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Abstract. A recent result of Jun Liu’s has shown how to compute explicitly the eigen-
values and eigenvectors for the Markov chain derived from a special case of the Hastings
sampling algorithm, known as the indepdendence Metropolis sampler. In this note, we
show how to extend the result to obtain exact n-step transition probabilities for any n.
This is done first for a chain on a finite state space, and then extended to a general (discrete
or continuous) state space. The paper concludes with some implications for diagnostic tests
of convergence of Markov chain samplers.

1. Introduction

Suppose we want to generate a Monte Carlo sample from a discrete distribution
7, 3 =1,...,m. The distribution is not easy to sample from directly, and it is possi-
ble that the functional form of 7; may be known only up to some unspecified normalizing
constant, which will be inconvenient to compute directly if m is very large. One strategy
is as follows: pick some other distribution {p;, j = 1,...,m} which is easy to sample from,
then define the Markov transition kernel

e ﬂ> .
K=" mm< ) T (1)
1_Ek¢iﬁik7 J =1t

where w; = ;—j is the weight associated with state j. It is easy to check that {{;;, 1 <: <
m, 1 < j < m} defines the transition kernel of a reversible Markov chain for which {r;}
is a stationary distribution. If we can check that the chain is irreducible and aperiodic
(a separate calculation, but usually straightforward) it then follows that the stationary
distribution is unique and that the chain therefore converges to this distribution. The
method is in fact a special case of the Hastings (1970) algorithm known as the independence
Metropolis chain; see in particular Tierney (1994). Moreover, it readily extends to cases
with infinite (countable or uncountable) state space.
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Recently Liu (1996) has shown that there exists an exact eigenanalysis of this system.
Suppose the states are ordered so that {w; > w2 > ... > wy, }. Then (1) simplifies to

Pi> if j <,
I&’i]‘ =9 D + A, if g =1, (2)
Z)—Ji, if 7 > 1,

where

k>i !

Define A\ =1, A, =0, and

T
vo=(1,1,1,...,1)",
Vi =1(0,0,...,0,Sp11, —Thy o, —m1), 1<k <m—1,
where for £ > 0 the first k¥ —1 entries are 0, the k’th is Sg41 = E?;k—l—l 7; and the remaining
entries are all —7;. Then Liu showed, as is easy to check directly, that the eigenvalues
of K arel =Xg > A > ... > A\jp—1 and that vy, vy, ..., v,,_1 are the corresponding right

eigenvectors.

In Section 2, we show how Liu’s result may be extended to obtain exact n-step transi-
tion probabilities for the Markov chain with transition kernel K. In section 3 we extend the
result to more general (mixed discrete/continuous) state spaces and provide a direct proof
through integration by parts. Section 4 examines conditions for geometric convergence.
The paper concludes in Section 5, with some discussion and an explicit example.

2. Discrete case

Suppose ey, is the unit vector with 1 in the &’th position (1 < k < m) and 0 everywhere
else. As in the previous section, we define Sy = > .o, 7;, with S} = 1.

Proposition 1. For 1 <k <m —1,

k—1
+ >
€ = TkVo - Vi — Tk
Sk — SiSi
]_
while for k& = m,
m—1
§ : Vj
€ = TV — T, .
= SiSit

Before proving this, we note the following simple identity:
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Lemma 1. For 1 <1 < m,

t—1
5 1
1 A 4
" ; iS5 ()

J

Proof of Lemma 1. For 1 = 2, this follows at once from S; + 7 = 51 = 1. For ¢ > 2,
the result then follows by induction, using the identity
1 1 T

Siv1 5 - SiSit1

Proof of Proposition 1

Let
E—1
v

*
€, = TEVy + = Vi — Tk ;
St = SiSit1

where, in the case k = m, we define v, to be the zero vector.
For ¢ < k, the :’th component of ej is

i—1 i—1
; 1

T4 7Tk5i_|_1
TE+ 7 .l =7 |1+ ——= ] =0
BT ]2 S;Siy1 SiSi " z_; S;Siy1 S

using Lemma 1.

The k’th component of e is

S k—1 - k—1 - S

k+1 f f k+1

Tk + + =7 |1+ +

A ; S;Sis1 " 2 S; St Sk
1

To make this argument valid in the case k = m, we need to define Sy,41 = 0.

For ¢ > k, the :’th component of e is




Thus we have shown that e} = e, and the proof is complete.

We now use Proposition 1 to derive exact n-step transition probabilities. Let K denote

the matrix with entries (K;) and let K™ denote its n’th power, with entries (K(m

¥ )7 50

that Ki(f) is the n’th-order transition probability from state ¢ to state j.

Defining v,,, = 0 and A,,, = 0, we have from Proposition 1, for 1 < k < m,

k—1
€p = TgVg + Vi — Tk
and so
k—1
AR A
K"ek:ﬁkvo—l——kvk—ﬂk 77 .
Sk =1 S]S]+1
Hence if vj; denotes the :'th component of v,
k—1
/\n /\"vl
K = m 4+ Eog — m UL
ok Sk ; S;Sit1
Noting that
0 ife <y,
Ve = S]‘_|_1 le:],
—m;  ife> g,
we have shown:
Proposition 2.
i—1 Af'm; A7 .
T <1 + Zj:l ijgj_l_l — S_,> for s < k,
~(n) k—1 Alm; Y .
K =4 7k <1 + Ej:l ijgjil — ﬁ) + A7 fori=kF,
k=1 Aimi AR .
Tk <1‘|‘E]‘:1 Sjsj-l—l_sk) for ¢ > k.



3. The general case

The result of Proposition 2 may be extended to general distributions on a measurable space
(E,E). Suppose we wish to simulate from a probability measure II on (E, ). We assume
that we are able to sample from a distribution P. We must assume that II is absolutely
continuous with respect to P, and that we can evaluate a density w(x) = II(dx)/P(dx).
The independence Metropolis-Hastings sampler is then as follows: Given a current state
X,, = x, choose a new state y from the probability measure P, then accept the new state
and set X,,4+1 = y with probability min{l,w(y)/w(x)}. Otherwise reject the new state
and set X, 11 = 2. When both w(a) and w(y) are zero, we reject the new step and remain
at x. As usual, both the drawing from P and the accept/reject decision are independent
of each other and of all past random events.

If the second part of the Metropolis-Hastings step results in the process rejecting the
proposed move, then we say that a rejection has occurred. This does not include the
case when the random drawing from P selects the same value z, which is automatically
accepted. The distinction is important whenever x is an atom of P. The probability that
a rejection occurs, given that the current state is x, is A(w(x)), where

Aw) = /{ s {1- 9% pray
- /{y w(y) <w} {P(dy) - H(jy)}

for w > 0 and A\(0) = P({y : w(y) = 0}).

For a more restricted set-up than we are considering here, Liu (1996), generalizing his
result for discrete chains, showed that the spectrum of the transition operator consists of all
values of A(w(x)), « € E, together with 1. If w™* is the essential supremum of w(x) (essential
with respect to II or P), then the essential supremum of A(w) is 1 —1/w*. Thus if w* < 0o
then there is a “spectral gap” of size 1/w*, and the n-th order transition probabilities of the
chain differ from the stationary measure II by a term of order at most (1 — 1/w*)". Thus
we have uniform geometric convergence whenever w* < co. Our subsequent development
will allow these results to be re-derived as a consequence of general formulae for the n-step
transition probabilities.

Deﬁne}:[(w) = ({y : w(y) < w}) and ]S(w) = P({y : w(y) < w}) for all real values
w, and let II(dw) and P(dw) denote the corresponding probability measures on the Borel

subsets of the real line. Let II(w—) denote the left hand limit of ﬁ(:z;) at w. The function
A(w) can then be written as

Mw) = /Kw (1 - 3) P(dv) = P(w) — H(w) (5)

w w

Note that AM(w) =1 — % when w > w*.



By Fubini’s theorem, we also have

I
i

e
_|_

for w > 0. In particular, A(w) is differentiable in the ordinary sense with derivative
II(w)/w* whenever w > 0 and w is a continuity point of II .

Define T,(w) = 0 when f[(w) =0 and

e A e T fiw)

when f[(w) > 0. Then Proposition 2 suggests the following general result:

Theorem 1. The n-step transition kernel for the independence Metropolis-Hastings chain
is given by
pa(@,dy) = To(w(z) V w(y))(dy) + A" (w(x))é, (dy)

where 6,(dy) denotes point mass at x and = V y = max{x,y}.

To prove this result we first develop an alternate representation for T,,(w). We begin
with a preliminary result:

Lemma 2. For any a < b with f[(a) > 0,

/ II(dv) _ 1t
() T(0)I(v=)  I(a) ()

Proof of Lemma 2. For each integer n > 1 let 29 = a < 2y <--- < 2, = b be a partition
of the interval («a,b] and assume that A,, = max{z; — ;-1 :i=1,...n} = 0 as n — oo.
Then for each n

~1 _~1 :" ] 1 _~1 :nHExi)—~ﬂ(:1:i_1): L oL
(a)  II(b) ;[H(wi—l) H(wi)] Z () I(2;—1) /<a,b] ()TH()




where

1
hn(v) = = ~
() (xi—1)
for z;_1 < v < x;. Since A,, — 0,
1
hn(v) = =——=
II(v)I(v—)

for any v € (a,b] as n — oo. Since h,, is nonnegative and f(a b B (0)II(dv) is finite and
constant in n, an argument analogous to the proof of Scheffé’s theorem shows that

f[(dv)

Ry (V) (dv) — 7
[, o) = [ et

which completes the proof of Lemma 2.
Using Lemma 2 we can now rewrite T}, (w):

Lemma 3. For any w with ﬂ(w) > 0,

Proof of Lemma 3. Using the integration by parts formula for Lebesgue-Stieltjes integrals
(e.g. Hewitt and Stromberg, 1975, Theorem 21.67) together with (5), (6) and the result

of Lemma 2,
Lo(w)=1— Aﬁ’”‘((g)) N /M A" (v)d (— ﬁ(lv)>

LA [_A"(v)]“+/°° 1 d%(/\"(v))dv

I(w) ()],  Ju Hv)
_ > ~1 n/\"_l(v)f[(v)dv
w I(v) v?
= - nAn_zl(v)dv7

which completes the proof of Lemma 3.
The representation of Lemma 3 shows that T)(w) = 1/w when II(w) > 0, and thus

proves Theorem 1 for n = 1. To prove the theorem for n > 1 we need to show that the
formula for p,(x,dy) satisfies the Chapman-Kolmogorov equation

Pati(z,dy) = /pn(zady)pl(%dZ)-
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~ | [ e Bt v et + S ), (o) v o) | Ty
A (25, (dy),

it is enough to show that

1 Tp(wV v)f[(dw) + A"(v)

uVuw uVo

Tpt1(u Vo) = / + AMu)Ty(u Vo) (8)

for n > 1 and all v with f[(v) > 0.

Suppose u,v > 0 and f[(v) > 0. Using Lemma 3 and Fubini’s theorem the integral on
the right hand side of (8) can be written as

1 ~ o 1 A1 ~
/ T (w Vo)ll(dw) = / / r (2) d=I1(dw)
uVw wve UV W 22

n—1
/ / (o) ™2 ()d
uVuw 22

-1 / A"Z;( J1(2)d )
+/: ﬂiu) + P(2) — Pu) ”An;(z)dz.

;From (6) we have

/vm n/\nz_;(z)f[(z)dz — A"(uV v) = A(0), (10)
and (5) implies that

/u io ﬁi“) + P(2) — P(u) ”A";(Z)dz
_ / io n/\nz_;(z)ﬁ(z)dz Y / io ”An;(z)dz (11)
_ /OVO ”A";(Z)ﬁ( Jdz — A(u)To(u V o)
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Finally, using (5) and integration by parts the integral on the right hand side of (11)

becomes
* nAM1(2) - > n/\" n/\" I (Z)
/u\/v — P(z)dz = /uv / dz
n 1d
:n_|_]_ n_Hu\/v /uvv—d— )dZ
OO An
_ " Tpt1(u Vo) [ ] (22) dz (12)
n+ 1 uVo UVU <
n A" (u Vo) 1
—n+1Tn+1(U\/U) wV v n+1Tn+1(U\/v)
Ay Vo
= Topaluve) = %

Combining (9), (10), (11), and (12) the integral on the right hand side of (8) is

/ 1 To(wV v)f[(dw) _ A" (u Vv)—A"(v) B A" (u V v)

uVuw U uVo

—Mu)Tp(uV o)+ Thyi(u Vo),

and thus the right hand side of (8) is

A" (v) N A" (u Vv)—A"(v) B A" (u V v)

uVo U uVo

= [\"(u V v) — A"(v)] [1 _ ! } + T (u V v)

U uVo

+ Tn+1(u \% U)

= Tht1(u Vo)

This proves (8) and completes the proof of Theorem 1.

4. Geometric rates of convergence

The essential supremum (With respect to P or II) of the function A(w) is achieved when
w = w* and is then r = 1 — 2. It is clear from the form of (7) that |1 — T,(w)| < Kr"
for some finite K, and all w. Hence for any II-measurable set A,

/EA pu(x,dy) —II(A)] = O(r") asn — oo. (13).

Moreover, from the fact that the chain starting at = remains at = for at least n steps
with probability A(w(z))™, this also serves as a lower bound on the rate of convergence,
for any .



Therefore, the chain has a geometric rate of convergence, with rate r, whenever r < 1.
This occurs if and only if w* < oo, and then r = 1 — % The converse result shows
that this cannot be improved, and in particular, if w* = oo, the chain is not geometrically

ergodic.

This result matches a number of others which have been obtained in recent years.
Tierney (1994, Corollary 4) noted that when w* < oo, then the chain is geometrically
ergodic with convergence rate r satisfying r < 1 — # Mengersen and Tweedie (1996)
showed that when w* = oo the chain is not geometrically ergodic. Liu (1996) also showed

r<l1- % directly by a simple coupling argument.

There are also some related results which apply to more general chains than the
independence Metropolis sampler. For example, Roberts and Tweedie (1996) showed that
for any algorithm with invariant measure II not concentrated at a single point, for which
the rejection probability P(x, {x}) is a measurable function of z,

ess supp P(x,{z}) =1
implies that the Markov chain is not geometriclaly ergodic.

Finally, we note that the independence sampler is stochastically monotone with respect
to the function w(-): if x and 2" are two starting states with w(z) < w(z'), then it is possible
to construct two coupled chains X,, and X, for n > 0 with Xy = x, X = 2/, such that
w(X,) <w(X)) for all n > 1. A general theory for rates of convergence in stochastically
monotone chains has been developed by Lund and Tweedie (1996).

5. An example: exponential distribution

Although the result of Theorem 1 is an explicit formula, it seems unlikely that there
are many cases where the integrals can be explicitly evaluated and so expressed in terms
of simple algebraic formulae. We present here one instance, albeit artificial, where this is
possible.

Suppose E = [0,00), p is Lebesgue measure, and n(x) = e7 %, = > 0, p(z) =
Be=%% & > 0. We assume 0 < 6 < 1 to guarantee that p(-) has heavier tail density
than 7(-). Then w(z) = 8~ e~ (1=9% achieves its maximum w* = §~" at 2 = 0, and the
transition density is

Gy, y <z,
T =
p( 7y) {96—3,/—1—(1—49)957 y > .

It is easily checked that A(x) = (1 — #)e™%%, and

ex—n@w -1

. . n _r—nfx
SERErY (1—0)"e )
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Theorem 1 indicates that the transition probabilities are of the following form. Suppose
Xo = x. Then with probability A(x)", the process does not move, i.e. X,, = z. Otherwise
the process moves to a new point y say, and the transition density from z to y is given by

_ Jr)Taly), y<u,
pn(,y) = {F(y)Tn(l'), y > x. (14)

It is possible, though tedious, to verify (14) directly.

Now let us consider an application. From (14), we deduce

_ 1-6)", _ _
e — (l—n)e (6 Y—e ney)7 y<uz,

Pr{X, > y|Xo =2} = (15)

r—nfxr

e Y {1 +(1-— 9)"ﬁ —(1- 9)"695_"‘%}, y > .

We can now see what this implies in terms of the rate of convergence to the limit e™¥.
Indeed, from (15) we see that, provided = > 0,

Pr{Xn>y|X0::1;}:{1—|—%}6_y—l—o{w}. (16)

n

The case © = 0 is different because in this case the dominant term in the error is (1 — 6)",

ie. A(0)".

Garren (1994) and Garren and Smith (1995) have proposed a statistical technique for
estimating the convergence rate of a Markov chain, based on approximations of the form

Pr{X, € E|Xo =a} = p+ a2y + o(A\}) (17)

where E is some subset of the state space, Ay i1s the second largest eigenvalue of the
transition matrix, and ay is a constant depending on both z and E. An approximation
of this form can be rigorously justified in the case that the transition operator is Hilbert-
Schmidt, a condition which is valid for many instances of the Gibbs sampler, but not, in
general, for Metropolis-Hastings chains. The question therefore arises as to what form of
approximation is appropriate in cases where the operator is not Hilbert-Schmidt.

For this particular example, (16) shows that the convergence rate is of O(A} /n), where
Ay = 1—6. More generally, our result shows how the n-th order transition probabilities may
be expressed as integrals of \"(x) and this suggests some form of Laplace approximation
to obtain the convergence rate. Thus one reason for being interested in having an explicit
formula for the n-step transition probabilities is that we now have a class of examples for
which the exact convergence rate may be calculated analytically.
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