L(j—1)k+p L(j—1)k+q -

Recall now that the process {X;} is an AR(1) time series, hence we use one more

time the representation:
t

Ty = O¢ Z ¢t_T§T

r=—00

and thus

t t
l_ —
Ty = 062 Z Z ¢t+t " sgr gs -

T=—00 §=—00
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Hence the expression of the first derivative becomes:

k (i—1)k+€(j—1)k+m

iiz Z Z H—J 2k+€+mrsgr€s

1 i=1 £=1 m=1 r=—o0 §=—00

(o) = +

M@

<.
Il

k—1 k=1 (J—1)k-+€(j—1)k+m

+ zb: Z Z zm ¢2(j71)k+£+mfrfs é-r fs

?r

j=1 ¢=1 m=1 r=-o0 §=—00
b k-1 k-1 k (J-1)k+L(j—1)k+
* 1 2(j—1)k+€+p—r—5
- 2 E E m e ¢ G-1) P gr gs
j=1 =1 m=1p=1 r=—o0

W 7y QPUTVREPT=s £ €

oo
b k-1 k-1 k (G—Lk+£(G—

1
1\
M=

1 r=—o0 §=—00

k (G—1k+p (i—1k+g

k
. YN Y mern g

j=1 ¢=1 m=1p=1 ¢g=1 r=—0c0 s=—00

k—1 k-1 &k (I—D)k+p (j—1)k+q

b
+ D DD D DL U ST g

j=1 £=1 m=1 p=1 ¢g=1 r=—o00 s=—00

Making the corresponding notations, rewrite

P(¢) = d(é)+ Z ag)frgs‘f‘ Z av(i)grfs—Q Z ag)&"gs

r,s: r<s r,s: r<s r,s: <8

-2 Y d¥ee+2 ) aq s+ Y a6k,
r,8: T<8 r,8: T<8 r,8: T<8

Note here that a'y are the Big Blocks coefficients, as given by (3.13).

For the next 5 cases, the coefficients are computed as follows (denote by r; =
[r/k], si=1[s/kland ro=71—(ri — 1)k, so=5s— (51— 1) k ): 2

2By [z] we mean the smallest integer greater than or equal to x, and by |z| we mean the largest
integer smaller than or equal to z.
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Case 2

(

Z] 1 Z Zm 1 W @?U—Dh+bimor=s ifr=s5<1,

b k-1 k-1 2Ui—Dk+l+m—r— .
22j:12£:12m:1w2m¢(] )++mr S, 1f7"<8§1,

k-1 2(i—Dk+l+m—r—
22_51+1 “Z:wémaﬁ(f Jetbm—r—s 4

22 Zm so ém ¢2(51*1)k+e+TI’l*T*S ) lf r S 1 <s ’

0’7(“?9) =9 Z] s1+1 Z Zm 1 wlm ¢2(j71)k+5+mfrfs +

k=1 k-1 2(s1—1)k+l+m—r— .
Z:rzZm:szwzmqﬁ(Sl )++mrs, 1f2§7’:3,
2(j—1)k+l+m—r—
223 31+IZ Z 1wem¢(j Jetbtm—r—s
QZE T2 Zm 89 2m ¢2(81—1)k+€+m—r—s s if 2 S r < s and =81,
k-1 2(j—1)k—+£
22781_'_1 1{1Zm lw QS(] ++mrs+
22 D D 5y Wy @251 " DRFEEMT =S if2<r<sandr <s.
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Case 3

k x 12(j—1)k+L+p—r—s : —
Z] 12 Z p1weme¢0 Je+ttp , ifr=s5<1,
k 2(j—1)k+L+p—r—s :
223 12 Z plwngg(/ﬁ] L ; ifr<s<l,
k i e
2 Z] s1+1 Z Z p=1 w[m Ték ¢2(J 1)k+£—|—p ! s+
k—1 k—1 k ! * 42(s1—1)k+L+p—T—5
=1 Zm:l pP=52 Wem Te ¢ ( ) +
k—1 k-1 k ! * 12(s1—1)k+l+p—r—s5 :
=59 Zm:l p=1 wﬁm T(Z QS ( ) 3 lf T S ]_ < 8 and
S9 < k ,
k i— —r—
2 Z] s1+1 Z Z p=1 w;{m Ték ¢2(] 1)k—|—€+p " S+
k—1 k—1 — —r— .
=1 D1 Wom T2 ¢2(Sl Dktbrh—r=s if r <1< sand
SS9 = k y
b k—1 k-1 k ! x 12(j—1)k+L+p—r—s
Zj:s1—|—1 Z@:l Zm:l p=1 Wem, Ty ¢ G=1) +
k 2(s1—1)k+E+p—r—s . _
Zf Tzz p52w€m7—f¢ ! ) 5 leST—S,
k 2(j—1)k+L+p—r—s
aS‘i) = 3 22] s1+1 Z Z p=1 wﬂm Té ¢ +
k—1 k-1 k ' * 12(s1—1)k+l+p—r—s
{=r2 Zmzl pP=52 Wopn, Te ¢ ( ) +
k 2(s1—1)k+L+p—r—s :
Zz szz pr2wem7'e¢ b ; if 2<r<sand
r1 =5 and sp <k,
k i— —r—
2 Z] s1+1 Z Z p=1 wém TZ ¢2(J 1)k+€+p " S+
k—1 k=1 * (2(s1—1)k+l+k—r—s :
t=rs D=1 Wom T¢ (15(1 ) ) if 2<r <sand
ri1=s;and sy =k,
k i— —r—
2 i1 Dot Dot Do W TGP IR0y
k—1 k-1 k ! x 12(s1—1)k+Ll+p—r—35
=1 Zm:l P=s2 W, Ty QS ( ) +
k—1 k-1 k ! * 12(s1—1)k+l+p—r—35 :
f=s5 Zm:l p=1 Wem Ty 0 ( ) ) if 2 <r < s and
ry < sy and s < k|
k
2 Zg s1+1 Z Z p=1 wfm TZ ¢2 J=DktbApr— s+
k—1 k—1 — —pr— .
=1 Dme1 Wem ¢ €252(51 Dktbrk-r=s if 2<r < sand

ri < sy and s, =k .

Case 4 Similar to Case 3, except we replace w),, 7, by wem 7;'
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Case 5

(o k-l w ok A2(j—1)k+ptg—r—s e
Z]l 512 p1z 1 Wen T} T @ , ifr=s<1
223 1 Z Z p=1 Zq 1 Wem Tg 7';;1 ¢2(j—1)k+p+q—r—s , fr<s<li

22; sl+1Z Z p—1 Zq 1 Werm Ty ¢2(J Dktptg—r—s_

2301 X plzq 5y Wem T§' Ty P17 DEPHOTT if r<1<s
ZJ s1+l Z Z p 1 Zq | Wem T T, P2 Dktprg—r—sy
(5) —
Q =
h ;1 Zm;l Z;D:'rz Zq:sz Werm, Tékl 7_:;1 ¢2(5171)k+p+Q*7‘*S : if 2 S r—s

22] 81—1—12 Z p_l Zq lwgm T ¢2(-7 1)k+p+q—r— S+

22[:_1 Z Zp T2 Zq s2 Wem T, T ¢2 si=lk+ptq—r—s y if 2 S r<s
and r; = s1,
! 2(5—1k —r—
22] s14+1 Lal= 12 p—1Z 1wgm7'ék T;qﬁ(ﬂ JkApta—r—s_
2 Z Z p=1 Zq So Wem T, Tr*n, ¢2(81—1)k+p—|—q—'r—5 ; lf 2 S r<s

Case 6 Similar to Case 5, the only difference is that we replace wy,, 7';' T by

! * %
Wor Tt T

Therefore we have expanded the first derivative of the pseudo-likelihood function
as a quadratic form of independent normal random variables. Once the coefficients
of the quadratic form are identified, we can proceed to compute the asymptotic vari-
ance, following the Martingale Central Limit Theorem (its application for quadratic

forms, as described in Chapter II). We compute

where

Y

7

Y

and r < s .



as described above. We calculate the coefficient a, s for each of the 5 main different
cases (eg. r=s<1,2<r=s,r<s<1,r<1<sand2<r<s). Tocompute
the sums over r and s in the variance formula, we note there are two possibilities:
finite sums when 2 < r, s < n or infinite sums when r, s < 1. To exemplify, I will

explain in more detail one of each possibilities.

Finite sums: both » > 2 and s > 2: This case is basically a straightforward

summation over a finite range.

Infinite sums: r < s < 1: In this case we use the fact that both r and s can
be separated from the other power indices. Therefore, we compute the finite sum-
mations first and then sum over r and s. For example, in one of the cases when

r < s < 1 one needs to calculate a sum of the following type:

s 2
1 s bk k 2
> 3 eSS S ]

Next evaluate the finite sums over j, £ and m, and denote the result by ¥, which is

independent of  and s. Continue the summation as:

1 s oo 1 iy s o N,
2, 2 VOIS D O 2 S G A=

S=—0R0 r=—00 S§=—00 T=—00

Combination — finite and infinite sums: » <1 < s: Follow a similar argument
as in the previous case, the only difference being that in the process of calculating
the finite sums one also calculates the sum over s and only use the geometric series

calculations for r.
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We conclude by computing the variance of the “hybrid estimator” for which we

follow the “sandwich information” technique, and obtain

Var(gs] = Py '(¢) Pi(¢) Py () - (3.50)

An approximation for the Bias: As a side comment, note that we can alter-
natively calculate the expected value of the first derivative of the pseudo-likelihood
function using the fact that {X;} is an AR(1) process. We exploit its underlying
covariance structure and the form of the first derivative and proceed similarly as in
the computations for the expected value of the second derivative. Since the ana-
lytical final form is too complicated, we compute the bias of the hybrid estimator
numerically.

As a measure of efficiency, we use the Mean Squared Error (MSE) instead of the
variance alone. To calculate the bias in this case, we use Taylor series expansion as

given in the following derivation.

Since (/33 maximizes the log-likelihood function, it follows that

pl(¢3) =0

and therefore
—p'(¢) = p'(d3) — P'(6) ~ (5 — 0)" p"(9)

where ¢ is the true value of the AR(1) parameter. Therefore, applying the Central
Limit Theorem both side of the above equation we obtain the following formula for

the bias of the estimator ¢s:
Bs[¢] = Elgs — 8] ~ ~["(9)] T E[Y'(9)].
Thus we compute the MSE as

MSE;[¢] = Var[gs] + B3[¢] (3.51)
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and define the asymptotic relative efficiency as:

. 2 _ MSE[¢]
es(o, 3)—m.

Note here that for the classical ML estimator we can calculate the asymptotic bias
which turns out to be 0. These calculations are feasible due to the much simpler
form of the classical likelihood function. However, for the Hybrid estimator the ana-
lytical form of the asymptotic bias is intractable, therefore we analyze its asymptotic
behavior on a set of particular cases. We present the theoretical results obtained for
the asymptotic relative efficiency in Table 3.3 under the “Theory” column of each
case.

For means of comparison, we perform a simulation study of the asymptotic rel-
ative efficiency for the Hybrid estimator. Just as described in Sections 3.2 and 3.3,
for each iteration we simulate an AR(1) time series of length n, which is grouped in
b disjoint groups, each of length k. We start by calculating the ML estimator for the
autoregressive parameter. Next we calculate the likelihood of the block means, as de-
scribed in Section 3.2. To calculate the conditional likelihood for each block we need
to compute the conditional covariance structure, given the block mean, as described
in this Section (see 3.38). The pseudo-likelihood is the product of the conditional
block likelihoods and the likelihood of the block means. We maximize numerically
this function, and obtain the Hybrid estimator for the autoregressive parameter. We
repeat this process 1000 times, and compute the mean value and variance of the two
vectors of estimators. In Table 3.3, under the column labeled “Sim”, we present the
various values of the ratio between asymptotic mean squared errors for the classical
MLE and the Hybrid estimator.

We note that the Hybrid estimator is statistically very efficient, when comparing
it to the maximum likelihood case. We note a slight decrease in efficiency when block
sizes are small, a feature similar to the Small Blocks estimator.

It is evident from tables 3.1, 3.2 and 3.3 that the Big Blocks estimator is the least
efficient one from the statistical point of view, which was to be expected. However,
the more surprising element is that it is not clear, at least not in this context, that the

Hybrid estimator is more efficient than the Small Blocks estimator. For example,

99



0] b=5 k=100 b=10 k=50 b=50 k=10

Theory ‘ Sim Theory ‘ Sim Theory ‘ Sim

-0.750 || 0.99953 | 0.999 | 0.99665 | 0.996 | 0.92267 | 0.943
-0.250 || 0.99802 | 0.998 | 0.97725 | 0.977 | 0.91373 | 0.921
-0.010 || 0.99495 | 0.995 | 0.97028 | 0.971 | 0.89989 | 0.898
0.010 || 0.99457 | 0.995 | 0.97033 | 0.970 | 0.89739 | 0.897
0.250 || 0.99203 | 0.992 | 0.97385 | 0.972 | 0.91409 | 0.903
0.750 || 0.99134 | 0.991 | 0.98952 | 0.990 | 0.91800 | 0.922

Table 3.3: Time Series: Hybrid Asymptotic Relative Efficiency

the Hybrid estimator seems to be more efficient for larger absolute values of the
true autoregressive parameter, which is to be expected, since this means that long
term correlation is strong. The Small Block estimator seems to be more efficient for
values of ¢ closer to 0, but the difference between the asymptotic efficiency of the

two estimators is very small.
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Chapter IV

Extension to Spatial Processes

4.1 Introduction

Although scientists have been preoccupied with the spatial aspect of the empirical
problems (such manifestations date as early as the seventeenth century), the origins
of spatial statistics as we know it are embedded in the work initiated in the mining in-
dustry conducted in South Africa, refined and made rigorous in France, by Matheron
at Ecole des Mines at Fontainebleau. This is why this area of statistics is sometimes
referred to by the name of Geostatistics. While modern environmental applications
have long surpassed its initial setting, most of the early terminology is still used.
Matheron and Krige are among the first scientists to develop the basic equations
for optimal linear interpolation in a spatially correlated field. Other statisticians
showed a constant preoccupation in analyzing, understanding, and removing, if pos-
sible, spatial dependence in agricultural fields. Work of R.A. Fisher in the 1920’s,
Fairfield Smith in 1930’s, Papadakis (1937), Bartlett (1938, 1976, 1978) and Whittle
(1954) led to the development of a somewhat different branch of spatial statistics
than the work in Geostatistics. Technological advances supplied statisticians with
new problems, instances in which the old classical methods are less powerful. Many
of the new challenges which need new tools in order to solve them lie in areas such
as environmental science, medical imaging, ecology or health effects, and are spatial
in nature. Examples of such environmental problems include trend analysis of SO,

across Eastern U.S., deriving spatial maps of SO7  or airborne nitrogen as a func-



tion of time and meteorological variables, and mapping spatial variability of ozone
between rural and urban regions.

The extension from time series to spatial processes is a very natural one. Although
the two display many similarities, there are also fundamental distinctions. Perhaps
the biggest difference is the type of dependence structure that can be introduced.
Sequential dependence in time series describes the relationship between variables
over time. For instance, a time series variable depends only on past values. In
spatial processes, it is natural to allow for spatial dependence which describes the
relationship between variables across some region.

In this section we give a brief introduction to the basic terminology and methods
used in the greater context of spatial statistics, tools that we rely on for the derivation
of the following results. Most of the definitions can be found in Smith, R.L.(2001).
In particular, our goal is to describe the maximum likelihood method of estimation
in this context, outlining its strengths and weaknesses, and proposing an alternative

methodology to solve some of the problems that the classical method cannot.

4.2 Spatial Theory: Background

4.2.1 Spatial Models

The basic object we consider is a stochastic process {Z(s),s € D} where D is a
subset of ¢ (d-dimensional Euclidean space), usually though not necessarily d = 2.
For example, Z(s) may represent the daily quantity of sulfuric acid measured at a

specific location s. Let

denote the mean value at location s. We also assume that the variance of Z(s) exists

for all s € D.

The process Z is said to be Gaussian if, for any £ > 1 and locations s1, sg, ..., Sk,

the vector (Z(s1), Z(s2),-..,Z(s)) has a multivariate normal distribution.
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The process 7 is said to be strictly stationary if the joint distribution of
(Z(s1),Z(s2),-..,Z(sk)) is the same as that of (Z(s1 +h), Z(se+h),..., Z(sk+ h))

for any k spatial points s1, s9,. .., Sg, and any h € R%.

The process Z is said to be second-order stationary (also called weak stationary)

if pu(s) = p and if we denote C(s) by Cov[Z(s), Z(0)] we have:
Cov[Z(s1),Z(s2)] = C(s1 — s9) foralls; € D, s €D .

Note that under the assumption of finite variance, strict stationarity implies second-
order stationarity, but not conversely. However, if the underlying process is Gaussian,

the two definitions are equivalent.

The next useful concept that we need to introduce is the variogram. Assume p(s) is

a constant, which we may take without loss of generality to be 0, and then define
Var|Z(s1) — Z(s2)] = 2v(s1 — s2).

This makes sense only if the expression in the left hand side depends on s; and s
only through their difference s; — s3. Such a process is called intrinsically stationary.
The function 2(+) is called the variogram and ~(-) the semivariogram.

Intrinsic stationarity is weaker than second order stationarity. However, if the latter

holds, we have

We usually assume second-order stationarity though many of the results hold under

the weak intrinsic stationarity assumption.

A separate concept is isotropy. Suppose the process is intrinsically stationary with
semivariogram y(h), h € R%. If v(h) = v(||h||) for some function vy, i.e. if the
semivariogram depends on its vector argument A only through its length ||A||, then
the process is isotropic. Isotropic processes are convenient to deal with because there

are a number of widely used parametric forms for 7,(-). Here are several examples:
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. Exponential

0, ift=0,
Yo(t) =
co+c(l—e By ift>0.
. Gaussian
0, ift=0,
0(t) = .
co+c(l—e /Y ift>0.
. Matérn ;
1 20,8\ * 2/05t
Co(t) = ) Ky, 2.
202=1T(6s) 0, 01

Here 6, > 0is the spatial scale parameter and #; > 0 is a shape parameter. The
symbol I'(-) denotes the usual gamma function, while ICy, is the modified Bessel
function of the third kind of order #; (Abramovitz and Stegun 1964, Chapter
9). Special cases include 6, = % which corresponds to the exponential form
of semivariogram, and the limiting case 3 — oo which results in a Gaussian

form.

. Linear
0, ift=0,
Yo(t) =
co+ecit, ift>0.
Note that ¢y and ¢; are positive constants; this function tends to oo as t — oo

and therefore it does not correspond to a stationarity process.

. Spherical
0, ift=0,
nt)=Je+a{it-1(4)"}, fo<t<R,
co+ ¢, ift>R.

This is valid if d = 1,2 or 3, but for higher dimensions it fails the non-positive-
definiteness condition described below. It is a convenient form because it in-
creases from a positive value ¢y when ¢ is small, leveling off at the constant
co+c1 at t = R. This is of the “nugget /range/sill” form which is often consid-

ered a realistic and interpretable form for a semivariogram.
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6. Exponential-power form

0, if1=0
Yo(t) =
co+ei(l—e WBPY " ift>0,

where 0 < p < 2.

7. Rational quadratic

0, ift=0,
Yo(t) =
co+ct?/(1+t3/R), ift>0.
8. Wave
0, ift=0,
Yo(t) =
cotci{1—Esin(£)} , ift>0.
9. Power law
0, ift=0,
Yo(t) =

co+eth, ift>0.

Non-positive definiteness requires 0 < A\ < 2.

In Figure 4.1 (courtesy Professor R.L. Smith, 2001), we graph a few isotropic semi-
variograms. This illustrates the kind of shapes available: (a) Linear. (b) Spherical.
(c¢) Exponential-power, p = 0.5. (d) Exponential. (e) Exponential-power, p = 1.5.
(f) Gaussian. (g) Rational quadratic. (h) Wave. (i) Power law, A = 0.5. (j) Power
law, A = 1.5. (k)-(o) Different forms of Matérn function with 6, respectively 0.1, 0.5,
1, 2, 10.

In a number of the above families, the general shape of the semivariogram is
quite similar. We always have ,(0) = 0, but -y, increases from a non-negative value
near t = 0 (the nugget) to a limiting value (the sill) which is either attained at a
finite value t = R (the range), or else approached asymptotically as t — oo. In the
latter there is still a scale parameter which we may denote by R, and which may be

defined precisely as the value of ¢ at which ~,(¢) comes within a specified distance of
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Gy (b) (c)

10 10 10
0.8 0.8 0.8
0.6 0.6 0.6
0.4 0.4 0.4 //d
0.2 0.2 0.2

0.0 0.0 0.0
0.0 0.5 1.0 15 2.0 0.0 0.5 1.0 15 2.0 0.0 0.5 1.0 15 2.0
(d) (e) ®
10 10 10
0.8 0.8 0.8
0.6 0.6 0.6
0.4 0.4 0.4
0.2 0.2 0.2
0.0 0.0 0.0
0.0 0.5 1.0 15 2.0 0.0 0.5 10 15 2.0 0.0 05 10 15 20
(9) (h) 0]
10 10 15
0.8 0.8
0.6 0.6 1o
0.4 0.4 os
0.2 0.2
0.0 0.0 0.0
0.0 0.5 10 15 2.0 0.0 05 10 15 20 0.0 05 10 15 20
0] (K) 0]
2.0 1.0 1.0
15 0.8 0.8
0.6 0.6
1.0
0.4 0.4
0.5 0.2 0.2
0.0 0.0 0.0
0.0 0.5 1.0 15 2.0 0.0 0.5 1.0 15 2.0 0.0 0.5 1.0 15 2.0
(m) (n) (o)
1.0 1.0 1.0
0.8 0.8 0.8
0.6 0.6 0.6
0.4 0.4 0.4
0.2 0.2 0.2
0.0 0.0 0.0
0.0 0.5 1.0 15 2.0 0.0 0.5 1.0 15 2.0 0.0 0.5 1.0 15 2.0

Figure 4.1: Examples of isotropic variogram functions.

its limiting value. The case where the nugget is strictly positive may appear para-
doxical because it implies there is a discontinuity in the covariance function, but in

fact this is a well-known feature of spatial data. There are various possible explana-
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tions, the simplest being that there is some residual white noise over and above any

smooth spatial variation, or measurement error interpretation. Figure 4.2 is a plot

1.0 A

Sill
0.8 -

0.6 -

04 A

02 b e Nugget

Range
0.0 -~ 1 g

0.0 0.5 1.0 1.5

Figure 4.2: Idealized form of variogram function.

of the idealized form of the variogram function, illustrating the nugget, sill and range.

Positive definiteness

One cannot define a spatial covariance or semivariogram function in a totally
arbitrary way. The key property which has to satisfy is positive definiteness. In the
most general form where Cov[Z(s1), Z(s2)] = C(s1, $2), which does not suppose any

form of stationarity condition, positive definiteness means that the relation
Z Z CLZ'G,]'C(SZ', Sj) Z 0
]

holds for any finite set of points sy,...,s, and arbitrary real coefficients a, ..., a,.
There is a corresponding theory for the variogram. Suppose 7(-) is the semivariogram
of a second-order stationary process; then, if a1, ..., a, are constants with »_ a; = 0,

we have

ZZaiajv(si —5;) <0.
i
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These conditions are necessary, and the fact that they are sufficient is a consequence

of Bochner’s theorem.

4.2.2 Outline of Various Estimation Techniques

So far, we have defined the main concepts of spatial covariances and variograms.
We continue by considering the estimation problem. We treat this aspect under the
following general setting: let {Z(s), s € D} be a process observed at a finite number

of points s1,...,sn.

Sample Variogram: There are a few alternative ways of estimating the variogram.
The simplest estimator is the method of moments (MoM) estimator, which can be
defined both when the sampling points lie on a regular lattice or not. If the sampling

points s1,...,sy lie on a regular lattice, then the variogram is estimated by

Z(si,s]')EN(h) [Z(S’L) - Z(Sj)]2
[N (h)]

2j(h) =

where N(h) denotes the pairs(s;, s;) for which s; —s; = h and |N(h)| denotes the
cardinality of N(h).
If the points do not lie on a regular lattice, we change the definition of N(h) to

N(h) = {(si;s) : si—s; € T(h)},

T(h) being some small neighborhood or tolerance region around h. Although the
simplicity of this estimator is rather appealing, the main objection is that, like many
methods based on sample averages, it is not robust against outlying values of Z.
Another, more subtle objection, is related to the skewness of the sample distribu-
tion. Cressie and Hawkins (1980) take this into account and suggest an approximate

unbiased estimator of 2y(h):

Y(h) = 1 Z(si;sj)EN(h)[Z(Si) - Z(Sj)]1/2 *
2 = 57 0.494/|N (h)| { N :
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Cressie(1993) goes on and suggests another alternative, a robust estimator. Mean-
ingful information can be obtained by analyzing variogram graphs. One method is

4

to compute these graphs as “variogram clouds”: one point is plotted for each pair of
stations s; and s;. The distance between them, say d;; is plotted along the z axis,
and an estimate of Var[Z(s;) — Z(s;)] is plotted along the y axis. For the latter, we

may use either the MoM or the robust method.

Parametric models: The properties of all three proposed semivariogram esti-
mators have been extensively investigated, and it has been noted that they all lack
the non-negative definiteness property. Hence the sample variogram is not accept-
able as an estimator of the population variogram, since it is possible that spatial
predictions derived from such estimators will appear to have negative variances. The
most common way of avoiding this difficulty is to replace the empirical y(h) by some
parametric form, such as one of the families listed in the previous section. Note
that in general there is no need to restrict ourselves to isotropic models, though it is
usually convenient to consider isotropic models first.

Four main methods are usually considered, least squares estimation, maximum
likelihood (ML) and restricted maximum likelihood (REML), and Bayesian estima-
tors. We describe in more detail only the ML method.

Least squares estimation

Suppose we have estimated the semivariogram #(h) at a finite set of values of h and
we wish to fit a model specified by the parametric function y(h; 6) in terms of a finite
parameter vector f. There are three well-used versions of non-linear least squares

estimators:

e QOrdinary least squares or OLS: choose # to minimize
{7 =20} {7 —(0)}-
e (Generalized least squares or GLS: choose 6 to minimize

{7 =20V EO) {7 -0}
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where V(0) denotes the covariance matrix of 4 which, since the problem is

non-linear, depends on the unknown 6.

o Weighted least squares or WLS: choose 6 to minimize

{7 =@y W(©O) {7 - ()}

where W () is diagonal matrix whose diagonal entries are the variances of the
entries of 4. Thus WLS allows for the variances of 4 but not the covariances,

while GLS allows for both.

In general, we expect the three estimators OLS, WLS, GLS to be in increasing
order of efficiency but in decreasing order of convenience to use. Note, in particular,
that OLS can be immediately implemented by a nonlinear least squares procedure,
whereas WLS and GLS require specification of the matrices W () and V(). For

example, for a Gaussian process we have the following expressions:
Var[{Z(s + h) — Z(s)}*] = 2{27(h)}?
and
Corr [{Z(s1 + h1) — Z(51)}*,{Z(s2 + h2) — Z(s2)}’]

{7(s1 = 82+ h1) +v(s1 — s2 — ha) — y(s1 — s2 + h1 — ha) — Y(s1 — $2)}?
47(h1)’)’(h2)

which may be used to evaluate the matrices W (#) and V(). This GLS is possible
in principle, but complicated to implement. For example, there is no guarantee that
the resulting minimization problem has a unique solution.

As a compromise, Cressie (1985) proposed yet another alternative estimator, the

following approximate WLS criterion: if 4 is evaluated on a finite set {h;}, choose 6

oo {1}

to minimize
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where N(h;) is used to denote all pairs (s;,s;) for which s; — s; = h; and |N(h;)]
denotes the cardinality of N(h;). This criterion is no more difficult to implement
than OLS, and may be expected to be substantially more efficient, while avoiding

the complications of GLS.

The idea behind the restricted mazimum likelihood or REML estimation was orig-
inally proposed by Patterson and Thompson (1971) in connection with variance
components in linear models. However, a number of authors have pointed out that
this situation is essentially the same as arises with Gaussian models for spatial data:
in both cases there is a linear model with correlated errors, whose covariance matrix
depends on some additional parameters. Thus it is natural to try to separate the
two parts of the estimation problem, the “linear model” part and the covariance
structure part. Cressie (1993) is one author who has enthusiastically advocated this

approach to spatial analysis.

4.3 Maximum Likelihood Estimation

4.3.1 Advantages and Disadvantages

As we note in the following technical description of this method, although the
maximum likelihood estimation appears to be computationally feasible, there are
still debates about its desirability when compared with some of the simpler methods
mentioned above.

Mardia and Marshall (1984) considered its asymptotic properties. They con-
cluded that the usual asymptotic consistency and normality are satisfied under a
form of increasing domain asymptotics, by which we mean that the region of study
is increased with the underlying density of sampling points being constant. Unfortu-
nately, the conditions given by these authors in their paper are not necessarily easy
to check, especially in the case of an irregular sampling lattice. Maybe even more
problematic is that there is no indication of how large the samples need to be for

asymptotic results to be reliable indicators of sampling properties.
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Some authors, among which we mention Warnes and Ripley (1987) and Ripley
(1988) drawn attention to the possible multimodality of the likelihood surface.

Another possible problem is sensitivity of this method to starting values. A gen-
eral suggestion is to repeat the algorithm with different starting values and carefully
analyze the results if any difficulties arise in the process.

The issue that we are most concerned with here is the dimensionality problem.
Calculations of the likelihood based on n data points generally require O(n?) com-
putations, which can be computationally demanding for sample sizes as large as 100
observations. We later expand on alternatives suggested by different authors to avoid
this problem, together with our approach to solve it.

The theoretical advantage of maximum likelihood is that we can expect the esti-
mates to be more efficient than the alternative methods in large samples. It is not
clear at this point how big of a benefit this is. Zimmerman and Zimmerman (1991)
presented a simulation study which compared a number of alternative estimators
with MLE and they concluded that the MLE is only slightly superior to the approx-
imate Weighted Least Squares(WLS) from this perspective. It has also been pointed
out that the MLE procedure depends on the assumption of a Gaussian process and
therefore it may perform poorly when the true distribution is non-Gaussian. This
does not imply that the WLS procedure would be superior in this case. Their study
does not address this issue since they restricted their analysis to Gaussian processes.

Our belief is that the potential computational complexity of maximum likelihood
is outweighed by its advantages. It is a convenient, very widely applicable estima-
tion technique, by which a variety of models can be estimated and compared using
either likelihood ratio tests or automatic model selection criterion such as Akaike In-
formation Criterion (AIC). Another advantage is that maximum likelihood methods
naturally link up with Bayesian procedures.

In spite of the disadvantages mentioned at beginning of this section (which are
caveats one should keep in mind when using the method), maximum likelihood is

generally accepted as a valid estimation technique for spatial problems.
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4.3.2 Technical Description

Assume that we are sampling from a Gaussian process. This enables us to write
down the exact likelihood function and to maximize it numerically with respect to
the unknown parameters.

We can incorporate deterministic linear regression terms with essentially no change
in the methodology, so we consider the following model (also called the “universal
kriging” model):

Z ~N(XB,Y) (4.1)

where Z an n-dimensional vector of observations, X an n X ¢ matrix of known
regressors (¢ < n; X of full rank), S a g-vector of unknown regression parameters
and X the covariance matrix of the observations. In many applications we may

assuine

Y =aV () (4.2)

where « is an unknown parameter vector and V' (6) is a vector of standardized co-
variances determined by the unknown vector 6.

With Z defined by (4.1), its density is
1
(2m) /2|27 /2 exp {—5(2 - XB)'sH(Z — Xﬁ)} : (4.3)
Consequently, the negative log-likelihood is given by

1
0B, 0) = glog(%r) + gloga + 5 log [V(0)| (4.4)

+ %(z ~ XB)TV(9) " (Z - XB).

As a side calculation, if for a given V' we define the GLS estimator of 5 based on the
covariance matrix V' as

f=X"V'X)'XTv 7,

we have

(Z-XB)TV1iX=0.
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Therefore,

(Z-XB)TV W Z-XB) = (Z-XB+XB-XB)VWZ-XB+XB—-XP)
= (Z-XPTV Z-Xp)
+ (B=-B)X"VIX(B-B). (4.5)

This confirms that this choice of § indeed minimizes the generalized sum of squares
criterion (4.5) and leads to a sum of squares generalized residuals which we shall
denote by

G?=(Z-XB)TVHZ-Xp). (4.6)

Returning to (4.4), if we define 3(8) = (X"V(0)~'X)"' X7V ()~'Z and the corre-
sponding G? by G?(6) from (4.6) we have

¢ (3(6), a,0) = g log(27) +g log o + %log|V(9)| + % G20).  (4.7)

It is possible to minimize (4.7) numerically with respect to « and 6, or alternatively

to minimize it analytically with respect to a defining

_G0)

n

a(0)
In this case we have to minimize, with respect to 6, the function

f*(ﬁ) = 6(3(0)76‘(0)“9)

@ + L log |V (0)| + g ) (4.8)

n n
= — log(?2 — 1
2og(7r)-|—2 og 5

The quantity (4.7) or (4.8) is often called a profile negative log-likelihood to reflect
the fact that it is computed from the negative log-likelihood (4.4) by minimizing
analytically over some of the parameters. The method suggested here is essentially
that first which was proposed by Kitanidis (1993) and by Mardia and Marshall
(1984). To calculate (4.8), the key element is the Cholesky decomposition which

allows us to write V = L LT where L is a lower triangular matrix. Note here that
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this decomposition requires a number of operations of the order O(n?). Next, write

(4.1) and (4.2) in the form
Z=XB+n, n~N(0,aV) (4.9)
and define Z* =L 'Z , X* =L 'X ,n* =L ', we have
Zr=X"B+n", n*~N(0,al) (4.10)

so that the calculation of B reduces to an ordinary least squares problem for (Z*, X*).
Also, the calculation of |V/| is straightforward because this is just |L|?, and |L| is just

the product of diagonal entries.
This method is summarized in the following algorithm:

CLASSICAL ESTIMATION ALGORITHM

1. For the current value of 6§, compute V = V(#) and hence the Cholesky decom-
position V =L LT,

2. Calculate L=! which is easy, given that L is lower triangular.

3. Calculate |L|, which is just the product of the diagonal entries of L. Hence
V=L

4. Compute Z* = L™ 'Z and X* = L 'X.

5. Solve the ordinary least squares problem Z* = X*3 + n* — the residual sum
of squares is G*(0).

6. Define I*(«, ) by (4.7) or I*(6) by (4.8) so that g is the function to minimize.

7. Repeat each of the steps 1 —6 for each 6 (or each (a, ) pair) for which g has to
be evaluated. The minimum will eventually be achieved at a point § (or (é, 6))

and this defines the maximum likelihood estimator.
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8. Define H to be the Hessian matrix of second-order derivatives of g with respect
to the unknown parameters, evaluated at the maximum likelihood estimators.
This is also known as the observed information matrix, and in the case of a
quasi-Newton algorithm such as DFPMIN routine of Press et al. 1986, may
be obtained approximately from the algorithm itself. (The algorithm does not
attempt to evaluate H directly, but maintains an approximation of it which is
improved as the algorithm continues). In this case, in accordance with standard
maximum likelihood theory, the inverse matrix H~! is an approximation to
the sampling covariance matrix of the parameter estimates. In particular, the
square roots of the diagonal entries of H~! are approximate standard errors of
the parameter estimates. Finally, the minimized value of g may be used for

likelihood ratio tests in comparing one model with another.

Multiple replications
The algorithm described above is designed solely for the single replication case. It can
be easily extended to the multiple replication case. Suppose there are m replications
denoted 71, ..., Z,. The steps to be changed are the ones related to calculating the
profile likelihood. First, for given 6, solve the GLS problem for the mean Z, letting

G3(0) be the generalized residual sum of squares. Then calculate

G2(0) = G2(6) + % S Z -2 Vo) (% - 7).

Finally, substitute into the previous profile log-likelihood, multiplied by m.

4.4 Alternative Estimation Algorithm

4.4.1 Theoretical Considerations

The above example is just one of the many practical instances when computa-
tional issues combined with data sets’ lack of homogeneity impede yielding efficient
estimators in the exact maximum likelihood method framework. Since the number
of computations to calculate the inverse and the determinant of an n X n covariance

matrix is of the order n®, we expect serious delays in getting the results for large data
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sets. With the growing interest in monitoring and analyzing the ozone and partic-
ulate matter over the U.S., scenarios in which data is collected at as many as 8-900
sites a few times daily, computational problems become more and more stringent.

As the exact maximum likelihood function becomes intractable in such instances,
we shall consider again three alternatives to approximating the estimating function.
They are the analogues of the one-dimensional methods described in Chapter III, and
we refer to them as “Big Blocks”, “Small Blocks” and “Hybrid”. We shall analyze
the behavior of all three estimators, and use the results obtained for one-dimensional
time series as guides in helping us decide which of them is the most efficient.

All of these alternative methods are based on the idea of clustering the sampling

sites in a given number of groups, say b, of approximately equal sizes, say k.

For the “Big Blocks” estimator, we first compute the cluster means and then
consider their likelihood as the optimization criterion. Just as before, we expect that
summarizing the entire cluster correlation in a single component, the cluster mean,
to lead to a non-negligible loss in efficiency in some cases, especially for large cluster
sizes.

For the “Small Block” estimator, we compute the pseudo-likelihood function as
the product of individual cluster likelihoods. We assume the cluster correlation
structure is known, belonging to some parametric family. The underlying assumption
here is that the clusters are independent, which will induce some efficiency loss,
although we expect it to be less serious than in the previous case.

To give a general idea of the computational efficiency of the “Hybrid” estimator,
we describe not only the algorithm we shall follow, but also the approximate number
of calculations one needs to perform in order to obtain it. This estimation technique
accounts for both within and between cluster correlation, so we expect it to be

superior to both abovementioned methods. We proceed as follows:

1. Calculate the cluster means and evaluate their joint likelihood. To do so, we
need to compute the inverse of the b x b covariance matrix corresponding to
the cluster means, each of which requires approximately k? steps, followed by

the Cholesky decomposition of a b x b matrix, which requires O(b?) steps. If
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we summarize, the number of evaluation steps required here is O(b* x k% + b?).
If b = n?3, this is of order O(n?), compared with O(n?) for the full likelihood

calculations.

2. Conditionally on the mean of each cluster, compute the joint likelihood for
each cluster. This is an O(k®) operation, which is repeated b times, hence we
perform O(b k?) evaluations. This is of the same or smaller order than the first

step if b > O(n'/?).

3. Finally, compute the pseudo-likelihood function by multiplying all the above
b—+1 likelihood components. This is the function that needs to be maximized in
the estimation process. This method is clearly an approximation, since we work
under the assumption that clusters are independent given the block means.
This assumption is not necessarily verifiable in practice, but it is nevertheless

a reasonable working assumption.

Vecchia (1988) describes a general method for efficiently approximating the like-
lihood function. Although his approach is less refined than the technique we suggest,
the two procedures share some common ideas. The central concept in his paper is
to write p(z1, ..., 2,) = p(21) [[j_, P(zj]21,- .., 2j-1) where p(21,. .., 2,) denotes the
joint density of (Z(s1),...,Z(sn)) evaluated at (z1,...,2,). Then he approximates
p(zj|21,-..,2j_1) by the conditional density of Z(s;) given only the minimum be-
tween m and j — 1 observations among Z(s1),. .., Z(sj—1) that are nearest to z; (in
the Euclidean distance sense), where m has to be much smaller than n. His conjec-
ture is that the smaller the value of m, the more efficient the computations, but the
worse the approximation to the true joint density. Vecchia’s ordering of data points
is arbitrary, and he found it to have some effect on the results. Another weakness of
his method is the fact that, unlike our approach, his ignores long-range correlation
(which we incorporate into the correlation of the cluster means). Therefore, we ex-

pect our methods to yield a better approximation to the likelihood than his approach.

The next section is mainly concerned with the practical aspects of this algorithm
and concludes by describing a complete approach we suggest one should use in ana-

lyzing real data. Theoretical issues will be described and dealt with in Chapter V.
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Practical aspects of the proposed alternative approach

The general setting for this problem is the same as in the previous case. We as-
sume that we are sampling from a Gaussian process, and we continue to incorporate

the deterministic linear regression terms. Thus, the model under consideration is:
Z~N(XB,%)

with Z a n-dimensional vector of observations, X an nx ¢ matrix of known regressors
(¢ < m; X of full rank), 8 a g-vector of unknown regression parameters and 3 the

covariance matrix of the observations, ¥ = (0y;)1<;, j<n- As before, we assume
Y =aV () (4.11)

where « is an unknown parameter vector and V' (f) is a vector of standardized co-
variances determined by the unknown vector 6.

As mentioned before, we suggest clustering the sample points into a given number
of blocks, say b. We perform a classical clustering procedure (such as Ward’s method
which minimizes the within cluster sum of squares, to which we add a supplementary
constraint so that we obtain clusters with similar number of sites). The clustering is
performed according to the latitude and longitude of each sample location. Denote
by b the number of clusters and by k the cluster size. For simplicity and ease of
future reference, let us assume that once the clustering step is completed, we or-
der spatial observations according to the cluster to which they belong to. In other
words, the observation Z; is the i-th observation in the j-th cluster !, where i = [é]
and j = 1 — k [L]| (or, equivalently, the i-th cluster consists of the observations
{Zi-1)k+41,---, Zix}). This section is mainly concerned with the technical details

arising in the implementation of the Hybrid estimator, as it is the most complex

one. However, due to its nature, we have to completely describe the construction

1By [z] we mean the smallest integer greater than or equal to x, and by |z| we mean the largest
integer smaller than or equal to z.
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of the Big Blocks pseudo-likelihood as well, which would be maximized if one was

interested in finding the corresponding estimators.

Big Blocks (or the block-means analysis): We start by evaluating the joint
likelihood of the block means. To do so, we need to compute the mean and covari-
ance matrix of the process.

Define Z* as the vector of cluster means, i.e. Z* = {ZF,...,Z;}* where by
Z? denotes the mean of cluster ¢, i.e. Z; = %25:1 Z(i—1)k+j- We assume that the

process Z* is Gaussian, with mean p* and covariance matrix X*.

Thus the joint density of the cluster means is of the form:
1
(27T)_b/2 |E*|_1/2 exp {_5 (Z* . M*)TE*fI(Z* o u*)}
and hence the negative log-likelihood for the cluster means becomes:

b 1 «
gmeans(ﬁao) = 5 10g(27’l’) + 5 log‘z (0)|

bz T ) (2 ).

In order to be able to proceed to the maximization stage, we need to express p* and

>* as functions of the original quantities. Note that

k
* * 1
o= E[ZZ.]:EZE[Z(H,H]

=1

(s}

k
sz(z 1k+3,r 57"

k k
X(i-
Z (i—1)k+j B = ﬂzj - k( 1)kﬂ—X*B, for1 <i<b (4.12)

?r'ln—t

1
k
and let u* be the vector mean, p* = {ut, ..., u;}".

Next we compute the covariance matrix of the cluster means process. Hence for
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any ¢ and j, compute

E k
o = Cov([Z7, Z* _ZZCOV[Zz Dkt Z(i—1)k+1']
=1 '=1
1 E k
= ﬁ Z Z O(i—1)k+, (j—1)k+V
=1 U'=1

and define ¥* = (07;)1<i,j<b-

Block-conditional analysis: The second step in constructing the Hybrid pseudo-

likelihood function is calculating the conditional block likelihoods given their mean.

To this end, for each cluster 7 consider the joint density of Z;_1yx41, - -, Zii—1)k+k—1
and Z;7, 1 < i < b. It follows that the vector (Z;_1)k+1,-- -, Zik—1, Z;)" is normally
. . . . Yio i
distributed with vector mean (p;_, pf) and covariance matrix . where
T Oj
o uf =X} [ as given by (4.12)
° MiT, = {M(z’—1)k+1, ooy Mik—1} = X B,
L] Ei_ = (O-(ifl)k:—kj, (ifl)k+j’)1§j,j’§k—1 where O(i—1)k+j, (i—1)k+j' ar€ elements of the

original variance-covariance matrix,

o o} = Var[Z}] = Zle Zf,:l O(i—1)k+1 , (i-1)k+r as defined for the Big Blocks

case, and

o 7;_ = {Tli—1)k+1,---»Tik—1} Where for all 1 < j <k —1 we have
T(i—1)k+j = COV[Z (i—1) k—|—] ZU (i=1)k+5', (i—-1)k+j

From the theory of multivariate normal distributions, we obtain the joint density of

Z(i—l)k—|—17 ey Zz'k—l given Zz* to be

T T
T; Ti T;
N(#i-*‘ UZI (Z; — 1), i — — )

i Oy
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For brevity’s sake, we denote

e i+ — (2 — i)

PN

I
™
I
|
|
*
k
|
—~
b
N
=
IN
<!
h\'
IA
S
T

i
It is immediate that for any 1 <i <band any 1 < j, j/ < k — 1 we have

: T(—1)k+3T(i—1)k+j'
c p—
05551 = O(i=1)k+j, (i-1)k+5' — ” and

Oy

p = X fm(Zi =~ XB) = m Z + (X —m X])

Therefore, we write
Zi —pS=(Zi. —mi Z})— (X —mi X}) B
and define

A

Z’L — N Zz*7

Hence the conditional log-likelihood for each cluster, given the cluster mean, is of

the form:
k—1 1
€ (8,6) = 5 log(2m) + 5 log| £%(6)|
1 - . .
+ 3 (Z5 — X53)T X% (0) (29 — X“) . (4.14)

Finally, we multiply all the aforecomputed individual likelihoods, and obtain the

approximate likelihood function (or, equivalently, we sum the b+1 individual negative
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log likelihoods). Thus, from (4.12) and (4.14) it follows that

b

qull(,B; 9) = Zmeans (ﬁ: 0) + Z Eci (67 9)

=1

or, more explicitly, we obtain
1 b
lun = 5 |bk log(2m) +log |T*(0)| + ) "log | (0))|
i=1

+ (Z7=-Xp)T TN (27 - X*B)

b
+ ) (2= X9B)T RETHO) (2% — X9B) | . (4.15)
i=1
In the original algorithm, we first estimate the regression parameters 5 through
generalized least squares, using the covariance matrix . Since this process involves
computing the inverse and the determinant of the full matrix, which is prohibitive for
large data sets, we propose here the use an approximation to the covariance matrix,
call it 3.
Following the conditional independence assumption, we consider ¥ to be given
by:

S0 0

- 0 X2 ... 0

HE I (4.16)
0 0 2%
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If in a similar manner we denote by

()g\ /Z;\

Xy Zy

X7 Z
N X - 7
X = k1 and 7= k1

X7? AR

Cc2 C2
Xk—l Zk—l

X 7./

then an estimator for 3 is given below:
B= (XTS1X)KTE1Z (417)

The obvious advantage of this approach is that the inverse of the approximate co-

variance matrix, 2! is the inverse of a block diagonal matrix. Thus,

Ik 0 0
ca_| 0 s 0
0 0 ... X%

Going back to the form of the pseudo-likelihood function in (4.15) and substituting
B by B, we obtain the function of @ and 6 to be minimized through an iterative

numerical procedure.
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Finally, the steps described in the original case should be followed with several

changes, as described below:
MODIFIED ALGORITHM

1.

Note first that we can assume, without any loss of generality, that ¥ = o V' (0)
and hence ¥* = aV*(#). For the current value of 6, compute V* = V*(0)
and V., = V,,(#). Next, perform the Cholesky decomposition V* = L*L*" and
Ve, = LciLg for all 7 =1, b.

. Calculate L*~! and Lc_,-l for all 7 = 1,b (which is straightforward to do, since

they are all lower triangular matrices).

Calculate |L*| and |L.,| which are simply the product of the diagonal entries
of L* and L., respectively, for all i = 1,b.
Thus |V*| = |L*|? and |V,,| = | L, |?, for all i = 1,b.

. Compute Z** = L*7'Z* and X** = L*7'X*. Also compute Z%** = L' Z¢

and X¢** = L7t X% where for all i =1,b, Z% and X are given by (4.13).

Solve the approximate ordinary least squares problem Z=XB+X\ leading to
B the estimator of 8 as described in (4.17).

Define the profile negative log-likelihood as £,;(6), (the function to be mini-
mized), given by (4.15)

Repeat each of the steps 1 — 6 for each # for which ¢ has to be evaluated. The
minimum will eventually be achieved at a point 0 which defines the Hybrid

estimator.
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Small Blocks: This is the simplest of the three methods to implement, and
there are no technical details that are worth describing in detail. The general idea is
that the criterion function here is the product of block likelihoods, as the underlying
assumption is block independence:

b
(Z; = X; 855 (Z; = X; ﬂ)) :

(4.18)

b
1 1

j=1

7j=1

The problem of the least squares estimation is approximated in a similar fashion as
for the hybrid estimator, with the exception that the approximate covariance matrix,

S is just the block-diagonal matrix:

1 ... 0

Mr
Il

(4.19)
0 ... %

where ¥; is the covariance matrix for the j group. Also, in this case, X = X and

7=27.

4.4.2 Simulation Study

It is clear from the previous section that theoretical derivation of the asymptotic
efficiency of the alternative estimators are very involved. Even in the simpler case of
AR(1) time series these computations are rather complicated, and we have seen that
only in one case, the Small Blocks estimator, we have been able to derive a closed
form expression for the asymptotic efficiency. Therefore, we will not attempt to fol-
low the “Expansion Method” here, but rather analyze the asymptotic performance

of the alternative estimators through a simulation study.

Let the model be the one specified in (4.1),

Z ~ N(XB,)
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where Z an n-dimensional vector of observations, X an n X ¢ matrix of known re-
gressors (¢ < n; X of full rank), 8 a g-vector of unknown regression parameters and

Y the covariance matrix of the observations.

For simulation purposes, we first create the location matrix, and in for this exercise
we consider a 20 by 20 grid, equally spaced, with the (Euclidean) distance between
any two locations equal to 2 units.

The next step is to choose the structure of the true covariance matrix, and we
assume that it belongs to the exponential family. In other words, the structure of the
spatial covariance matrix is of the form: ¥ = o V(R), where « is a scaling parameter
and R is the Range. If we denote by d;; the Euclidean distance between any two

locations 7 and j, then the matrix V is of the form:

1, iti=j,
exp(—d;j/R), ifi#j.

In order to decide what true value of the parameter o we should choose, we note that,
since it is a scaling parameter, its magnitude should be irrelevant to the estimation
process. Thus, throughout this simulation study, we consider only the case when
a = 3.

As the Range parameter is driving the spatial structure of the model, we expect
that our simulation study will lead to different results according to the magnitude
of R. Hence we consider here two cases, R =1 and R = 3.

As noted earlier, the estimation process is a two-step procedure, the first one
being analytical estimation of the regression parameters. In the classical case, this
is just the generalized least squares technique using the full covariance matrix, but
for the alternative methods, we are using the approximate covariance matrix given
by (4.16). There might be some loss of efficiency in the estimation of the spatial

parameters due to this approximation. Therefore, we consider two different cases for
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the simulation study, one including no regression terms, and the other including the
intercept, longitude and latitude in the design matrix.

Another issue to be studied through this simulation exercise is how the number
of blocks influences the relative efficiency of the proposed estimators. Recall that the
data set consists of 400 locations, and we consider the special cases of 4,8,10,25,40,50
and 100 blocks.

For each simulation, we keep the grid of locations fixed, (therefore the design
matrix X is completely specified) and construct the covariance and design matrix,
i.e. X. Our goal is to generate the vector of observations Z, and to accomplish this
we follow the classical technique employed in such cases. First perform a Cholesky
decomposition, i.e. ¥ = L LT, where L is a lower triangular matrix. Therefore, it
follows that the inverse matrix ¥! = LT~" L. Next, we generate Y ~ AN (0, 1),
where by I we understand the n by n identity matrix. As a consequence, Z =
X B+ LY follows the normal distribution, as described by model (4.1).

Since Z, X and ¥ are completely specified at this point, we evaluate the exact
likelihood function, maximize it and find the maximum likelihood estimators for «
and R, say ayrr and Ry pg.

Next step is to calculate the alternative estimators for a given number of blocks,
say b. Employ the same data set generated for the classical case, and cluster it in b
blocks; evaluate the pseudo-likelihood functions for the Small Blocks and Hybrid, as
described in the previous section and maximize the criterion functions which yield
the alternative estimators, say agp and Rgp for the Small Blocks, and ayyp and
Ryyp for the Hybrid. Repeat this process a large number of times (in this study we
performed 4000 simulations per scenario.) As a final step we compute the average
value of the resulting arrays of estimators for each case (MLE, SB, HYB), the bias
and the variance, leading to the mean squared error. We conclude by evaluating the
ratio between the mean squared error of the classical ML estimator and the mean
squared error of the alternative estimators. The results are presented in Tables 4.1
through 4.4. Note that, based on our conclusions for the time series problem, we
expect the Big Blocks estimator not to be very efficient, therefore we do not include

this method in the simulation study.
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| PAR || MET | b=4 | b=8 [ b=10]|b=25 | b=40 | b=50 | b=100 |
a=3] SB [1.000]0.997 [ 0.997 | 0.997 | 0.996 | 0.998 | 0.997
HYB | 1.000 | 0.997 | 0.997 | 0.997 | 0.995 | 0.997 | 0.996
R=1 | SB [0.949 | 0.887 [ 0.896 | 0.797 [ 0.691 | 0.658 | 0.524
HYB | 0.949 | 0.892 | 0.897 | 0.808 | 0.720 | 0.702 | 0.618

Table 4.1: Small Blocks and Hybrid Relative Efficiency, R=1, No Regression

| PAR | MET |b=4 |b=8 |b=10]|b=25|b=40 | b=50 | b=100 |
a=3] SB [0.969 |0.953[0.945 | 0.940 | 0.948 | 0.954 | 0.961
HYB | 0.967 | 0.943 | 0.929 | 0.918 | 0.895 | 0.915 | 0.959
R=3 [ SB ]0.955 |0.911 [ 0.910 | 0.878 | 0.848 | 0.832 | 0.776
HYB [0.952 | 0.896 | 0.885 | 0.839 | 0.787 | 0.779 | 0.796

Table 4.2: Small Blocks and Hybrid relative efficiency, R=3, No Regression

| PAR || MET | b=4 |b=8 |b=10[b=25 | b=40 | b=50 | b=100 |
a=3] SB ]1.000 | 1.000 [ 0.999 [ 0.999 | 0.999 | 0.999 | 0.999
HYB | 1.000 [ 1.000 | 1.000 | 1.000 | 0.999 | 1.000 | 0.999
R=1 [SB  ]0.945]0.869 [ 0.883 [ 0.774 [ 0.721 [ 0.663 | 0.538
HYB [0.941 | 0.857 | 0.864 | 0.751 | 0.691 | 0.644 | 0.559

Table 4.3: Small Blocks and Hybrid relative efficiency, R=1, With Regression

| PAR || MET |b=4 |b=8 |b=10[b=25 [ b=40 | b=50 | b=100 |
a=3] SB ]0.980 | 0.944 [ 0.928 [ 0.919 | 0.910 | 0.914 | 0.906
HYB | 0.985 | 0.961 | 0.949 | 0.952 | 0.944 [ 0.958 | 0.957
R=3 [ SB ]0.966 | 0.929 | 0.926 | 0.909 | 0.853 | 0.861 | 0.788
HYB [0.962 | 0.912 | 0.901 | 0.872 | 0.815 | 0.813 | 0.778

Table 4.4: Small Blocks and Hybrid relative efficiency, R=3, With Regression
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From Tables 4.1 through 4.4 we note that both methods lead to relatively efficient
estimators for most cases. Note that the estimator for the scaling parameter « is
more efficiently estimated than the one for the Range. Block size does not appear to
influence the efficiency when estimating oe. However, the efficiency for the estimators
for the Range is more sensitive to the size of the groups, smaller cluster sizes leading
to less efficient estimators for the Range. The Range parameter seems to be more
efficiently estimated when the true value is equal to 3, rather than when it is equal
to 1.

Comparing Tables 4.1 and 4.2 with Tables 4.3 and 4.4 we note that inclusion of
location columns in the design matrix does not affect the efficiency, therefore the
approximations we used to compute the estimator for the regression parameters did

not induce much loss in efficiency in this cases.

For a better visualization of the simulation results, we present here two plots.
Figure 4.3 displays the resulting estimators from 4000 simulations, for 10 blocks,
a = 3 and R = 1, for each of the three methods (MLE, Small Blocks and Hybrid)
while Figure 4.4 displays the resulting estimators from 4000 simulations, for 100
blocks, @« = 3 and R = 1 (again, for each of the three methods). We note from these
two plots that both methods perform well compared to the classical MLE, for each

of the two parameters, somewhat closer to the MLE when estimating «.

4.4.3 Simulation Error

The results from this simulation study suggest that the difference in relative
efficiency between the two methods is not very large. The natural question is how
much of the difference is due to simulation error. We address this issue here.

Our strategy is to construct some confidence intervals for the asymptotic relative
efficiencies for the two methods, in order to asses whether and when one method
is more efficient than the other. To this end, we calculate the ratio between the
asymptotic mean squared errors of the Small Blocks and Hybrid estimators as well.
The methodology we employ here is a simple bootstrap procedure. As a result of

the simulation study, we have three vectors of 4000 estimators (independent within
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Figure 4.3: 4000 Estimators for 10 blocks, R =1

the vector). From each vector, randomly select a sample of 4000 observations (with
replacement), calculate the mean squared error of the resample, and compute the
ratio between the mean squared errors for each vector. Repeat this process 10,000
times. The last step is to order these ratios for each scenario. For a 95% bootstrap

confidence interval, using the percentile method, we find the values that cut off the
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Figure 4.4: 4000 Estimators for 100 blocks, R =1

lower 2.5% and the upper 2.5% of our data. Results for each of the cases are shown
in Tables 4.5, 4.6, 4.7 and 4.8. For each of the cases, we present the asymptotic
relative efficiency as well as the 95% bootstrap confidence intervals.

These results indicate, as we have already noted, that the difference in the ef-

ficiency between the two methods is very small. We can conclude that for these
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Method

a=3

R=1

4 blocks

SB vs. MLE
HYB vs. MLE
HYB vs. SB

1.000 (0.937 , 1.066
1.000 (0.936 , 1.065
1.000 (0.939, 1.069

0.949 (0.886, 1.019
0.949 (0.887 , 1.020
1.000 (0.932 , 1.069

8 blocks

SB vs. MLE
HYB vs. MLE
HYB vs. SB

0.997 (0.934 , 1.062
0.997 (0.937, 1.061
1.000 (0.940 , 1.066

0.887 (0.827, 0.951
0.892 (0.832, 0.955
1.006 (0.936 , 1.080

10 blocks

SB vs. MLE
HYB vs. MLE
HYB vs. SB

0.997 (0.933 , 1.063
0.997 (0.936 , 1.064
1.000 (0.938 , 1.068

0.896 (0.838, 0.959
0.897 (0.838, 0.960
1.002 (0.937,1.072

25 blocks

SB vs. MLE
HYB vs. MLE
HYB vs. SB

0.997 (0.933 , 1.062

1.000 (0.940, 1.067

0.797 (0.739 , 0.859

1.014 (0.940, 1.095

40 blocks

SB vs. MLE
HYB vs. MLE
HYB vs. SB

0.996 (0.933, 1.062
0.995 (0.933 , 1.058
0.999 (0.938 , 1.063

0.691 (0.642 , 0.742
0.720 (0.670 , 0.774
1.042 (0.963 , 1.125

50 blocks

SB vs. MLE
HYB vs. MLE
HYB vs. SB

0.998 (0.937, 1.064
0.997 (0.935, 1.061
0.999 (0.937, 1.064

0.658 (0.611, 0.708
0.702 (0.654 , 0.751
1.066 (0.991 , 1.154

100 blocks

SB vs. MLE
HYB vs. MLE
HYB vs. SB

0.997 (0.936 , 1.063
0.996 (0.933, 1.061

(
(
(
(
(
(
(
(
(
(
0.997 (0.936 , 1.063
(
(
(
(
(
(
(
E
0.999 (0.938 , 1.064

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

0.524 (0.486 , 0.563
0.618 (0.574 , 0.664

(
(
(
(
(
(
(
(
(
(
0.808 (0.751 , 0.867
(
(
(
(
(
(
(
E
1.179 (1.087 , 1.276

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

Table 4.5: Bootstrap Confidence Intervals for « = 3, R = 1, Without Regression

examples the two methods yield to estimators that are comparable in efficiency.
There are some instances, as in Table 4.5, 100 blocks, where there is a clear ordering
of the methods, despite the simulation error. In this case, for example, it is clear
that the Hybrid estimator for the Range is asymptotically more efficient than the
Small Blocks estimator. However, the general conclusion is that it is not possible to

decide which of the two methods leads to more efficient estimators, in part due to

the error induced through simulation.

Another conclusion reinforced by the bootstrap analysis is that the scaling pa-
rameter is more efficiently estimated than the Range. The other previous conclusion

that is confirmed is that the estimator for the Range seems to be more efficient when

block sizes are large.

93



Method

a=3

R=3

4 blocks

SB vs. MLE
HYB vs. MLE
HYB vs. SB

0.969 (0.909, 1.035
0.967 (0.910, 1.030
0.998 (0.937, 1.063

0.955 (0.889 , 1.026
0.952 (0.885 , 1.024
0.997 (0.927 , 1.074

8 blocks

SB vs. MLE
HYB vs. MLE
HYB vs. SB

0.953 (0.896 , 1.014
0.943 (0.884 , 1.005
0.990 (0.927, 1.054

0.911 (0.847, 0.980
0.896 (0.835, 0.964
0.984 (0.913, 1.061

10 blocks

SB vs. MLE
HYB vs. MLE
HYB vs. SB

0.945 (0.888 , 1.008
0.929 (0.871, 0.990
0.984 (0.926 , 1.046

0.910 (0.846, 0.978
0.885 (0.821 , 0.952
0.973 (0.901 , 1.049

25 blocks

SB vs. MLE
HYB vs. MLE
HYB vs. SB

0.940 (0.883 , 1.001

0.976 (0.915, 1.040

0.878 (0.816 , 0.946

0.956 (0.885, 1.032

40 blocks

SB vs. MLE
HYB vs. MLE
HYB vs. SB

0.948 (0.891 , 1.011
0.895 (0.839, 0.955
0.945 (0.885, 1.007

0.848 (0.791 , 0.912
0.787 (0.730 , 0.850
0.928 (0.860 , 1.003

50 blocks

SB vs. MLE
HYB vs. MLE
HYB vs. SB

0.954 (0.896 , 1.017
0.915 (0.859, 0.976
0.960 (0.899, 1.021

0.832 (0.771, 0.894
0.779 (0.722, 0.839
0.936 (0.865 , 1.012

100 blocks

SB vs. MLE
HYB vs. MLE
HYB vs. SB

0.961 (0.901, 1.020
0.959 (0.900, 1.022

(
(
(
(
(
(
(
(
(
(
0.918 (0.860 , 0.979
(
(
(
(
(
(
(
E
0.998 (0.937 , 1.063

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

0.774 (0.719, 0.834
0.796 (0.739 , 0.856

(
(
(
(
(
(
(
(
(
(
0.839 (0.778 , 0.905
(
(
(
(
(
(
(
E
1.029 (0.955 , 1.108

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

Table 4.6: Bootstrap Confidence Intervals for « = 3, R = 3, Without Regression
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Method

a=3

R=1

4 blocks

SB vs. MLE
HYB vs. MLE
HYB vs. SB

1.000 (0.936 , 1.069
1.000 (0.933 , 1.068
1.000 (0.936 , 1.068

0.945 (0.875, 1.018
0.941 (0.873,1.014
0.996 (0.923 , 1.074

8 blocks

SB vs. MLE
HYB vs. MLE
HYB vs. SB

1.000 (0.936 , 1.067
1.000 (0.938 , 1.066
1.000 (0.939 , 1.068

0.869 (0.803 , 0.942
0.857 (0.792, 0.930
0.986 (0.904 , 1.074

10 blocks

SB vs. MLE
HYB vs. MLE
HYB vs. SB

0.999 (0.935, 1.066
1.000 (0.935 , 1.067
1.000 (0.936 , 1.070

0.883 (0.820, 0.949
0.864 (0.803 , 0.929
0.978 (0.908 , 1.059

25 blocks

SB vs. MLE
HYB vs. MLE
HYB vs. SB

0.999 (0.936 , 1.065

1.000 (0.935 , 1.068

0.774 (0.715, 0.840

0.970 (0.892, 1.055

40 blocks

SB vs. MLE
HYB vs. MLE
HYB vs. SB

0.999 (0.937, 1.066
0.999 (0.933, 1.066
1.000 (0.937, 1.069

0.721 (0.666 , 0.780
0.691 (0.638 , 0.747
0.958 (0.880, 1.041

50 blocks

SB vs. MLE
HYB vs. MLE
HYB vs. SB

0.999 (0.935, 1.067
1.000 (0.934 , 1.067
1.000 (0.937,1.071

0.663 (0.613, 0.718
0.644 (0.597 , 0.697
0.970 (0.893 , 1.056

100 blocks

SB vs. MLE
HYB vs. MLE
HYB vs. SB

0.999 (0.937, 1.065
0.999 (0.937, 1.065

( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
1.000 (0.935 , 1.068)
( )
( )
( )
( )
( )
( )
( )
( )
( )
1.000 (0.938 , 1.068)

0.538 (0.496 , 0.580
0.559 (0.516 , 0.605

(
(
(
(
(
(
(
(
(
(
0.751 (0.693 , 0.812
(
(
(
(
(
(
(
E
1.039 (0.955 , 1.130

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

Table 4.7: Bootstrap Confidence Intervals for « = 3, R = 1, With Regression
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Method

a=3

R=1

4 blocks

SB vs. MLE
HYB vs. MLE
HYB vs. SB

0.982 (0.925, 1.044
0.988 (0.931, 1.049
1.005 (0.948 , 1.064

0.972 (0.924 , 1.023
0.969 (0.919 , 1.022
0.997 (0.946 , 1.050

8 blocks

SB vs. MLE
HYB vs. MLE
HYB vs. SB

0.953 (0.898 , 1.011
0.970 (0.915, 1.031
1.018 (0.959, 1.081

0.940 (0.892, 0.991
0.926 (0.877,0.976
0.985 (0.932, 1.038

10 blocks

SB vs. MLE
HYB vs. MLE
HYB vs. SB

0.936 (0.882, 0.993
0.958 (0.902, 1.015
1.023 (0.964 , 1.085

0.927 (0.879, 0.977
0.905 (0.856 , 0.957
0.976 (0.922, 1.032

25 blocks

SB vs. MLE
HYB vs. MLE
HYB vs. SB

0.926 (0.875, 0.981

1.035 (0.978 , 1.097

0.907 (0.862 , 0.955

0.961 (0.909, 1.013

40 blocks

SB vs. MLE
HYB vs. MLE
HYB vs. SB

0.926 (0.875, 0.981
0.959 (0.906 , 1.017
1.035 (0.978 , 1.097

0.907 (0.862 , 0.955
0.871 (0.824, 0.920
0.961 (0.909, 1.013

50 blocks

SB vs. MLE
HYB vs. MLE
HYB vs. SB

0.920 (0.868 , 0.975
0.963 (0.909, 1.018
1.046 (0.987,1.107

0.855 (0.813, 0.897
0.816 (0.773, 0.860
0.955 (0.905, 1.008

100 blocks

SB vs. MLE
HYB vs. MLE
HYB vs. SB

0.912 (0.861 , 0.967
0.963 (0.909, 1.020

( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
0.959 (0.906 , 1.017)
( )
( )
( )
( )
( )
( )
( )
( )
( )
1.056 (0997, 1.119)

0.794 (0.753 , 0.836
0.785 (0.747 , 0.828

(
(
(
(
(
(
(
(
(
(
0.871 (0.824 , 0.920
(
(
(
(
(
(
(
E
0.990 (0.940 , 1.042

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

Table 4.8: Bootstrap Confidence Intervals for a = 3, R = 3, With Regression
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Chapter V

Application to the Precipitation Data Set

Large spatial data sets are not at all uncommon, and there is an increasing
interest in inference based on the entire information available. One such example is
the precipitation data set we present in this chapter, consisting of almost 6000 sites
throughout the U.S. We begin by describing the general characteristics of the data.
Our goal is to produce a spatial map for trends in monthly average precipitation. We
perform a two-stage analysis: a site analysis to compute the monthly trends, followed
by the spatial analysis. The estimation of spatial parameters is performed through
the classical maximum likelihood technique (providing a standard for comparison),

as well as through the alternative methods we proposed in the previous chapters,

Small Blocks and Hybrid.

5.1 Data

The data set that we use to illustrate the impact of the alternative estima-
tion techniques is the U.S. Daily Precipitation, compiled and made available by
the National Climatic Data Center (NCDC). This data consists of a network of
5873 sites throughout the U.S. The coverage is given by: Southernmost Latitude—
25N, Northernmost Latitude—50N, Westernmost Longitude—125W and Eastern-
most Longitude—65W. A map of all the sites is shown in Figure 5.1. At each site,
precipitation is measured on a daily basis and the reporting unit is tenths of mil-

limeters. The length of the individual site time series is 18,993 days, for the period



Figure 5.1: NCDC Daily Precipitation Data Set: 5873 Sites

from January 1, 1948 to December 31, 1999. We concentrate our attention to the
time period between January 1, 1965 and December 31, 1999.

As a first step in understanding the data set, we draw a spatial map of aver-
age precipitation as measured by this network, for the period of interest. This is

represented in Figure 5.2.
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Figure 5.2: Interpolated Average Precipitation 1965-1985

5.2 Site Analysis

Throughout this section, we describe the aggregation of data performed at each
site, in order to proceed to the spatial data analysis. The method employed is the

same for all sites in the network, therefore, to simplify the notation, we shall drop
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the index corresponding to the site number.

To further simplify the spatial analysis, we first compute the trends in monthly

average precipitation over the 20 years of interest. To do so, we consider the model:

t

where a is a unknown parameter, ¢ € (1,..,20 x 12), b a unknown vector of 12 pa-
rameters, and I represents the 12 by 12 identity matrix (corresponding to the month
variable).

We proceed by estimating the regression parameters through least squares, and

record the values of a for future use in the spatial analysis.

5.3 Spatial Analysis

In the previous section, data at each site are aggregated into trends of monthly
precipitation. This section is concerned with the evaluation of a spatial map based
on these trends. A very crude interpolation technique is available in the Splus soft-
ware. It is based on a triangulation scheme, where linear interpolation is used in
the triangles bounded by data points. As a first step in understanding the spatial
structure of the data, we employ this procedure for the aggregated site trends we

computed previously, and the resulting map is shown in Figure 5.3.

Ideally, we would like to be able to estimate the parameters of the spatial covariance
for the entire data set. Due to its large dimensions, it is not feasible to complete the
estimation process employing the classical maximum likelihood techniques. There-
fore, we start by confining our attention to a subset of the data, specifically 150
sites in Texas, as shown in Figure 5.4. As a first step in this analysis, we consider
the covariance structure to belong to the exponential family, as given by equation
(4.20). The design matrix X does not incorporate any functions of the site locations,
therefore the only regression parameter that is to be estimated through least squares

is the one corresponding to the intercept.
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Figure 5.3: Interpolated Trends in Monthly Precipitation 1965-1985

We begin the analysis by computing the maximum likelihood estimators for the two

spatial parameters driving this model, i.e. the scaling parameter o and the Range
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Figure 5.4: 150 Sites in Texas

parameter R. The results, which we denote by &, and Rup are:

log(Gare) = —3.32855 and Ryg = 0.54084 (5.2)
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To estimate the parameters through any of the three alternative techniques, we
need to group the data into clusters. We consider first the case of 30 groups, each
containing 5 sites. Applying the Small Blocks method we obtain the estimators &sp
and R 1, while employing the Hybrid method we obtain &gy g and Ruys. Results

for such a clustering are:

log(disg) = —3.352 and Rgp = 0.509
log(dryp) = —3.371 and Ryyp = 0.592 .

We repeat this analysis a number of times, each time reclustering the data before
proceeding with the estimation step. Also, we consider different cluster numbers, i.e.
15, 10 and 5 clusters of equal sizes. Results from all these analyses are displayed as
a scatter plot in Figure 5.5. It is clear from this plot that the two alternative meth-
ods lead to estimators that are very close in magnitude to the maximum likelihood

estimators, but it is not obvious which of the two produces better estimators.

Our objective is to evaluate a spatial map for the monthly precipitation trends over
these 150 sites of interest. Therefore, it would be more sensible to compare the re-
sulting maps for the three pairs of estimators, rather than their magnitudes. Such
maps are displayed for two cases, the first one based on 30 groups of sites (Figure
5.6), and the second one based data clustered in 10 groups (Figure 5.7). Each of the
two figures presents three maps, the first corresponding to the maximum likelihood
case, the second to the Small Blocks method, and the third to the Hybrid technique.
The maps are produced using kriging methodology on a 20 by 20 regular grid. Since
the dimension of the problem still permits us to compute the inverse covariance ma-
trix, we do a full kriging here, in order to compare the three methods. However,
this would not be possible to do if the dimension of the problem were much larger,
therefore we would need to rely on a conditional kriging approach.

It is again clear from Figures 5.6 and 5.7, that the alternative estimators lead to
spatial maps that are almost identical to the map based on the maximum likelihood

estimators.
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Figure 5.5: Scatterplot of Various Estimators for 150 Sites in Texas

In conclusion, according to the results obtained in this section, it follows that the

two alternative methods, Small Blocks and Hybrid, do lead to results comparable to

the classical case. Since they are computationally more efficient, it is therefore more

advantageous to employ them for large data sets, where the maximum likelihood

methods fail to produce the estimators.
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Figure 5.6: Interpolated Trends in Texas, 150 Sites, 30 blocks
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Figure 5.7: Interpolated Trends in Texas, 150 Sites, 10 blocks
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Chapter VI

Forthcoming Work

The previous chapters describe the practical aspects related to the implementa-
tion of the alternative methods of estimation for the spatial parameters. Numerical
studies illustrate performance of the estimators in the spatial setting, and an applica-
tion to a real data set give an indication of their applicability. Theoretical derivations
of the asymptotic efficiency could become extremely involved in more general cases.
We illustrate here how would one extend the “Expansion technique” for the one di-

mensional time series problem to its analogous spatial process.

Extension to a Lattice Sampled Process

Consider a spatial process on an integer lattice, denoted x;; where ¢ and j are
integers. Since we are going to model the process by its covariance structure, then
one of the simplest forms to consider for the covariance structure is the Kronecker
product form, i.e.

Cov[zij, T] = %gtl)’YJ(;); (6.1)

where v() and v are the covariances of one-dimensional time series in the horizontal
and vertical directions. If we assume that these are both of AR(1) form, with the

same autoregressive parameter, then we deduce
_ 2 it it
Cov[zij, Ty] = awqb“ [+li-4 (6.2)

where |¢| < 1 for stationarity.



An equivalent definition, which represents (6.2) as a function of an array of inde-

pendent N[0, 1] random variables {¢;;}, is the formula

2y = 04(1 — ¢°) Z Z " Eitrjts (6.3)

r=0 s=0

We may also represent the process equivalently by
Tij — O(Tirg + Tijr1) + O Tiyrjn = € (6.4)

where €;; = 0,(1 — ¢?)&;; are independent N[0, 0?2], 02 = 02(1 — ¢?)%. In the Kro-
necker product notation, the covariance function of the process is U ® U, and the
inverse covariance function is U ' ® U~!, where U and U ! are again given by (3.2)
and (3.3). Note that the processes we have defined here lie within the general class

of spatial processes on lattices first defined by Whittle (1954).

We now consider maximum likelihood estimation of ¢. The model is that obser-
vations {z;;, 1 <4 <m, 1 < j < n} have a joint normal distribution with mean 0
and covariances given by (6.2). We also assume — because it simplifies the calcu-
lations and has little bearing on the final result — that o? is known. The negative

log-likelihood for ¢ is then, modulo some fixed constants,

Zzzxzjmwvijte +log |V, (6.5)

j=1 t=1 ¢=1

m n m n

i=1

where V' is the inverse covariance matrix and v;j, is a component of the inverse
covariance matrix evaluated at the (i,j) x (¢,¢) position. However the covariance

matrix is U, ® U,, where U, for any n is given by (3.2), and the inverse covariance

matrix is therefore U ' ® U.!, where U, ! for any n is given by (3.3). Thus the

n n
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analytical form of v;j is completely specified as follows:

(A B0 0 ... 00
B C B 0 0 0
s_loBC B 00
000 .. B CB
\0 0 0 .. 0 B A

where A, B and C are n X n matrices given by

(1 =6 ... 0 0 )

- 1+¢* ... 0 0

Al - . . . |
0 0 1+¢* —¢
\ 0 0 6 1 )

(-6 ¢ 0 0 0 )
@ —p—¢ ¢ 0 0

B= : : : : | and

0 0 0 —¢—¢° ¢’

\0 0 o0 @ =0 )
[(1+¢2 —6-¢* 0 .. 0 0 )
—p—¢> (1+¢°)? —9—¢° ... 0 0

oo 9 —¢.—¢3 (1+'<;52)2 9 0
0 0 0 cee T+ 92?2 —9p—¢°
\ 0 0 0 == 146 )

(6.6)

(6.7)

(6.8)

(6.9)

Observe that the estimating function in (6.5) can be rewritten as a quadratic form

in independent normal random variables, taking advantage of the representation of
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z;; in (6.3) and (6.4). Therefore we can follow the expansion technique, much like we
did in Chapter III, using the Martingale Central Limit Theorem and its Corollary for
quadratic forms. For the classical MLE, we can also use the information matrix to
calculate the asymptotic variance, and hence compare the results. Since the method
involving Fisher information approximation would not lead to valid conjectures about
the alternative estimators, i.e. Big Blocks, Small Blocks and Hybrid, we shall follow
the expansion technique and obtain their asymptotic variances. Theoretical results

will also be compared with their simulation derived analogues.

Small Blocks analysis To illustrate how the theoretical approach works for the
lattice sampled process described in this section, we consider here the case that
seemed to be the most manageable in the one-dimensional case. For simplicity, con-
sider here that m = n, i.e. the sampling lattice is a square. Also, assume that we
group the data in b x b disjoint groups, each consisting of k£ x k observations.

As for the one-dimensional process, in this case we assume that the blocks are
independent. Therefore, the pseudo-likelihood in this case, is the product of the b2
block likelihoods, i.e. .

L(¢) = H HLp,q(@ (6.10)

p=1 q=1
where by L, ,(¢) we denote the likelihood corresponding to block (p, ¢). On the
other hand, the block likelihood is nothing but the classical likelihood reduced to a
certain block. We denote by V* the covariance matrix corresponding to any block
(again, the covariance structure is identical for all the blocks). In other words, from
equation (6.5) follows that the block negative log-likelihood is, modulo some fixed

constants,

k k k
Z Zm(p_l) k+i, (q—1) k+j T(p—1) k+t, (q—1) k+£ U(SH) k+i, (£—1) k—|—j+10g Vel

i=1 j=1 t=1 ¢=1
(6.11)

We employed here a different notation for the indexes of the matrix V¥, which better

\E

Ep,q =

illustrates the concept of block likelihood, as well as facilitates the actual calculations.
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Also, in writing out the equation (6.11), we exploited the fact that the covariance
matrix is going to be identical for each block.

From (6.5) and (6.11) it follows that the pseudo negative log-likelihood is given
by

k k

b b k k
DD DD D vkt (- ks T b, (-1 R+ V1) ke, 1) k108 [V

p=1 ¢g=1 =1 j=1 t=1 (=1

(6.12)

The first comment we make about the function in equation (6.12) is that it is

a degree four polynomial in the unknown parameter ¢ (this is just a result of the
specific analytical form of the Kroneker product U~! @ U~!). Therefore, one can
check that it satisfies the hypotheses in Theorem 2.3. In particular, assumptions
(A) and (B) are straightforward. As we have shown in Chapter II, for condition (C)
to be satisfied, all we need is that the expectations of the first order derivative are
bounded on a neighborhood of the true value of the parameter. This condition is
satisfied by the function in equation (6.12), therefore we can conclude that the two

dimensional Small Blocks estimator is consistent.

Although the practical implementation of the Small Blocks method is very simple,
computing the theoretical asymptotic efficiency is not. Our intent is to follow the
principles outlined in the expansion method, as outlined in Chapter II. Using the
alternative representation of the lattice process, as in equation (6.3), it is clear that
we can expand the first derivative of the criterion function as a quadratic form of
independent normal random variables. However, identification of the coefficients
in the quadratic form is not a trivial step. For the moment, we proceed to the
calculation of the expected value of the second derivative of the pseudo negative
log-likelihood, as we need this quantity in the sandwich information technique. We
can take advantage of the properties of the underlying AR(1) processes to compute
the expected value of the second derivative avoiding coefficient identification. We
proceed by computing the expected value of the second derivative for each block.

Going back to equation (6.12), and denoting by V*" the second derivative of the
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inverse covariance matrix, we have that

(4 B" 0 0 ... 0 0 )
B" C" B" 0 ... 0 0
. 0O B" C" B" ... 0 0
vei=r o (6.13)
O 0 0 ... B" C" B
\ 0 0 0 .. 0 B" A"

where A”, B"” and C" are the second derivatives, with respect to ¢, of the k x k

matrices given by the expressions (6.7) through (6.9):

(00 ... 00 [0 2 0 0 0)
02 ..00 2 —6¢ 2 0 0
A= |, B= : and  (6.14)
00 .20 0 0 0 .. —6p 2
\0 0 ... 00 \0 0 0 2 0
[ 2 —6¢ 0 ... 0 0 )
—6¢ 4+12¢° —6¢ ... 0 0
0 —6¢ 4+124° ... 0 0
oo | 0 2o . (6.15)
0 0 0 ... 4+12¢ 69
\ 0 0 0 .. —6¢ 2 )

Therefore the analytical form of V*" is fully specified, and we can proceed to the
actual calculation of the expected value for the second derivative of the criterion

function. Thus, we have that

k
Elly o = D3 303 0%ty ki, o) b BI801) ki, (0-1) ks Bl kb, (g-1) ]

k k
i=1 j=1 t=1 =1
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(05 [V2]) [V?] = (9g[V2))?
Vo2

k

k
= o Z Z Z Z V1) kb, (1) k4 gltir el

i=1 j=1 t=1 ¢=1
(05 [V2]) V2] = (9 [V)*

o (6.16)

+

which is straightforward to calculate.

Note that in equation (6.16) it was immaterial that we were referring to block
(p,q). As a consequence, the expected value of the second derivative of the pseudo
negative log-likelihood function is the same for all blocks.

As we have mentioned before, calculating the variance of the second derivative
is a much more difficult procedure, and we shall develop this as part of our future
research. We shall extend theoretical calculations for the other two alternative meth-
ods as well. Based on our experience with the one dimensional problem, we know
we will not obtain a closed form solution for the inverse covariance matrix for the
means process, and we might not even do so for the conditional covariance matrix for
the Hybrid method. Therefore, we plan on completing all the calculations involved

relying on numerical methods.

The applicability of the alternative methods described in this work goes well
beyond the particular environmental data sets that we have employed to illustrate
them. Large spatially correlated data sets are emerging from other sciences as well.
One example would be biology, where there is need for estimating tools that can
handle rich data sets. It is my intent to include such applications in my further

research, as well as continuing the exploration of EPA and NOAA resources.

Another interesting extension to these methods is including the temporal aspect

into the analysis, transitioning from a spatial analysis to a spatio-temporal one.
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Also, the possible extension to nonstationary spatial processes is a very appealing
feature of these methods, as one does not need to assume that the parametric model
remains constant over the entire region, but rather assume stationarity on smaller

subsets.
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