
EXACT TRANSITION PROBABILITIES FORTHE INDEPENDENCE METROPOLIS SAMPLERRichard L. Smith 1 ; 2 and Luke Tierney 3May 6 1996.Abstract. A recent result of Jun Liu's has shown how to compute explicitly the eigen-values and eigenvectors for the Markov chain derived from a special case of the Hastingssampling algorithm, known as the indepdendence Metropolis sampler. In this note, weshow how to extend the result to obtain exact n-step transition probabilities for any n.This is done �rst for a chain on a �nite state space, and then extended to a general (discreteor continuous) state space. The paper concludes with some implications for diagnostic testsof convergence of Markov chain samplers.1. IntroductionSuppose we want to generate a Monte Carlo sample from a discrete distribution�j ; j = 1; :::;m. The distribution is not easy to sample from directly, and it is possi-ble that the functional form of �j may be known only up to some unspeci�ed normalizingconstant, which will be inconvenient to compute directly if m is very large. One strategyis as follows: pick some other distribution fpj ; j = 1; :::;mg which is easy to sample from,then de�ne the Markov transition kernelKij = ( pj min�1; wjwi � ; j 6= i,1�Pk 6=iKik; j = i. (1)where wj = �jpj is the weight associated with state j. It is easy to check that fKij ; 1 � i �m; 1 � j � mg de�nes the transition kernel of a reversible Markov chain for which f�jgis a stationary distribution. If we can check that the chain is irreducible and aperiodic(a separate calculation, but usually straightforward) it then follows that the stationarydistribution is unique and that the chain therefore converges to this distribution. Themethod is in fact a special case of the Hastings (1970) algorithm known as the independenceMetropolis chain; see in particular Tierney (1994). Moreover, it readily extends to caseswith in�nite (countable or uncountable) state space.1 Address for correspondence: Statistical Laboratory, 16 Mill Lane, Cambridge CB21SB, U.K.2 Department of Statistics, University of North Carolina, Chapel Hill, N.C. 27599-3260,U.S.A.3 School of Statistics, University of Minnesota, Minneapolis 55455, U.S.A.1



Recently Liu (1996) has shown that there exists an exact eigenanalysis of this system.Suppose the states are ordered so that fw1 � w2 � ::: � wmg. Then (1) simpli�es toKij =8<: pj ; if j < i,pi + �i; if j = i,�jwi ; if j > i, (2)where �i =Xk>i�pk � �kwi� ; 1 � i �m� 1: (3)De�ne �0 = 1; �m = 0, andv0 = (1; 1; 1; :::; 1)T ;vk = (0; 0; :::; 0; Sk+1;��k; :::;��k)T ; 1 � k � m� 1;where for k > 0 the �rst k�1 entries are 0, the k'th is Sk+1 �Pmi=k+1 �i and the remainingentries are all ��k. Then Liu showed, as is easy to check directly, that the eigenvaluesof K are 1 = �0 � �1 � ::: � �m�1 and that v0;v1; :::;vm�1 are the corresponding righteigenvectors.In Section 2, we show how Liu's result may be extended to obtain exact n-step transi-tion probabilities for the Markov chain with transition kernelK. In section 3 we extend theresult to more general (mixed discrete/continuous) state spaces and provide a direct proofthrough integration by parts. Section 4 examines conditions for geometric convergence.The paper concludes in Section 5, with some discussion and an explicit example.2. Discrete caseSuppose ek is the unit vector with 1 in the k'th position (1 � k � m) and 0 everywhereelse. As in the previous section, we de�ne Sk =Pi�k �i, with S1 = 1.Proposition 1. For 1 � k �m� 1,ek = �kv0 + 1Skvk � �k k�1Xj=1 vjSjSj+1while for k =m, em = �kv0 � �m m�1Xj=1 vjSjSj+1 :Before proving this, we note the following simple identity:2



Lemma 1. For 1 < i � m, 1 + i�1Xj=1 �jSjSj+1 = 1Si : (4)Proof of Lemma 1. For i = 2, this follows at once from S2 + �1 = S1 = 1. For i > 2,the result then follows by induction, using the identity1Si+1 � 1Si = �iSiSi+1 :Proof of Proposition 1Let e�k = �kv0 + 1Skvk � �k k�1Xj=1 vjSjSj+1 ;where, in the case k =m, we de�ne vm to be the zero vector.For i < k, the i'th component of e�k is�k + �k i�1Xj=1 �jSjSj+1 � �kSi+1SiSi+1 = �k0@1 + i�1Xj=1 �jSjSj+1 � 1Si1A = 0using Lemma 1.The k'th component of e�k is�k + Sk+1Sk + �k k�1Xj=1 �jSjSj+1 = �k0@1 + k�1Xj=1 �jSjSj+11A+ Sk+1Sk= �kSk + Sk+1Sk = SkSk = 1:To make this argument valid in the case k = m, we need to de�ne Sm+1 = 0.For i > k, the i'th component of e�k is�k � �kSk + �k k�1Xj=1 �jSjSj+1 = �k0@1� 1Sk + k�1Xj=1 �jSjSj+11A = 0:3



Thus we have shown that e�k = ek, and the proof is complete.We now use Proposition 1 to derive exact n-step transition probabilities. LetK denotethe matrix with entries (Kij ) and let Kn denote its n'th power, with entries (K(n)ij ), sothat K(n)ij is the n'th-order transition probability from state i to state j.De�ning vm = 0 and �m = 0, we have from Proposition 1, for 1 � k �m,ek = �kv0 + 1Skvk � �k k�1Xj=1 vjSjSj+1and so Knek = �kv0 + �nkSkvk � �k k�1Xj=1 �nj vjSjSj+1 :Hence if vji denotes the i'th component of vj ,K(n)ik = �k + �nkSk vki � �k k�1Xj=1 �nj vjiSjSj+1 :Noting that vji =8<: 0 if i < j,Sj+1 if i = j,��j if i > j,we have shown:Proposition 2.K(n)ik = 8>>><>>>:�k �1 +Pi�1j=1 �nj �jSjSj+1 � �niSi � for i < k,�k �1 +Pk�1j=1 �nj �jSjSj+1 � �nkSk �+ �nk for i = k,�k �1 +Pk�1j=1 �nj �jSjSj+1 � �nkSk � for i > k.
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3. The general caseThe result of Proposition 2 may be extended to general distributions on a measurable space(E; E). Suppose we wish to simulate from a probability measure � on (E; E). We assumethat we are able to sample from a distribution P . We must assume that � is absolutelycontinuous with respect to P , and that we can evaluate a density w(x) = �(dx)=P (dx).The independence Metropolis-Hastings sampler is then as follows: Given a current stateXn = x, choose a new state y from the probability measure P , then accept the new stateand set Xn+1 = y with probability minf1; w(y)=w(x)g. Otherwise reject the new stateand set Xn+1 = x. When both w(x) and w(y) are zero, we reject the new step and remainat x. As usual, both the drawing from P and the accept/reject decision are independentof each other and of all past random events.If the second part of the Metropolis-Hastings step results in the process rejecting theproposed move, then we say that a rejection has occurred. This does not include thecase when the random drawing from P selects the same value x, which is automaticallyaccepted. The distinction is important whenever x is an atom of P . The probability thata rejection occurs, given that the current state is x, is �(w(x)), where�(w) = Zfy: w(y)�wg�1� w(y)w �P (dy)= Zfy: w(y)�wg�P (dy)� �(dy)w �for w > 0 and �(0) = P (fy : w(y) = 0g).For a more restricted set-up than we are considering here, Liu (1996), generalizing hisresult for discrete chains, showed that the spectrum of the transition operator consists of allvalues of �(w(x)), x 2 E, together with 1. If w� is the essential supremumof w(x) (essentialwith respect to � or P ), then the essential supremum of �(w) is 1�1=w�. Thus if w� <1then there is a \spectral gap" of size 1=w�, and the n-th order transition probabilities of thechain di�er from the stationary measure � by a term of order at most (1� 1=w�)n. Thuswe have uniform geometric convergence whenever w� <1. Our subsequent developmentwill allow these results to be re-derived as a consequence of general formulae for the n-steptransition probabilities.De�ne ~�(w) = �(fy : w(y) � wg) and ~P (w) = P (fy : w(y) � wg) for all real valuesw, and let ~�(dw) and ~P (dw) denote the corresponding probability measures on the Borelsubsets of the real line. Let ~�(w�) denote the left hand limit of ~�(x) at w. The function�(w) can then be written as�(w) = Zv�w �1� vw� ~P (dv) = ~P (w) � ~�(w)w : (5)Note that �(w) = 1� 1w when w > w�. 5



By Fubini's theorem, we also have�(w) = ~P (0) + Z(0;w] �1� vw� ~P (dv)= ~P (0) + Z(0;w]�1v � 1w� ~�(dv)= ~P (0) + Z(0;w] Z wv 1u2 du~�(dv)= ~P (0) + Z w0 Z(0;u] 1u2 ~�(dv)du= ~P (0) + Z w0 ~�(u)u2 du (6)for w � 0. In particular, �(w) is di�erentiable in the ordinary sense with derivative~�(w)=w2 whenever w > 0 and w is a continuity point of ~� .De�ne Tn(w) = 0 when ~�(w) = 0 andTn(w) = 1 + Zv>w �n(v)~�(v)~�(v�)d~�(v)� �n(w)~�(w) (7)when ~�(w) > 0. Then Proposition 2 suggests the following general result:Theorem 1. The n-step transition kernel for the independence Metropolis-Hastings chainis given by pn(x; dy) = Tn(w(x) _ w(y))�(dy) + �n(w(x))�x(dy)where �x(dy) denotes point mass at x and x _ y = maxfx; yg.To prove this result we �rst develop an alternate representation for Tn(w). We beginwith a preliminary result:Lemma 2. For any a � b with ~�(a) > 0,Z(a;b] ~�(dv)~�(v)~�(v�) = 1~�(a) � 1~�(b) :Proof of Lemma 2. For each integer n � 1 let x0 = a � x1 � � � � � xn = b be a partitionof the interval (a; b] and assume that �n = maxfxi � xi�1 : i = 1; : : : ng ! 0 as n !1.Then for each n1~�(a) � 1~�(b) = nXi=1 � 1~�(xi�1) � 1~�(xi)� = nXi=1 ~�(xi) � ~�(xi�1)~�(xi)~�(xi�1) = Z(a;b] hn(v)~�(dv)6



where hn(v) = 1~�(xi)~�(xi�1)for xi�1 < v � xi. Since �n ! 0, hn(v)! 1~�(v)~�(v�)for any v 2 (a; b] as n ! 1. Since hn is nonnegative and R(a;b] hn(v)~�(dv) is �nite andconstant in n, an argument analogous to the proof of Sche��e's theorem shows thatZ(a;b] hn(v)~�(dv)! Z(a;b] ~�(dv)~�(v)~�(v�) ;which completes the proof of Lemma 2.Using Lemma 2 we can now rewrite Tn(w):Lemma 3. For any w with ~�(w) > 0,Tn(w) = Z 1w n�n�1(v)v2 dv:Proof of Lemma 3. Using the integration by parts formula for Lebesgue-Stieltjes integrals(e.g. Hewitt and Stromberg, 1975, Theorem 21.67) together with (5), (6) and the resultof Lemma 2, Tn(w) = 1� �n(w)~�(w) + Zv>w �n(v)d�� 1~�(v)�= 1� �n(w)~�(w) + ���n(v)~�(v) �1w + Z 1w 1~�(v) ddv (�n(v))dv= Z 1w 1~�(v) n�n�1(v)~�(v)v2 dv= Z 1w n�n�1(v)v2 dv;which completes the proof of Lemma 3.The representation of Lemma 3 shows that ~T1(w) = 1=w when ~�(w) > 0, and thusproves Theorem 1 for n = 1. To prove the theorem for n > 1 we need to show that theformula for pn(x; dy) satis�es the Chapman-Kolmogorov equationpn+1(x; dy) = Z pn(z; dy)p1(x; dz):7



SinceZ [Tn(w(z) _ w(y))�(dy) + �n(w(z))�z (dy)] p1(x; dz)= Z [Tn(w(z) _ w(y))�(dy) + �n(w(z))�z (dy)] � 1w(x) _ w(z)�(dz) + �(w(x))�x(dz)�= �Z 1w(x) _ wTn(w _ w(y))~�(dw) + �n(w(y))w(x) _ w(y) + �(w(x))Tn(w(x) _ w(y))��(dy)+ �n+1(w(x))�x(dy);it is enough to show thatTn+1(u _ v) = Z 1u _ wTn(w _ v)~�(dw) + �n(v)u _ v + �(u)Tn(u _ v) (8)for n � 1 and all v with ~�(v) > 0.Suppose u; v � 0 and ~�(v) > 0. Using Lemma 3 and Fubini's theorem the integral onthe right hand side of (8) can be written asZ 1u _ wTn(w _ v)~�(dw) = Z Z 1w_v 1u _ w n�n�1(z)z2 dz ~�(dw)= Z 1v Z[0;z] 1u _ w ~�(dw)n�n�1(z)z2 dz= 1u Z u_vv n�n�1(z)z2 ~�(z)dz+ Z 1u_v " ~�(u)u + ~P (z) � ~P (u)# n�n�1(z)z2 dz: (9)>From (6) we have Z u_vv n�n�1(z)z2 ~�(z)dz = �n(u _ v) � �n(v); (10)and (5) implies thatZ 1u_v " ~�(u)u + ~P (z) � ~P (u)# n�n�1(z)z2 dz= Z 1u_v n�n�1(z)z2 ~P (z)dz � �(u)Z 1u_v n�n�1(z)z2 dz= Z 1u_v n�n�1(z)z2 ~P (z)dz � �(u)Tn(u _ v): (11)8



Finally, using (5) and integration by parts the integral on the right hand side of (11)becomesZ 1u_v n�n�1(z)z2 ~P (z)dz = Z 1u_v n�n(z)z2 dz + Z 1u_v n�n�1(z)z2 ~�(z)z dz= nn+ 1Tn+1(u _ v) + Z 1u_v 1z ddz (�n(z)) dz= nn+ 1Tn+1(u _ v) + ��n(z)z �1u_v + Z 1u_v �n(z)z2 dz= nn+ 1Tn+1(u _ v) � �n(u _ v)u _ v + 1n+ 1Tn+1(u _ v)= Tn+1(u _ v) � �n(u _ v)u _ v (12)Combining (9), (10), (11), and (12) the integral on the right hand side of (8) isZ 1u _ wTn(w _ v)~�(dw) = �n(u _ v) � �n(v)u � �n(u _ v)u _ v � �(u)Tn(u_ v) + Tn+1(u_ v);and thus the right hand side of (8) is�n(v)u _ v + �n(u _ v) � �n(v)u � �n(u _ v)u _ v + Tn+1(u _ v)= [�n(u _ v)� �n(v)] � 1u � 1u _ v � + Tn+1(u _ v)= Tn+1(u _ v)This proves (8) and completes the proof of Theorem 1.4. Geometric rates of convergenceThe essential supremum (with respect to P or �) of the function �(w) is achieved whenw = w� and is then r = 1 � 1w� . It is clear from the form of (7) that j1 � Tn(w)j � Krnfor some �nite K, and all w. Hence for any �-measurable set A,����Zy2A pn(x; dy) ��(A)���� = O(rn) as n!1: (13):Moreover, from the fact that the chain starting at x remains at x for at least n stepswith probability �(w(x))n , this also serves as a lower bound on the rate of convergence,for any x. 9



Therefore, the chain has a geometric rate of convergence, with rate r, whenever r < 1.This occurs if and only if w� < 1, and then r = 1 � 1w� . The converse result showsthat this cannot be improved, and in particular, if w� =1, the chain is not geometricallyergodic.This result matches a number of others which have been obtained in recent years.Tierney (1994, Corollary 4) noted that when w� < 1, then the chain is geometricallyergodic with convergence rate r satisfying r � 1 � 1w� . Mengersen and Tweedie (1996)showed that when w� =1 the chain is not geometrically ergodic. Liu (1996) also showedr � 1� 1w� directly by a simple coupling argument.There are also some related results which apply to more general chains than theindependence Metropolis sampler. For example, Roberts and Tweedie (1996) showed thatfor any algorithm with invariant measure � not concentrated at a single point, for whichthe rejection probability P (x; fxg) is a measurable function of x,ess sup�P (x; fxg) = 1implies that the Markov chain is not geometriclaly ergodic.Finally, we note that the independence sampler is stochastically monotone with respectto the function w(�): if x and x0 are two starting states with w(x) < w(x0), then it is possibleto construct two coupled chains Xn and X 0n, for n � 0 with X0 = x, X 00 = x0, such thatw(Xn) � w(X 0n) for all n � 1. A general theory for rates of convergence in stochasticallymonotone chains has been developed by Lund and Tweedie (1996).5. An example: exponential distributionAlthough the result of Theorem 1 is an explicit formula, it seems unlikely that thereare many cases where the integrals can be explicitly evaluated and so expressed in termsof simple algebraic formulae. We present here one instance, albeit arti�cial, where this ispossible.Suppose E = [0;1), � is Lebesgue measure, and �(x) = e�x; x > 0, p(x) =�e��x; x > 0. We assume 0 < � < 1 to guarantee that p(�) has heavier tail densitythan �(�). Then w(x) = ��1e�(1��)x achieves its maximum w� = ��1 at x = 0, and thetransition density is p(x; y) = � �e��y ; y < x,�e�y+(1��)x; y > x.It is easily checked that �(x) = (1� �)e��x, andTn(x) = 1 + (1� �)n ex�n�x � 11� n� � (1 � �)nex�n�x:10



Theorem 1 indicates that the transition probabilities are of the following form. SupposeX0 = x. Then with probability �(x)n, the process does not move, i.e. Xn = x. Otherwisethe process moves to a new point y say, and the transition density from x to y is given bypn(x; y) = ��(y)Tn(y); y < x,�(y)Tn(x); y > x. (14)It is possible, though tedious, to verify (14) directly.Now let us consider an application. From (14), we deducePrfXn > yjX0 = xg = 8<: e�y � (1��)n1�n� (e�y � e�n�y); y < x,e�y n1 + (1� �)n ex�n�x�11�n� � (1� �)nex�n�xo ; y � x. (15)We can now see what this implies in terms of the rate of convergence to the limit e�y.Indeed, from (15) we see that, provided x > 0,PrfXn > yjX0 = xg = �1 + (1� �)nn� � e�y + o� (1� �)nn � : (16)The case x = 0 is di�erent because in this case the dominant term in the error is (1� �)n,i.e. �(0)n.Garren (1994) and Garren and Smith (1995) have proposed a statistical technique forestimating the convergence rate of a Markov chain, based on approximations of the formPrfXn 2 EjX0 = xg = �+ a2�n2 + o(�n2 ) (17)where E is some subset of the state space, �2 is the second largest eigenvalue of thetransition matrix, and a2 is a constant depending on both x and E. An approximationof this form can be rigorously justi�ed in the case that the transition operator is Hilbert-Schmidt, a condition which is valid for many instances of the Gibbs sampler, but not, ingeneral, for Metropolis-Hastings chains. The question therefore arises as to what form ofapproximation is appropriate in cases where the operator is not Hilbert-Schmidt.For this particular example, (16) shows that the convergence rate is of O(�n2 =n), where�2 = 1��. More generally, our result shows how the n-th order transition probabilities maybe expressed as integrals of �n(x) and this suggests some form of Laplace approximationto obtain the convergence rate. Thus one reason for being interested in having an explicitformula for the n-step transition probabilities is that we now have a class of examples forwhich the exact convergence rate may be calculated analytically.Acknowledgements. We are grateful to Jun Liu for a prepublication copy of his paper.Comments by Richard Tweedie and Gareth Roberts are also gratefully acknowledged.11
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