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ABSTRACT

Amy Marie Grady
A Higher Order Expansion for the Joint Density of the Sum and the Maximum with
Applications to the Estimation of Climatological Trends
(Under the direction of Richard L. Smith)

The higher order expansion for the joint density of the sum and maximum of an
11d sequence answers two questions: the theoretical question of what is the rate of the
asymptotic independence between these two which was established by Chow and Teugels
(1978) and Anderson and Turkman (1991), and the practical question of how to describe
and model the dependence when the asymptotic result is not yet realized. Developing
such an expansion under the three different domains of attraction for the maximum
and modeling the annual total and maximum precipitation across the contiguous US,
using a combined generalized extreme value (GEV) version of the expansion, are the

key elements of this thesis.

The three important developments necessary for the derivation of the expansion
of the joint density are as follows. First we develop an Edgeworth expansion for the
density of the sum given the maximum. Second we establish expansions for the density
of the maximum under the Gumbel, the Fréchet, and the Weibull domains of attraction.
Finally, we calculate the first two conditional moments present in the above Edgeworth
expansion. The key in the last step is reformulating the moments in terms of exceedances

over a threshold.

Finally in the data analysis section we give a heuristic development of the expansion
of the joint density for the combined GEV version. We then model the annual total and

maximum rainfall across the continental US. The relevancy of such an expansion for the
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joint density of the sum and the maximum in studying US precipitation and to larger
climate change questions lies in the emergence of climate variability and/or extreme
events as having an important impact on the overall climate. In particular, at the US
level, we address issues raised in Karl et al. (1995, 1996) whose premise is that the
climate in the US is becoming more extreme. With respect to the precipitation in the
contiguous US, Karl and Knight (1998) found that the increase seen in the annual total
rainfall is being driven by an increase in the upper 10% of rainfall events, suggesting
the annual total rainfall and extreme rainfalls are dependent. Using the above model
which incorporates this first order approximation to the dependence between the annual
total and annual maximum rainfall, we find substantial evidence for a positive trend
in both with the trend in the annual total rainfall being more dominant both in terms
of significant evidence and magnitude. Since the beginning of the 20th century, we
estimate a 7.4% (s.e. 0.1%) increase in the national average of annual total rainfall and

a 3.0% (s.e. 0.1%) increase in the national average of annual maximum rainfall.
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Chapter 1

INTRODUCTION AND
LITERARY REVIEW

1.1 Introduction

To study the behavior of the sum and the maximum of a series, the literature
shows that these two are asymptotically independent — see Chow and Teugels (1978)
and Anderson and Turkman (1991). In other words, we should — arguably — model
them separately. There are problems both theoretical and practical with that approach.
Theoretically, we know that the convergence rate of the distribution of the maximum to
a limiting extreme value distribution is relatively slow and hence this should impede the
rate to this asymptotic independence. In many applications, the dependence between
these two can be shown; that is, the asymptotic independence is yet to be realized. For
example, Karl and Knight (1998) show that, in the precipitation series across the US,
an increase in the extremes is driving the increase in the total annual rainfall. Moreover,
often the important question to study is what is this dependence structure between the
sum and maximum? For example, one of the predictions by climate models about a
warmer world due to global warming is for an increase in the global mean precipitation
with more intense storms. So we can ask: Given an increase in the largest daily rainfalls,
how will that effect total amount of annual rainfall? In theoretical terms, the problem is
to calculate a higher order term in this asymptotic joint distribution of the sum and the

maximum. Specifically since we wish to model the sum and the maximum via maximum



likelihood estimation, we really need to establish a higher order term associated with

the asymptotic joint density of the sum and the maximum.

This thesis deals with this higher order expansion of the joint density of the sum
and maximum — both establishing it and then modeling precipitation across the con-
tiguous US using it. In fact, this thesis breaks down into two parts. In Chapters 2, 3,
and 4, we derive the higher order expansion for the joint density of the sum and the
maximum for the three domains of attraction of the maximum. In Chapter 5, we look
at a data analysis of the annual precipitation series across the contiguous US. Here,
in Chapter 1, we begin by reviewing the pertinent literature on both the theoretical
and application parts. Section 2 reviews the theoretical publications. This includes:
Subsection 1 which reviews limit laws for sums; Subsection 2 which reviews limit laws
for maximum including introducing the “three types” of limiting distributions for both
the 7id and stationary sequence cases, the expansions of these asymptotic distributions,
local laws, the limiting distribution of exceedances, and the penultimate approxima-
tion; and Subsection 3 which reviews limit laws for the joint distribution of the sum
and the maximum. Finally, Section 3 reviews the relevant results on global warming —

in particular, results concerning the precipitation across the contiguous US.

1.2 Theoretical Literary Review
1.2.1 Limit Laws for Sums

Limit laws for sums — central limit theory results — are fundamental to statistical
science both in the depth of research and breadth of application. In 1718, de Moivre
established the first central limit theory results for the sum of binary random variables
with p = 1/2. Laplace proved the result for general proportions in 1812 but it would be
1887 until Chebyshev solved for the arbitrary sum results. Liapunov is credited with

the first modern discussion of the central limit theorem which included the first rates of



convergence ideas. His proofs entailed characteristic functions. This work dates to 1900

and 1901. For further background, see Johnson and Kotz (1982), Vol 2, p. 651-655.

Given the volume of research on limit laws for sums during the 20th century, here
we limit our review to results pertinent to the work of this thesis. The focus of this
work is to establish a higher order expansion for the joint density of the sum and the
maximum. In particular, the derivation of the expansion of the joint density proceeds
by multiplying an expansion of the conditional density of the sum given the maximum
by an expansion for the density of the maximum. Specifically, we need to make use
of central limit theorems for the non-identical case since our result must apply to the
conditional density of the sum given the maximum where the value of the maximum
can vary as the limit is taken. We also need to focus on results for densities as opposed
to distributions. In particular we need to focus on expansions for the densities of the

sum (given the maximum).

We begin with the triangular array form of the Lindeberg-Feller central limit theo-
rem, taken from Hall (1982). This is the most general form for the non-identical case.
Suppose that for each n the variables X1,,..., X}, are independent with zero means

and are normalized so that their variances add up to one; i.e.,
n
Y BE(X2)=1 n>1.
j=1
Let S, = > 7_; Xy; and define the uniformly asymptotically negligible (UAN) con-
dition on the variances as

mazi<j<n B(Xp;)? = 0 as n — oo. (1.1)

Theorem 1 (Thm 2.1, Hall, 1982) (1.1) holds and S, is asymptotically normal if

and only if
Ve >0 ZE{X%I(\XHH >e)}—0 as n— oo. (1.2)
j=1



Note the sufficiency part was first solved by Lindeberg in 1922 with the necessary
part solved by Feller in 1935. See Johnson and Kotz (1982) Vol. 4, p. 651 for further
details.

Now to present the necessary central limit result for densities, which is the start-
ing point for the results of this paper, we introduce some new definitions. Here we
let Xy,...,X, be mutually independent random variables with common distribution
function F' and characteristic function ¢. We suppose FX; = 0 and EX ]2 = 1 and
put S, = Xi + ...+ X,,. Also let yu, = [* zFdF(z) so that y1 = 0 and pp = o2
Theorem 2 (Feller, 1971) tells when the asymptotic density of S, //n exists and what

that asymptotic density is. Theorem 3 (Feller, 1971) gives the expansion of this density.

Theorem 2 (Thm XV.5.2, Feller, 1971) If|¢| is integrable, then S,/+/n has a den-

sity fn which tends uniformly to the normal density N' where N' = \/%—we_ﬁ/?

Theorem 3 (Thm XVI.2.1, Feller, 1971) Suppose uz exists and that |¢|* is inte-

grable for some v > 1. Then f, exists forn > v and as n — 0o

fal@) = N'(2) — 23— (2* - 32)N"(z) = o(1/+/n)

603\/n

uniformly in x.

Note this (first order) expansion is called (or was called) the Edgeworth expansion

for f,. For further results see Feller (1971), Chapter XVI, Section 2.

In the development of the higher order expansion for the joint density, it will also
be necessary to bound the density of the sum multiplied by a polynomial. Under the
same conditions of Theorem 3, Petrov (1975) gives the needed result. Here we present

the “k = 3” version of Petrov (1975).



Theorem 4 (Thm 17, Petrov, 1975) Let {X,} be a sequence of independent ran-
dom wartables having a common distribution with zero mean, non-zero variance, and

E|X]? < co. Let the random variable \/n#?Sn have for some n > N a bounded density
fu(z). Then

(L 1) Unle) = () = B0 = 30N (@)} =o(1/VR) (13

uniformly in x.
This theorem will be important in establishing the uniformity of the results.

The results of Chapters 2, 3, and 4 will utilize this expansion for the density of
the sum with the non-identical case of the Lindeberg-Feller theorem to establish an

Edgeworth expansion for the conditional density of the sum given the maximum.

1.2.2 Limit Laws for Maxima

Although the limit laws for the maximum — fundamental in extreme value theory —
do not have the same prominence in traditional statistical literature as those for sums,
extreme value theory is an important area of research and application. The first formal
look at the asymptotic distributions of the extremes began with the works of Dodd
(1923), Fréchet (1927), and Fisher and Tippett (1928) with Fisher and Tippett estab-
lishing the “three types” of extreme value distributions. The first rigorous derivation
of the extreme value distributions comes from Gnedenko (1943) but it was de Haan
(1970) who completed the domain of attraction problem. At that time, he solved for
the explicit representation of the auxillary function connected with the Gumbel domain
of attraction. Some of the earliest work in applying extreme value analysis is found in
Weibull (1939, 1951) and Gumbel (1958). Prescott and Walden (1980, 1983) established
a rigorous theory for the maximum likelihood estimation — a modern bridge between
the theoretical results and the numerous applications — for this family. This work is
the cornerstone of much of the proliferation of extreme value application in the last 20

years. Like the review for the limit laws for sums, a review of extreme value results in
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the 20th century would be extensive. One of the best references in the field of extreme
value theory is Leadbetter, Lindgren, and Rootzén (1983). Here we focus on the results
applicable to the discussions in this work. In particular, we focus on the results for the
expansions and densities since we want to establish the expansion of the density of the

maximum in subsequent chapters.

Overview of the “three types”

The primary focus of classical extreme value theory involves the distribution of the
maximum - in particular, the limiting distribution of the maximum (as n — oc0). We
begin with an #id sequence of random variables X,..., X, with common distribution

function F. Define M,, = maz(X, ..., X,). From this we obtain
P(M, <z)=F"(z).

We see without proper normalizing constants that M, converges in probability to

the upper endpoint of the distribution z, = sup{z : F'(z) < 1}. In other words,

Ve<z, P(M,<z)—0 as n— oc.

Thus establishing a (asymptotic) non-degenerate distribution function for the max-

imum, say H, is essentially finding normalizing constants a,, > 0 and b, real such that

Mn_bn
—— <z)=F"apz+b,) > H(x) as n — 0.

When this limit holds, the non-degenerate distribution function H is said to be

max-stable and F is said to be in the domain of attraction of H —i.e. F' € D(H).

Now the fundamental theorem of extreme value theory — from Theorem 1.4.2 of

Leadbetter et al. (1983) — is as follows.

Theorem 5 (Thm 1.4.2, Leadbetter et al., 1983) Let M, = maz(X1,...,X,)
where X; are iid random variables. If for some constants a,, > 0, b, we have

M, — b,

Qn

P( <z)5 H(z) (1.4)



for some non-degenerate d.f. H, then H is one of the three extreme value types listed
below:
I Gumbel type (A): H(z)=-exp(—e*), —o0o<z<00
, ) ] o z<0
I Fréchet type (®o) : H(z) = exp(—z~%) for some a>0 z>0

exp(—(—xz)®) for some a>0 z<0.

I1T Weibull type (V,): H(z) = { 0 "0
Conversely each d.f. H of extreme value type may appear as a limit in (1.4) and, in

fact, appears when H is the distribution function of each X;.

For statistical purposes, it is better to have a single family. This unified form was

first discovered by von Mises (1936) and can be written as

k(z —n) k(z —n)
(0 (0

where the case k = 0 is interpreted as the limit £ — 0; that is,

H(z;n,, k) = exp{—[1 — V%Y where 1 — >0,9>0 (1.5

H(z)=exp(—e ¥ ) —o00<z < o0.
This latter case corresponds to the Gumbel extremal type(I). The Fréchet and
Weibull type (IT and III, respectively) distributions are associated with & < 0 and
k > 0, respectively. The unified form of the extreme value distribution (1.5) is com-

monly referred to as the Generalized Extreme Value (GEV) distribution.

Although we have only considered the iid case — in fact, restrict our attention to this
case in this thesis — much of the prominent research in extreme value theory involves

dependent sequences.

Dependent Sequences

Often in application the ii¢d assumption is not realistic. Although there are numer-
ous ways to extend the 7id case, much of the literature focuses on stationary sequences.

In fact, the focus lies on establishing conditions for which the limiting distribution of

7



the maximum of such sequence still exists. More specifically, constructing conditions
on the stationary sequence such that limiting distribution of the maximum is that same
type as that for the associated independent sequence is of particular interest and can
be shown to be surprisingly general. Again, the literature pertaining to extreme value
theory for stationary sequences is extensive and we make no attempt to present a thor-
ough overview of the topic. One of the best references, containing a comprehensive
study of the topic, is Leadbetter et al. (1983). Here we only present associated with
some topics, primarily from Leadbetter et al. (1983), used in some of the literature for

the joint distribution of the sum and the maximum.

In general, there are two types of conditions that limit the dependency of the sta-
tionary sequences. The first type limits the amount of long range dependence. The
second limits local dependence or what is known as the amount of clustering associ-
ated with exceedances over a threshold. The first set is general referred to as mixing

conditions and we begin with strong mixing, introduced by Rosenblatt (1956).

Definition 6 (Strong Mixing, from Leadbetter et al., 1983) A sequence {X;} is
strong mizing if there exists a function g(k) tending to zero as k tends to infinity and
such that

|[P(AN B) = P(A)P(B)| < g(k)

when A € F(Xy,...,X,) and B € F(Xpir+1, Xptkt2, - --) for any p and k where F()

denotes the o-field generated by the indicated random variables.

This essentially tells us that as we separate the past and the future —i.e. let £ — oo
— the two behave independently. Now since the events of interest in extreme value
theory are primarily of the form {X < u,} or {X > u,} , we can in fact weaken the
mixing condition in definition 6 and ultimately still obtain the results pertaining to
the limiting distribution of M,,. The condition D is of this form. Define Fy, . (u) =
P{Xy, <u,..., X, <u}. We have



Definition 7 (Condition D, Leadbetter et al., 1983) The condition D will be said

to hold if for any integers
n<...<ip and j1 <...</jy
for which 31 — i, > 1, and any real u,
[ Eit ity (W) = Fig iy (W) Fy s (w)| < g(1),
where g(1) — 0 as | — oo.

Now we can weaken this mixing condition even further by requiring the condition

D hold for only certain sequences of values {u,}. This condition is defined as D(u,,).

Definition 8 (Condition D(u,), Leadbetter et al., 1983) The condition D(u,) will

be said to hold if for any integers
1<ii<...<ip<ji<...<jy<nm
for which j1 — iy, > [, we have
|Fil,...,z’p,j1,...,jp, (un) — Fiy, iy (Un)Fjl,...,jp, (un)| < any,

where ay,; — 0 as n — oo for some sequence I, = o(n).

Again this mixing condition restricts the amount and type of long range dependence.

Note strong mixing implies condition D which implies condition D(u,,).

Now it has been shown by Leadbetter (1983) that condition D(u,) is sufficient to
guarantee the result concerning the three types of possible extreme value distributions

for the limiting distribution M,,.



Theorem 9 (Thm 1.1, Leadbetter, 1983) Let {X,} be a stationary sequence such
that M, = max{Xy,...,X,} has a non-degenerate limiting distribution H as in 1.4
for some constants a,, > 0,b,. Suppose that D(u,) holds for all sequences u, given by

Up = QX + by, —00 < = < 00. Then H is one of the three classical types given above.

Now condition D(u,) gives the possible types for the limiting distribution of the
maximum of a stationary sequence but it does not define the existence of such a limit
distribution. To do that, conditions that define the clustering of the exceedances are

necessary. We begin with condition D'(u,) of Leadbetter et al. (1983).

Definition 10 (Condition D'(u,), Leadbetter et al., 1983) The condition D'(u,,)

will be said to hold for the stationary sequence {X,} and sequence {u,} of constants if

[n/k]
limsuanP{Xl > Uy, X; >up} =0, as k— o0

(where [ denotes the integer part.)

Together conditions D(u,) and D'(u,) provide the classical result for stationary
sequence. Here we define M, as max{Xl, e ,Xn} where X1, ..., X, is the independent

sequence associated with Xq,..., X,,.

Theorem 11 (Thm 3.5.2, Leadbetter et al., 1983) Suppose that D(u,) and D'(u,)
are satisfied for the stationary sequence {X,} when u, = a,x + b, for each z ({a, >
0}, {bn} being given sequences of constants). Then P{Mz—j’" < z} — H(z) for some
non-degenerate H if and only if P{M’C‘L—;b” <z} — H(x).

In fact, Leadbetter (1983) shows that in most cases of practical interest, the condi-
tion D(u,,) is sufficient to guarantee that the limiting distribution of M,, is of precisely

the same type as M,. Note when dropping the condition D'(u,), we need to be able
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to describe the amount of clustering associated with exceedances of a sequence over a
threshold {u, }. We do so by defining the extremal index of the sequence. Note we de-
fine {u,(7)} as a sequence of thresholds which satisfies n{1 — F'(u, (7))} = 7 as n — o
and D(u,(7)) as the extenstion of the condition D(u,) with u, replaced by u,(7) for

each 7 > 0.

Definition 12 (Extremal index, Leadbetter et al., 1983) A process {X;} has ex-

tremal index 0, where 0 < 0 <1, if for each 7 > 0

(i.) There ezists a sequence u,(7) such that n[l — F(u,(7))] = 7 as n — oc.

(ii.) P(My, < un(7)) = F®(un(7)) + 0(1) = e % as n — oo.

Note that # = 1 indicates a process which behaves like an independent process.

Note if (i) holds and condition D(u,(7)) holds for each 7 then (i7) holds and the

sequence {X,} has extremal index 6.

Now given the definition of the extremal index 6 of a sequence { X, } we can redefine
the conditions on a stationary sequence so that the classical asymptotic distributions

still hold.

Theorem 13 (Thm 2.5, Leadbetter, 1983) Let the stationary sequence {X,} have
extremal index 0 > 0. Then M, has a non-degenerate limiting distribution if and only if
M, does, and these are then of the same type based on the same normalizing constants.

In the case 8 =1 the limiting distributions for M, and M,, are identical.

Note the extremal index may be interpreted as the inverse of the mean cluster size.
The extremal index thus plays a key role in the study of extremes of stationary sequences
including the work of Anderson and Turkman(1991) which is reviewed in Section 1.2.3.

The rest of the work in this thesis involves the 7id case.
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Expansions

Regularly Varying Functions Before we can look at the literature pertaining to the
expansions for the distribution for the maximum, we need to briefly go over the concept
of regular variation and the Karamata representation for regularly varying functions.
Given these concepts we can refashion the “three types” theorem and see the connection

to the expansions.

Definition 14 (Regularly Varying, Resnick, 1987) A measurable function U: R, —
R, is regularly varying at oo with indez p [written U € R,] if Vo > 0

Note this limit is locally uniform on (0, 00), see Resnick (1987), Proposition 0.5, p.
17. The parameter p is called the exponent of variation. If p = 0 the function U is said
to be slowly varying. The general notation for slowly varying functions is £(z). Using
this notation we see that we can always rewrite a regularly varying function U in terms

of a slowly varying function £; i.e., U(z) = 2 L(x).

Next we give Karamata’s Theorem [Theorem 0.6 in Resnick (1987), p. 17] which
details the integral properties of regularly varying functions and provides the connection
between regularly varying functions and the extreme “three types” of limiting distribu-
tions. Finally from Karamata’s Theorem we get the Karamata Representation of slowly
varying functions. This is another important piece in the development of the expansion

of the distribution function for the maximum, particularly, in the Gumbel case.

Theorem 15 ( Karamata’s Theorem 0.6 of Resnick, 1987) (a) If p > —1 then
U € R, implies [, U(t)dt € R,11 and



Ifp<—1 (orif p=—1and [ U(s)ds < o) then U € R, implies [° U(t)dt is finite
[ZU(t)dt € Rpy1 and

(b) If U satisfies

then U € R_)_;.

Corollary 16 (The Karamata Representation, Resnick, 1987) L is slowly vary-

ing iff L can be represented as

L(z) = e d}
(z) c(m)exp{ /1 FLe(t)dt
forx >0 wherec: R, - Ry, e: Ry = R, and

mlgioloc(x) = c€ (0,00)
tligloe(t) = 0.

From the theory of regular variation we can rework the conditions for the three
possible types of asymptotic distributions for the maximum. Here we present Theorem

1.6.2 of Leadbetter et al. (1983) slightly reworded in the notation of this thesis.

Theorem 17 (Thm 1.6.2, Leadbetter et al., 1983) Necessary and sufficient con-
ditions for the distribution function F' of the random variables of an iid sequence { X, }
to belong to each of the three types are:

(a.) Type II (®): Let U(t) =1— F(t),z, = co where x, = sup{z : F(z) < 1} and U(t)
is regularly varying with index o, o > 0. [Theorem 2.3.1 in De Haan (1970)]

13



(b.) Type IIT (V): Let U(t) = 1—F(z,— ;) where z, < co and U(t) is reqularly varying

with index o, a > 0. [Theorem 2.3.2 in De Haan (1970)]

(c.) Type I (A): There exists some strictly positive (auziliary) function ¢ such that

o L= F(t+26(1))
iz 1— F(2)

(Theorem 2.5.1 in De Haan(1970)].

=e? VzeR

Note condition (c) was originally due to Gnedenko (1943) but de Haan (1970) pro-

vided an explicit characterization of ¢.

Now we present the important results concerning the rates of convergence and, in
more detail, the expansion for the distribution of the maximum for the three domains
of attractions. We break the results up into the Fréchet and Weibull type — the Weibull
result being just a transformation of the Fréchet type — and, finally, the Gumbel results.

Fréchet Case First we extend our notions concerning slowly varying functions. In
particular, to calculate rates of convergence for the distribution of the maximum to
the limiting distributions, we need to establish “remainders” to the definition of slowly
varying functions. We distinguish between two forms of slow variation of remainder.
The first gives enough detail to establish rates of convergence for the asymptotic distri-
bution of M,. The second allows us to calculate higher order terms for the expansions

of the distribution of M,,.

Definition 18 (Slow variation with remainder, Smith, 1982) Let £ and g be two
functions defined on (0,00). Assume g(t) — 0 ast — oo and L measurable. Define the

two forms of slow variation with remainder as

SR1: ﬁﬁ%) —1 = 0(g(t)), z>0,t— 00
SR2: ‘C[’(Eﬁ;) -1 ~ gtv(z), z>0,t— 00

If SR2 holds and v satisfies the condition: There exists an x such that v(z) # 0 and Yy
v(zy) — v(y) # 0, then g is regqularly varying with indez p, i.e.

t
g(t) =z x>0 for some p<0.
t—00 g(t)

14



and v(z) = ch,(z) for some constant ¢ and h,(z) = [ 2F~'dz.

Theorem 1 in Smith (1982) gives the rate of convergence for the distribution of M,

under the Fréchet domain of attraction.

Theorem 19 (Thm 1, Smith, 1982) Suppose that F(z) < 1,Vx < oo, that — log F(z)

is reqularly varying with index o for some a > 0 and that L(t) = —t *log F'(t), t > 0

satisfies SR1 for some positive function g satisfying % <C forx>1,t>1t, and

/
vist, o<1, U S gt 950,85 0).

Let the normalizing constants for mazimum defined in equation (1.4) be b, = 0 and
an such that —log F(a,) < n~' < —log F(a,) where F(z7) = supy<;F(y). Then as
n — oo

sup [ (anz) = ®a ()| = O(g(am)).

Thus we see that the rate of convergence to the limiting distribution when F' €
D(®,) is g(a,). To see the first order term in this expansion the SR2 condition is

necessary. Theorem 2 in Smith (1982) gives this expansion.

Theorem 20 (Thm 2, Smith, 1982) Let F(-),L(-),a, and b, be as in Theorem 19.
Suppose L satisfies SR2 where g € RV, v(x) = ch,(z) for some p <0, then

F™apz) — ®o(x) = —cglan)hy(x)z™ @y (z) + o(g(an))

uniformly in 0 < x < o0.
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Weibull results The results for the Fréchet domain of attraction immediately provide
the results for the Weibull domain of attraction, through the simple transformation that

exists between the two distributions.

Given the distribution function F', a necessary and sufficient for the existence of
a, > 0 and b, real such that lim,, o F"(a,z+b,) = ¥o(z), @ > 0 is that F has a finite

endpoint —i.e., z, = sup{z : F(z) < 1} < oo — and that Fi(z) = F(z, — ) be in the

1
T
domain of attraction of ®,. We see this connection by looking at Theorem 17, part

(a) and (b). Using Theorem 19, Smith (1982) obtains the rate of convergence when
F € D(¥,), see Theorem 5 of Smith (1982).

Theorem 21 (Thm 5, Smith, 1982) Suppose F satisfies the hypothesis of Theorem
19. Define b, = x, and a, such that —log F(z, — a,) < n~' < —log F(z, — a, ), then

Sup [F"(anz + bn) = Wa(2)] = Og(~)-

Using Theorem 20 Smith (1982) obtains the first order term in the expansion, see
Theorem 6 in Smith (1982).

Theorem 22 (Thm 6, Smith, 1982) Suppose Fi satisfies the hypotheses in Theorem

20. Then uniformly in —oo < x <0

F'(an® + bn) = Va(z) = cg(—)h—p(=2)*"Va(z) + 0o(g(—))

Note we use the relationship h,(1/y) = —h_,(y).
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Gumbel case Unlike the Fréchet and Weibull case, there does not exist a unified
result for the uniform rates of convergence and/or expansion of the distribution of M,
for the underlying distributions which lie in the Gumbel domain of attraction. Although
work first began with specific distributions within the Gumbel domain — exponential
(Hall and Wellner, 1979), normal (Hall, 1979), and powers of the normal distribution
(Hall, 1980) — results are typically produced for classes of distributions within the
Gumbel domain of attraction. Anderson (1971) produced results for two classes of
distributions in D(A) which Cohen (1982b) denotes as A1 and A2. Cohen (1982b) also
defined two classes of distributions which are referred to as N and E. Cohen (1982b)
produced uniform rates of convergence and expansions for the distribution of M, for
these latter two classes. Here we only present his results for class N since these are
the results that will be used in the derivation of the joint density of the sum and the

maximum.

First we present Cohen’s (1982b) characteristic theorem for — log F' when F' € D(A).
Note although there are many ways to quantify the conditions necessary and/or suf-
ficient so that F' € D(A), essentially we need — log F'(z) or its asymptotic equivalent
1— F(z) to be slowly varying. [In particular, if z,, is such that 1 — F(z,) = O(%), then
1 — F(z,) +log F(z,) = O(:5). The relative difference being of smaller order than the
other terms we ultimately consider.] Hence if — log F' is slowly varying, we may rewrite
—log F' using a Karamata representation. Based on this representation we define of

Cohen’s (1982b) class N. Finally we present his uniform expansions.

Theorem 23 (Thm 1, Cohen, 1982b) F € D(A) + 3 functions a,b,c and [ de-
fined on [X, x,), for some constants X < x, < oo, such that a/f and b are Lebesque-

integrable over finite sub-intervals of [ X, z,) and, for some constants ¢; and c,,
“ a(t)
—log F(z) =c(x)exps — | —%dty, X <z<uz, (1.6)
x ft)

f(x):{ Cg+f;b(t)dt r=00 X<z<uz, (1.7)

—[Fb(t)dt z<oo X <z<uz,
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flx) >0, X <z<uz,;
c(x) = e as T — xy;
a(z) =1 as x — T,
b(x) >0 as x— x,.

Further, if F € D(A), we may take

{~log F(a)}{ [ [** —log F/(s)dsdy}

ba) =—1+ ([ —log F(s)ds}?

a(z) =1+ 2b(x);
c(z) = {1+ b(x)};

for X <z <z, and some constant c;.

(1.8)
(1.9)
(1.10)

(1.11)

(1.12)

(1.13)

(1.14)

Now we can define Cohen’s class N — a family of distributions within the Gumbel

domain of attraction.

Definition 24 (Cohen’s class N, Cohen, 1982b) We shall say F is in class N if

there exists a characterization a,b,c, f such that (1.6) - (1.11) holds and in addition

there exists K > 1 and r,s such that

Either (a) b(z) >0 or (b) b(z) <0, X <z < mp;

{a(z) = 1}/b(z) = r as = — x,;

{c(z) —c1}/b(z) = 5 as x — x,;

fi(z) exists and f'(z) = b(z) for X <z < my;

xf(z) +y = x, uniformly in |z| < Klog|(b(y)|,

b(zf(x) +y)

— 1 uniformly in |z| < Klog|(b(y)|,
) |z] |(b(y)]
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as Yy — Ty,

as Yy — Ty,

(1.15)

(1.16)
(1.17)
(1.18)
(1.19)

(1.20)



Note the distributions which belong to class N include the normal, log-normal,
gamma (shape parameter # 1) and Weibull (shape parameter # 1). Distributions

which do not belong to class N include the exponential.
Embedded in Theorem 9 of Cohen(1982b) is an alternative definition of class N.
Definition 25 (from Thm 9, Cohen, 1982b) Let F satisfy (1.6) - (1.11) and (1.19)

with K > 2. Assume V' (x) ezists and has constant sign for X < z < z, (hence (1.15)
holds) and

{a(z) —1}/b(z) = r as X <z <z, (1.21)

{c(z) —cr1}/b(z) = s as X <z <z (1.22)

W — 1 uniformly in |z| < Klog|(b(y)|, as y — x,; (1.23)
%b’(z) log|b(z)| = 0 as =z — =z, (1.24)

Then F' is in class N.

Finally, we present the uniform expansion of the distribution of M, presented by

Cohen (1982b).

Theorem 26 (Thm 2, Cohen, 1982b) Let F be in class N with the appropriate
functions a,b,c, and f satisfying (1.6) - (1.11) and (1.15) - (1.20). Define the nor-

malizing constants a,, and b, by
_logF(bn) < nil < _logF(bn_);

an = f(bn)-
Then, uniformly on —oo < x < o0,

F™(apx + b,) = A(z) + O(b(by));

F(anz + by) = A(z) — (%ﬁ — r2) N (2)b(b) + o(b(bn))-
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Threshold case In the derivation of the joint density of the sum and the maximum,
we need expansions associated with the limiting distribution of exceedances above a
threshold. In particular, we need expansions for the first two moments of this distri-
bution. In the section on limit laws of exceedances, we see the relationship between
the GEV distribution and the Generalized Pareto distribution via threshold methods.
Here we present the results of Smith (1987) in which he establishes both the rate of
convergence for F,, — the tail of the conditional density of X —u given X > u where u is
an arbitrary threshold — and then the first order term in this expansion. Here we only
present the results associated with the Gumbel domain of attraction. First we present

a refinement of the Karamata’s representation by Balkema and de Haan (1972).

Definition 27 (Ext. to Karamata rep., Balkema and de Haan, 1972) IfF isin

the domain of attraction of A, then there exists a representation

1- F(z) :c(x)exp{—/_zo%}, T < T, (1.25)

where ¢(z) — 1 as x — x, < 00, ¢ is a positive differentiable function and ¢'(x) — 0

as r — T, < 00.

Proposition 28 (Prop. 9.1, Smith, 1987) Suppose (1.25) holds and

d(u+yod(u))/d'(u) =1, as u— x,, uniformly over
0<y<-—Klogl|¢'(u)|, forsome K >1,

clu) — 1~ s¢'(u), as u— x, for finite s.

Then, for each § > 0, there exist us < x, and a function €, tending to 0 as u — x,,

such that for v > us,0 <y < z, — u,

1= Fulyd(u)) — e7{1 + ¢'(u)y*/2}| < eud'(u) min(1,57°).
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Proposition 29 (Prop. 9.2, Smith, 1987) Suppose (1.25) holds and

O (u+yd(u))/d"(u) =1, as u— x,, uniformly over

0<y<-—Klogl|d(u)|, forsome K > 2,
c(u) =1~ s{(¢'(v)? + |¢p(v)d"(u)|}, as u— =z, for finite s.
d(u)d"(u)log|d'(w)|/d' (u) — 0, as u — x,.

Then, for each 0 > 0, there exist us < 0 and a function €, tending to 0 as u — x,, such

that for u > us,0 <y <z, — u,

1 - Fu(yd(u)) — e [1+ ¢'(w)y?/2 — y*{2¢' (v))? — d(u)d" (u)}/6 + y*(¢*(¢') (u))?/8]]
< €u[(¢'(u)” + ¢(u)¢" (u) ] min(1, y~°).

Note from Proposition 9.2 of Smith (1987), he calculates the first two moments of
Y =X —u,

E(%) = 1+¢'(u) + ((¢' () + $(w)" (u) + 0('(w)* + |6 (u)" (u)])

Var(&i(u)) = 24 66/(u) + 146 (w))? + 86(w)¢" (u) + o(¢! (u)? + $(u) 8" (w)]).

Limit Laws involving densities: The domain of local attraction

The result concerning the convergence of the density of M, which we wish to
emphasize here is that the so-called von Mises conditions are equivalent to the necessary
and sufficient conditions needed in establishing the local uniform convergence of the
density of the maximum. Although these conditions were first studied by von Mises
(1936) with respect to the general domain of attraction problem, the local domain
of attraction problem was first looked at by Pickands (1968) and Anderson (1971).
Results most closely connected to this thesis — involving the uniform results and rates
of convergence — are de Haan and Resnick (1982) and Sweeting (1985). To proceed we

first outline the required notation for this section. Next we present the adaptive von
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Mises conditions. Note the original von Mises conditions for the Gumbel case assumed
a second derivative to F'. Finally, we tie these von Mises conditions to the conditions
for the density convergence. In fact, we reintroduce a function ¢, which is found in the
Karamata representation of a slowly varying function. Letting this function take the

form ¢(t) = l}ggt) where f(t) = dF(t)/dt, we show that the behaviour of ¢(t) governs

the von Mises conditions and hence the local limit laws for M,,. In the next section

we exploit this function to establish the Generalized Pareto distribution. In the last
section of the theoretical review, we see that how we deal with the limit of the derivation
of this function can lead to either the ultimate or penultimate approximation to the

asymptotic distribution of M,,.

Traditionally the von Mises conditions are introduced primarily as sufficient con-
ditions for the general domain of attraction problem. In many statistical applications
these conditions are more easily verified and lead to direct calculation of the normaliz-
ing constants a, and b,. For the specific conditions in the following theorem, parts (a)
and (b) which deal with the Fréchet and Weibull cases are due primarily to von Mises
(1936) although the proofs usually accompanying these results [see Resnick(1987), p.
85 or 63] are due to de Haan and Resnick(1982). Part (c) which deals with the Gumbel

case comes from de Haan(1970).

Suppose P(M’&—;b“ < z) = F"(apz+b,) — H(z) for some extreme value distribution
H. We suppose F' is absolutely continuous with density f(x). Define f, as the density

of Mu=bn- that is,
an

fn(@) = na, F" apx + by) f(anx + by). (1.26)

The local domain of attraction problem centers on conditions such that

fo(x) = H'(x) (1.27)

where H' is the derivative of H.
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Theorem 30 (Von Mises c., Prop. 1.15(a), 1.16(a), 1.17(a), Resnick, 1987) (a)
Fréchet case: Suppose F' is absolutely continuous with positive density f in some neigh-

borhood of co. If for some a > 0,
lim —& = lim " — (1.28)

then F € D(®,). We may choose a, to satisfy a,f(a,) ~ a/n.
(b) Weibull case: Suppose F' has a finite right endpoint x, and is absolutely contin-

uous in a left neighborhood of x, with positive density f. If for some a > 0,

. ap—x _ . (zr—2)f(2)
1 = — = 1.2
dm =y T TR (1.29)
then F € D(V,).
(c) Gumbel case: Let F' be absolutely continuous in a left neighborhood of x, with

density f. If

fim L LU= F@)E_ @) [o7( = F ()t
e $(x) 11— F(x) P, [1—F(z)]?

then F € D(A). In this case, we may choose a, = ¢(by) and b, such that 1—F(b,) = L.

=1 (1.30)

Note it can be shown that the key in solving each of these cases involves assuming
lim, o ¢'(x) = k where k£ € R is some constant. Also note if we take ¢'(b,) = —k,
where k, is not a constant, this leads to the penultimate approximation. For more

details on the penultimate approximation, see the last section in the theoretical review.

Now de Haan and Resnick (1982) showed that conditions (1.28), (1.29), and (1.30)
are the necessary and sufficient conditions for f,(z) — H'(z) uniformly over compact

subsets. Specifically we have the following:

Proposition 31 (Prop 2.5, Resnick, 1987) Suppose F is absolutely continuous with
a density f and right endpoint z,. If F € D(H) and

(a) H = ®, then (1.27) is true locally uniformly on (0,00) iff (1.28).

(b) H=U, then (1.27) is true locally uniformly on (—oo,0) iff (1.29).

(¢) H=A then (1.27) is true locally uniformly on (—oo, 00) iff (1.30).
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Sweeting (1985) gave alternative necessary and sufficient conditions which he showed
were equivalent to (1.28), (1.29), and (1.30). He also established uniformity of conver-

gence over the full range of H under the additional additional condition

f(z) < C{F(z)} ? Vz € (~o0,00) for some B > 0,C > 0.

Sweeting (1985) also extended these results by establishing the kth times differen-

tiable domain of attraction — i.e. when

" pn (k)
dx(k)F (anx + by) — HW(z) as n — oo.

This is an important result for this paper because it gives not only rates of conver-

gence for densities but also higher order expansion terms.

Limit Laws of Exceedances: Generalized Pareto Distribution

There is a connection between the GEV distribution and the Generalized Pareto
(GP) distribution. We let ¥ = X — u where u is a threshold which we may take
to equal a,v + b, where a, and b, are defined as the normalizing constants of M,.

Recall F,(y) = P(Y < y|X > u) = f—(!ﬁ:g which is the conditional distribution of an

exceedance over the threshold.

Pickands (1975) showed that the GP distribution is the limiting distribution for the
exceedance over a threshold under precisely the same conditions (on F') as the ordinary
GEV distribution is the limiting distribution for the maximum. A quick look at the
reasoning behind this connection is as follows. Using our definitions of a,, b,,, ¢ and the

Karamata representation of a slowly varying function, we can write

= f(f;(f)ﬁ(u» - {‘ / %d} ~{1+ad ()} Y0 (131

for some y € (u,u + zp(u)).
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Using the last step in (1.31) — a Taylor’s expansion for its integrand — and assuming

¢'(y) — k then

1—F(u+xq§(u))N{ (14 kz)~'* k#£0
1-Fu)  |e=® k=0.

If we let y = z¢(u) and 0 = ¢(u) then

_ ky\—1/k
1—Fyu(y) = %ﬁf(ﬁz)u) ~ { ((al_y'/i,ff) Z i g (1.32)

where 0 > 0,—0co < k < oo and for k < 0,0 <y <ocand fork >0,0<y<—o/k.

The righthand side of (1.32) is the tail function for the GP distribution. The GP
distribution is important to the statistical methodology which utilizes the POT (peaks
over threshold) point process approach in fitting data. For more details, see Davison
and Smith (1990). For this thesis it is a key to the derivation of the expansion of the
joint density of the sum and the maximum since to establish the higher order term we
rewrite the mean of the underlying distribution in terms of the mean of an exceedance

over a threshold.

Penultimate Approximation

Finally, we look briefly at the construction of the penultimate approximation to
the extreme value distributions. Recall the function introduced in Theorem 30 — ¢(x).
In Theorem 30, we see that the lim, ., ¢(x) characterizes the ultimate approximation
of the distribution of the maximum - i.e., which domain of attraction it belongs to. In
fact, the ultimate approximation involves substituting lim, , ¢(x) = k (say) into the
appropriate formula in Theorem 30. If instead we substitute a sequence {k,} into the
formula, we obtain a sequence of approximate distributions to the distribution of the
maximum which is referred to as the penultimate approximation. We revisit (1.31) but
replace 1 — F'(z) in the Karamata’s representation by its asymptotic equivalent — log F,

u by b, and ¢(u) by a,. In doing so, we may rewrite the righthand side as
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—log F"(an + by) = {1 + z¢'(y)} /¥

for some y € (b, a,x + by,) which gives

F™(anz + by) = exp[—{1 +2¢'(y)} /7@,

Now assuming ¢'(y) — k, then the ultimate approximation is

F™(anx + by) ~ exp[—{1 + kz} /*].

Note in the case where k£ = 0 we should interpret the above formula as

F™(an,z + b,) =~ exp[— exp{—=z}].
which is the Gumbel case.

Now if we replace ¢'(y) not by k but by ¢'(b,) — i.e. let k, = —¢'(b,) — then

F™(anz + by) ~ exp[—{1 + x¢,(bn)}_l/¢,(bn)] ~ exp[—{1 + knw}_l/k"].
which is the penultimate approximation. For more details, see Smith(1990).

This penultimate approximation has received more attention in the case where k£ = 0.
In this case, the ultimate approximation is of the Gumbel type while the penultimate
approximation is either the Fréchet or Weibull type depending on the sign of ¢'(b,)
for large n. The penultimate approximation was first suggested by Fisher and Tip-
pett (1928). In their specific case for normal extremes, they showed numerically that
a better approximation to F™ was in the Weibull family. Both Cohen (1982a) and
Gomes (1984) have shown that in many cases that this approximation improves upon
the rate of convergence. The statistical implication is that it is better to estimate F'™ by

fitting the penultimate approximation rather than the ultimate approximation. Note
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for the normal extremes, Cohen (1982b) gives the rates for the ultimate and penul-
timate approximation respectively at O((logn)™')) and O(logn)~2) which shows that
the penultimate approximation improves on the ultimate approximation as sample size
increases. The case where k # 0 — either the Fréchet or Weibull case — is more recent.

Gomes and Pestana (1986) give examples of the penultimate’s efficacy.

1.2.3 Limit Laws for the Joint Distribution of the Sum and
Maximum

Chow and Teugels (1978), who solved the asymptotic joint distribution of the sum
and the maximum for the 7id case, and Anderson and Turkman (1991), who extended
the results to the dependent case, are the two primary sources for this joint distribution
problem although others working on this problem precede them — for example, D.A.
Darling (1952) and Arov and Bobrov (1960) — and continue to work on this problem —
for example, Mori (1981) and Vangel (1999).

Here we first introduce some definitions necessary to understanding the Chow and
Teugels (1978) result and then give this 7id result. Next, we define conditions which
limit the dependency in the Anderson and Turkman (1991) paper. Finally, we present
the Anderson and Turkman (1991) result.

Let X, X1,..., X, be an iid sequence of random variables with common distribution

F.

Definition 32 (Stable distribution, Feller, 1971) The distribution F is stable if

for each n there exist constants ¢, > 0,7, such that
d
Sn =X + Yn

and F' is not concentrated at one point. F is stable in the strict sense if the above

formula holds with ~, = 0.
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Theorem 33 (Thm VI.1.1, Vol. II, Feller, 1971) The norming constants are of

the order ¢, = n"/* with 0 < a < 2.
The constant « is called the characteristic exponent of F'.

Note in their derivation Chow and Teugels (1978) utilize the characteristic function

— wqe(t,p) — of a stable law. In particular, they define

T'(3—a T . . T .
t* 0= Rcos % —it(p—q)sin %] if a#1

—t|C[5 + iy (p — q) log|t]] if a=1

logwe(t,p) = {

In the above expression, 0 < a<2,0<p<1l,g=1—pand C > 0.

Definition 34 (Domain of a stable law, by Anderson and Turkman, 1991) F
15 satd to belong in the domain of attraction of the stable law with characteristic function
wa(t,p) — F € D(«,p) — iff either (1) 0 < a < 2 and for some slowly varying function
L

—

2
1—-F(z)~p z L(z), >0

or (2) a =2 and for some slowly varying function L
+z

u(z) = / YA (y) ~ L(z), 7> 0.

—T

Using the above concepts, we can now present Chow and Teugels (1978) result.

Theorem 35 (Thm 1, Chow and Teugels, 1978) Theorem: Let X;,..., X, be an
1id sequence of random variables with non-degenerate common distribution function F.
Define S, = >.»  X; and M,, = max(Xi,...,X,). Let a, > 0 and ¢, > 0. Then
(Un, Vi) = (‘3—: — nby, M”c—;d") converges in distribution to a limit (U, V) where neither
U norV is degenerate iff F' lies in both the domain of attraction of an extreme value
distribution and a stable law; i.e., F' € D(a,p) N D(H). The random variables U and
V' are independent unless 0 < a < 2,p >0, H = U,.
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Thus it follows from Chow and Teugels (1978) that if F' has a finite variance and the
limits U and V' are non-degenerate then U must be normally distributed and if F'(z) < 1
for all x, V must follow either a Gumbel distribution A or a Fréchet distribution @,
with > 2. In this case U and V are independent and F' must belong to the domain

of attraction of V.

Anderson and Turkman (1991) extended the results of Chow and Teugels (1978) to
stationary sequences. They also extended the results to hold when F' is in the domain
of attraction of the Weibull (V) extreme value distribution. Thus they showed even
under certain dependency conditions that S, and M, are asymptotically independent.
Recall the definitions of strong mixing — definition 6 — and the extremal index for a
stationary sequence — definition 12. Anderson and Turkman (1991) define the following

condition to restrict the amount of clustering.

Definition 36 The condition D'(an,u,) of Anderson and Turkman(1991) is said to
hold if for each T > 0

[n/K]
: : o1 — . =
klggokhisoljp ]-Ezl E{|exp(ita, E X)) —1x(X; >un)} =0

l=1'
I#j

where [| denotes the integer part and x is the indicator function.

Note the definition of D'(a,,u,) is a variant of condition D'(u,) — see definition
10 from Leadbetter et al.(1983). Recall the condition D'(u,) limits the amount of
clustering. In particular it limits the probability of one exceedance following another.
Also note in the derivation, Anderson and Turkman (1991) have taken F(X) = 0 so
that the normalizing constant b, can be taken to be 0. Specifically their main result is

as follows.

Theorem 37 (Thm 1, Anderson and Turkman, 1991) Suppose the sequence {X;}

1s stationary, has zero mean and finite variance, and satisfies,
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(i.) {X;} is strong mizing and has positive extremal index;

(i.) For some constants a, > 0 with lim,_, a, = 00,¢, > 0, and d, that marginally,

St =S, /an > N(0,1),
M* = (M, —dn)/cp, > H

n

where H is one of the extreme value distributions A, ®, for some a > 2, U, for some
a> 0.
(11i.) {X;} satisfies D'(an,uy,) condition.
Then
lim Elexp(itS’)x(M} < )] = exp(—t*/2)H(x)

n—oo

so that S; and M) are asymptotically independent.

At this point we conclude the literary review of the theoretical results around which
this thesis is developed. Chapters 2 through 4 will utilize these results to develop a
higher order expansion for the joint density of M,, and S,,.

1.3 Climate Literary Review

The impetus for such an expansion of the joint density of the mean and the maxi-
mum involves a climatological question which has and continues to draw much attention.
In the broadest sense, this question — the application we look at in Chapter 5 — focuses
on how the extremes in a weather series affect the average weather — for example, how
a change in the hottest day of the year or the storm with the most rainfall might affect
the average annual temperature or total rainfall? This discussion was instigated shortly
after the publicity of global warming — a now well established increase in the average

surface temperature of between 0.3°C to 0.6°C since the latter half of the nineteenth
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century (Karl et al., 1991). Again we do not want to review all the literature concern-
ing global warming and its related topics. Our main focus will be studies which tie the

extreme climate events to the overall weather patterns.

The study of climate change which refers to the shift of weather features over rel-
atively large areas (global or continental) and over long periods of time (decades, cen-
turies, or millennia) has represented and continues to represent an enormous undertak-
ing at all levels of its investigations: from the global perspective down to the regional
level, from improving and understanding the historical climate records to predicting
events over the next millennium, and from understanding what influences humans have
had on the process to what humans can do to alleviate and/or adapt to these changes.
Thousands of scientists have worked and are working on issues relating to this problem
in international agencies, national agencies, academia, and private industry. Some of
the notable groups include the Intergovernmental Panel on Climate Change (IPCC)
which was established in 1988 by the United Nations; in the United States, the Na-
tional Climate Data Center (NCDC) which is a branch of the National Oceanic and
Atmospheric Agency (NOAA) and was established in 1951; the Goddard Institute in
the National Aeronautical and Space Administration (NASA); and the Pew Center for
Climate Change at the National Center of Atmospheric Research (NCAR). The private
industries which have people working with this topic are as diverse as Dow Chemical
Inc., Glaxo Welcome, Inc., Meryll Lynch, and Ford Industries. To see a more complete

look at this diversity, see IPCC (1996).

Obviously there is too much literature to review — maybe too much to expect any
consensus given the differences between the groups and their motives. Here we give
the broadest of overviews — some of the basic definitions and notions, some of the basic
methods people are using, some major accomplishments that have led to an increased
confidence in climate change results, and some of these major results. Throughout we

highlight what we specifically will be studying in Chapter 5 — the data analysis of the
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total and maximum annual precipitation in the contiguous United States. We give the
more general information about the study of climate change to give a perspective to our
data analysis — both to understand the impetus for our analysis and to better interpret

its results.

The climate — the “average” weather — is obviously a very complicated and inter-
active system which is influenced by both internal and external forces. The internal
components include the atmosphere, the oceans, biosphere, cryosphere (ice and snow),
and the lithosphere (Earth’s crust). The external forces, those which influence but are
not influenced by the climate, include the Sun and its output, the Earth’s rotation, the

Sun-Earth geometry, and volcanic eruptions.

These components are linked by the flows of energy and mass. Mass flows are in fact
cycles. Since mass cannot be destroyed, mass — in one form or the other — flows from
one reservoir to another in the climate system. Mass cycles include the water cycle, the
carbon cycle, sulphur cycle, and nutrients (i.e. phosphorus and nitrate) cycle. Energy
flows include the transfer of momentum between the atmosphere and the ocean, sensible
heat, latent heat, and solar and infared radiation. Note this last piece has been the focus
of much research and popular speculation. In particular, the greenhouse effect refers to
the reduction in the loss of infared radiation to space by the atmosphere which tends to
make the climate warmer. The gases which play a major role in the greenhouse effect by
either trapping or reflecting the radiation are water vapor, carbon dioxide C'O,, methane
CH,, nitrous oxide N,O, and ozone (J3. Note clouds also play an intricate part of this
process. These greenhouse gases — GHG — are natural and necessary for the climate
but it is the “enhanced” greenhouse effect that has been the focus of much research
and debate. It refers to the increased levels of the GHG above their natural existing
levels and their impact on the climate including the average net radiation. A change in
the average net radiation — the average amount of solar radiation that is absorbed into
the Earth’s atmosphere and how much long wave radiation is released — is referred to

as a radiative forcing of the system. This increase in concentration of these GHG will
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trap a significant amount of heat. This heat will almost certainly lead to changes in the
climate that are significant from a human and ecological point of view (Harvey, 2000).
For example, a simplified version of this effect shows that this greater concentration of
carbon-based gases and water vapor better insulate the earth which in turn leads to an
increase in temperature which leads to more evaporation and hence more precipitation.

The actual process can be quite intricate and highly interdependent.

To be complete there are both natural and human causes for possible climate change.
Natural causes on a global scale involve changes in topography, land-sea geography,
bathymetry (ocean basins), and internal variability of the atmosphere-ocean system.
On a shorter time scale, the natural causes include solar luminosity, the Earth’s orbit,
volcanic eruptions, and even El Nino — the warming of the equatorial Pacific ocean
which occurs as irregular intervals of 3 to 5 years. Human causes include the increases
in concentration of well mixed GHG, changes in ozone, levels of aerosols, and changes
in land surfaces such as deforestation. Note the last three have more impact at a
regional or continental level but which ultimately effects the global climate. Note it is
the opinion of many — including Harvey (2000) — that the natural forces will almost
certainly be overwhelmed by the heating effect of the increasing GHGs concentration
during the 21st century. For more information on the climate system and changes in it,

see Chapter 2 of Harvey (2000).

Note often the terms climate change and climate variation are used to differentiate,
respectively, between changes in the climate which are directly or indirectly due to
human activity versus due to natural variation. Throughout this thesis we will not
distinguish between these two. More specifically climate change will refer to a change
in the climate regardless of the cause. For further information on the climate system,

a good reference is K.E. Trenberth et al. (1996) or Harvey (2000).

Although climate change refers to change in the average weather, the weather it-
self is made up of many variables, what are referred to as climate indicators. The

two indicators most studied and most recognizable are temperature and precipitation.
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Another feature of the climate that has recently been emphasized is extreme events
and/or climate variability — both in temperatures and precipitation. In fact, the rela-
tionship between extremes and the average climate has garnished attention from Karl
et al. (1995, 1996, 1998) at the NCDC and Wigley(1999) of the Pew Center for Climate
Change at NCAR, among others. Other climate indicators include the atmospheric

circulation and storms — hurricanes, tornadoes, cyclones, etc.

There are two broad areas of investigations related to climate change. The first
involves the detection of trends. Our data analysis falls into this category. In general,
detection is more straightforward and usually — but not always — pertains to just the
analysis of the historical record. The detection questions can be further specified — al-
though this is not the objective of this paper — to discern significant difference between
natural variability in the climate system and anthropogenically forced variability. The
second area of interest in climate change which draws the most attention and the most
debate is the attribution of the cause for climate change. Establishing cause and effect
is a challenging endeavor. Since we only have one Earth, “experiments” run to investi-
gate causation must involve simulation projects which is where the General Circulation
Models (GCMs) play their prominent role. For more information, see IPCC (1996). As
stated previously, at no step in our analysis do we imply any causation to the trends

we estimate so this attribution question is not addressed.

There are two basic vehicles to study climate change — analysis of historical records
(observational data) and the use of the GCMs (modeled data). A third approach in-
volves studying the socioeconomic factors associated with climate change — for example,
population growth and/or shift, necessary insurance reserves, and educational programs.
This third factor is of interest mainly to policymakers but given the interactive nature
man has with his environment these factors can both influence climate change and be

influenced by it.

One of the major developments in the past 25 years in this field has been the col-

lection and maintenance of the historical climate records and a more uniform struc-
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ture for providing quality control for these large data sets. In the United States,
the NCDC was established for just this purpose. The United States Historical Cli-
mate Network (USHCN) is the culmination and now ongoing task of the NCDC and
the Carbon Dioxide Information and Analysis Center (CDIAC) of Oak Ridge Na-
tional Laboratory. The USHCN was constructed to help address issues concerning
climate change. It is a high quality, moderate size data set that includes minimum
and maximum temperatures along with precipitation. There are a total of 1221 sta-
tions in this particular network within the contiguous US, although roughly between
180 and 190 stations are considered primary. In general, the records run from 1901
to 1997. The criteria for a station’s inclusion include length of record, percentage
of missing data, number of station moves, and spatial coverage. These data have
gone through extensive quality control to correct for human error, time of observa-
tion bias, equipment adjustment, and urban warming. They do have a procedure
to estimate missing data. For precipitation, it involves generating gamma random
variables. For more information concerning the USHCN, please see NOAA website

(http://www.ncdc.noaa.gov/ol/climate/research /ushen /ushen.html).

Other data sets which have been meticulously groomed since their initial collec-
tion exist. In fact, there are three well established global scale data sets of mainly
land surface-air temperatures: (1) produced at the University of East Anglia (UK) by
Professor Philip Jones, (2) produced by Doctor James Hansen and colleagues at the
Goddard Institute of Space Studies (GISS) in the United States of America, and (3)
produced by Doctor Konstantin Vinnokov and colleagues at the State Hydrological In-
stitute in St. Petersburg, Russia. See Section 5.1 of Harvey (2000) for more details on
these data sets. In general, data sets that are considered very reliable have roughly the
same length of record as the USHCN data set — usually starting in the late 19th century
or early 20th century. There are some studies, see Lamb (1965, 1988), which discuss
data going back to 1400 AD but spatial coverage is quite limited. There are obviously
other sources of climate data — ice core, tree ring, lake level, and coral data, see Cook

(1995) — but the information that can be extracted from these data sets are not of the
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same time scale or accuracy that we need in our analysis of the annual precipitation

across the contiguous US.

Studies which involve only the analysis of historical data sets are limited in their
scope. Although they may help to determine if a trend in a climate indicator has
occurred, they cannot tell us what caused this trend. We need to keep this in mind
when interpreting our results. Given this limitation, data analysis projects are often
teamed with climate simulation models to aid in the interpretation and causation of

results of the data analysis part.

The second biggest development in the past 25 years in this field is the improvement
of the GCMs. Although these models are not used in our analysis in Chapter 5, they are
important to know since some of the work that instigated this work, see Karl et al. (1995,
1996), involves climate simulation data. The climate models’ primary role in studying
climate change is to simulate the climate as it now operates and then to perturb certain
features to see the effects. It is necessary to calculate the effects of all key processes in
the climate system. This means representing the processes as mathematical formulae.
Climate models are those which contain enough of these processes to be considered

useful in representing the entire system.

Obviously the climate system, even just the parts that are currently understood,
is too complex to be thoroughly modeled. There are simplifications which of a neces-
sity must be made. Although invariant principles such as Newton’s laws of motion are
ideal in formulating these models, in some cases empirically derived relationships are
included. Because they were not derived rigorously, it is possible these relationships are
not applicable under different circumstances — i.e. when the climate changes. Another
simplification is the discretization of the continuous climate process, in particular, se-
lecting a fixed set of points to represent a region or even globe. The spacing between
the points on the grid used is the “spatial resolution” which is typically hundreds of
kilometers in the horizontal on the global scale. It is important to realize that many

key elements of the climate system have scales much smaller than this — note, in par-
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ticular, many extreme events. A formulation of the effects of a small-scale process on a
larger scale is called “parameterization.” A third simplification involves averaging over
a complete spatial dimension; for example, simulating the three dimensional climate in

two or even one dimension.

There are a variety of complexity to the climate models. Some of the more sim-
ple models are one dimensional atmosphere models or one dimensional energy-balance
models. The most complex are the three dimensional atmospheric and oceanic general
circulation models (AGCMs and OGCMs). In fact, only when these two are coupled
do we have what is considered to be a realistic climate model. These models include
simulation of winds; ocean currents, temperature, and salinity; clouds; precipitation
evaporation; soil moisture; and many other features. Due to the complexity of the
model, a majority of these processes are parameterized. The more simple models are
used to investigate basic relationships between components and exploring global-scale
equations. The more complex models can give insights on regional climate change, at
shorter time scales, or on processes that need a finer resolution. The more complex
models are also costly, can be difficult to understand, and with the higher resolution
can produce “noise” in the system. Note the simpler models can be calibrated — i.e.
have variables identified and parameters estimated — by the more complex models. For
more information on climate models, see Chapter 5 of Harvey (2000). Note successfully
modeling the major impact that the oceans have on the climate is considered one of
the significant improvements in these GCMs along with including the radiative forcing
especially due to the sulfate aerosols and the secondary solar effects. For more details,

see Wigley et al.(1997).

Kattenberg et al.(1996) is a very good resource for the results using the GCM
models. Research shows that increasing C'O, in all models produces an annual mean
warming, particularly in the high northern latitudes and especially in the autumn and
winter months. How big this increase is depends on the C'O, forced into the system

although the best estimate for this increase is 0.3°C'/decade in the early 21st century.
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When aerosol forcing is included in the model this increase drops to 0.2°C/decade. For
precipitation, an increase in C'Os leads to an increase in the global mean precipitation
for all models. This increase is notable in the high latitudes in the winter and in most
cases extends well into the mid-latitudes. Again, when including aerosol forcing, this
predicted increase in global mean precipitation is reduced. With respect to changes in
extreme events and/or variability, predictions using GCMs are more difficult since these
events are “small scale”; that is, the resolution at which these GCMs are modeled is
not fine enough to accurately portray these rare events. Essentially, predicting changes
in extremes means predicting changes in probability distributions. Current beliefs are
that (1) a change in the mean temperature will have a substantial impact on exceedance
probabilities (due to the short upper tail of the temperature distribution) and (2) a
change in temperature variability also affects the occurrence of extreme events. There
is some debate which has more impact on extreme events — a change in the mean or
in the variability. Katz and Brown (1992) found a change in variability has a greater
influence on monthly maximum temperatures. On the other hand, Cao et al. (1992)
and Hennessey and Pittock (1995) found using enhanced greenhouse simulations that
changes in mean temperatures have a greater affect than climate variability. Some of the
predictions of the GCMs for extreme events and/or variability are: (1) general warming
tends to lead to an increase in extremely high temperatures and a decrease in winter days
with extremely low temperatures, (2) a decrease of daily temperature variability (most
notably a decrease in the diurnal temperature) for some regions and an increased daily
precipitation variability in a few regions, and (3) an increase in precipitation intensity —
implying more extreme rainfall events — and also more frequent and/or severe drought

periods in a warmer climate. For further details, see Kattenberg et al. (1996).

Again we could not begin to summarize the results from the data analysis studies,
from GCM studies, and studies that used both methods that continue to be calculated.
Overall we see that some of these climate indicators have significant trends while others
do not. Even those with significant trends are not necessarily uniform with respect

to time or space. To see a comprehensive survey of the results, see IPCC (1996). At
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this point it becomes necessary to limit our review to those studies directly applicable
to our work. In particular we focus on extreme events and their relationship to the
mean climate of the contiguous US — in particular, the precipitation series. Studying
precipitation is considered more difficult than temperature because in general there is
greater variability from one point to another. There are two global scale data sets:
one by Professor Hulmes and the other is the Global Historical Climate Network. See
Harvey (2000) for more details on these data sets. On a global scale, the findings are
consistent with a warmer climate. The mean precipitation is generally increasing outside
the tropics and decreasing in Sahel. As for the precipitation extremes, there is growing
evidence that they are taking on more importance. (Harvey, 2000) For our particular
analysis of rainfall in the contiguous US, there are three main papers which give the
necessary background information. In fact, they were the impetus of the analysis. They
are: Karl, Knight, and Plummer (1995), Karl, Knight, Easterling, and Quayle (1996),
and Karl and Knight (1998). They are important because they give the best look at

how climatologists model the connection between means and extremes.

Karl et al. (1996) provides the best general overview of the US climate with re-
spect to the climate extremes. The two instruments used in this paper to study climate
extremes were the CEI, the Climate Extremes Index which is an aggregate set of conven-
tional climate extreme indicators, and the GCRI, the US Greenhouse Climate Response
Index which includes indicators that measure the changes in the climate of the US that
have been projected to occur as a result of increased emissions of greenhouse gases.
The method used was to fit ARMA models to the time series of each indicator, using
the BIC criterion to select the most appropriate order. Trends were removed prior to
the fitting. Then the trend of the observed series is compared to 1000 Monte Carlo
simulations from the generated time series. The fraction of the time the observed trend
exceeds those calculated from the simulated series is used as a measure of the statistical
significance of the observed trend. The general conclusions were: (1) The changes in
the CEI support the notion that the climate of the US has become more extreme in the

recent decades — yet the magnitude and persistence of the changes are not now large
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enough to conclude that the increases in the extremes could not have arisen from the
quasi-stationary climate and (2) changes in the GCRI are consistent with the expected
significance of change due to the enhanced greenhouse effect but the increases are not
large enough to unequivocally reject the possibility that the increases in the GCRI may
have resulted from other factors including natural climate variability. In other words,
they found evidence — but not overwhelming evidence — the climate of the contiguous

US is becoming more extreme.

The premise of Karl et al. (1995) is that understanding climate change requires
attention to changes in climate variability and extremes but that knowledge of recent
behaviour of these variables had been limited by the unavailability to data. Specifically,
they focused on climate indicators of temperature and precipitation. They analyzed four
data sets: 187 stations from the USHCN, 223 stations from the former USSR, 197 from
the People’s Republic of China, and 40 stations from Australia. For temperature data,
they calculated anomalies in the daily maxima, minima, average, and the diurnal range
series where the daily anomalies were calculated using the first three harmonics of the
period of record mean annual daily temperature series being analyzed. Then they de-
fined temperature variation as the mean of the series defined by absolute difference in
the mean temperature anomaly (maximum, minimum, average, or diurnal range) from
time frame 7 to ¢ + 1. Values were arithmetically averaged within regions and then
area weighted across the countries. Daily rainfalls were aggregated into 5 categories
from very light to extremely heavy and the proportion in each category calculated. A
national mean was calculated by area weighting. For both temperature and precipita-
tion, significance of the trends was established via the Monte Carlo method used and
described in the above paper of Karl et al. (1996). With respect to their temperature
analysis, they found that the interseasonal temperature variability has generally de-
creased in the Northern Hemisphere. Specifically for the contiguous US, the day-to-day
temperature variability for all elements in the US is significantly decreasing. These
decreases in interseasonal variability in the US are primarily due to decreases in the

spring and summer. With respect to precipitation for the US, they found a clear signal
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that there is an increase in the proportion of precipitation derived from the extreme
precipitation category (> 2 inches). This increase is a result of increases during all
seasons although more readily observed in the summer and then spring. This increase
is seen throughout the country except the far west and the southeast. The trend in
the total precipitation in the summer and spring is near zero. Note their finding are

consistent with model projections of a warmer world.

Finally, Karl and Knight (1998) gives the most comprehensive look at precipitation
across the contiguous US. The data used in the analysis consists of 142 stations from
the USHCN plus an additional 48 stations which used a standard 8 inch gauge in the
collecting of the precipitation data. Essentially their method is via summary statistics
— certain weighted spatial averages. More specifically, the precipitation data was arith-
metically averaged into 1° x 1° grid cells. These cells were area weighted to calculate
changes in precipitation for the nine regions they used. A national average was calcu-
lated by area weighting the nine regions. Finally, they used a nonparametric Kendall
7 test (o = 0.05) to detect significant trends. They found that since 1910 precipitation
has increased in the continental US by about 10% but that one statement, which is often
quoted, is an oversimplification of their results. By focusing on different quantiles of
the precipitation data, they maintain the precipitation distribution itself has changed,
making this precipitation increase fairly complex. They found: this increase is affected
by both the frequency and intensity of precipitation; in all categories, the probability of
precipitation on any given day has increased; precipitation intensity has increased only
in the extremes; and in fact, the increase in total precipitation derived from the extreme
events is higher relative to the moderate and low events. The last finding — that the
increase in precipitation is primarily due to heavy/extreme daily precipitation events
— is most interesting. In fact, they found that 53% of the rise in the total increase is
due to a positive trend in the upper 10% of the probability distribution despite the fact
these upper tail events only constitute about 35-40% of the total annual precipitation.
This is seen predominantly in the summer and then spring and in general holds for all

regions across the US except for the far West and the Southeast. In summary, since
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1910 they are seeing a positive trend in total precipitation and in the number and in-
tensity of extreme events. Moreover the increase in the upper percentiles is driving the

increase in the total precipitation.

Their findings are consistent with other contributors to the 1996 IPCC report. There
is evidence of a small positive (1%) global trend in precipitation over land during the
20th century although precipitation has been relatively low since the 1980s. This trend
is non-uniform — positive trends exist in some regions and not others (Groisman and
Legates 1995, Nicholls et al. 1996). Globally the data on extremes in precipitation are
inadequate to say anything about a global change (IPCC 1996, p137). On the US scale,
the increase in annual precipitation is most apparent after 1950 and is in large part due
to increases during the autumn (September to November). The increases average out to
about 5% across the contiguous US. Also the increases are more prevalent in the eastern
two-thirds of North America.(Findlay et al., 1994, Lettenmaier et al. 1994). Finally for
extremes in precipitation in the continental US, Iwashima and Yamamoto (1993) also
found positive trends in the higher frequency of extreme 24 hour rainfall totals. Finally,
prevalent in all precipitation analysis is the marked year to year variability (Wigley,

1999).

In conclusion, in the past decade there has been increasing focus on the extreme
events of some of the climate indicators, in particular, precipitation and temperature.
This discussion has lead to inquires about the relationship between these extremes and
the mean climate. Although globally there are issues concerning the availability of
reliable data which has the necessary information, the USHCN affords the study of
US precipitation a better opportunity as can be demonstrated with the above studies.
Another importance of these three studies, especially Karl and Knight (1998), is that

they show how the climatologists connect the mean and the extremes.
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Chapter 2

EXPANSION OF THE JOINT
DENSITY UNDER THE GUMBEL
DOMAIN OF ATTRACTION

2.1 Introduction

This chapter studies the relationship between the sum and maximum of an iid
sequence of random variables. The work of Chow and Teugels (1978) — followed by
Anderson and Turkman (1991) — established that asymptotically the sum and the max-
imum are independent. Specifically they showed that, under appropriate conditions,
the joint distribution of the sum and the maximum converges to the product of their
individual asymptotic distributions — namely, the normal distribution and one of the
three extreme value distributions. The chief theoretical question that remains is to
determine the rate of convergence of this asymptotic independence. The associated sta-
tistical methodology question is, in moderate sample size where the asymptotic result
is not yet realized, how does one model the dependence structure between the sum and
the maximum? Given the importance of both the rate of convergence and the statistical
modeling questions, an important development in this area is a higher order ezxpansion
for the joint density of the sum and the maximum. This is the goal of this chapter,

along with the two subsequent chapters.



Specifically, we look at the following structure. Let Xi,..., X,, be an iid sequence
of random variables with common distribution function F' which has density f and
characteristic function ¢ where the support of F' lies on (z;,z,) where —oo < zy,
z, < 00. We assume the existence of the third moment us from which follows the

existence of the mean p, variance o2, and third cumulant /Cs.

Define S, = 2?21 X, with the normalized version as

n
no?

(2.1)

and M,, = max;<;<, X; with the normalized version being M, = M’&—_b” where a,, > 0, b,
—r = n

real.

We define the distribution function of S} as Fg. with density fs.(w) = dFs: (w)/dw.
We also define the distribution function of M} as Fi: (v) = F"(a,v + b,) with density
faz (0) = dF o (v)/dv = nF" Y anv + by) f(anv + bn)an.

If we let h,, denote the higher order term in the expansion of the joint density of S}
and M, with R, as the remaining error term associated with this expansion, then one

of our specific goals is to establish A, (v,w) and R,, such that

| fsg.01z (W, 0) = fs (W) farg (V{1 + hn(v, w)}| = 0o(Ry) (2.2)

uniformly in some interval of w and v. The term h,(v,w) is important because as a
first order approximation it describes the dependence structure between S} and M.

The term R, is important since it gives the error associated with this approximation.

Since we are assuming a finite variance, we have that F' lies in the domain of at-
traction of a stable law with index equal to 2; that is, Fi (w) converges to N (w) where
N (w) denotes the normal distribution function. Note the normal density is denoted
by N'(w). As seen in Chapter 1, there is a rich literature detailing not only when the
distribution of S,, converges but also when the density and its higher order expansions

converge. We will rely on Feller (1971), Chapter XVI, Section 2, Theorem 1 which
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gives the uniform expansion of the density of S) — the unconditional version. Given the
conditions of Feller’s expansion for the density, we also have the result due to Petrov
(1975) for this expansion which says that we can bound z™{ fs: (z) — N'(z)} uniformly

Vx when m < 3.

We also assume F' lies in the domain of attraction of one of three extreme value
distributions. Specifically, in Chapter 2 we assume that F' lies in the Gumbel domain of
attraction. We let A denote the Gumbel distribution function and A’ denote its density
where

T

Alz) =exp—e %, —00 <z < 00,

and

N(z) = e Texp{—e"}, —c0 <z < 0.

Under the Gumbel domain of attraction, Balkema and DeHaan (1972) refined the Kara-
mata representation from Chapter 1. This representation is as follows. If F' is in the

domain of attraction of A than F'(x) may be written in the form

log F(z) = c(z) exp {— / ’ %} Vi < 3, (2.3)

where ¢ is a positive twice differentiable function, ¢'(z) — 0 and c¢(z) — 1 as x — x,,
and z, = sup {z : 1 — F(z) > 0}. We can then take a, and b, — the normalizing

constants for M,, under the Gumbel distribution — to be

a, = ¢(b,) where ¢ is defined in (2.3) (2.4)

and

b, = inf {z : —log F(z) > 1/n}. (2.5)

With these assumptions we can specify another form of the result — useful in statis-

tical modeling

| fszaa; (w, 0) = N (w)A' (0){1 + hy (v, w) } = o(Ry,) (2.6)
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uniformly in some interval of w and v. Note that h], may be be different from h,, and
R;, may be different from R,,. The idea in statistical modeling is to replace fg: rx(w,v)
by N'(w)A'(v){1 + k! (v,w)}. The term A/ (w,v) should lead to a better modeling of
S’ and M than simply modeling them separately, i.e., by N'(w)A’(v). The R] term

gives the scale of error associated with the above substitution.

Our approach in solving either (2.2) or (2.6) is to rewrite fg: px(w,v) = fs:mz(w|v)
X fuz(v) where fgsa:(w|v) is the conditional density of S given M. Then we need
to establish three key expansions. These expansions form the three main propositions
of this chapter which in turn combine to give the main results. First we need to
establish the expansion for the conditional density of S*|M?. Then we need to derive
the expansion for the density of M. Finally, we need the expansions for the conditional

mean and variance of S;| M.

A key in the derivation is connecting the two random variables — S,, and M,,. This
is done by conditioning one on the other, here S, given M,, = u, where u, = a,v + b,
with a,, and b, defined in (2.4) and (2.5) and with v fixed.

The conditional distribution of S, given M,, may be written in the form

n—1
P[S, < a|My = uy] =P[O X} +un) < 2| My, = uy)]

=1

where X['s are 7id conditional random variables with
PX! <z]=PX <z|X <u,.

Hereforth we write X* for the random variable with the distribution F(z)/F(u,),Vz <
Un, and write S, = X} + u, where X7,..., X’ | are id with the same distribution
as X*. The dependence on a given sequence {u,} is implicit in the notation. Thus
the conditional distribution of S,, given M,, = wu, is the same as the unconditional
distribution of S,, and we shall use this equivalence in the following discussion.

We may write

E(S_n) = (n—1)p(un) + uq
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where p(u,) = E(X*) = E(X|X < u,) and
Var(S,) = (n —1)0(uy)

where 0?(u,) = Var(X*) = Var(X|X < u,). Note we let x3(u,) denote the third
cumulant of X*. Now we also let S, = {S, — E(S,)}/1/var(S,) as the normalized

version of S,. Then

PiS <o) = PR ) <
prSa A= Dut) +uah _
(n—1o*(un)

_ ppSe ) b
(n—1o2(u,)  — "
_ P[S;\/W +np —{(n —1p(un) + un}
(n—1)o%(uy)
where the last step comes from substituting (2.1) into the formula. Thus (2.7) gives

<alMp=v] (27)

the form of the transformation we need. Note the Jacobian of this transformation is

Vno?
(n—1)0%(un)

The final key in the derivation is exploiting the relationship between the generalized
extreme value (GEV) distribution and the generalized Pareto (GP) distribution. Let
us define Y as the exceedance over the threshold u,; that is, Y = X — u,|X > u,. The
conditional distribution function of ¥ given X > wu, is
F(un, +y) — F(un)

1= F(u.)

Note that the tail distribution function is 1 — F,, (y) = 7w,

F..(y)=P(X <u,+ylX >u,) =

Define m(u,) and s?(u,) as the conditional mean and variance of Y given X > u,,.
Note we have F(X|X > u,) = m(u,)+u, and Var(X|X > u,) = s*(u,) = Var(Y|X >

This construction allows us to write the mean and variance of S, in terms of F'(u,),

m(u,) and u,. An explicit expansion for F'(u,) and then m(u,) depend obviously on

assumption made on F'.
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Broadly, we need conditions on F' to obtain the expansion of the conditional density
of S¥|M} and for the expansion of the density of M. The conditions necessary for the
expansion of the conditional moments are included in those needed for the two density

expansions.

The plan of this chapter is as follows. The main theorem and its corollary are
presented in Section 2.2. Section 2.3 contains the lemmas and their corollaries necessary
for proving the three main propositions. Once these three propositions are established
in Section 2.4, Section 2.5 sets out the proofs of the main theorem and its corollary.
Finally Section 2.6 presents a simulation project conducted to study the behavior of
the higher order expansion term of the joint density of the sum and the maximum and

its improvement over the asymptotic result.

2.2 Main Theorem

Here we present the main theorem, followed by its corollary. The main theorem
provides a useful result for statistical application. It delineates a first order correction
for the dependence structure that exists between S; and AM;; that is, it gives the
approximation of the joint density as the product of the individual densities plus this

higher order term.

The corollary provides an explicit algebraic approximation for the joint density of
the S and M}; that is, we can approximate the joint density as the product of the
normal density and the Gumbel density plus the following higher order terms. The error
associated with this approximation can be viewed as the maximum of two parts — one
associated with the expansion of the density of the maximum and the expansion of the
density of the sum and the other part a combination of the expansion of the conditional
density of the sum given the maximum and the expansions of the conditional moments

written in terms of the parameters of the maximum.
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Theorem 38 Let X1,..., X, be an itd sequence of random variables with distribution
function F, density function f, characteristic function ¢, mean u, and variance o®. Let

uy, be a threshold level and ¢, be the characteristic function of X|X < u,,.

Given the following two sets of assumptions
Set A: Assume f' is integrable, uz exists, ©" erists and is continuous in a neighborhood

of 0, and |y, (t)|" is integrable for n > some n* > 1.

Set B: Assume F is in the domain of attraction of A so that the representation in (2.3)
holds. Use the same form of a, and b, as defined in (2.4) and (2.5). Also assume that

for a constant K > 2,
anv + by = x, uniformly in |v] < —Klog [¢'(b,)| as n — oo (2.8)

" (anv +b,) /9" (by) = 1 uniformly in |v| < —Klog |¢'(b,)| as n — oo (2.9)

B (bp)d" (bn) log @' (bn)|/d (b)) = 0 asn — oo. (2.10)

Also for any v* < x,

. ['()F
inf (;2)(1;)(0) > —00 (2.11)
and when x, = oo,
¢'(t) log |¢'(2)] —0, ast— o0 (2.12)
t 7 bA .
Defining
by _
— ) Vnor» TeT X
T'n = { :con;;; T, < 00, (213)
then
| fssn; (w,v) = fs () fary ({1 = ra(e™ = Dw}| = o(rn) (2.14)

uniformly Yw and V|v| < —K log [¢'(by)].
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Corollary 39 Given the conditions in Theorem 38,
if £, = 00
2 2,—v

| fsg 2z (w0, v) — N (w)A'(v){1 + (% Y ;

)¢ (bn) H1 = rn(e™” = Dw}|

= ofmax(ry, [¢'(bn)[)} (2.15)

and if T, < 00

stz (1,0) = N (@)X (0){1 + 32w = 3u)}
{1 (2 = 0= D0 - rae — D}

9 2
= of{max(ry, [¢'(b,)])}

uniformly Yw and |v] < —K log|¢'(by)].

Corollary 40 Given the conditions in Theorem 38 and defining
k(x —
H(z;n,v,k) =exp |—{1 — %}1%
Let k, = —¢'(b,) and replace

2 U2€—v

N1+ (5 —v———)¢'(b)}

in (2.16) and (2.15) by

d
H'(v;0,1,k,) where H'(z;n,¢, k)= ﬁH(ac;n,w,k),

then we get the same result as Theorem 38.

REMARK: This gives us the penultimate version of the approximation.

20

(2.16)
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2.3 Lemmas

Here we present the lemmas necessary for the propositions of Section 2.4. This
section has three subsections — lemmas necessary for Proposition 50, 51, and then 53.
Proposition 50 gives the uniform expansion for the conditional density of S given
M. The lemmas needed for Proposition 50 are as follows: Lemma 41 is a retooled
Riemann-Lebesgue theorem, similar to Feller (1971) , Chapter XV, Section 4, Theorem
4. It gives conditions necessary so that the conditional characteristic function goes to
zero uniformly at infinity. Lemma 42 provides a rate of the convergence in Lemma 41.
Its first corollary, Corollary 43 gives conditions when the nth power of the conditional
characteristic function is integrable. Its second corollary, Corollary 44, provides the
Fourier norm of the conditional density of S} given M. Lemma 45 shows that we
can bound the conditional characteristic function by a number less than 1, uniformly.
Finally, Lemma 46 is a technical result that shows the difference between a function of

the conditional characteristic function and its third derivative tends to zero uniformly

in a neighborhood of zero.

Proposition 51 gives the expansion of the density of the maximum when the maxi-
mum is in the Gumbel domain of attraction. Given F' € D(A), Balkema and DeHaan
(1972) provide the representation for —log F'(x), see (2.3). Using this representation,
in Lemma 47, we are able to write an expansion for the ratio :11(())’27?((1;:))' Given the
definition of b, this allows us to write an expansion for — log F'(u,) and via a Taylor’s

expansion one for 1 — F(u,). In Lemma 48, we bound the function e ™ e ¢ uniformly

Vv. This is important to Proposition 51 in establishing the convergence rates uniformly.

Finally, Proposition 53 gives expansions for the conditional mean and variance of X
given X < u,. Its lemma, Lemma 49, deals with rates of convergence. In particular,
it deals with how quickly the auxilary function defined in the Balkema and DeHaan
(1972) representation tends to zero. This is important in interpreting which term in

the expansion is of the highest order.
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2.3.1 Lemmas for Proposition 50

For Lemma 41, we need the following notation. For a function f(z) defined on the
interval from (x;, x,), let
Fa) = [ st o) = [ @),
Z] Zy
and

fun (@) = f(z)/F(uy) for 2, < < up, @y, (t) = / ' et f, (r)dz.

Ty

Lemma 41 Let f be any integrable function, then |p,, (t)] — 0 uniformly in n as

|t] — o0.
PROOF:
o (8)] = | / ¢ . (2)da] < |ﬁ / cos(ta:)f(x)dm|+|%w / sin(ta)f ()de]

(2.18)

By the mean approximation theorem of Feller (1971), Chapter IV, Section 2, for
any arbitrary integrable function f and € > 0 there exists a step function h such that

I 1 (@) = h(z)|dz < .
The key to the uniformity of the result is that the same h can be shown to hold for

all £, .

1

Before we start, let us define M = sup,, . Note M < oo since u,, is a threshold;

that is, u, > x; + 0 Vn and for some é > 0.

It suffices to prove |F(}M) f;j" cos(tx) f(x)dz| — 0 uniformly in n as [t| — oo in (2.18)

since the sine term will follow by the same argument.
First the assertion is easily verifiable for finite step function h; that is, letting
h,(ZC) =c¢ for (1 <x<(,i=1,...,k with {;, = u,
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U G
cos(tx)h(z)dx| < |M c,/ cos(tzx)dz|
F(uy) / 221 G

< M m Z |ci| | sin(t¢;) — sin(t¢;1)|
=1

k
2M ) i
B t]

Thus

/ cos(tz)h(z)dz| — 0 as |t| = oo uniformly in n.

Ty

Finally, we have

1 Un 1 un
‘m/ cos(tz) f(z)dz| = |F(un)/ cos(tx)[f(x) — h(x) + h(zx)]dz]

X Z

< " cos(ta) || («) — h(z)|dz

]

< Me+

cos(tx)h(z)dzx|

IN

cos(tx)h(x)|dx|

2M Zi:l i

i

Now let |t| — oo and note that € is arbitrary. Thus adding the corresponding sine

term,

|@u,, (t)| — 0 uniformly in n as [t| — oo.
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Lemma 42 Let f' exist and be integrable, then

lim sup supltl |Pu, ()] < 00

n—00

PROOF: From (2.18) in lemma 41 we see that it suffices to show

: un f(z)
lim sup sup |t cos(tx

since again the corresponding sine term would follow via the same argument. Now

dz| < o0

1 [ costeo) el = 1115 i Gsinteun) )

— lim sin(tz)f(z) — /un sin(tx) f'(z)dz}|

T——00 o

by integration by parts

< F(;)ﬂsin(tun)f(unn
-|—\ hm sin(tz) f |+\/ sin(tz) f'(x)dz|}
< o

since —~ ) < M < oo where M is defined in Lemma 41, f’ is assumed integrable, and

F(un

f is a proper density.

So we can say

o f(=)

lim sup sup |t cos(tx
msup su plt | N ( )F(un)

and thus with the corresponding sine term

dz| < o0

lim sup sup [¢] |@u, (£)| < oo.

n—oo
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Corollary 43 Given
limsup sup |t| |@y, ()] < 00 (2.19)

n—0o0 t

then there exists an n* such that @y, (t)|" is integrable for n > n* > 1.

PRrOOF: Clearly if (2.19) holds, then there exists an n* and a constant ¢ < oo such

that for all n > n*,

sup [t] [¢pu, (£)] < ¢ < oo.

We also have

|ou, ()| < 1, everywhere

SO

o if [t} > ¢ Vn>n*

fun(8)] < { i

1 if [t <e.
So
oo ° dt 2c i
/_OO|S0un(t)|ndt§20+20"/c t—n=20+n_1<oo Vn > n*.
Thus |y, (t)|™ is integrable Vn > n*. O

Corollary 44 If |p,, (t)|[" is integrable for some n > n* > 1, then fg ewists and

Vn > n* > 1 has Fourier norm

no1 t oy Hun) v — 1
P, ( (n—1)a2(un)) p( o ()

)| dt. (2.20)

Proor: This falls from an application of the Fourier inversion formula of Feller

(1971), Chapter XV, Section 3, Theorem 3.

We see that the characteristic function of S, is
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S~ (n— 1>u<un)] )

¢g (t) = Eexp (it [ D07 ()

where X7 = X;|X; < uy,.

Thus

From corollary 43, we see

/ |Pu, (B)|"dt < 00 ¥Yn >n* > 1.
—0o0

so the assumptions for the Fourier inversion theorem holds and the result follows. O

Lemma 45 For a continuous underlying distribution, given a 6 > 0 there exists a

number qs < 1 such that

|0u, (t)| < g5 V|t| > and Yn > n".

Proor: We begin with

un) = )] = [ o)~ [ )i} — ot < =5 e [ ey

i (2.21)

where M is defined in Lemma 41. Now (2.21) tends to 0 as n — oo. The bound is

obviously uniform over all ¢.

From Feller(1971), Chapter XV, Section 1, Lemma 4, we have

lp(t)] <1 whenever |[t| # 0. (2.22)
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From Feller(1971), Chapter XV, Section 1, Lemma 1(a), we have

©(t) is continuous. (2.23)

From the Riemann-Lebesgue theorem Feller (1971), Chapter XV, Section 4, Lemma
3, we have

1
35" such that [p(t) <5 Vit > 0" (2.24)

Now fix 6 > 0. Using (2.22) and (2.23), we have

1
dgs5 € (5, 1) such that |p(t)| < ¢; on § < |t| <§". (2.25)
Using (2.24) and (2.25), we have

()| < g5 [t] = 6.

Now, let gs = (g5 +1)/2. Then by (2.21), we can choose n* so that

|u, (t) — ()| < g5 — g5 on Vt Vn > n".

Hence,

\ou, (8)]| < g5 V|t| >0, Vn>n"

For the following lemma, we need to define the following notation
t2

—02(un)

djun (t) = log Puy, (t) - itu(un) + 9

t2
() = logp(t) — ity + o

Ks(un) = ps(un) = BE(X?|X < un)pa(un) + 2(tin)?

IC3 = U3 — 3E(X2)/,L+ 2/,1,3
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Lemma 46 Assume s exists, there exists a § > 0 such that " exists and is continuous

for some |t| < 8, and |y, (t)|™ is integrable for some n* > 1, then

(it)*KCa (un)

Y, () —

| < elt]?, V|t| <6,Yn >n* (2.26)

PROOF: First let us look more closely at the moments, the characteristic functions,

the function ,,, and their derivatives.
Since u3 exists this implies EX? and EX exist, and thus K3 also exists.

By the dominated convergence theorem, u3(u,), F(X?X < uy), u(u,), and K3(uy,)

exist and as n — oo

ps(uy) — w3, E(X?X < up) = B(X?), p(up) — pand Ks(u,) = Ks.

Next since " exists and is continuous, then ¢"” and ¢’ exist and are continuous.

e

ml(“"”“")| < M|X|™ for each m and [ |z|™f(z)dz < oo for each

Since | (X) )

m = 0,1,2,3 again by the dominated convergence theorem we have ¢, ", ¢, ", and

¢y, exist and as n — 0o

17/ n n 1A ! !
Oup =P, Py, — @ ,and @, — @

By usual characteristic function properties,

Pu, (0) =1, @unl(o) = ip(un), ‘Pun”(o) = iQE(X2|X < Up), ‘Pun”l(o) = isE(XE;‘X < Up)

Using the definition of v, we have

Pun" (1) _ 5 Pun" () 0u,' ()
Pu, (1) Pu,2(t)

Yu,," (1) = (2.27)

We also have
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Vo, (0) = 1, (0) = 10, " (0) = 0 with 1, "' (0) = i*/C3(uy). (2.28)

Now equation 2.26 is solved by looking at the three term Taylor expansion of 1,

and putting a bound on the remainder term.

We have by the Cauchy form of Taylor’s expansion (see Johnson and Kotz (1982),
Vol. 9, p. 187) of v, (t) about 0, for each ¢ and n

2 () tj t3
Vu, (t) = Z w - gwun'"(ﬁt) for some 6 € (0,1)
pars ! !

where v, @ is the ith derivative of Yu,, -

Using (2.28), we see

(it)3KC3 (uy)

[, () — 5

= 15 1,"(0) — O},

So proving equation (2.26) is equivalent to proving there exists a 6 > 0 and n* > 1

such that

" () — 1, " (0)| < e V|t| <& and Vn > n*. (2.29)

To prove (2.29) we look at (2.27). Since lim;_,q ¢y, (t) # 0, it suffices to prove for

each m =0, 1,2, 3 that given € > 0 there exists a § > 0 (and n* > 1) such that

0w, ™ () — u,™(0)| < € V|t| <& and Vn > n*. (2.30)
We break (2.30) up into the following parts:

[0, ™ (8) = 0, ™ (0)] < |, ™ (1) =™ (1) + 0™ (£) = 2™ (0) |+ o, ™ (0) =™ (0) .
(2.31)

99



For the first term in (2.31), for each fixed ¢

() - [ (i) f(x)ds

¥
< el (i) o [ et (o)

< Aﬁ1-pm@}+ﬁg[wuhﬂﬂﬂmﬂ@¢n

[pu, ™ (@) = ™ (@) = | ) (2)]

Since 1—F(u,) — 0 as n — oo, there exists a n’ such that Vn > n', M{1—F(u,)} <
€/6.

Since ffooo |z|™dF < oo for m = 0,1,2,3 and u, — oo, there exists (for each m) a

n' such that Vn > n" M [ 1(, )lz|™f(z)dz < €/6.
Thus there exists a n* = maz(n’,n") such that Vn > n*
|0u, "™ (#) = ™ (1) < €/3 V. (2.32)

For the second term in (2.31), recall (™ is continuous in a neighborhood of 0 for

each m. Thus for each m, given an € > 0 there exists a § > 0 such that

™(t) — o™ (0)] < /3 V|t| < 6. (2.33)

Finally, for the third term in (2.31), recall ¢, ™ (0) — ™ (0) as n — oo by

dominated convergence theorem. Thus for each m, there exists a n* such that

0w, ™ (0) — ™ (0)| < €/3 Vn >n* V. (2.34)

Putting (2.32), (2.33), and (2.34) together, define § as smallest necessary in (2.33)
and n* as large as necessary in (2.32) and (2.34). Then (2.31) holds, thus we have (2.30)
which is sufficient to prove (2.29). O
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2.3.2 Lemmas for Proposition 51

Lemma 47 Let F be in the domain of attraction of A so that the representation in

(2.3) holds with c(x) = 1. Recall a, and b, are the appropriate normalizing constants

for the Gumbel distribution defined in (2.4) and (2.5). Here u, = an,v+by,. Also assume

that
!
W — 1, uniformly on |v| < e, = —Klog|¢'(b,)|
then
—log F(u ) ) '
—log F(b,) < 2.
“log F(by) L4+ O (ba)[],  uniformly on |v] < e, (2.35)

REMARKS We assume that c¢(z) = 1 in (2.3) — see comments in Proposition 51
section. The conditions of Lemma 47 are not as strong as those in Proposition 51. In

other words, the results for Lemma 47 immediately apply in Proposition 51.

PROOF: Here we mimic the proof for Proposition 9.2 of Smith (1987). In fact,
Proposition 9.2 of Smith (1987) gives the results for the threshold case.

From (2.3),

_]OgF(un) _
—log F(b,) ‘eXp{‘/o Slant + )

/ ¢ant+b / o(bn, —I—ante

where 6 = ¢'(a, s+ b,) for some s between 0 and v. Recall that ¢(b,) = a,,. Thus (2.36)

(2.36)

But

is equal to

exp{—% log(1 + 6v)}. (2.37)

which using a Taylor’s expansion of log(1 + z) (2.37) is equal to

exp{—(v+ O(v?0)}. (2.38)
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From (2.61) we have % — 1 uniformly on |v| < e, = —Klog|¢'(b,)| so
that we may substitute ¢'(b,) for 6 in (2.38). Now using e™**" = e¢" and a Taylor
expansion for e” =1+ r + o(r) when 7 — 0, we conclude

— log F'(un)

_ e A\ v 2| 1 : < . ]
“log F'(b,) e ’[1+0(v*¢'(by)])], uniformly on |v| <e, (2.39)

O

Lemma 48 Let m > 1 be a finite constant, 6 > 0 be an arbitrary finite constant, and k

be a finite constant. The function h(v) = e~ e~™ is uniformly bounded Vv. In fact,

h(v) < min(e™™m™, klv|™%), Vv (2.40)

PRrOOF: Now, h(v) is a continuous function on —oo < v < co. We have sup, h(v) =

—m,,,m

e ™m™ at v = —logm. Its inflection points are at v = LIP = —log{(2m + 1) +
V4dm +1} and v = UIP = —log{(2m + 1)1v/4m + 1}. Note these inflection points
(LIP and UIP) are finite for finite m.

Now we have for any § > 0
For LIP <v <UIP |h(v)| <e ™m™ since h reaches its max. in this interval.
For v > UIP |h(v)| < Klv|™®  since exp. term in A(v) will dominate.
For v < LIP |h(v)| < klv|™®  since double exp. in h(v) will dominate.
where x is a constant.

Thus we have our result. O

2.3.3 Lemmas for Proposition 53

Lemma 49 Let F be in the domain of attraction of A so that representation in (2.3)

holds with c¢(x) = 1, then as u — x,
p(u)/u—0, z,=00 (2.41)
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or

d(u) =0, x, <00 (2.42)

Proor: If z, < oo, then we can write —log F'(z,) = 0 so in the Balkema and

DeHaan (1972) representation [(2.3) with ¢(z) =1 ], we have

Zo dt
exp{—/0 Wt)} =0

Assume ¢(t) /4 0. Since ¢ is continuous, if ¢(z,) # 0, then ¢(t) — ¢ where ¢ # 0 is
a constant (as t — z,). In other words, given an € > 0 there exists a ¢, such that for
some t > ¢,

c—e<|o(t)] <c+e

Thus we would have

To ¢ b dt To ¢ Ty — 1,
exp{—/0 m} >exp{—/0 m}—i—exp{—/tc ;} > exp{— p }.

Now this last term is a positive constant; i.e., it does not equal to 0. Thus we have

a contradiction so

d(u) =0, w, < oo.

Now for the case when z, = co. In the Balkema and DeHaan (1972) representation
(2.3) with ¢(x) = 1, we have ¢'(u) — 0 as u — 0. This implies that given a 6 > 0 there
exists a ug such that

#w)] < 3, Yu > us (2.43)

Now assume @ #» 0. This implies that exists an infinite sequence of u such that
along this sequence

é(u) > kyu  for some k; > 0. (2.44)

63



Note by the Fundamental Theorem of Calculus and using (2.43) we have

¢(u) = d(us)+ [ & (t)dt

< kot Gu (2.45)

Note in the last line we are using that both us and @(us) are some finite constants.

Now combining (2.44) and (2.45) we have that

K2
U< ——5 = K3
Ky — O
172
where k3 is some finite constant. But we have u — z, = co. Thus we have a contradic-

tion so we must have

M—>0 Lo = 00
U

2.4 Propositions

Here we present the three main propositions of the chapter. They contain the
fundamental pieces necessary for the formulation of the main theorem. They are as
follows: Proposition 50 gives the expansion of fg ; Proposition 51 gives the expansion
of fu:; and Proposition 53 gives the expansions of the conditional mean and variance

to substitute into Proposition 50.

2.4.1 Expansion of the Conditional Density of Sum Given the
Maximum

In establishing the expansion for the density of S,, we base the following proof

on the argument in Feller (1971), Chapter XVI, Section 2, see p. 533. Deriving the
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expansion for fg involves conditioning on X < u,. Recall the random variable X*
which has distribution function F, (z) = F(z)/F(uy), density f, (z) = f(z)/F(uy),
and characteristic function ¢, (¢t) = [*" €' fu,, (x)dz. Its mean and variance are p(u,,)
and o2 (uy), with us(u,) as its third moment and K3(u,) as third cumulant. Recall N

denotes the standard normal density.

Proposition 50 Assume f' is integrable, us exists, ©" exists and is continuous in a
neighborhood of 0, and @, (t)|" is integrable for some n > n* > 1, then fg emists for

n>n* and asn — o

fs (z) — N (z) — ————F= ) uniformly in x and v. (2.46)

PrRoOOF: By Corollary 44, the left hand side of (2.46) exists for n > n* and has

Fourier norm

N, = —
" 2T

)nfl

o(uy) g[)ur”(\/?ma(un)

IC3 (Un) t2

1 /_‘:‘exp(_itu(un)\/nj t
r (it exp(~ )|t (2.47)

_ eXP(—g) - 60'3(Un) /n— 1

Let Ny be N, where the integral is restricted to the interval [t| < do(u,)vn —1
and Ng be N, where the integral is restricted to the intervals [t| > do(u,)vn — 1.

Now, choose § > 0 arbitrary but fixed. By Lemma 45 there exists a number ¢5 < 1

and a n™* such that

|ou, (1) < g5 Y|t| > d and Vn > n™. (2.48)

If we replace t by (2.48), we have that

t .
vn—1o(un) n

|Q0un(\/n—+o_(un))| < Qs V|t‘ > 5a(un)\/n — 1 and Vn > n**.
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Thus the contribution of the intervals [t| > do(u,)vn — 1 Vn > n' = maz(n*, n**)
in (2.47) is then

Ny, < (2.49)
, 00 t , t2 K (U )t3
n—1—-n n 31 7n
" [ len (e e+ [ exp(~5)(1+ —
5 - n— 10(uy) (/>80 (un /=T 2 ) ‘603(un) n—1

)dt.

Since [ |goun(\/nf+a(un))\"dt < oo for all n > n' = maz(n*,n**) and g5 does not

dependent on n, we have the first term of (2.50) tends to zero more rapidly than any
power of 1/n. The same holds for the second term and can be seen by substituting into

the inequality o(u,) = inf o(u,) for o(u,) —i.e. Ng = o(1/+4/n) uniformly in n.

Now for the other interval |t| < do(u,)v/n — 1 we use the formula

t2
W, =108y, (t) = itpa(un) + 5 0% (un).

We have

1

N; = —/ e t’/2 exp[(n—1)1,, ( t Ks (un)
27 )\t <60 (un)v/n=T

vn —1lo(uy) )]_1_603(%)\/71 -1 (it)"]de.

(2.50)

The integral will be evaluated using the following inequality from Feller (1971),
equation 2.9 on p. 534.

e 1~ ] < (Ja— B + 55%)¢" where = max(|al, |3 (2.51)
Let
t
o= (TL - 1)¢un(\/mo_(un))
and
g Kol s gy Kalu)



Thus

1
N, = — e P2)(e* — 1 - B)|dt
27 J |t <b0 (un) =1
1 *t2/2 vy ,62
< — e "l (o — Bl + —=)l|dt. (2.52)
27 Jit1<50(un)v/n=1 2
Now to solve for o — | we utilize Lemma 46. By substituting ﬁ(u) for ¢, we
have
t 1 it
a— = (n—=Dy,(—————) — =K3(un 3

IN

3 3
(n— 1)|W| €

€ftf’

= (2.53)

IN

For 3% we have

1 o _ 1 KCs(un) i1)312
55 B 2[603(un)\/n — 1( 2
¢ K%(un)

- . (2.54)

Finally we note that ¢, (t) = ©(t), p(u,) = u, 0*(u,) = o2, pus(u,) — s, and
Ks(un,) — K3 by dominated convergence theorem. Thus 1, (1) — () as n — oo

uniformly in . Then we have lim;_,q,,(f) = 0 uniformly in n by the dominated

convergence theorem.

Now let K; be a constant, then we can write

K|t < Ki|t|?

< do(up)vn —1
Al < vn—1o3(u,) = v/n— 1o3(uy) o (un) v
Ki6[t|?
o?(un)
t2
< % if we choose d so that UI((J:) <3 Vn>n (2.55)
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Similarly by Lemma 46 and defining K, as another constant,

t K,t?
ol < Kyn—1)|—m——P < ——=— bo(u,)vVn—1

Kyt|?
<
— 0% (un)

t* Ko _ 1
< T if we choose ¢ so that 725 <3 Vn>n'. (2.56)

Using (2.55) and (2.56), we have
t2
v< T (2.57)

By substituting in (2.53), (2.54), and (2.57), we have the integrand in (2.52),

~2 2 t° K5(un)

Vn —1o(uy) * 72(n —1) Jﬁ(un)]

Since € is arbitrary and independent of z, 0?(u,) — 0% and K3(u,) — K3 where o2

and K3 are assumed finite, and [*°_t%e~"dt < oo, then Ny, = o(1/1/n) uniformly in n.
Thus (2.46) holds. 0

2.4.2 Expansion of the Density of the Maximum

Proposition 51 involves deriving a higher order expansion for the density of M,,
the maximum of a sequence, when the underlying distribution of the observations, F
lies in the domain of attraction of the Gumbel distribution, A. Recall the density of
M} as fuyz(v) = dFyz:(v)/dv where Fyx(v) = F™(anv + b,) and A’(v)as the Gumbel
density. The constants a, and b, are the appropriate normalizing constants for the
Gumbel distribution and can be taken to be a,, = ¢(b,) where ¢ is defined in (2.3) and
b, = inf {z : —log F(z) > 1/n}.

Note that the Balkema and DeHaan (1972) representation in (2.3) does not uniquely

determine the functions ¢ and ¢. A change of order o(1) to ¢ would affect ¢ but not
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the overall representation. Any assumptions about the function ¢ would presuppose

smoothing conditions on F'.

REMARK For this chapter, we assume that ¢(z) = 1. This, of course, presupposes
smoothing conditions on F. In fact, ¢ = 1 is equivalent to the twice differentiable
domain of attraction of Pickands (1986) which is itself equivalent to the von Mises
conditions — conditions known to be sufficient yet not necessary for the general domain
of attraction problem. In Theorem 5.2 of Pickands (1986), the conditions for F' to be in
the twice differentiable domain of attraction of an extreme value distribution are that

F is twice differentiable and

d{(1—F())/f(t)}/dt — c* ast — x, for some constant c*. (2.58)

Now, Pickands (1986) shows that for the Gumbel case, ¢* in (2.58) is equal to 0.

Thus it is easily shown that the condition (2.58), in the Gumbel case, is equivalent to

fO{1 = F#)}
f2(t)

which is just, again, the von Mises condition, see Leadbetter et al. (1983), Thm 1.6.1.

——1 ast—u, (2.59)

Now most well-behaved distributions in the Gumbel domain of attraction which have
differentiable densities also satisfy the von Mises conditions so in this case the assump-

tion c(z) = 1 is justified.

Proposition 51 Suppose F € D(A) such that that the representation in (2.3) holds
with the definitions of a, and by, from (2.4) and (2.5) and,

Assume for a constant K > 2,
anv + by, = T, uniformly in |v| < —Klog |¢'(b,)| as n — . (2.60)
" (anv + by) /9" (by) = 1 uniformly in |v] < —Klog |¢'(by)| asn — co.  (2.61)
$(bn)¢" (bn) log [¢'(bn)|/¢'(bn) = 0 as n — oo. (2.62)
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Suppose also that for any v* < x,

PP
Ulélvf* 72(0) > : (2.63)

Then for each § > 0 there exists an n* and a function €,« tending to 0 as n — oo such

that Yn > n* and Vv

v? v2e v

iz ) = N @)1+ (5 =0 = )¢/ (bn)

(G + gle " =18 (6n)? — 9(0)9" ()

(e = 2]+ Sl — 37 1)/ (b)?)

< 6@ (ba)” + [6(ba)¢" (ba)  min(1, o] ). (2.64)

REMARK Condition (2.60) is part of the definition of Cohen’s (1982b) class N, see
equation 1.24 of Cohen (1982b). Conditions (2.61) and (2.62) are equations (1.59) and
(1.60) of Cohen’s (1982b) Theorem 9 which list sufficient conditions for his class N. In
Cohen (1982b), he lists in his Table 1 many distributions which belong to this class,
for example, the normal and lognormal. In other words, there exist a deep pool of

distributions satisfying the conditions in Proposition 51.

PROOF: Since F' is assumed continuous, there exists a b, such that —log F(b,) =

1/n, so
—log F(anv + by,)

Fur; (v) = F" (a0 + ba) = exp {———3 s

}-
Then using (2.3) with ¢(v) =1,

anv+by dt

Fu:(v) = exp {—exp(—/b W))}

)
= — — ——dt
exp (= (= [ o)
Ya,v + b, < x, where a,, and b,, are defined as above.
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Thus

) = S o esp (= [ )

) o(b,)
<o (~ | ant + ) ™ Glanu+ 50)

or, say,

Jaz (V) = fi(v) x fo(v) x f3(v) Vv <z,

First, we restrict our attention to the interval |v| < —K log |¢'(b,)]|.

For the expansion of fy(v), in a similar argument that led to equation (9.20) of

Smith (1987), we have
T b
A = exp{ - [ S

= 1+ D) — S (200, — 9l 00} + L (b)”
+o((1+ v*)R(by,))) (2.65)

where R(b,) = {¢'(b,)}? + |#(b,) 9" (b,)|, uniformly on 0 < v < —K log |¢'(by,)|-

Note that the argument in Smith (1987) primarily relies on a Taylor expansion of
¢(ant + by). Although here we use the Balkema and deHaan (1972) representation
for —log F(x) as opposed to 1 — F'(x) which Smith (1987) used, the Taylor expansion
argument is the same; that is, the exact form of ¢ may be different but not the form of
the Taylor expansion. Now all the steps of Smith’s (1987) derivations of equation (9.20)
apply also in the case Klog|¢'(b,)| < v < 0 under the stronger assumptions (2.60) -
(2.61). So (2.65) holds uniformly for |v| < —Klog |¢'(by)|.

The expansion of f3, embedded into the expansion of fs, falls from the condition
(2.61) which implies
¢ (anv +b,)/¢' (b)) = 1 and (2.66)

d(anv + by)/d(b,) > 1 as n— oo (2.67)
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each uniformly over |v| < —Klog |¢'(b,)]-

In fact, using (2.60),(2.61), (2.66), and (2.67), completing the Taylor’s expansion

_ ¢ (bn)
fs(v) = d(anv + by)
/ U2 / /! U3 /
= 1- ’Ud) (bn) + 5{2¢ (bn)2 - ¢(bn)¢ (bn)} - E(b (bn)2 + O((l + U4)R(bn))
uniformly over |v| < —Klog |¢'(b,)|-
The expansion of fi(v) = exp {—exp ( — [, P an t +bn dt)} is as follows. First using

(2.61), (2.66), and (2.67) in the argument which led to the Smith (1987) equation above

equation 9.19, we have

’ ¢(b") — U2 ! Ug ! 2 " 3
/0 mdt =0 =5 (ba) + 5 {20'(6n)" = &(0n)9" (bn)} + o((L + [v]*) R (bn)))

uniformly over |v| < —Klog |¢'(by,)|.

Now writing,

" P(ba)
/0 7¢(ant+b )dt—v—i-T

where

Ty = Ta(0) = — 5/ tn) + 12615, — 9(00)o ()} + 0((1 + o) (D))

Then f1(v) = exp( —exp( —v +Ty))).

Expanding f; about v,
—v —v T2 —v
filv) = e°¢ +Te’e® + 7”678 (e —e)
T3 -
+F”(1 +o(1))e™® (e™® —3e* +e7")

v3e v

5120/ (6n)" — 6(bn) " (bn)]

¢'(bn)* +o((1+ e )(1 + v")R(bn))}-

= e {l-e —¢( n) +
,1)4(6—211 _ e—v)

” 8
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Thus multiplying across fus: (v) = fi(v) X fa(v) x f3(v) we have

fus(0) = e L+ (g — o= S B + (5
2 < )2 6 = B8 )+ (e~
%[6‘2” — 3™ +1])¢'(bn)? + o((1 + e72)(1 + v*)R(b,))} (2.68)

for [v| < —Klog |¢'(by)[}

Now to write this in the following form we need to bound the last term. To rewrite
(2.69) we use Lemma 48, specifically (2.40) with m = 3. If we absorb the constants
e~33% and « from (2.40) into the following €, function, we get for |v| < —K log |¢'(b,)|

s ) = X)L+ (5 =0 = 258
(L S~ 1)@6, ) — 666 ()

’1)3 4

e T =g+ e = 3¢ T+ 1) (b))
< En*R(bn) min(l’ |U|76)

for some § > 0 and where the function ¢,+ tends to 0 as n* — oo.

To extend this expansion to the intervals |v| > —Klog |&(b,)|, we need to show

that all the terms in (2.64) are o(|v|~%¢'(b,)?) for |v| > e, where e, = —K log |#(by,)|.
Specifically, we will first show
[N (0)] = o(|v]| ¢ (ba)?), |v] > e (2.69)

Note the higher order terms associated with A’ in (2.64) are of smaller order and

thus will follow.

Second, we need to show

Fu; (0) = o(jo|°¢'(bn)?), 0] > en. (2.70)

We begin with A’. Note that on the interval |v| > e, A'(v) is maximized for suffi-

ciently large n at —e,, and e,. Thus we only need to verify (2.69) at these two points.
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First, for v = e,, since K > 2 we can fix K’ such that 1 < K' < K/2. Thus (for

v > 0)

A (v)] <e™” = e~ xre 0 xr)

But since exponential rates dominate polynomial, we have
e V(=% < /c1|v|*‘5 for some constant ;.
Now substitute in v = e, = —K log |¢'(b,)|,
e K < e 198100l — |5 < |¢'(B,)[? since £ > 2.
Together, we have |A’'(v)]| = o(|v|~2¢' (by,)| for v = e,,.

Second, for v = —e,,, again define K’ as before

E_ZU — @(e_”)_%(e_”)_H% for some constant xs.

V)| <

(2.71)

(2.72)

(2.73)

Note in this case v < 0. Now, using the same argument in (2.71) and (2.72) we have

A ()] = o(|v]~°¢! (bn)) for v = —e.

Now (2.64) and (2.69) implies that (2.70) holds for v = +e,,. Thus to prove (2.70)

for |v| > e, it suffices to show that
(a.) fum, () is increasing for z < —aye, + by,

(b.) fu,(z) is decreasing for x > ane, + by.

Now we may write

far, (2) = nf (@) F" ().

So that
% fuaa(a) = P @) (@) F(@) + (- 1) (@)
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We see that

>0 if L@@ > (1)
2748 — L uhE T (2.75)
<0 if KB < —(n—1).
So proving (2.70) is equivalent to showing (2.75).
Using (2.3) with ¢(z) =1
T odt
F@) = ep{-espl~ [ 1)

Todt Toodt 1
f(z) ZGXP{—GXP{—/WM}}eXP{—/w m}m

! = ;ex —exp{— b exp{— b
<lo(= [ T+ 1+ 6

Thus

_P@F() oy
P U TGy

Now ¢’ — 0 as x — z, by (2.3), so

—f'(z)F(z) 1

~ — 0
P " =lgF@) * "
Hence, there exists some z* such that, Vz > z*,
1 1 —f'(z)F(z) 2

2 —log F () < ?(z) < —log F(x)’ (276)

Now, by condition (2.60), we have a,e, + b, > z* for all sufficiently large n, say

n > ni.

By condition (2.63), there exists a ny such that, whenever n > ns

inf f@)F(z) > —(n—1). (2.77)

o<zt f?(z)
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Let n* = max(ny,ny). For n > n*, 2* <z < —aue, + by,

~F@)PE) _ 2
f2(z) —log F(—ane, + by)

Note in (2.78) we use

~2ne” " <n—1. (2.78)

—log F(—anen + by) 1
—log F'(by,) n

—log F(—ane, + b,) = —log F(by,) efr (2.79)

which we get by substituting —e, in for v in (2.35) and using the definition of b, —

namely, —log F'(b,) = .

To continue, putting (2.77) and (2.78) together, we have the 2@ 5 _ (1) for

)
the range ¢ < —ape, + by.

For x > ae, + b,,

—f'(@)F(z) 1 1

— > — ~ 2ne™ >n —1. 2.80

f2(z) 2 —log F(ane, + by) ne " (2:80)
Thus we have for sufficiently large n,
2(x) >n—1 ifzx>a,e, +0b, '

This is equivalent to (2.75). Thus the result (2.70) holds. O

Corollary 52 Given the notation and conditions in Proposition 51, then for each § > 0
there exists an n* and a function €,« tending to 0 as n* — oo such that Vn > n* and
Viv| < e, = —Klog|d'(b,)|, and constant j > 0 finite,

2 2,—v

€ fuag(0) = TN L+ (5 = v — )¢ (ba)
U2 3

+ (5t %[6_” = 1])(26/(bn)* — 6(ba)¢" (bn))

+ (07 + gv?’[e‘” - 1]+ %114[6_2” = 3e™" +1])¢'(ba)"}|

< €ne [0 (ba)” + [6(ba) 8" (ba) | min(1, [v] ). (2.82)
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PROOF: This follows immediately from the proof of Proposition 51. For the interval
lv| < en, the proof is the same as in Proposition 51 except that fy(v) is replaced by

e 9 f,(v) to absorb the extra e V. The changes are in (2.65) where

) = G4 )~ L0260~ 90 b))+ L )
+o((1+e ) (1 +vH)R(b,)))-

The only effect this would have on the rate of convergence would be in (2.40) where

m would now be (j + 3) but again this would be absorbed into the €, function.

REMARK This gives us that €™/ fy;«(v) is uniformly bounded on |v| < e, for any

j > 0 finite. O

2.4.3 Expansions Involving the Conditional Mean and Vari-
ance

Recall the definitions: Let Y = (X —u), where u is an arbitrary threshold; that is,
Y is an exceedance. The random variable X has mean u and variance o?. The random
variable X |X < u has mean u(u,) and variance o%(u,). Finally, the random variable
Y|X > u has mean m(u) and variance s?(u). Let u = u, = a,v + b, where a, and b,

are the normalizing constants for M,, defined in (2.4) and (2.5).

Proposition 53 Under conditions of Proposition 51, we have

une? Ty = 0O
— MUy ) ~ zn_ eV 2.83
= (un) { (2o s) z, < 00 ( )
and ,
2 2 Lot To =00
o —o“(u,) ~ n Cw 2.84
(tn) { {(xo—p)? —0?}e= 1z, < 0 (2.84)



uniformly on |v| < e, = —K log|¢'(by,)]-

If x, = 00 and

¢'(t) log |¢' (1)

, — 0, ast— o0, (2.85)
then
b,e™?
= p(un) ~ (2.86)
n
2 bre ®

(2.87)

0? — o2 (uy) ~ "

uniformly in |v| < e, = —Klog|®'(b,)|.

PROOF Now we may write u = p(u,)F(un) + (m(uy) + uy){1 — F(uy,)} from which

we may solve
1 — F(uy)

= p(un) ={
We then need to compare the expansions in each term of the above formula.

Under conditions similar to Proposition 51, in his section 9.2, Smith (1987) estab-

lished expansions for the mean and variance of Y — the exceedance. He showed

E{Y|X > up} = m(un) = ¢(un) + ¢(un) @ (un) + o(|¢(un) @' (un)]) (2.89)

and

E{Y?|X > un} = 26°(un) + 66” (un) ' (un) + 0(6* (un) (¢ (wn))?).

Note that Smith (1987) assumes the Balkema and deHaan (1972) representation for
1 — F(x) as opposed to —log F'(z) used in Proposition 51. He also did not assume
the function ¢(z) = 1. This does not have an effect on the above formulae in our
application. Although the exact form of ¢ may differ from Smith (1987) to here, how it

is plugged into the above formulae does not change in the derivation. Specifically, we
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can solve for ¢(z) = W using — log F'(z) in the Balkema and deHaan (1972)
representation. The equivalent when using 1 — F(z) is ¢(x) = 1}1(!;()@_ Asymptotically

these are equivalent. Specifically, in our application, the difference between — log F' and
1 — F is o(+) which is smaller than any of the terms derived in the approximations in
this thesis. As for the function ¢, Smith (1987) assumes in his Proposition 9.2, that
c(u)—1 ~ s{(¢'(u))*+|d(u)¢"(u)|} — 0 as u — x, for finite s. Therefore the remainder
term for c is again of smaller order than is being considered in this thesis and therefore

does not impact the validity of the above formula for this application.

Now we solve for,

2 (up) = BE{Y? X > u,} — E*{Y|X > u,} = ¢*(un) + 46*(upn )¢’ (un) + 0(d? (un) @' (un))-
(2.90)

Next, we look at the expansion of 1 — F(u,). We have

1— F(U,n) - 1— elogF(un)
= 1—{1+log F(u,) + (1/2 + 0(1)) log? F(uy)}

= —log F(us){1+ (1/2+ 0(1)) log F(uy)}.

From (2.35) in Lemma 47 and the fact that u,, = a,v + b, and —log F'(b,) = 1/n,

we have
—v

1— F(u,) = en (1+o(1)). (2.91)

Now recall equations (2.41) and (2.42 ) from Lemma 49; i.e.,

Unp

—+0, z,=00

é(uy) — 0, z, < 00.

Using (2.89), (2.91), (2.41), (2.42 ) and (2.88), we have our result:

Upe v

n— :U’(U’n) ~ { (z,,n—u)e_”

n

Ty = 00
T, < 00
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uniformly on |v| < e, = —Klog|¢'(b,)|.
From (2.83), we can solve for

e -
p? — i (ug) ~ { o et (2.92)

e

2(xo — p)ps— T, < 00

uniformly on |v| < e, = —Klog|¢'(b,)|.
Now, we use

o> = {EX?-(EX)*}
= [B(X?*X < up)F(up) + BE(X?X > u,)(1 — F(uy))]
—[B(X|X < up)F(up) + BE(X|X > u,) (1 — F(uy)))?

and solve for

o S u+m(u))® + s (u
Ao} (g — TH )+ 20)

= 120) =+ gy P H e m()? ) = = o).

o —o*(u) = o+ p*(u) —{

Now substituting the expansions (2.89), (2.90),(2.92), (2.91),(2.41) and (2.42) into

this formula we have,

2,—v
2 2 tuf Ty = 0O
o — o (u ~ n —v
) {{(xo—w ) @< o0

uniformly on |v| < e, = —Klog|¢'(b,)|.

REMARK Now in case of z, = 0o, we use assumption (2.85). Condition (2.85)
guarantees that a,, increases sufficiently slower than b, does. Note this condition results
from assumptions in Lemma 1 of Cohen (1982b). These assumptions are (1) if either
@' (u) > 0 for all sufficiently large u or (2) if either ¢'(u) < 0 for all sufficiently large u
and ¢'(u) is regularly varying for u — oo, then (2.85) falls by formula (a) at the bottom
of p. 846 of Cohen (1982b).
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Now this gives us on the interval |v| < e, = —Klog|¢'(b,)| where we use the
definition ¢(b,) = ay,

Un _ vty 9(b){~Klog|¢/(b)]} + b

be b T b
/
- 1Ot lon 90n)
— 1 as n — oo, uniformly in |v| < e,.

Again the last line falls from condition (2.85). Thus u, = b,(1 + 0(1)), |v| < e,. In

this case, we may replace u, by b, in (2.83) and (2.84) without changing the result.
This leads to (2.86) and (2.87).

Note in (2.86) and (2.87) we use the fact that

2 0. 2.93
L (299)

We see this by looking at

= B (= Tog F(b.)} = 841 — F(b) + o)},

Thus we see (2.93) is equivalent to show b2{1 — F(b,)} — 0. Now

o0

bi{1—F(bn)}§/0x2dF(x):/ b z0) T dF ().
bn, -

o

Now we have assumed that variance of X is finite. So by dominated convergence

theorem we have

b2{1— F(b,)} — 0 as n — oco.

Note this will also give us that

bn
N — 0 as n — oc. (2.94)
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2.5 Proof of Main Theorem and Its Corollary
PROOF OF THEOREM 38 We can write the joint density of S} and M as

fsx (w,v) = I (U)fsmM; (wv)

= fM;(U)\/mf§n(z) (2.95)

where
T + Vvno?w — (n — 1) u(u,) — Un
(n —1)o*(un)

(2.96)

Here we let u,, = a,v + b,. To enable the uniformity results we will allow v, w and
hence z to be dependent on n. In general, we suppress this so as to make the notation

easier to read.
Note the transformation from S* to S, and the form of (2.96) comes from (2.7).

Now to establish (2.14) we break it up as follows

Fo (U)\/mfs”n(@ = fs3 (W) farz (VAL = 7a(e” = Dw}

=F,+Ey+ E;+ E; + E5 + Ex, (2.97)
where
Er = fu;(v)fs,(2) [\/m - 1] (2.98)
= v - ;s (Z2) — ! z M Z3 — oz

Be = fus) £, - N1+ i) -] (2.99)
Ey = fu:(v) [ "(2) = N'(w){1 = rn(e™" — w}] (2.100)
E, = fuz(v) |N(w){1+ 60§i/ﬁ(w3 —3w)} — fsz (w)] {1-r,(e7” —1)w}2.101)
Es = fu:(v) -2% (2% —32) — %(w?’ — 3w)] (2.102)
By = fu: (U)Nl(w)(s(;;ii/ﬁ(w?’ — 3w)[ra(e™" = 1)uwl. (2.103)
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Now to prove (2.14) we show that (2.98) — (2.103) are o(r,) uniformly Vw and
lv| < —Klog|¢'(b,)|- And to prove (2.98) — (2.103) are o(r,,), it suffices to prove that
for any € > 0, Z?Zl |E;| = ery, for all sufficiently large n. It is necessary to consider two
cases where the dependence on n for w, v, and 2z need to be explicitly expressed. These

two cases are: Case (a) |2, —w,| < ¢ for a § > 0 and Case (b) |2, — w,| > .

Proof for E; The following argument for E; holds irrespective of 6 and so holds for

both Case (a) and Case (b).

We start with By = fa: (v)fg (2) [ #ﬁ(un) - 1}. Specifically we begin with its
third term.

From (2.84) we have
02%)_{ - B ot o = o0

o 1 {(zo— u)? ~ 025" + of{(z0 — )2 — 0757 7, < cc.

From this we get

0.2 _ 1+b%7€1*v +O(b%¢:;”) Ty = OO (2 104)
02 (uy) 14+ {(zo — p)? — 02}~ + o[{(zo — p)? — 0?}"] 2, <00
as long as b%e — 0 uniformly in v. To see this we note that 25~ ~ 52{1 — F(u,)} ~
up{l — F(un)} < [ 2°dF(z) — 0 since the variance is assumed finite.

Now we establish a bound for the third term of E;. Note we have /-~ = 1+0(3)
and that #zn) is greater than 1 and bounded.

02 (un)

o? 1
1< ——1 —). 2.1
|\/ <~ =1+0(-) (2.105)

Now to complete the inequality (2.105), we substitute in (2.104) to get for some &

b%e*” 1 _
| _qy < At ) @ =0 (2.106)
02 (un) k(&= +) 1z, < oo
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Let us go back to E; which we now have is O(e™ fas; (v) fg (2)r7). We have that
fs (2) is bounded Vz by Proposition 50. Now for the interval [v| < e,, we have

e’ fux(v) is bounded by Corollary 52. Therefore
E, =o(r,) for |v| <e, and Yw.
or we may write for sufficiently large n (e > 0)

|Ey| = % rn, for |v| < e, and Yw. (2.107)

Proof for F; Like the proof for E;, the following argument holds for both Case (a)
and Case (b).

Next we look at Ey = fa:(v) [fgn (z) = N'(2){1+ %(23 —32)}-

Here, |fg (2) = N'(2){1 + %(z3 —32)}| = o(5) uniformly in z by Proposi-

tion 50. We also have that fy:(v) is bounded Vv by Proposition 51. Hence

E, = o(%) =o(r,), Yw,Vv

or we may write for sufficiently large n (e > 0)

|By| = % Ty Y, V. (2.108)

Proof for F5 Here we will proceed simultaneously with both cases until Step & where

at that point we will need to divide the proof.

Recall B3 = fu:(v) [N'(2) = N'(w){1 — rn(e”” — 1)w}]. Establishing E5 = o(ry,)
involves a longer argument than needed for E; or E;. We thus break this argument

into the following steps.
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Step 1: From (2.96), we see that z is a function of w. We now get an explicit form

of the difference between z and w.

= U= () I U A
=12 {\/(n — 1) (uy) 1} MV sy ont (2.109)

Now for z, = oo we use (2.86), (2.87), and (2.106) and simplify to

bue™ o ba oy b ]
2= w= T {4+ o)} + Owe ™ (25)) = {1+ o1} (2.110)

For z, < oo, we use (2.83), (2.84), and (2.106) and simplify to

(zo — p)e” Coye On ey (B —20)(1 4 0(1))
—w= " {1+0o(1)}+O(w(l+e" + . (2.111
z—w — {I+o(1)}+O0(w(l+e )(\/W) ) — (2.111)
Using the definition of r, from (2.13), we can combine (2.110) and (2.111):
z—w=ry(e” = 1) +o{r, (e’ + 1)} +O(w(e™ + 1)r). (2.112)

Step 2: We take a Taylor expansion for N'(z) about w.
Using z = w + t, where ¢, is seen in (2.112), we can write
N'(z) = N'(w +t,) = N'(w) + t,N"(2*) where z* between w and z.
Using the identity N”(z) = —zN'(z), we have
N'(z) = N'(w) — t,z*N'(z")
for z* between w and z.

Substituting this into F3 we have
Ey = fu:(v)(z —w) [wN'(w) — 2N (2")] + farz (0)N' (w)rn(e™ — 1w
—farz (0) (2 — w)wN' (w)
= fur; (v) (2 — w) [wN"(w) = Z"N'(2")] + o(rn(e™ + D)wN"(w) far; (v))
+O(w(e™ + V)riwN” (w) far: (v))

— E6+E7+E8.
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Now, of course, we have w?N’(w) is bounded and (1 + e™) fasx (v) is bounded as

seen in Corollary 52. Thus
E; = o(r,) uniformly Yw and |v| < e,,

or for sufficiently large n (e > 0)

|E7| = % rn, uniformly Vw and |v| < e,,.

Also,

Egs = O(r?) uniformly Yw and |v| < e,

n

or for sufficiently large n (e > 0)

|Fg| = % rn, uniformly Vw and |v| < e,,.

(2.113)

(2.114)

Step 3: Now we focus on Fg. The important details in this formula concern z — w

since the other terms are bounded. Recall v, w, z, and z* actually depend on n. So fix

the notation by writing v = v, 2 = 2z,, w = w,, and z* = 2 so the dependence on n

is explicit.

Now substituting (2.112) into Eg we obtain

Es = fuz(vn) {ra(e™ — 1) + o{rn(e™™ + 1)} + O(we ™) } [wnN" (wn) — 2,N"(2;)]

= FE9+ Eyp + B

At this point, it is necessary to separate the argument into the two cases.

(2.115)

Case (a) If |z, — w,| < § then |2} — w,| < 6. By uniform continuity of w*A’(w,,)

for K =0,1,2 given € > 0 we can find a 6 > 0 such that

|2n — wn| < 6 = |Z2Nl(zn) - szl(wn” < =

for £ =0,1,2 and any given constant C' > 0.
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Now since (€™ + 1) fas: (vn) is bounded on |v,| < ey, we have that each Ey, Ey,

and F; is bounded by some
constant x |2 N (25) — wEN (w,,)|
for k=0,1,2.
In other words, we can choose a § so that Vw, and V|v,| < e,
|2 — wy| <8 = |Eg| < % rn, for all sufficiently large n
which with (2.113) and (2.114) gives
|E3| < % r, for all sufficiently large n (2.116)
for |v,| < e, and Vw, and when |z, — w,| < . [End Case (a)]

Case (b) Here we show if |z, — w,| > ¢ then the entire left-hand side of (2.97) is

o(ry).

Part 1 Suppose |z, — w,| > § and re™"» < §2.
From (2.112) we deduce |w,r,| > some &, > 0 for all sufficiently large n. So
|wn| > f—;. We also have from (2.112),

Zn = Wp+1p(e —1) +o(rp(e”" + 1)) + O(wn (e + 1)r2)
= w, +0(1) + o(1) + O(w,o(1))
= wy(1+0(1))
01

> —, 8a
2T'n’ y?

for all sufficiently large n.
Thus we have [ with (2.106)]
L. |fg (2n)| = o(rs) by Proposition 50.
2. |wn|*| fs: (wy)| = o(ry,) for k=0,1 by Petrov’s central limit theorem.
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3. |(e7 + 1) farz (vn)| is bounded on |v,| < e,. by Proposition 51 and Corollary 52.

Hence the left-hand side of (2.97) is o(r,,) on |v,| < e,. and Vw, when |z, —w,| > ¢

and r,e V" < 62

Part 2 Suppose |z, —wy,| > ¢ and r,e™" > 62. Corollary 52 allows us to say that, for
finite m' > 2, €™ e~ fy. (v,,) is uniformly bounded on |v,| < e,. This gives us that
e~ fars () = O(e™ V%) but if e~ > 62 > 0 then rpe ™ 4 0 s0 |v,| < logr, for

sufficiently large n. Thus
e " farx (vn) = O(el™ =1y < O(ri™ =) = o(r,) since m' can be taken > 2. (2.117)

Now looking at the parts of (2.97), we have that fg (z,) is bounded —see Proposition
50 — and wy, fs; (w,) is bounded — again, see Petrov’s (1975) central limit theorem. From

(2.117) we have e fu: (vn) = o(rn) which also gives fa:(v,) = o(r,) [End of Case(b)]

Altogether we see that the left-hand side of (2.97) is o(r,) when |2, — w,| > 0 and

rne " > 6%,
Thus for E3 we have either for sufficiently large n (e > 0)
|Es| = é rn, for |v| <e, and Vw. (2.118)

or left-hand side of (2.97) is o(r,,).

Proof of £, Like the proofs for £, and F5 this argument holds irrespective of § and
hence is the same for both Case (a) and Case (b).

Recall we have

By = fary (v) |N'(w){1+ ﬁﬁ(w?’ —3w)} — fs;(w) [ {1 = ra(e™ — Dw}.

Again we have fys:(v) is bounded and also by Feller (1971), Chapter XVI, Section 2,
Theorem 1 the term inside .. .] is o(ﬁ) uniformly in w. To handle the term r,,(e " —1)w,

we need
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(a) sup,(e™ — 1) fu:(v) to be bounded on |v| < e, which we again have by Corollary
52

(b) sup,, [w{N'(w) — fs:(w)}| — 0 as n — oo which follows from Petrov’s (1975)

central limit theorem under the same assumptions as Proposition 50.

(c.) w*N'(w) to be bounded so N (w) 5~ (w® — 3w)w — 0 uniformly in w which we

603/n

have by properties of the normal density.

Thus

Ey = o(r,) for |v| < e, and Vw.

or we may write for sufficiently large n (e > 0)

|Ey| < é rn, for |v] < e, and Yw. (2.119)

Proof of E5 Finally we look at the term

N'(2)rs (un)
60 (un)v/n

~ N'(w)ks

W(w?’ —3w)| .

Es = fu: (v) (2* — 32)
Now, again we have f:(v) is uniformly bounded on |v,| < e,. We also have that

the function N'(2){z® — 3z} is uniformly continuous so by similar argument to proof of

Ej3, particularly Step 3, we can conclude

|E5| < érn or (2.97) is o(ry), V|va| < en, V. (2.120)

Proof of E5, Like the proofs for E; and E5 this argument holds irrespective of 6 and
hence is the same for both Case (a) and Case (b).

Recall we have Fs, = far: (V)N (w) 552~ (w? — 3w)[rp(e™ — 1)w}].
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Now, we have this immediately since,
(a) sup,(e — 1) fa:(v) is bounded on |v| < e, by Corollary 52.

b.) w*N'(w) is bounded uniformly in w so N'(w) £% (w® — 3w)w is bounded uniformly
60

in w which we have by properties of the normal density.

Thus we have

Es, = O(%) = o(r,) for |v| < e, and Yw.

or we may write for sufficiently large n (e > 0)
| Esp| < é rn, for |v| < e, and Yw. (2.121)

In conclusion, using (2.107),(2.108), (2.118), (2.119), (2.120),and (2.121), we have
shown that 25:1 |E;| < erp uniformly Vw and |v| < e, = —Klog|¢'(b,)|. Hence our

result. O

PROOF OF COROLLARY 39
First we will show the result (2.16) — i.e., for the case when z, < cc.

Using the result of Theorem 38 — (2.14) — to show (2.16) we need to prove that

K3

603\/n
)¢ (bn)} {1 — ra(e™” — Dw}
= o(max{r,, |¢'(b,)|}). (2.122)

| [£53.0) fary (0) = N/ () {1 + =55 (0 = 3u)}A(0)

X{1+(%—U—U;

for Vw and VY|v| < e, = —K log|¢'(by)].
First we show (2.122) without the r,(e”" — 1)w term.

Let
An = fS,’; (w)a
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Al = N'(w) {1+ 6;73\/5(11;3 —3w)},

B, = fu:(v),

and

v? v2e?

B, =AN(v){1+ (5 v

)¢'(bn)}-

Then we can write the left-hand side of (2.122) without the r,(e™ — 1)w term as

|Aan - A'InBH = ‘Aan - AnB;z + AnB;z - A;LB’:Z‘

< [An] |Br = Byl + |B, | [An — 4 (2.123)

Now |4,| is bounded Vw by Petrov’s result and |B, — Bl| = o(|¢'(b,)|) Vv by
Proposition 51. Thus the first term on the right-hand side of the inequality in (2.123) is
o(|¢'(bn)|), Yv and Vw. For the second term in the inequality in (2.123), | B} | is bounded
Vv by Proposition 51 and |A, — Al | = o(r,) by Feller (1971), Chapter XVI, Section
2, Theorem 1 uniformly in w. Thus this second term is o(r,), Vv and Vw. Thus the

right-hand side of (2.123) is o(max{r,, |¢'(b,)|}), Vv and Yw.
When we add in the 7, (e ¥ — 1)w term, we need to strength this to
(a.) |wA,| bounded — which we again have Yw by Petrov’s result.

(b.) le7" + 1| |B, — Bl| = o(|¢'(bn)|) — which we have by Corollary 52, note now on
o] < —Klog ¢/ (by)|-

(c.) le7” + 1] |B],| bounded — which we again have by Corollary 52, note now on

o] < —Klog ¢/ (bn)|-
(d.) |w||A, — A]| = o(r,) — which we again have Yw by Petrov’s result.

Hence, we have result (2.16) for |v| < —K log |¢'(b,)| and Vw.

For the case when z, = 0o — (2.15) — the term TN (w? — 3w) need not be included
with the higher order terms since in this case it is o(r,) by the definition of r, when

T, = 00, see (2.13). O
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PROOF OF COROLLARY 40: We have H(v;0,1, k) = exp[—(1 — kv)'/¥] so that

H'(v;0,1,k) = (1 — kv)* exp[—(1 — kv)'/*].

If we look at —log H', we have

(1- %) log(1 — kv) + (1 — kv)'/*, (2.124)

Expanding (1 — kv)'/* by e (1 — %) +O(k?) and (1 — 7)log(1 — kv) by v — kv +
k1 O(k?), we have (2.124) is equal to
2 —v,,2

v—!—efv—i—k(%—v—e

) + O(K?). (2.125)

Now if we look at the log of (2.17), we have

~log [N+ (5 —v = )00 =
oot — (L —v- 6_;“ 18 (b) + O((bn)?). (2.126)

With the definition k, = —¢'(b,) we have that (2.125) and (2.126) match up to
O(¢'(bn)?). O

2.6 Simulation Project

2.6.1 Objective

The overall objective of the simulation project is to study the performance of the
higher order term under different underlying distributions and as n, the sample size,
increases. To do that we will evaluate the dependence between the maximum and sum
of simulated data, looking to see the extent of dependence that exists between these two
random variables at different levels of n and different underlying distributions. Then

we can check the fit of the asymptotic independence case; that is, we will see how much
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error we incur by applying the limiting version in each case. Finally, using the higher
order expansion term, we will be able to determine how much this term improves the

fit of the maximum and sum.

2.6.2 Form

In the previous section, we have established the higher order term for the joint
density of the sum and the maximum fg: ps-(w,y). The joint density gives the widest
range of application. It can be used to model S} and M, simultaneously or can be
manipulated to model the conditional random variables S|M} or M}|S’ . In fact,
the conditional density of the maximum given the sum, fux s:(y|w), is the form of the
density that will be used in this simulation project. Although there is not necessarily a
best form to study this new higher order term, this particular conditional density allows
us to see the effect changing the sum has on the maximum. Now as we try to compare
the simulated data of the maximum given the sum to the limiting Gumbel density and
to the higher order expansion of fys|sx (y|w), we need to choose a particular functional
of these competing densities to compare. Traditionally, in extreme value theory, one
computes percentiles (or n th year return levels) of the appropriate distribution. Here,

we will choose to compare the 80th percentile under these three cases:
A.) “True” conditional density: represented by the simulated data of M |S:.

B.) Limiting independent case: fa:s:(y|lw) = fum:(y) = A'(y) where A’ is the
Gumbel density.

C.) The higher order expansion term case: fu:|s: (y|w) = A'(y) x {1 — %}

The 80th percentile has no intrinsic value. The 80th is selected since traditionally
we look at percentiles in the upper tail but in this case we did not want to go very high
into the tail so that the emphasis stays with the behavior of the data as opposed to the

extreme behavior of the tail.
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A comparision of the simulated data, the Gumbel limiting density, and the expan-
sion depends not only on the sample size but also on the underlying distribution of
the process. The underlying distribution defines the b, term in the expansion term
and thus affects the rate of convergence of the conditional density. To see this effect
three different underlying distributions are considered: the Normal distribution, the

Lognormal distribution, and the Weibull distribution.

2.6.3 Procedure

For each of the above underlying distributions, we apply the following steps for n

= 30,60,90, and 120.
Step 1: Simulate 10,000 independent samples of size n.
Step 2: Calculate the sum and the maximum for each sample.

Step 3: Order the pairs (S,, M,) with respect to S, and divide into 50 bins which

contain 10,000/50 or 200 pairs apiece.
Step 4: In each bin, order the maxima and find the 80th percentile.

Step 5: Plot the simulated data by graphing the bin midpoint versus that bin’s 80th

percentile.

Step 6: Plot the 80th percentile of the limiting Gumbel density. Note this will be

constant with respect to the sum.

Step 7: Using the bin midpoints upon which to condition, calculate and plot the

80th percentile of the expansion of the conditional density.

Step 8: Overlay steps 5, 6, and 7.
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2.6.4 Issues to Resolve in the Simulation Project

“Numerical Recipes in C” by Press et al. (1990) provide many standard subroutines
for the program including those for sorting, providing the gamma function, providing

uniform deviates, providing normal deviates, and integrating.

As with all computer results, the level of round-off error has to be established. The
C+ program defines all necessary variables at double precision; that is, at 1071, The
only exception to this is in the Weibull case when evaluating the gamma function to
calculate the mean and variance. The subroutine gammaln() is significant only to 8

digits. For more detail, see Press et al. (1990), p. 168.

The subroutine ran0() is used to produce uniform deviates within (0,1). The routine
in based on the algorithm of Bays and Durham as described in Knuth (1981, Sections
3.2-3.3). Essentially, it provides an additional random shuffling of the random numbers
generated by the basic random number generator of the computer. This should free the
random numbers from sequential correlation. For more details, see Press et al. (1990)

p- 207.

The subroutine gesdev() is used to produce standard normal deviates. The routine
is an adaptation of the Box-Muller method for generating random deviates with a
normal (Gaussian) distribution. The adaptation is to pick a point randomly inside a
unit circle versus a unit square so as to avoid calls to trig functions. Again for further

details, see Press et al. (1990) p. 217.

The integration subroutine used for going from the density to the cumulative distri-
bution function was a combination of trapzd() and gsimp(). The gsimp subroutine
which utilizes the trapzd subroutine is based on the extended trapezoidal rule and has
error O(1/N*) where N is the number of points the interval to be integrated over is
broken. Together this integration subroutine is considered reliable for uncomplicated

work. Again, for further details, see Press et al. (1990), pp. 120-123.
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As with any simulation of a continuous random variable, the effect of finite bin
widths has to be considered. The issue concerning finite bin widths in this project is:
In theory when conditioning upon the sum, we would let S,, vary along the appropriate
interval, continuously. Obviously, we cannot condition upon all possible values of S,,.
Instead, we condition on a S, in a particular bin, one in each of the 50 bins. In fact, we
use the bin midpoint. Having a finite bin width, versus an “infinitesimal” one, would
present a problem if using different values in the bin affects the overall appearance of the
graph. To judge the effect of finite bin width on the results, the graphs in the simulation
project are refit using the left and the right endpoints of the bins. Figure 2.1 shows this
graph for the Normal distribution with sample size of 30. Other permutations of the
simulation project, under different underlying distributions and different sample sizes,
show similar results. Except for a few bins at either end, there is no discernible finite

bin width effect on the results.

Fig. 1b: Normal with sigma=1.0, n=30

3.4 _-
32 -
—~ - -
3.0 - -
é /
2.8 —~
ks —
o -
Py _—
£ /
8 "
2.4 "
_— —— LOWEND
o d T MIDPOINT
- — — - HIGHEND
2.0
T T T T T
20 10 0 10 20

Figure 2.1: Finite bin width consideration in the simulation project. Normal distribu-
tion with ¢ = 1. Graphs simulated data plotted against the low (solid line), midpoint
(short dashed line), and high (long dashed line) end of the bin.

Other issues to resolve are specific to this simulation: (1) How to deal with the fact

that the higher order expansion of the conditional density is not a proper density; that
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is, for some values it can be negative and does not necessarily integrate to 1. (2) What

form of a, and b, to use in the conditional density.

If we look at the form of the expansion of the conditional density

w(e ¥ —1)b, 1

sz (ylw) = A(y) x {1 - -
no

we see that for some values of y, this expansion of the conditional density can be
negative. To rectify this problem, we actually program a different form of the expansion.
Since the higher order term is contained in the conditional mean, i.e. in E(S,|M,, = u,),
this is the term on which we wish to focus our attention. Instead of pulling the higher
order term out in the final Taylor expansion in the derivation, we leave it on the inside.
Specifically, we use the higher order expansion of the conditional mean and variance in
the density of S|M; and hence, since we use the normal density for S|M}, a proper
density, we get a non-negative function, although this form does not necessarily integrate

to one. Note we can rescale to compensate when the expansion does not integrate to

one. Thus for the expansion of the conditional density of M}|S}, we program

Faz)sz (y|w) ~ %(;\;’I(Z)

where A’ is the normal density and

np + Vnotw — {(n — Dp(uy) + un }
(n = 1)o(un)
Note from our notation in the previous chapter we have y = EX, 02 = Var(X),

w(u,) = E(X|X < uy), and 02(u,) = Var(X|X < uy,).

Thus it is the 80th percentile of this form of the conditional density that is evaluated

in the simulation project.

Finally, both a, and b, contribute to the expansion of the conditional mean and
variance through wu,, u(u,) and 0?(u,), as can be seen through formulae (2.86) and
(2.87) in the Section 2.4. The following forms of these two normalizing constants are
used in the program:

1
b, such that — log(F'(b,)) = -
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and
- log(F(bn))
f(bn)

where F' corresponds to the underlying distribution being simulated and f is the corre-

sponding density. In particular, for each of the underlying distributions, we first invert

1
—log(F(b,)) = - (2.127)
to solve for b,.
Then the formula for a,, simplifies to
1
ap = (2.128)
n.f (bn)

Now for each distribution, we use its density and substitute the b, we solved for in
(2.127) into (2.128) to solve for a,. Thus for each distribution, we can explicitly solve
for both b, and a,,.

2.6.5 Results

Before we investigate the main findings of the simulation project, there is one more

issue to raise.

In each of the three underlying distributions, its variance/shape parameter is also
varied in the simulation. The graphs show the same overall features except as the
variance/shape parameter increases there are more extreme events. This has a tendency
to affect greatly the upper (and lower) bins in the simulation. Then what dominates the
graph is not the behavior of the higher order expansion or its asymptotic counterpart

at the center of the support but rather the quirky behaviour at the outside bins.

How severely this shows up in the graphs depends on the underlying distribution.
Changing the variance for the Normal family does not alter the behaviour of the simu-

lation, only the vertical scale of results. The Weibull distribution is most affected with
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the last two bins dominating the results. The Lognormal family shows moderate effects
to the increase. Figure 2.2 (a.), (b.), (c.), and (d.) show the Lognormal distribution for
X where log(X) = Z ~ N (u,0?). In all cases, p = 0 and o varies through 0.25, 0.50,
1.0, and 2.0.

Note in cases where this change in variance/shape parameter affects the results, the
higher order term gives a poorer fit as this parameter increases. This results when the
variance/shape parameter changes in the Lognormal and Weibull distribution so that

the distributions become “farther” away from the Normal distribution.

So as not to run into this large deviation in scale in the outer bins, we will try to
use parameters in each family which focus the results to the center of the graphs. Note
we also present results for the Weibull distribution with a« = § = 1, the Exponential
distribution. This particular distribution is not a member of Cohen’s (1982) class N;
that is, does not fulfill the assumptions in this chapter. We include this example so

that we may compare it to the Weibull (o = 1, § = 1/2) case.

The results are:
1.) Figure 2.3 (a.), (b.), (c.), and (d.) shows results for the Normal distribution with
u =0 and o =1 for n=30,60,90,120.
2.) Figure 2.4 (a.), (b.), (c.), and (d.) shows results for the Lognormal distribution
with normal parameters y = 0 and and o = 0.50 for n=30,60,90,120.
3.) Figure 2.5 (a.), (b.), (c.), and (d.) shows results for the Weibull distribution with
a =1 and g =1/2 for n=30,60,90,120.
4.) Figure 2.6 (a.), (b.), (c.), and (d.) shows results for the Weibull distribution with
a = =1 [Exponential case] for n=30,60,90,120.

2.6.6 Conclusions

In all cases, the sum and the maximum do not behave independently. Looking at

the vertical scale under all three underlying distributions, the behavior moves toward
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independence; that is, the slope of the simulated data decreases but even at n=120,
we can clearly see the dependence — a positive slope. See Figures 9,13, and 17. Hence
we can conclude that under these conditions using the asymptotic result — the limiting

Gumbel 80th percentile —would not be appropriate.

This we see in all cases: The limiting Gumbel does not appear to be a good fit. Asn
increases more of the simulated data crowds toward the Gumbel limit in the center. The
vertical scale has been fixed for each distribution to show this shrinkage as n increases.

What we do see for all n is that the Gumbel is only reliable at the center

Finally for all underlying distributions and for all n considered here, the higher order
expansion provides a better fit. It is always closer to the simulated data. In fact except
for a few bins at the lower and the upper ends, the higher order expansion follows
the behaviour of the simulated data very closely in the Normal and Lognormal cases.
Although the approximation does not fit the simulated data with Weibull (o« = 1,8 =
1/2) as well as in the first two cases, it still is an improvement over the limiting Gumbel
case. It is interesting in the Exponential case, Figure 2.6, that the approximation fits
the simulated data better than in Figure 2.5 which actually belongs to Cohen’s (1982)
class N. Note the Exponential distribution belongs to Cohen’s (1982) class E. When the
underlying distribution belongs to class E, the maximum has a faster rate of convergence
to the extreme value distribution. The implication for this simulation project is that
this rate of convergence to the asymptotic extreme value distribution has an impact on
the effectiveness of the higher order term. Obviously in all cases, the fit between the

simulated and approximation improves as the sample size becomes larger.

We conclude that adding the higher order expansion significantly improves the fit
for all sample sizes and for all underlying distributions. Thus if one needs to model the
sum or maximum and has information on the other random variable or wants to model
both variables simultaneously, one should introduce the higher order term. The new

model will give a closer fit to the data.
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(a.) Sigma=0.25 (b.) Sigma=0.50
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Figure 2.2: Effect of increasing standard deviation within underlying distribution. Log-
normal distribution with standard deviation: (a) 0.25, (b) 0.50, (c¢) 1.0, (d) 2.0. The
solid line represents the simulated data; the short dashed line represents the Gum-
bel limit; and the long dashed line represents the higher order approximation of the
conditonal denstiy.
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Figure 2.3: Effects of sample size on expansion of joint density. Normal distribution with
i = 0and o = 1 as sample size increases from: (a) 30, (b) 60, (c) 90, to (d)120. The solid
line represents the simulated data; the short dashed line represents the Gumbel limit;
and the long dashed line represents the higher order approximation of the conditional
density.
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(a.) Sample Size 30
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Figure 2.4: Effects of sample size on expansion of joint density. Lognormal distribution
with standard deviation 0.50 as sample size increases from: (a) 30, (b) 60, (c) 90, to
(d)120. The solid line represents the simulated data; the short dashed line represents
the Gumbel limit; and the long dashed line represents the higher order approximation
of the conditional density.
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size on expansion of joint density. Weibull distribution
with & = 1 and 8 = 1/2 as sample size increases from: (a) 30, (b) 60, (c¢) 90, to (d)
120. The solid line represents the simulated data; the short dashed line represents the
Gumbel limit; and the long dashed line represents the higher order approximation of
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Figure 2.6: Effects of sample size on expansion of joint density. Weibull distribution
with @« = § = 1 [Exponential distribution] as sample size increases from: (a) 30, (b)
60, (c) 90, to (d) 120. The solid line represents the simulated data; the short dashed
line represents the Gumbel limit; and the long dashed line represents the higher order
approximation of the conditional density.
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Chapter 3

EXPANSION OF THE JOINT
DENSITY UNDER THE
FRECHET DOMAIN OF
ATTRACTION

3.1 Introduction

In this chapter we develop the joint density of the sum and maximum of an iid se-
quence of random variables when the underlying distribution lies in the Fréchet domain

of attraction.

The structure on which the development is based is similar to that of the Gumbel
case. Let X1,..., X, be an #id sequence of random variables with common distribution
function F' which has density f. We again assume the existence of the mean p, variance

0?2, and also the third moment p? and third cumulant ;.

We again define S,, = Z?:l X, with the normalized version as

n
no?

(3.1)

and M,, = max;<;<, X; with the normalized version being M, = MZ—_”" where a,, > 0, b,
—'= n
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Recall the notation for the distribution function of Sy is F. (w) with density fs. (w) =
dFg:(w)/dw. Also the definition of the distribution function of M} is Fy(v) =
F™(anv + by,) with density

fars (V) = dFpp: (v)/dv = nF" (a0 + by) f(anv + by)an.

Like Chapter 2, throughout this chapter since we are assuming a finite variance, we
have that I lies in the domain of attraction of a stable law with index equal to 2 so
that Fg.(w) converges to N (w) where A (w) denotes the normal distribution function.
Recall the normal density is denoted by A'(w). In fact, we utilize Proposition 50
developed in Chapter 2 directly in this chapter. Again we use the result from Petrov

(1975) which says that we can bound |z|™{ fs: (¢) — N'(z)} uniformly V2 when m < 3.

For this chapter, we also assume that F' lies in the Fréchet domain of attraction.

We let @, denote the Fréchet distribution and ®!, denotes its density where

e T x>0, a>0
®a(z) = { 0 otherwise
and
—a—1,—z7¢
/ ) ax e x>0, a>0
Palz) = { 0 otherwise.

Note since we are assuming that the underlying distribution has a finite third moment,

we are in fact assuming that o > 3 in the Fréchet formulae.

Recall from Chapter 1, F lies in the Fréchet domain of attraction when 1 — F(z) is
regularly varying with index o where a > 0. Thus we may write 1 — F'(z) as = *L(z)
where L(z) is a slowly varying function. In fact, to establish the higher order terms
associated with the expansion of the density of the maximum we assume that £(z)
satisfies a slow variation with remainder condition. Moreover, since we want to develop
an expansion for the density, we write f(r) = r7* ' £(x) where we assume L(z) satisfies
the SR2 condition defined by Smith (1982). Recall the function £ is said to satisfy the

SR2 condition if £ and g are two functions defined on (0, c0) where we assume g(t) — 0
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as t — oo, L is measurable, and

L(Az)
L(z)
If SR2 holds and v satisfies the condition: There exists a A such that v()\) # 0 and Vy

—1~g(z)v(A), A>0,z =00

v(Ay) —v(y) # 0, then g is regularly varying with index p, i.e.
tA
lim 9(tN) N

t=o0 g(t)

and v(A) = ch,(\) for some constant ¢ and h,(\) = fl)‘

A >0 for some p<0.
uP~tdu.

Without loss of generality, we take the constant ¢ to be equal to 1 both here and in

Chapter 4. In practice, this constant is absorbed into the function g.

We can take the normalizing constants of M,, under the Fréchet domain of attraction
to be
b, =0 (3.2)

and

a, such that 1 — F(a,) = +. (3.3)

We again solve for two forms of the expansion for the joint density. One is of the form
of (2.2) from Chapter 2. The other is similar to (2.6) of Chapter 2 with A’ replaced by
®'. Like Chapter 2, the derivation starts by rewriting fs: a:(w,v) = fsz(az (w[v) farz (v)
where fg: n:(w|v) is the conditional density of Sy given M. Again we need the three
key expansions. The first is the expansion for the conditional density of S|M; which
we have already established in Chapter 2. Now under the Fréchet domain of attraction,
we need to derive the expansion for the density of M. Finally, we need the expansions
for the conditional mean and variance of S,,|M,, under the Fréchet domain of attraction.
Thus the main propositions of this chapter are the expansions for the density of M and

for the conditional mean and variance of S, |M,, under the Fréchet domain of attraction.

Again which value M, is conditioned upon is important to this derivation. Set
M, = u, = a,v + b, with v is fixed and where u,, is defined as a threshold with a,, and

b, defined in (3.3) and (3.2). Thus M,, = u,, = a,v or M} = M, /a,.
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Recall we can rewrite the distribution of S,|M,, in terms of 37" X +u,, where the

X*s are iid random variables which have distribution function Fy (z) = F(z)/F(u,),
and density f,, (z) = f(z)/F(u,). We also define y(u,) and ¢2(u,) as its mean and

variance.

Recall the distributional relationship between S, and S*|M*

PS, < a] = P[2EE SuVna? —[(n = 1)u(un) + uy)
T (n - 1)02(un)

< z|M; = v] (3.4)

with the Jacobian of the transformation as ——Y"o>

(n—1)0?(un)

Recall from Chapter 2 that in deriving the expansions for the conditional mean
and variance, we first need to solve the mean and variance of an exceedance above a
threshold. Let us define Y as the exceedance over the threshold u,; that is, Y = X —u,,.

The conditional distribution function of Y given X > u,, is

Fu(y) = P(X < tp+y|X > up) = Lnty) = Flun)

1 — F(uy)
Note that the tail distribution function is 1 — F,, (y) = Trpe.

Define m(u,) and s*(u,) as the conditional mean and variance of ¥ given X > u,,.
Note we have F(X|X > u,) = m(u,)+u, and Var(X|X > u,) = s*(u,) = Var(Y|X >

The outline of this chapter is as follows. The main theorem and corollary are
presented in Section 3.2. Section 3.3 contains the propositions necessary in establishing
the main result — (1) the expansion of the condition density of S,, (2) the expansion of

the density of M}

nr

and (3) the expansions for the mean and variance of S,|M,, = u,.
Since the first expansion has already been derived in Chapter 2, in this chapter, only the
latter two propositions and their corollaries are presented. Finally, Section 3.4 contains

the proofs of the main theorem and its corollary.
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3.2 Main Theorem

Here we present the main theorem and its corollary in the same format as in Chapter

Theorem 54 Let Xy,...,X, be an itd sequence of random variables with distribution
function F, density function f, characteristic function ¢, mean u, and variance o®. Let

up, be a threshold and ¢,, be the characteristic function of X|X < uy,.
Given the following two sets of assumptions

Set A: Assume f' is integrable, us exists, ©'" erists and is continuous in a neighborhood

of 0, and |y, (t)|" is integrable for some n > n* > 1.

Set B: Assume

f)=2"'L(x), a>1 where (3.5)
EE(()\x)) =1+h,(N)g(z) +0o(g9(x)), A>1, and where
T
AP —1
g€R, for some p<0 and h,(\) = — (3.6)
Also assume that
/' W)IF (y)
= L <n-1, Yy <ape,. 3.7
Ply) ! -0

where e, = {—vlogg(a,)}~* for some v > 1.

Define the normalizing constants of M, as b, =0 and a, such that 1 — F(a,) = % S0

that u,, = a,v and that

ng(a,) — 00, asn — 0. (3.8)
Define
G,
Tn = — (3.9)
Then,
| fsz .z (w,v) = fs: (w) farz (v){1 — Tnv(a — 11)_‘" —Dw}| = o(ry) (3.10)

uniformly Yw and Yv > e, where e, = {—vlogg(a,)}~"/* for some y > 1.
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Corollary 55 Given the conditions of Theorem 54, then uniformly Yw and Yv > e,

where e, = {—vlogg(a,)}~"* for some y > 1

|fS,’;,M,’;(w7U) -

N (w) @, (0){1 + [hp (v) (1 =

o —a 1 [0 —a
e Rl UCON SRk G UL

= o(max{ry,, g(an)})- (3.11)

3.3 Propositions

Here we present the main propositions and their corollaries of this chapter. Along
with Proposition 50 of Chapter 2, they contain the fundamental parts necessary for

establishing the expansion of the joint density of S;; and M for the Fréchet case.

3.3.1 Expansion of the Conditional Density of the Sum Given
the Maximum

We do not need to repeat the result because all the conditions needed for Proposition

50 in Chapter 2 also apply in this chapter.

3.3.2 Expansion of the Density of the Maximum

The basis of this proposition is Smith (1982) which established an expansion for the
distribution function of M, under the Fréchet and Weibull domains of attractions. We
also rely on Goldie and Smith (1987), particularly their Proposition 2.5.1 which gives

integral forms of the SR2 conditions.
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Proposition 56 Suppose

flx)=27*L(z), a>1 and

L(\z) =1+ h,(N)g(z) +o(g9(x)), A>1, where
L(z)

A —1
g€R, for some p<0 and h,(N\) = P

Also assume that

') F (y)

~ ro/ N §n—1, Vyganen-
f2(y)

where e, = {—vlogg(a,)}~Y* for some v > 1.
1

Define the normalizing constants of M, as b, =0 and a,, such that 1 — F(a,) = - and

that
ng(a,) = 00, asn — 0.
Then
[u0) = @ L [y (0)(1 — - 0) = 2 Jg(a)| = olgfan)) (312

uniformly on v > 0.

REMARK: Assumption (3.7) allows us to use —log F'(x) and 1 — F(z) interchange-
ably; that is, the difference between them will be of smaller magnitude than the other

error terms that are being considered.
PROOF: Let M; = JZI—: with density
fa1: (v) = nF™(a,0) f (av)ap: (3.13)
We begin by defining £(z) = 2*{1 — F(z)} and showing
Li(Ar) «

=1+
Li(x) a—p

hy(AN)g(z) +0(9(x)), A>1, (3.14)

where the functions — h, and g — and the constants — o and p — are defined in (3.5)

and (3.6). Note (3.14) is of the same form as (3.6) where g(z) has been replaced by
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ai_pg(ac); that is, £; is also SR2. We can see in (3.14) why there is no loss of generality
in setting ¢ = 1 in the definition of SR2. This has no impact on the results. To see the

relationship of 121((’; w)) we use Proposition 2.5.1 of Goldie and Smith (1987).

Since L satisfies (3.6) and [ |A~®!|dA < oo for @ > 1, then by Proposition 2.5.1
of Goldie and Smith (1987) we have

¥ e £Q) 1 gl®)
/1 A L(z) A=+ ala—p) " (9(z)). (3.15)

From (3.15), we have

Li(z) = a* [% ox [

Lz) M@L ﬂmﬁ_ﬁ@é e
N
=/ A Wd)\
— é + oz(i(ii)p) +o(g9(z)), a>1. (3.16)

Now using (3.16) and the fact that g € R,, then

Li(Az) 1 M ol .
L0w) —a ala—p ToWE) Azl a>l. (3.17)

Also by inverting (3.16),

g9(z)

(a_p)]-i-o(g(x)), a>1. (3.18)

=afl —

Thus with (3.16), (3.17), and (3.18) we have

L1(Azx) _ Li(Az) L(z) L(Ax)
L1(x) L(Az) Li(z) L(z)
Ng(@) \(,  9(z) N+ ofalz

Y h,(Ng(z) +o(g(x), A>1, a>1. (3.19)

= {1+

= 1+

a—p
This proves (3.14).
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Now we break up the proof into three sections. First we derive functions E;, Fy, F;3

and Fj4 so that we may write

farz(v) = v le™ " {1+ {hp(v)(l— Y o) - ! ]g(an)}-i-ZEj. (3.20)

Second we show (3.12) holds by showing that Ei, F», F5 and Ej are o(g(a,)) uni-

-1/

formly on v > e, where e, = {—ylogg(a,)} for some v > 1. Finally we show on

the interval v < e, that each term in (3.12) is uniformly o(g(a,)).

Section 1 We approximate (3.13) in two parts. First we find the approximation for

F"!(a,v) and then for a,nf(a,v).

If (3.5) and (3.6) hold then by Lemma 3 of Smith (1982), given an € > 0 there exists

a z,. such that if z > z., Az > =,

og{ 5L}~ By (W) < o) (3.21)

where 5 = p — € < 0 since we are assuming that p < 0.

Let 6;,7 = 1,2,...,12 be generic constants between -1 and 1. Using the Taylor
expansion

eV =1+ye”, where € (—1,1) (3.22)
and (3.21), we can write
(exp{—eNg(2)} = 1) + hy(N)g(@) (exp{01h,(\)g(z) — eXg(2)} — 1)
e R I

— L(z)
(exp{eN’g(2)} — 1) + hy(N)g(x) (exp{bih,(\)g(x) + eNg(2)} — 1) .

Thus if x > z., Az < z,

L(\x) _
,C(.’E) -1- hp()‘)g(m) -

(exp{efA’g(z)} — 1) + h,y(N)g(z) (exp{f:h,(N)g(z) + B3N g(z)} — 1) (3.23)
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Note we can get a similar equation for £;(A\x)/Li(x) by using the definition of £,
in (3.17) and applying Lemma 3 of Smith (1982). We get (3.23) with the same z. but

now g(x) is replaced by ¢;(z) = C;g—f;); that is,
El ()\33)
—1—=h,(A =
L1 (2) p(Nag1(z)

(exp{efioN’g1(z)} — 1) + hy(\)g1(z) (exp{foh,(N)g:1(x) + 011eX g1 (z)} — 1]3.24)

Another Taylor expansion gives log(1 —y) +y = 1__02,1’;, Yy < 1.

Apply y =1 — F(anv),

04(1 — F(ayv))?
1—0,(1 — F(ayv))’

—log F(a,v) =1— F(a,w) +

Thus

-4n-nngmMo=(1_l)

v=*Ly(anv)

El(an)

04(1 — F(a,v))?
1—04(1 — F(ayv))

- +(n—-1)

Now substituting in (3.24) with A = v and z = a,, (and labeling z. as v,),

—(n—1)log F(a,v) = v~ + v %h,(v)g1(an) + R, (3.25)
where
—a —ap n 1.
R, = _Un _Y p(z)gl(a ) +(1- ﬁ)v @ (exp{eHlovﬂgl(an)} - 1)

+ (1- %)vahp(v)gl(an) (exp{sh,(N)g1(an) + 011X g1(an)} — 1)
04(1 — F(a,v))?

0 DT A Fag) (3.26)
on a,v > ve.
Another application of (3.22) yields
exp{—v"%h,(v)g1(an)} =1 — v %,(v)g1(an) exp{O:sv"h,(v)g1(an)} (3.27)
With (3.25) and (3.27), we have on a,v > v
F" Yapw) =e" (1 — 0%, (v) g1 (an)ee5”_ah"(”)gl(“”)) e Bn (3.28)
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Define
U, = ( O5v = ho(@)g1 (an) _ 1) by (0)g1 (a)- (3.29)
Thus on a,v > v,

F'" Yapv) =™ " (1 — 0" %h,(v)g1(an) + Uy,) e Fr. (3.30)

Now for the second term in fu:(v)

nflanv) _ s L(an) L(anv)
1- F(aﬂ) Ofﬁl(an) ,C(a”) )

annf(anv)

For af:(l( )) we substitute in a, for z in (3.18). For the last term we use (3.23) with

A =wv and z = a,. Thus for a,v > v,
g(an)
(a@—p)
x (1 Bol0)glan) + {9900 = 1} + oy (0)g(an) elehaaton)tos’aten) _ 1)
g9(an)

annf(a,v) = av @ 1 —

+o(g(an))]

av 1 — (@) + S H1+ hy(v)g(an) + 1o} (3.31)
where
Sn = o(g(an))) (3.32)
and
T, = {7 90) — 1} + h,(v) g(ay){eloheMslen o slen) _ 1} (3.33)

By multiplying (3.30) and (3.31) and rearranging the terms, we have on a,v > v,

frz(v) = av™ e " {1 — v %h,(v)g1(an) — Og[(i ; + hy( } + Z E; (3.34)

where

Ei=av ®le? {l—v “hy(v)g1(an)

g(an)
a—p

) {1+ hy(0)g(an) + T} e B — 1}, (3.35)
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By = av-o-te= U g1 — 29) L gy i1 4 b (0)g(an) + T}, (3.36)

a—p
. an an,
Ey=—avle™ v_ah,p(v)gl(an){—i(_ ,)o + Sy + (hy(v)g(an) +T,) (1 — i(_ ,)o +Sn)},
(3.37)
_ —a—1_—v—© g(aﬂ)
Ei=av e {(—a -, + Sn) (hy(v)g(an) +1,) + Sn + 17} (3.38)
Now recall e, = {—vlogg(a,)}~'/® for some v > 1. Note as n — 0o, we have

en — 0. We also have g(a,) > + by (3.8). Using the definition of a, and the Fréchet

domain of attraction —i.e., 1 — F'(z) is regularly varying with index —a — we have
a, = O(n=). (3.39)

Thus

anepn > O(ni(v logn)_é) — 00

so the condition a,v > v, is still satisfied. In other words,
V> e, = Ayl > Ve
so we have completed Section 1; that is, we have (3.20) for v > e, (i.e. a,v > v).
Section 2 We need to show that (3.12) holds uniformly on v > e,. We first look at
the error terms R, S,,T,, and U,.
Note in what follows we use
ey — 1~y when y — 0. (3.40)

In other words, we need in each application of (3.40) that the exponent goes to zero —

i.e., y — 0 — for the following relations for R,,S,,T,, and U, to hold.

For R,, we need
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= 3 {1+ h,(v)g1(an) + (exp{eﬁlovﬂgl(an)} - 1)
+hy(v) g1 (an) (exp{Bsh, (v) g1 (an) + Or1€07 g1 (an)} — 1)}
{1 +h (U)gl (an) + {6097) 91(an)}

+EL p(v)g1(an){010h,(v) g1 (an) + Or1ev Ql(an)}}z
~ 5 {1+ 0(1)}.

This gives us for v > e,, (when the exponents in the exponentials above go to 0 —

i.e. in (3.40), y — 0)

R, ~ v® (69107)’391(@”)) + 0%, (v)g1(an {09 v)g1(ay) + O11€v gl(an)}

+ ”7 [—1 — hy(v)g1(an)]

+ UT (69107)’391 (an) + hy(v)g1(an){0hy(v)gi(an) + b11ev’ gy (an)})
g (1 1)1 +0(1)

=T T o(1)] (3.41)
and
S~ 0(g(an)) (3.42)
and
T, ~ €00’ g(an) + h,p(v)g(an) 6k, (v)g(an) + Osev’ g(an)] (3.43)
and, finally,
U ~ 0502 (v) g7 (an)- (3.44)

Recall g1(an) = ;25 9(an) and g(a,) > . We also have € is arbitrary. On any finite
range of v, in all applications of (3.40) in R, T,,, and U,,, we have the exponent y — 0.
Thus using (3.41), (3.42), (3.43), and (3.44), we see |R,|, |S,|, |T,|, and |U,| are o(g(a,))
for any finite range of v. This also gives us (e"#» —1) = o(g(a,)) for any finite range of
v. Looking at (3.35), (3.36), (3.37), and (3.38), we have the leading term (av™*"le™ %)
is uniformly bound for any finite range of v and thus this gives us that E, Fy, F5, and
E, are each o(g(ay)) for any finite range of v. In other words, (3.12) holds for compact
sets of (0, co).
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Therefore we are left to check the limits as (a.) v — oo and (b.) v — 0 via e,,.

Case v — oo: Since we assume p < 0 we have 8 < 0 which gives us v# and h,
are uniformly bounded (away from 0). We can apply (3.40). Looking at (3.41), (3.42),
(3.43), and (3.44), we thus have |R,|,|S,|, |T.|, and |U,| are o(g(a,)). The same is then
true for Ey, Ey, E5, and E, since av™* 'e™ “ is bounded on 1 < v < oo. Hence for

some K > 0, independent of ¢,

«

g (0) =™ e {1y ) (1) g} < Keglan), 1< v <0
(3.45)

since € is arbitrary, this establishes (3.12) on 1 < v < c0.

Case v — 0 via e,: Recall v > e, implies a,v > v, so that we have (3.34) with
(3.35) — (3.38). Recall e,;* = —ylogg(a,). Now for this interval (v > e,), we have for
any 6 >0

sup,v°g(an) = (—ylog g(a,))¥*g(a,) — 0 as n — oco. (3.46)

Again, we can use (3.40) to evaluate R,,T,, and U, Thus we again can show that
|Ryul, |Snls |Tn], and |U,| are o(g(ay)). For example to evaluate |U,|, we have (recall
p<0,a>2)

050" %h,(v)g1(an) — 0 uniformly on v > e,.

Hence using (3.46) we have

Uy ~ 050 “h,(v)g1(an)]hy(v)g1(an) = 0(g(a,)) uniformly on v > e,.

For |S,|, we have already have uniformly in v > e,.

For |T,| and |R,| we look at (3.43) and (3.41). Again we have € is arbitrary and
p < 0. Like the argument for |U,| at each application of (3.40), y — 0, so

To| = o(g(an)) and  [Rn| = o(g(an))
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o ,—v

uniformly v > e,. Thus with (3.46) ensuring av=% " ° is bounded on v > e,, this
again gives F1, Fy, F3, and E4 are each o(g(a,)) uniformly on v > e, and thus (3.12)

onv > e,.

Finally to complete the proof we need to extend the argument to v < e,,. To do so
we show all terms in (3.12) are o(g(a,)) for v = e, and then all terms are monotonically

decreasing in the interval v < e,,.

Now (3.12) holds for v = e,, and by definition of e,, we have

1
o ) —

—a=le=v"f1 4 [h 1-—
Qv e 1+ [y (0) (1 - ) -

lg(an)} (3.47)

is o(g(a,)) at v = e,. Since (3.47) is monotonic for sufficiently small v, it is o(g(a,))

uniformly on v < e,. From (3.12) and (3.47), we have fy:(e,) = o(g(an))-

We have seen in the Gumbel chapter that

s (0) = F a0} (0 = 1) an0) + ) o). (349

Now (3.48) > 0 for v > e, by (3.7). Thus fu:(v) is monotonic increasing on v < e,

50 fuz(v) = o(g(an)), Vv < en,. O

REMARKS:

1. The uniformity result does not appear to hold when p = 0. For example, in 7T}, if

v > 1 when p =0, then 8 > 0 so

T, ~ 0P g(a,) = co, as v — oo.

2. If assumption (3.8) fails because |f'(y)|/f?(y) becomes infinite at some finite y*,
we can redefine f on some interval (—oo,y*). This will have no impact on the

conclusions since P[M,, < y*| = F"(y*) = o(g(a,)) for any fixed y*.
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Corollary 57 Given the conditions and set-up of Proposition 56, for any m < 5 and

a>2

1
o b0 —
a—p a—p

1g(an>}} = o(g(ar))
(3.49)

o -a+m{fM*< )~ ar e (14 [hy(0) (1 -

uniformly on v > e, where e, = {—ylogg(a,)}~/* for some v > 1. And

o fs(0) = e L4 o)1 -
uniformly on v > e, where e, = {—ylogg(a,)}~/* for some v > 1.

PRrROOF: The result follows from the proof of Proposition 56. If we focus on the
interval v > e, which implies a,v > v,, we see that neither multiplying by v=**™ nor
by v affects the terms R, = (3.41), S, = (3.42), T,, = (3.43), and U,, =(3.44) which
are central to the uniformity result on this interval. The only detail to check when
constructing Fy, Fy, E3, and Ej is that each would now be multiplied by v~**™ or v.
It then suffices to show that v~ *™{y~*1e7**} and v{v > 'e ¥ "} remain bounded

on the interval v > e,.

Now, certainly v~* 2¢~* " is bounded since a > 2. For v "™ {y=2"1e7"""} we need
—2a+m — 1 < 0. But again « > 2 so this is bounded when m > 5. O
REMARKS

1. This corollary is important when proving a uniform bound for |[v=**™ fy. (v)],

m = 1,2, or 3 and for |vfy:(v)| on v > e, in the main theorem.
2. If & > 3, then m < 7 in (3.49) and v can be replaced by v? in (3.50).

3. Likewise we can prove the corollary when the leading term is v=2%*!. In fact, with

the exponent of —2«a; we can let m be < 6 in remark 1.
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3.3.3 Expansions of conditional mean and variance

Given the SR2 conditions we have already established for 1 — F'(x), this proposition
is primarily an application of Proposition 2.5.1 of Goldie and Smith (1987) which again

solves integrals of SR2 conditions.

Proposition 58 Suppose

flx)=2*'L(x), a>2 and

08 1k b a) + olg(w), A2 1, e
M —1
g€R, for some p<0 and h,(N\) = P
Then
a
w— p(u) ~ - 1u{1 —Fu)}, (a>1) (3.51)
and
0% — 02(u) ~ aﬁ2u2{1 —F(u)}, (a>2). (3.52)
PROOF: From the Gumbel chapter, we have
1= F(u)

Here we have

F1-F(u+ty)

= Fw) ¥

m(u) = E(Y\X>u):/OOOP[Y>y|X>u]dy:/O
u/“ 1-Fuz)

1—F(u)
= u wx_aﬁl(um) x
- o T
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Substituting in (3.19) for £;(uz)/L1(u) and using Proposition 2.5.1 of Goldie and
Smith (1987), we have

1

a—1(a—p—1) +o(g(u)}, a>1. (3.54)

miu) = u = + (),

Substituting in (3.54) into (3.53) we have the result (3.51).

Also from Gumbel chapter

o® — o*(u) = P (u) — i + (%ﬁu)) {(u+m)?+ s*(u) — p> — o2}, (3.55)

Now to calculate s*(u) we begin with F(Y?|X > u),

E(Y?|X >u) = /00 v fu(y)dy = 2u /loo(x — 1)33‘!%1(?;)) dx

0

Again we use formula (3.19) for £;(ux)/L1(u) and Proposition 2.5.1 of Goldie and
Smith (1987) with v(z) = (r — 1)z~*. If o > 2, we have

E(Y?|X >u) =
u? ! Ra=p=3) u) + o(g(u
2 {<a—1>(a—2>+(a—l)(a—zxa—p—1><a—p—2>g(” (ol ))}'
Thus
s*(u) = Var(Y|X > u) (3.56)
S S T (" —a-p=3) 9(u) + o(g(w))}.
@ 122 (@ 1@ e —p-Da_p-2)

From (3.51) we have

(07

H{1 = F(u)} (3.57)

2 2
— N2
o= () ~ 2pu(——

We see the important terms of (3.55) involve (u + m(u))? and s?(u) and by using

(3.54) and (3.57) in (3.55, we have the result — (3.52). O
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Corollary 59 Assume the condition of Proposition 58. Let the normalizing constants
for M, be defined as b, = 0 and a, such that 1 — F(a,) = % so that we may define

Up, = apv. Also assume ng(a,) — oo as n — oo. Then for all v > e,

—Q

av{—}, a>1 (3.58)
n

and

(anv)Q{T}, a> 2. (3.59)

PROOF: These results fall from Proposition 58 with v = a,v when 1 — F(a,v) =

22+ 0(1), for v > e,

From (3.24) which is based on Lemma 3 of Smith (1982) we have

1 — F(ayv)

A (S MOTACA R

where
Qn = (66010”391(“") - 1) + hy(v)g1(an) (e(’ghp(”)gl (@)oo g1(an) 1) :
Now as long as we are bounded away from 0, using the argument for establishing
the error of R, in (3.41) we have @, = o(¢1(a,)) = o(g(ay)), for v > e,.

Thus
% = v={1 — h,(v)g1(an) + 0(g(an))}

or using the definition of 1 — F'(a,) and the definition of u
1= F) = T~ hy)oa(an) +o0r(an)))
_ %{1 +o(1)} (3.60)
uniformly on v > e,. Note h,(v)g(ay) is uniformly bounded on v > e, by (3.46).

Substituting (3.60) into (3.51) and (3.52), we get (3.58) and (3.59). O
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3.4 Proof of Main Theorem and Its Corollary

ProoF OF THEOREM 54: We can write the joint density of S; and M as

Jsx (w,v) = Iz (U)fsmM; (wv)

2

= fM;(U)\/mfs'n(z) (3.61)

where

_npt Vnotw — (n — 1) p(uy) — Un

(n—1)o%(uy) (3.62)

Here we let u,, = a,v. To enable the uniformity results we will allow v, w and hence

z to be dependent on n. We suppress this so as to make the notation easier to read.

Note the transformation from S* to S, and the form of (3.62) comes from (2.7) of
Chapter 2.

Now to establish (3.10) we break it up as follows

o <v>\/ i ) fes () (01 = ral 20 = D)
=FE,+FEy+ Es+ E, + Es + Ex, (3.63)
where
Ei = fuy(v)fg,(2) [\/m - 1] (3.64)
= v 2 2) —N'(z _fa(un) 23 — 32
By = i) [f5.) - N1+ R e -8 Mo e
By = f) [V - M) = rn - nul| 69

Br = ) W)+ o5 —3w>}—fs;;<w>]

1- rnv(a(i v — u} (3.67)
Be = fuplo) |G 5 - 55) - N;(g)f( mau)| oy
By = fus (U)A/'(w)ﬁa’;3 — (" - 3w)[rnv(ﬁv_°‘ — 1)uw). (3.69)
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Now to prove that (3.10) we show that (3.64) — (3.69) are o(r,,) uniformly Yw and
v > e,. And to prove (3.64) — (3.69) are o(r,), it suffices to show that for any € > 0,
25:1 |E;| = € ry for all sufficiently large n. It is necessary to consider two cases where
the dependence on n for w, v, and z need to be explicitly expressed. These two cases

are: Case (a) |z, —wy| < for a 0 > 0 and Case(b) |z, — w,| > 6.

Proof for E; The following argument for F; holds irrespective of 6 and so holds
for both Case (a) and Case (b). We start with By = fu:(v)fg (2) [ o 1].

(n—1)0(un)

Specifically we begin with its third term.

From the Gumbel proof, we have

|\/ UQU ~1l< %—1—#0(%). (3.70)

Now from (3.59), we have

02(51;”) —1_ a‘i 27,721”704—{—2 + o(r2pot?)
Now 7202 — 0,Vv > e, since
riy ot~ a7 — 0. (3.71)
n
To see this, we have for v > e, that @ = (anv)’" ~ u2{l — F(u,)} <

. . . . . 2-a+2
[ 2?dF(z) — 0 since the variance is assumed finite. Since “2"—— — 0,Yv > e,,, we

can invert (3.71) to get

o __ @ 2 —ay2 2, —a+2
() 1= L + o(rjv™ ). (3.72)
Note that
2
02?%) =1+o0(1) uniformly on v > e, (3.73)

since v > 0 and « > 3 since the third moment is assumed to exist.
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Substituting (3.72) into (3.70), we establish the inequality

no? O 5 _grg 1
W —————— -1 <K rav + — |, for some constant K > 0. (3.74)
(n—1)o2%(uy,) a—2 n

Thus
B = O(fuz (v) fg, (2)v™"r7).

Now by Proposition 50 in Chapter 2, f¢ (z) is uniformly bounded Vz. By Corollary

57, v~**2 furx (v) is uniformly bounded on v > e,

Thus
E, = 0(r2) = o(rn), Vz,v>e,.

n

or we may write for sufficiently large n

|Ey| = % Tn, Yw, Vv > e,. (3.75)

Proof for E, Like proof for Fy, the following argument holds for both Case (a) and
Case (b).

Next we look at By = fu:(v) [fgn (z) = N'(z){1+ %(z?’ —32)}-

Here, |fg (2) = N'(2){1 + %(z?’ —32)}| = o(5) uniformly in z by Proposi-
tion 50 of Chapter 2. We also have that fy.(v) is bounded by Proposition 56. Hence

E, = o(%) =o(r,), Vv and Vw.

or we may write for sufficiently large n

Byl = <1, Y, V. 3.76
6
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Proof for E3 Here we will proceed simultaneously with both until Step 3 where at

that point we will need to divide the proof into the two cases.

Recall

Es = fuz(v) [N"(z) - N(w){1 - Tnv(ai 11)_"‘ —1Dw}].

Establishing F3 = o(r,) involves a longer argument than needed for E; or F;. We

thus break this argument into the following steps.

Step 1: Recall from the Gumbel case,

_ n(p — pu(un)) — 1w 1(un) — un
Z—w= =D w) {\/ p— 02 ) 1w + TEREL ) (3.77)

Substitute in (3.58) into the first and third term and (3.74) into the second term,
(=2 )a,v=ot!

r—w = WW{1+0(1)}+O(wrnU*a+) W{lJF o(1)}

(07

= [(a e - 1} + ofrv {(%)va - 1} }+ O(r2vP)3.78)

Step 2: We again take a Taylor expansion for N'(z) about w —i.e. write z = w +1,

where t,, can be seen in (3.78). Recall
N'(z) = N(w) — t,2*N'(z%).
for z* between w and z.

Substituting this into F3 we have
By = iy (0)(z — w) wN(w) — 2 N(2)] + olruv(—=
+O(wr™ 2w (W) fig; (v))
= FEg¢+ E7+ Es.

TV DwN'(w) farg (v))

Now wN’(w) and w?N"(w) are uniformly bounded Vw. From Corollary 57, we have
v=**! fr (v) and v™**2 fyr. (v) are uniformly bounded for v > e,,. Thus E7 = Eg = o(ry,)

on v > e, or we may write for sufficiently large n (¢ > 0)

|E7| < — 19, Yw, Yv > ey, (3.79)

8
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| Ey| < % Ty Yo, Yo > €. (3.80)

Step 3: Now we focus on Fg. The important details in this formula concern z — w
since the other terms are bounded. Recall v, w, z, and z* actually depend on n. So again
fix the notation by writing v = v,, w = wy, 2z = 2,, and 2* = z; so the dependence on

n is explicit.

By substituting (3.78) into Ej

(0% (0%

Es = fu:(va) (rnvn [(a — 1)1};" — 1] + o{rntn [(a — 1)v;“ — 1} }+ O(rivno‘“wn))
X {wn N (wn) — 23N (27,) }

= raigon)on (200" 1) () = NG}

1
g (on)ofratn | (20" — 1| HuaA(w) — 50762}
+fM§ (Un)O(TrZLU;a—l_an) {wan(wn) - Z;NI(Z;;)}

= Eg + ElO + Ell- (381)

At this point it is necessary to separate the argument into the two cases.

Case (a) If |2, — w,| < § then |2} — w,| < 6. By uniform continuity of w*N'(w)

for k =0,1,2 given € > 0, we can find a § > 0 such that

|2 — Wl < 6 = |ZEN(20) — WEN (wy)] < é

for £k = 0,1,2 and any given constant C' > 0.

Now since (v,*"? + 1) fa:(vn) is bounded on v, > e, = {—ylogg(ay)}~"* by
Proposition 56 and Corollary 57, we have that each Fy, Ejy, and Fi; is bounded by
some

constant x |2:*N"(25) — wEN (w,,)|

for k=0,1,2.
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In other words, we can choose a ¢ so that Vw,, and Vv, > e,
|2p — wp| < 0 = |Eg| < % rn, for all sufficiently large n (e > 0)
which with (3.79) and (3.80) gives
|E3| < é rn for all sufficiently large n (3.82)
for v, > e, and Yw and when |z, — w,| < §. [End Case (a)]

Cases (b) Here we show that if |z, —w,| > § then the entire left-hand side of (3.63)

is o(ry,).

Part 1 Suppose |z, — w,| > 6 and |w,r,| < 6% From (3.78) we deduce either
Irav= T > some §; > 0 for sufficiently large n (v, | 0) or |r,v,| > some & for

sufficiently large n. (v, 1 00).

Look at the right-hand side of (3.63) we see L) = 1+ o(1) is uniformly

(n—1)02(un

bounded on v, > e, by (3.73). Also fg (2,) = O(1) is uniformly Vz, by Proposition 50
of Chapter 2. Finally, fs, (w,) and w, fs, (w,) are uniformly bounded Yw by Petrov’s
(1975) Central Limit Theory result. So we need only look at terms associated with v,

in the right-hand side of (3.63).

When

1
51\ —aFt
Irav ™ > 6 = |va| > (—1> .

We need to show on this interval
(@) [fuz(vn)| = o(rn).

(b) |vnfar; (vn)| = o(1).

(€) [vn " farz (vn)] = o(1).

As n — 00, v, can go | 0 on this interval. Thus it suffices to show (c¢). From the

Remarks following Corollary 57, we have
[0, %% farz (va) | = O(1) or [0%% far (va)| = O(vy)
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1

On |v,| > (f—;)TH, we have
0" fagy (0n)| = 07 775) = o).
Thus the right-hand side of (3.63) is o(r,,) on this interval.

When

5
Tnn| > 0y = |vg| > T—Q

n

We again need to show that (a), (b), and (c) from above. As n — oo, v, can go 1 co

on this interval so it suffices to show (a). By the remark following Corollary 57,
| fat (va)| = O(v?).
On |v,| > f—z, we thus have
| fat (va)| = O(87r7) = o(ra) = o(1).
Thus on this interval the right-hand side of (3.63) is o(r,).

Part 2 Suppose |z, —w,| > § and |w,r,| > 6. (and |r,v,| < 6; and |r,v, “TH < 6y).
From (3.78) we deduce |r,w,| > some §; > 0 for sufficiently large n. So |w,| > f—;. We

also have from (3.78)

o
-1

o = 1]+ ofran [ = 1] + 02w

= w, +0(1)+ o(1) + O(w,o(1))

Zn = Wy + Ty [(
(6%

= wa(1+o(1))
for sufficiently large n.
Thus we have [ with (3.73)]
1. |fg (zn)| = o(rs) by Proposition 50.
2. |wn|®| fs: (wy)| = o(ry,) for k=0,1 by Petrov’s central limit theorem.
3. |(e7 +1) fm: (vn)| is bounded on v, > e,. by Proposition 56 and Corollary 57.
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Hence the left-hand side of (3.63) is o(r,) on v, > e,. and Vw, when |z, — w,| > ¢
and |r,w,| > 6%. [End of Case (b)]

Hence Yw and Vv > e,
Eg = o(ry,) or entire (3.63) = o(r,).
In other words, for E3 we have either for sufficiently large n (e > 0)
|By| < é Ty V0 > €, Vit (3.83)

of the left-hand side of (3.63) is o(ry,).

Proof for E, Like the proofs for E; and FE, this argument holds irrespective of 4 and
hence is the same for both Case (a) and Case (b).

Recall we have

Ey = fuz(v) [N (w){1+ 60’;%(11)3 —3w)} — fs: (w) | {1 — rpv (250~ — Dw}.

Again we have fy(v) is bounded and also by Feller (1971), Chapter XVI, Sec-
tion 2, Theorem 1 the term inside [...] is o(ﬁ) uniformly in w. To handle the term

TV (550~ — 1)w, we need show

(a) sup, v(3%5v™® — 1) fu: (v) is bounded on v > e, which we again have by Corollary

o7.

(b) sup,, |[w{N'(w) — fs:(w)}| — 0 as n — oo which follows from Petrov’s (1975)
central limit theorem under the same assumptions as Proposition 50 of Chapter

2.

(c.) w*N'(w) to be bounded so N (w) 5~ (w® — 3w)w — 0 uniformly in w which we

603/n

have by properties of the normal density.

Thus

Ey=o(ry), Yv> e, V.
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or we may write for sufficiently large n (e > 0)

|Ey| < % Tn, Y, Yv > e, (3.84)

Proof for E5 Finally we look at the term

N'(2)rs (un)
60 (un)v/n

_ N'(w)rs

(2* = 32) W

Es = fuz(v) (w® — 3w)| .
Now, again we have fy:(v) is uniformly bounded. We also have that the function
N'(2){z® — 3z} is uniformly continuous so by similar argument to the proof of Fj,

particularly Step 3, we can conclude for sufficiently large n

|Es5| < %rn or (3.63) is o(ry), Vv, > ey, Vw. (3.85)

Proof of E5, Like the proofs for F; and E, this argument holds irrespective of 6 and
hence is the same for both Case (a) and Case (b).

Recall we have Esy = faz: (v)N'(w) 55T (w? — 3w)[rpv(5&5v™* — Dw}].

Now, we have the result necessary immediately since,

(a) sup, v(z%5v * — 1) fu: (v) is bounded on v > e, by Corollary 57.

a—1

sup,(e”" — 1) fuz (v) is bounded on |v| < e, by Corollary 52.

b.) w*N'(w) is bounded uniformly in w so N’ (w) £3; (w? — 3w)w is bounded uniformly
60

in w which we have by properties of the normal density.

Thus we have

E5, = O(%) = o(r,) for v > e, and Yw.
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or we may write for sufficiently large n (e > 0)

|Esp| < % r, for v > e, and Vw. (3.86)

In conclusion, using (3.75), (3.76), (3.83), (3.84), (3.85), and (3.86), we have shown
for sufficiently large n Z§:1 <er, Yw and Yv > e, = {ylog g(an)}_l/a. O

PROOF OF COROLLARY 55
Using the result of Theorem 54 — equation (3.10) — to show (3.11) we need to prove
that

750 fas; (0) = N ()@, 0)

o 1

XL ) (1= 2™ = g {1 = rav( 2™ = w)
= o(max{r,, g(an)})- (3.87)
for Vw and Yo > e, = {—vylogg(a,)}~"/°.
Let

An = fS;‘L(w)a
Al = N'(w),
Bn = fM,’{(v)a

and

Bl = ¥, (0){1+ [hy(0)(1 — ——0) = —Jg(an)}

Then we can write the left-hand side of (3.87) without the r,v(=%5v~% — 1)w term

a—1

as

|A,B, — A\B.| = |A,B, — A,B, + A,B, — A.B.|
< |An] [Bn = Byl + By | [An — 4, (3.88)
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Now |A,| is bounded Yw by Petrov’s result and |B,, — B},| = o(g(a,)) Vv by Proposi-
tion 56. Thus the first term on the right-hand side of the inequality in (3.88) is o(g(a,)),
Vv and Vw. For the second term in the inequality in (3.88), | B!| is bounded Vv by Propo-
sition 56 and |A, — Al | = O(ﬁ) by Feller (1971) Chapter XVI, Section 2, Theorem
1 uniformly in w. Given the definition of r,, we have |4, — A/ | = O(ﬁ) = o(ry)

uniformly in w. Thus this second term is o(r,), Yv and Vw. Thus the right-hand side

of (2.123) is o(max{r,, g(a,)}), Vv and V.

When we add in the r,v(-%5v~* — 1)w term, we need to strength this to
(a.) |wA,| bounded — which we again have Vw by Petrov’s result.

(b.) [v=@*t +1] |B, — B.| = o(g9(a,)) — which we have by Corollary 57, note now on

v > {—ylog g(a,)} Y.

(c.) le7” + 1] |B},| bounded — which we again have by Corollary 52, note now on

v > {—ylogg(an)} /.

(d.) |w| |An, — Al | = o(r,) — which we again have Yw by Petrov’s result.

Hence we have the result (3.10) Yw and Vo > e, = {—vlog g(a,)}~/*. O
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Chapter 4

EXPANSION OF THE JOINT
DENSITY UNDER THE
WEIBULL DOMAIN OF
ATTRACTION

4.1 Introduction

In this chapter we develop the joint density of the sum and maximum of an 7id se-
quence of random variables when the underlying distribution lies in the Weibull domain

of attraction.

The structure is similar that of Chapter 2 and 3. Here we will use slightly different
notation from the previous chapters so as to distinguish from the Fréchet case. Let
Y1, ...,Y, be a iid sequence of random variables with common distribution function F
which has density f. We again assume the existence of the mean y, variance o2, and

also the third moment ;2 and third cumulant 3.

We again define S, = > | ¥; with the normalized version as

§r = Sn (4.1)

no?

Recall the notation for the distribution function of Sy is Fs. (w) with density fs. (w) =
dFg: (w)/dw.



Like Chapter 2 and 3, throughout this chapter we assume a finite variance and thus
we know F' lies in the domain of attraction of a stable law with index equal to 2; that
is, Fs:(w) converges to N'(w) where N (w) denotes the normal distribution function.
Recall the normal density is denoted by A'(w). In fact, we again utilize Proposition
50 developed in Chapter 2 directly in this chapter. Also we use the central limit result
from Petrov (1975) which says that we can bound |z|™{ fs..(z) — N'(z)} uniformly Vz

when m < 3.

We again define M,, = max{Y7,...,Y,} but here we denote the normalized version

as M! and define it as
M! = a,{M, —d,} (4.2)
where a,, > 0, d,, real. With this notation, we define the distribution function of M as

FMJ (y) and its density as fMjL (y) = %FMn (1)-

For this chapter, we also assume that F' lies in the Weibull domain of attraction;
ie., FF € D(V,). Let ¥, denote the Weibull distribution and W/ denotes its density

where

—(—y)*
_Je y <0, a>0
Taly) = { 0 otherwise

and

, | a(=y)* ey <, a>0
Taly) = { 0 otherwise.

Note since we are assuming the underlying distribution has a finite third moment, again

we are in fact assuming that o > 3 in the Weibull formulae.

The following definition of the Weibull domain of attraction is taken from Smith

(1982), proved in Theorem 2.3.2 of de Haan (1970), originally given by Gnedenko (1943).

Definition 60 (Weibull Domain of Atrraction) Given F, a necessary and suffi-

cient condition for the existence of a, > 0,d,, real such that

lim F*(L +d,) = Ta(y), a>0

n—00 an,
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s that F' has a finite endpoint; that is,
zo =sup{y: F(y) <1} < o0

and that Fy(z) = F(x, — 1) is in the Fréchet domain of attraction, ®,.

Thus we see a simple transformation connects the Weibull and Fréchet domain of
attraction. In fact, through this transformation we are able to apply the propositions
and corollaries of Chapter 3 directly in this chapter. We have defined M/ in such a way
that the normalizing constant a,, is the same as in the Fréchet case. Specifically we can

take the normalizing constants of M,, under the Weibull domain of attraction to be

d, =z, (4.3)

and
a, such that 1 — Fi(a,) =1— F(z, — i) =1 (4.4)
Recall M} = max(XyXn)=bn where X,,..., X, is an iid sequence random variables

[420)

with underlying distribution function in the Fréchet case. Note we defined b, = 0 so

that M;{ — max(Xl,...,Xn).

Qn,

Again we exploit this connection between M/ (the normalized maximum under the
Weibull domain) and M (the normalized maximum under the Fréchet domain) in this

chapter.

We again solve for two forms of the expansion for the joint density. One is of the form
of (2.2) from Chapter 2. The other is similar to (2.6) of Chapter 2 with A’ replaced by
W’ . Like Chapter 2, the derivation starts by rewriting fS;,Ml (w,y) = meM;rL (w|y)fMTfL (y)
where fq. 1 (w|y) is the conditional density of S given M. Again we need the three
key expansions. The first is the expansion for the conditional density of S¥|M}. Note
the expansion of the (conditional) density derived in Proposition 50 of Chapter 2 still
applies in this chapter. Although we have switched notation from M} to M}, the only
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difference in the derivation is in the exact form of the threshold (u,) where we now
divide by a, as opposed to multiply. The process is still to condition on M,,. Now
under the Weibull domain of attraction, we need to derive the expansion for the density
of M]. Finally, we need the expansions for the conditional mean and variance of S| M}
under the Weibull domain of attraction. Thus the main propositions of this chapter
are the expansions for the density of M| and for the conditional mean and variance of

S*| M} under the Weibull domain of attraction.

Again which value M, is conditioned upon is important to this derivation. Set
M, = u, = % + d,, with y is fixed and where u,, is defined as a threshold with a,, and

d,, defined in (4.4) and (4.3). Thus M, = u, = % + 3, or M} = a,{M, — z,}.

n

Recall we can rewrite the distribution of S, in terms of S"r—"Y;* 4 u, where the

Y*s are iid random variables which have distribution function F, (y) = F(y)/F(uy),
and density f,.(y) = f(y)/F(u,). We also define ji(u,) and o?(u,) as its mean and

variance.

Again we have the distributional relationship between S, and S*|M! = y as

np + SivVno? — [(n — 1) pu(un) + up)

PlSn < 2] =PI = 1)o2(uy)

< M} =y] (4.5)

Vno?

with the Jacobian of the transformation as —2¢——.
(n—1)02(un)

Recall from Chapter 2 that in deriving the expansions for the conditional mean and
variance, we first need to solve the mean and variance of an exceedance over a threshold.
Recall the conditional mean and variance of an exceedance, given an exceedance over

uy, exists, is m(u,) and s*(u,), respectively.

The outline of this chapter is as follows. The main theorem and corollary are
presented in Section 4.2. Section 4.3 contains the propositions necessary in establishing
the main result — (1) the expansion of the condition density of S’ |M], (2) the expansion

of the density of M, and (3) the expansions for the mean and variance of S,|M,,. Since
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the first expansion has already been derived in Chapter 2, in this chapter only the latter
two propositions and their corollaries are presented. Finally, Section 4.4 contains the

proofs of the main theorem and its corollary.

4.2 Main Theorem

Here we present the main theorem and its corollary in the same format as in Chapter

2 and 3.

Theorem 61 Let Yi,...,Y, be an iid sequence of random variables with distribution
function F, density function f, characteristic function ¢, mean u, and variance o?. Let

Uy be a threshold and @y, be the characteristic function of Y|Y < uy,.
Given the following two sets of assumptions

Set A: Assume f' is integrable, us exists, @' exists and is continuous in a neighborhood

of 0, and |y, (t)|" is integrable for some n > n* > 1.

Set B: Assume z, = supy{y : F(y) < 1} < oo. and, defining Fi(z) = F(z, — 1), we
suppose Fy satisfies Set B assumptions in Theorem 54 of Chapter 3. We also take the

normalizing constants of MJL to be d,, = z, and a,, such that 1 — Fi(a,) = % Define

(4.6)

Then,
| fse it (W 4) = fs5 () frpy ({1 = ral(=y)® — Hw}| = o(rn). (4.7)

Yw and Yy > el where el = —{—~logg(a,)}*/* for some v > 1.
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Corollary 62 Given the conditions of Theorem 61, then uniformly Yw and Vy > el
where el = —{—ylogg(a,)}'/® for somey > 1,a > 1

Foe g (w,y) = N (W)W (y){1 = raf(—y)* = wH{1 + ﬁ(w?’ — 3w)}
o o 1 B
A= [hep (=) (1= T (=0)*) + = la(an)}| = o(max{rn, g(an)})- (4.8)

4.3 Propositions

Here we present the main propositions and their corollaries. These propositions
are central to the derivation of the expansion of the joint density of the sum and the

maximum. They parallel the propositions in the previous two chapters.

4.3.1 Expansion of Conditional Density of the Sum given the
Maximum

We do not need to repeat the results because all the conditions needed for Propos-

tion 50 also apply in this chapter.

4.3.2 Expansion of Density of the Maximum

Like in the Fréchet case, this proposition is based on Smith (1982). As in Smith
(1982), the results for the Weibull case are derived using the transformation from the

Fréchet case.

Proposition 63 Let Yi,...,Y, be an iid sequence of random wvariables with common

distribution function F. Define M} = a,{max(Y1,...,Y,) —d,}. Also define Fy(z) =
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F(z,— %), d, = z, and a,, such that1—Fi(a,) = % Suppose Fy satisfies the conditions
of Proposition 56 of Chapter 3 and o > 1, then

l9(an)}| = o(g(an))  (4.9)

[ Faag W) = Wa L = (A (=) (1 = — P R

uniformly on y < 0.

PROOF: Let X = %+ Definition 60 states that F' € D(¥,) if and only if F} €

-
D(®,). We use M} = a,{max(V3,...,Y,) —d,} = a,{max(Y1,...,Y,) — x,} and recall

max(X1,...,Xn)

an

in the Fréchet case, M, = where the constant a,, is the same for both cases.

Note that
MT = a’”{InaX(Yv1 T Yﬂ) o 330} = a’ﬂ{max(mo - L: <oy Zo L) - 330}
n 3 9 Xl Xn
. — 0y 1
max(Xy,...,X,) = M*
Thus the two densities are related by
1 1
far (W) = EfM;i(_g)- (4.10)

Therefore for each y € (—o0,0), we have by (3.12) of Chapter 3

fur® = eyt D
1 a 1., 1
XL [hy(= )= 2 (= )7) = o Jglan)} + olg(an) |
= o) e 0= o () - 20 + e}
+o(g(an)) }- (4.11)
Note we need o > 1 since (4.11) becomes infinite otherwise.
Define el = —é where e, is defined in Chapter 3. Specifically, we have
ef, = —{~7logg(an)}"*. (4.12)

As n — oo, we have e — —oo.
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Note that the proof for Weibull case falls directly from the Fréchet case using the

transformation v to —1/y. With this transformation we can rewrite (4.10), Yy > el

) = -t {1 [y (cp - 22 + ]g(“")}“LilEj'

a—p a—p —
(4.13)
where
Bl = a(-y)* e TV 1+ (=y)*hp(-)g1(an) + Un}
MOy = hey(wglan) + T = 1) (419
El = a(—y)* e CVU{1 - ‘Z(i"/)) wWH1— h_p(—y)g(a,) + Ty}, (4.15)

El = a(-y)* e OV (—y)*(—h_p(—1))g1(an)

ot ) (—h_y(—y))g(an) + ) (1 — I)

a—p

+Sn)},  (4.16)

By = a(—y)* e (=29 6 Ch(—y))glan) + T) + Su+ T}, (4.17)

a—p
with
Rl ~ (=y)* (efio(—y) P g1(an))
+ (=) (=hop(=))g1(an) {0s(=h—p(=y))g1(an) + O116(=y) P g1(an) }
b () n)]
+ —u)° etho(—y) P g1(an)
—h_ (= )91 (an) {85 (~hp(~9))g1(an) + Brre(~y) Pg1(an)})
+ _04(7;‘1’)%15"_1)({1 Jig)} where 8 =p — ¢ <0 (4.18)
and
S1 ~ o(g(an)) (4.19)
and

T} ~ eb7(—y) " Pg(an) — hop(=y)g(an) [0s(~h—p(=1))g(an) + Ose(—y) Pg(an)] (4.20)
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and, finally,
Ul ~ 05(—y)*(h2 ,(—y)) g3 (an) (4.21)

when R,,, S,, T, and U, go to 0.

Note we use the relation hp(—i) = —h_,(—y) where recall p > 0.

Now the proof — like the Fréchet case — breaks down into three parts: Case 1: y — 0

on —1 <y <0; Case 2: y — —oo via el; Case 3: y — —occ on y < ef.

The key is that, using the transformation to the Fréchet case, these three cases are
equivalent to: Case A: v > oc on 1 < v < oo; Case B: v — 0 via ¢,; Case C: v — 0 on

v < e,, respectively.
Case 1 y — 0 is equivalent to proving in the Fréchet case
v’ E) = v’Ey = v’ E3 = v’ Ey = v*E, = o(g(ay)) (4.22)
uniformly on 1 < v < 0.

The leading terms associated with the polynomial of v in each formula in (4.22) is
vl Since a > 1, then lim, ,,, v~ ™ = 0. In other words, on 1 < v < oo, (4.22)

holds. With the transformation,
E| = B} = E} = E| = E] = 0(g(ax)) (4.23)
uniformly on —1 <y < 0.

Case 2 y — —oo via €] is equivalent to v — 0 via e, in the Fréchet case. Recall a,
is defined so that 1 — Fi(a,) = % Since the Weibull and the Fréchet case also share the
same function g, we again have g(a,) > 1/n and a,e, — 0o so the condition in Lemma
3 of Smith (1982) still holds and so does the formula for fy;. along with E;, E,, Es,
and F4, with R,, S,, T,, and U, from Chapter 3. With the transformation we have
(4.13) — (4.21) on y > el .
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Again proving the result for EI , E;', E;[, El , and E); on y > el is equivalent to proving
in the Fréchet case that
U2E1 = U2E2 = U2E3 = U2E4 = U2E4 = o(g(an)) (424)
uniformly as v — 0 via e, as n — o0; i.e., on v > e,.
Once more the leading term in (4.22) is v~ **! where —a + 1 < 0. By (3.45) of
Chapter 3, we have for any § > 0,

vg(a,) = 0 as n — oo.

Thus (4.24) holds Yv > e,. Equivalently
Ef = E} = E{ = E{ = E{ = o(g(an)) (4.25)
uniformly on Vy > ef.

Case 3 y — —oo on y < el. Here we need to show that each term in (4.9) is o(g(ay,
n

ony <el.

First look at the second term of (4.9),

() —

(- e = (- - — a=

l9(an)}- (4.26)

Obviously the highest order terms is a(—y)* te=("¥*. As y — —o0, (4.26) ~ e~ (-¥)°
which is an increasing function on this interval. In other words, setting y = ef, for

sufficiently large n,
(4.26) ~ e=(-eh)™ = e=(=7logg(an) — g"(an) = o(g(ay)) since A > 1. (4.27)
Now (4.9) holds for y = ef , thus fart (el) = o(g(as)). To complete the proof we need
only show that f,+ (y) is increasing on y < ef .

Now

(L
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Since y < 0 — or —2/y3 is positive — and fu: is a proper density, the first term of (4.28)
is non-negative. Finally, the interval y < el is equivalent to the interval v < e, in the
Fréchet case. From Chapter 3 equation (3.47), we see on this interval that f]I\/I;; > 0.

Hence the second term in (4.28) is non-negative and together we have

d
ay (y) >0 ony<el. (4.29)
So fy: (y) is monotone on y < el O

Corollary 64 Given the conditions of Proposition 63, we have for j = 0,1

(=)™ ot () — (=)™ () {1 — b p(—)(1 — ip1g<an>}|

— o(g(ax)}4.30)

uniformly on y < 0.

PRroOOF: The proof falls directly from the proof of Proposition 63. The only difference
in the derivation is that we replace EJ by (—y)‘)‘JrjE;r 1 = 1,2, 3,4 where now the leading
term is

a—y)2ti71e= (0% o o= (V% as y — —oo0.

Thus the case y — 0 follows immediately from proof of Proposition 63. The case
y — —oo via e} also follows immediately by noting that transforming this to the
Fréchet case, the highest order polynomial term in each v~ E; would be —2a+j — 1.
Since o > 1, we have the argument in (3.46) of Chapter 3 which leads to the result —
i.e., with the transformation E] = E = El = E} = o(g(ay)).

Since (4.30) holds when y = ef, to complete the proof we need only show that

(—y)"‘ﬂfM;L (y) is increasing on y < e] .

We have

d

d—y(—y)‘*“fM; ) = (a+ )=y fry ) + (—9)* 5 ).
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For y < el, we have (« —i—j)(—y)a“_lfM;(y) > 0 since @ > 1 and f,; is a proper
density. We also have (—y)*™ > 0 and by (4.29) fi,4 > 0 on this interval. Thus

(_y)a+ij£ (y), for 7 =0 or 1 is increasing on y < 6;&- H

4.3.3 Expansions of Conditional Mean and Variance

Since we assume that F' has a finite endpoint in the Weibull case, this proposition
is equivalent to the Gumbel case when the upper endpoint is finite. The only difference
is in the corollary where we substitute in for 1 — F' the appropriate Weibull expansion

as opposed to the Gumbel expansion.

Proposition 65 Suppose that Y1, ..., Y, are iid with common distribution F' which has

finite upper endpoint x,. Let u be a threshold. Then

i ) ~ (20— ) {1 — F(u)} (4.31)

and

0% = o*(u) ~ {(zo — p)* = o’ H1 = F(u)}. (4.32)

PROOF Recall from Chapter 2

W ) = %ﬁgu){wm(u) )

Note as n — oo, we have u — z,, m(u) — 0, and F(u) — 1. So

i () ~ {2, — p}{1 — Fu)}. (4.33)

From this we get
W — i (u) ~ 2u{zo — pH{1 — F(u)}. (4.34)
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Recall

1— F(u)

o? —o%(u) = p*(u) — p* + ( Fu) ) {(u+m()* +s*(u) + p* —0®}. (4.35)

Asn — oo (u — z,), we also have

s*(u) = Var(X — u|X > u) — 0. (4.36)

Thus the leading term in (4.35) involves p?(u) — p?, u?, p* —o?, and 1 — F(u). Hence
substituting in (4.33), (4.34), and (4.36) into (4.35), we have the result (4.32). O

Corollary 66 Suppose that Y1, ...,Y, are 1id with common distribution F' which has
finite upper endpoint x,. Let Fi(z) = F(z, — %) Define the normalizing constants
of M = max(Yy,...,Y,) as b, = z, and a, such that 1 — Fy(a,) = 1/n so that

Uy = % + x,. Assume conditions in Proposition 63, then uniformly on Yy > el

po= plun) = (20 — p) = +o(1) (4.37)
and
02 — 0% (uy) = {(w, — p)* = 0%} (_g) +o(1). (4.38)
REMARK Given the definition of M, we define
)
=Y i 4.39
Un = +2 (4.39)

Recall the threshold in Fréchet case was ultimately defined as u,, = a,v + b, = a,v.
Here we use the inverted formula for u,, in (4.39) so that we may use the same a,, in both
the thresholds. Recall we define F' € D(¥,) if and only if F; € D(®,) with normalizing
constant a, defined so that 1 — Fj(a,) = 1/n. This consistency allows us to use the

results in the propositions and corollaries of Chapter 3 here.
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PROOF: We need only show that on y > el that 1 — F(u,) = E9%(1 + o(1)) and

substitute this into (4.31) and (4.32) to get the corollary results.

We have
1= F(u,) = {1-F(z,— al_n)}l _1;(50(11")(1%)
- (1 R )
= {1 Fl(an)}1 _1}11%(;)5))
-1 { (ﬁ) s 0(1))} | (4.40)
The last line follows from (3.60) of Chapter 3, since y > ef = v > e,. O

4.4 Proof of Main Theorem and Its Corollary

PROOF OF THEOREM 61: We write the joint density of S} and M, as

fS;;,M;{ (w, y) = fM;; (y)fsﬂMl (w|y)

2

= fud (v) \/mfs”n (2) (4.41)

where
np + vVno?w — (n — 1) u(u,) — up
z= :
(n —1)o*(un)

(4.42)

Here we let u,, = i + z,. Again to enable the uniformity results we will allow w, y
and hence z to be dependent on n. Again we suppress this so as to make the notation

easier to read.

Note the transformation from S* to S, and the form of (4.42) comes from (2.7) of

Chapter 2.
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Now to establish (4.7) we break it up as follows

Fu (y)\/(Lfgn(Z) = foz (W) frg (WAL = ral(=9)* — Dw}

n—1)o?(uy,)

- El + EQ + E3 + E4 -+ E5 + E5b (443)
where

Ei = [i1(W)fs,(2) [\/m - 1] ; (4.44)

_ [ - (2) — /z ’f?)(un) 23_ P
B = S [ - N0 @ ms], ae
By = o) V() = V() {1 = ()" = )] (4.46)

Be = D) V@i s 5w - 3w} - fs ()]
{1 —m((—y) ~ Lw}, (4.47)
Es = fMl(y) %(33 —32) — A%\}g?’(w?’ — 3w)] ) (4.48)
B = fug 0N (@)g5 (= 3w)m((—)* = 1u] (4.49)

Now to prove that (4.7) we show that (4.44) — (4.49) are o(r,) uniformly Vw and
y > el. And to prove (4.44) — (4.49) are o(r,), it suffices to show that for any e > 0,
22:1 |E;| = € ry for all sufficiently large n. It is necessary to consider two cases where
the dependence on n for w,y, and z need to be explicitly expressed. These two cases

are: Case (a) |2, —wy| < for a 6 > 0 and Case(b) |z, — w,| > 6.

Proof for £; The following argument for E; holds irrespective of § and also for both

Case (a) and Case (b).
We start with By = f,+(y) fg, (2) [ #:_22(%) — 1] Specifically we begin with its

third term.

From the Gumbel proof, we have

|\/ —1| < U—Z—HO(%). (4.50)

02 (un) o?(uy)
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Now from (4.38)

on —oo < e} <y <0.

Note

Y C wEED® F(uy) [by (4.40)] which — 0.

Thus r2(—y)*{1 — ﬁ} — 0 on this interval so

2 2

g g
=14+ri(—y)*f{l - —— 1
=) - ) o)
on 0>y >el.
Thus
_not 1| < K (r2[(-y)* +1]), for some constant K > 0 (4.51)
(n=1o%(u,) = " ’ ' '

Thus
B = O(fo W) fs, (2)ral(=y)* + 1)).

Now by Proposition 50 in Chapter 12, fg (2) is uniformly bounded Vz. By Corollary
64, (—=y)*fy;: (y) is uniformly bounded on y > el and by Proposition 63 we have fra W)
is uniformly bounded Vy.

Thus
E, = 0(7‘2) =o(ry), Vz,Vy > e;fl.

n

or we may write for sufficiently large n (e > 0)

|Ey| < % Tn, Y, Yy > el . (4.52)
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Proof for F,; Like the proof for E;, the following argument holds for both Case (a)
and Case (b). This argument is the same as in the Fréchet case. The only difference is

that fM,t replaces fusx but this is also bounded, here by Proposition 63. So
Ey, =o(—=) = o(r,), Yy and Yw.
or we may write for sufficiently large n (e > 0)

|Ey| < % T, Y, Yy > €l (4.53)

Proof for F5 Here we will proceed simultaneously with both cases until Step 3 where
at that point we will need to divide the proof into the two cases.

Recall B3 = fy1(y) N'(2) = N'(w){1 — rn((—y)* — 1)w}]. Again establishing E3 =
o(ry,) involves a longer argument than needed for £ or Ey. We again break this argu-

ment into the following steps.

Step 1: Recall from the Gumbel case,

_nlp— p(un)) 1w 1(tn) — tn
Z—w= NCEREON) {\/ n—1) 02 () 1w + - Do) (4.54)

Substitute in (4.37) into the first and third term and (4.51) into the second term,

r—w = ("T"_\/% y* {1+ ()}+O(r2[(—y)a+1]w)—%{1—!—0(1)}

= a((=y)* = 1) + o (ra((=y)* = 1)) + O (r3l(=)* + 1]w) . (4.55)

Step 2: We again take a Taylor expansion for N'(z) about w —i.e. write z = w +1,

where t,, can be seen in (4.55). Recall
N'(z) = N'(w) — t,2*N'(z¥)

for z* between w and z.
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Substituting this into F3 we have

By = fui)(z—w)[wN' (w) = 2"N'(27)] + o(ra((—y)* — DwN"(w) f1,1 (y))
+O(r[(=y)* + 1w’ N'(w) f11 (y))
= F¢+ E; + E;.

Now wA'(w) and w?N'(w) are uniformly bounded Vw. From Proposition 63, f,+(y)
is uniformly bounded Vy. From Corollary 64, we also have (—y)* Fart (y) is uniformly
bounded on y > ef. Thus E; = Eg = o(r,) on y > ef or we may write for sufficiently
large n

|E7| < % Tny Yw, Yy > el (4.56)

Fg| < ¢ Tn, Yw, Yy > €l 4.57
6 n

Step 3: Now we focus on Eg. The important details in this formula concern z — w
since the other terms are bounded. Recall y,w, 2z, and z* are actually dependent on
n. So again fix the notation by writing y = y,, w = wy,2 = 25, and z* = 2 so the

dependence on n is explicit.

By substituting (4.55) into Eg we have

s = Fop(n) (al(=5n) = 1)+ 0(ra{(=9m) = 13) + O2[(~9)" + 1))
x{wn " (1a) = 25N (23)}
= Sy ) [((—m)® = DI{wnN"(wn) — 25N (20)}
0 (ufary () [((=9)* = D" (w,) = 2N (23)})
+0 (72 fagg (9 [(=9m)* + Uwon{wn N (wn) — 25N"(21)})
= Fo+ E1g+ Ens.

At this point, it is necessary to separate the argument into the two cases.
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Case (a) If |z, — w,| < ¢ then |z} — w,| < §. By uniform continuity of w*N’(w)

for K =0,1,2 given € > 0 we can find a § > 0 such that

€
2n — wn| < 6 = [2EN(2,) — wEN (w,)| < c
for £ =0,1,2 and any given constant C' > 0.

Now since ((—ya)*+1) fy;1 (yn) is bounded on y, > el by Proposition 63 and Corol-
lary 64, we have that each Eq, Fyy, and E1; is bounded by some
constant x |2°N"(25) — wEN (wy,)|
for k=0,1,2.
In other words, we can choose a § so that Vw, and Vy, > el

|zn — wn| < § = |Eg| < % rn for all sufficiently large n

which with (4.56) and (4.57) gives for sufficiently large n (e > 0)

|By| < g r (4.58)

for y, > el and Vw, and when |z, — w,| < §. [End Case (a)]

Case (b) Here we show if |z, — w,| > ¢ then the entire left-hand side of (4.43) is
o(ry).

Part 1 Suppose |z, — wy| > & and 7,(—y,)* < §°.

From (4.55) we deduce |w,r,| > some §; > 0 for all sufficiently large n. So |w,| > f—;.
We also have from (4.55),
o = 4 (0" = 1) 0 (=0 = 1)) + 0 (20(=3)" + L)
= wy +0(1) + o(1) + O(w,o(1))
= wy(1+0(1))
> Ea say,

for all sufficiently large n.
Thus we have [ with (4.55)]
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L. |fs (2n)| = o(rs) by Proposition 50.
2. |wn|*| fs: (wy)| = o(ry,) for k=0,1 by Petrov’s central limit theorem.

3. |((=yn)*+1) farz (yn)] is bounded on y, > €], by Proposition 63 and Corollary 64.

Hence the left-hand side of (4.43) is o(ry,) on y, > ef. and Vw, when |z, — w,| > §

and 7, (—yn)* < 6%

Part 2 Suppose |z, — wy,| > ¢ and r,(—y,)* > 62 Now if r,(—y,)* > 62 then
6 1
(—yn)® > - or (=yn) > 0%/ .

n

The first term of (4.43) is Fra (Yn) L)fgn(zn). Now, by Proposition 50 of

(n—1)o2(un

Chapter 2 we have fg (2,) = O(1) uniformly Vz,. By (4.51), we have 1/% =
1+ O(rZ[(—yn)® + 1]) uniformly on y, > e},. By Corollary 64, we have

(_yn)a_HfM;fL (yn) = 0(1) on yp > e;r;- (459)

1

This gives us on (—¥,) > 6%/, ®

Fatn) = O((=yn) **)
< O (8e(r, 7))
= O@r:*V/e) = o(ry). (4.60)

So the first term in (4.43) is o(r,,).

The second term in (4.43) is

Fsz (wn) Fugg (Yn){1 = 7 ((=n)® = Dwn}.

Using the central limit result from Petrov (1975) we have fs: (w,) and wy, fs: (wy,)
_1
are O(1),Vw,. We also have f:(yn) = o(r,) for (—y,) > §2/%r, * by (4.60). We need
only show that f;+(ys)(—¥s)* = o(1) on this interval. But we have seen by (4.59),
(=) fagt (9n) = O((=ya) ). (4.61)
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On (~ya) > 6%/°r, 7,
(4.61) = O((8/%rn =)~1) = O(r/) = o(1).

1

Altogether the second term in (4.43) is o(r,) when (—y,) > 6%/%r, *.
Thus Eg = o(r,) or entire (4.43) is o(ry,).
With (4.56) and (4.57), we have either for sufficiently large n (e > 0)
|E3| < % Tny Yw, Yy > el (4.62)

or the left-hand side of (4.43) is o(ry,).

Proof for E;, Like the proofs for F; and F, this argument holds irrespective of 4 and
hence is the same for both Case (a) and Case (b).

Recall we have Ey = f+(y) [N’(w){l + gt (W = 3w)} — fs; (w)] {1—r,((—y)*—
Lw}.

Again we have f+(y) bounded and also by Feller (1971), Chapter XVI, Section 2,
Theorem 1 the term inside |[...] is o(ﬁ) uniformly in w. To handle the term 7, ((—y)*—

1)w, we need show
(a) sup,((—y)*—1)fy; (y) is bounded on y > el which we again have by Corollary 64.

(b) sup,, |[w{N'(w) — fs:(w)}| — 0 as n — oo which follows from Petrov’s (1975)
central limit theorem under the same assumptions as Proposition 50 of Chapter

2.

(c.) w*N'(w) to be bounded so N’(w)%';% (w® — 3w)w — 0 uniformly in w which we

have by properties of the normal density.

Thus
Ey=o(r,) Yy < el and Vu.
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or we may write for sufficiently large n (e > 0)

|Ey| < % r, fory > el and Vuw. (4.63)

Proof for E5 Finally we look at the term

N'(2)rs (un)
60 (un)v/n

N'(w)k3

(2* = 32) — W

Es= fi(y) (w® — 3w)| .

Now the only difference between this Weibull case and the Fréchet case in Chapter 3
is that faz+ is now replaced by fM;[' Again fMJL is uniformly bounded Vy by Proposition
63. The real argument depends on the term inside [...] being o(r,) but this term is the

same as in the Fréchet case — involving the Normal argument. Thus, like the Fréchet

proof, for sufficiently large n (e > 0)

|Es5| < %rn or (4.43) is o(ry), Yy, > el V. (4.64)

Proof of E5, Like the proofs for F; and Fs this argument holds irrespective of 6 and
hence is the same for both Case (a) and Case (b).

Recall we have Es, = f), (y)N'(w) T (w?® = 3w)[rn((—y)* — Dw].

Now, we have this result immediately since,

(a) sup,((—y)*—1)fy; (y) is bounded on y > el which we again have by Corollary 64.

b.) w*N'(w) to be bounded so N (w) X3 (w? — 3w)w is uniformly bounded on w which
60

we have by properties of the normal density.

Thus

Esy = O(—=) = o(rp,) Yy <e! and V.

In_
Vn
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or we may write for sufficiently large n (e > 0)

|Esp| < % r, fory > el and Vw. (4.65)

In conclusion, using (4.52), (4.53), (4.62), (4.63), (4.64), and (4.65), we have shown

for sufficiently large n Z§:1 |E;| < e ry uniformly Vw and y > el. Hence our result. O

PROOF OF COROLLARY 62

Using the result of Theorem 61 — equation (4.7) — to show (4.8) we need to prove
that
K3 3
[ 0 s ) = A )1+ 5 0 = ), )

- S0+

x{1= [hop(-y)1 = 2

! (e} {1 = ral(=)" = 1)
— o(max{ra, g(an)})- (4.66)

o

for Vw and Vy > ef = —{—vlog g(a,)}*/*.

First we show (4.66) without the r,((—y)* — 1)w term.

Let
An = fs; (w),
A = N @)1+ 5= = ),
B, = fi1(y),
and
By = W {1 = [hop(—y) (1= 2 (=9)) + o= lglen)}

Then we can write the left-hand side of (4.66) without the r,((—y)* — 1)w term as

|Aan - A'InBH = ‘Aan - AnB;z + AnB;z - A'InB:m‘

VAN

[An| [Bn — By| + | By | [An — Ay (4.67)
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Now |A4,| is bounded Vw by Petrov’s result and |B,, — B;,| = o(g9(a,)) Vy by Propo-
sition 63. Thus the first term on the right-hand side of the inequality in (4.67) is
o(g9(a,)), Vy and Yw. For the second term in the inequality in (4.67), |B/,| is bounded
Vy by Proposition 63 and |A, — Al,| = o(r,) by Feller (1971), Chapter XVI, Section
2, Theorem 1 uniformly in w. Thus this second term is o(r,), Yy and Vw. Thus the

right-hand side of (4.67) is o(max{r,, g(an)}), Yy and Vw.
When we add in the r,((—y)* — 1)w term, we need to strength this to

(a.) |wA,| bounded — which we again have Yw by Petrov’s result.

(b.) |(=y)*+1| |B, — B.| = o(|¢'(b,)|) — which we have by Corollary 64, note now on

y > e

(c.) |(—=y)®+ 1| |B.| bounded — which we again have by Corollary 64, note now on
Yy > e;fl.

(d.) |w| |A, — Al | = o(r,) — which we again have Yw by Petrov’s result.

Hence, we have result (4.8) for y > el = —{—vlogg(a,)}** and V.
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Chapter 5

DATA ANALYSIS OF
CONTINENTAL US RAINFALL

5.1 Introduction

In Chapters 2, 3, and 4, we derived the higher order expansion term for the joint
density of the sum and maximum of a series under the three different domains of
attraction for the maximum. We also looked at a simulation project that illustrated
how the higher order expansion model provided a better fit than the independent model.
In Chapters 5, we present a data analysis on U.S. precipitation. The analysis of this
series is pertinent to our particular higher order expansion since current work indicates

that the extremes in this series have an impact on its mean.

Although weather at the local level and over a relatively short time span has always
been relevant to the public interest, climate change — the shift in fundamental aspects
of the environment on a continental or global stage with respect to longer time spans
such as a century or millennium — has not interested the public until the emergence
of greenhouse effect models. Essentially, the greenhouse models imply that man is
changing his climate. These greenhouse models predict that increasing amounts of
carbon dioxide and aerosols, massive deforestation, and other anthropogenic sources
are having a variety of consequences on the global climate: an increase in the mean

surface temperature, more precipitation in winter, more severe droughts, an increase in



nighttime temperatures, greater proportions of precipitation from heavy events, and a

decrease in day to day variability, see Kattenberg et al. (1996).

One of the leading groups to study climate change has been Thomas Karl and
associates at National Climatic Data Center (NCDC), a branch of the National Oceanic
and Atmospheric Association (NOAA). After investigating many indicators of climate
change including the rise in the minimum temperature and in precipitation, Karl et
al. (1996) maintain that the climate is becoming more extreme; that is, many of the
changes they have observed in these climate change indicators are influenced by their
extreme events. Their results, consistent with the greenhouse models, imply a change

in the joint distribution of the means and extremes of these climate indicators.

The purpose of this chapter is to develop and then implement more precise tests of
these assertions about the joint distribution of the means and extremes based on the
new extreme value theory results developed in the previous chapters. In particular, we
focus on the contiguous US rainfall series and the trends in the means and the extremes

of that series.

5.2 Review of Precipitation Studies

Others besides Karl’s group at NCDC have studied precipitation data — among them
the group at NASA’s Goddard Institute, see Karl and Knight (1998) for representative
list — although throughout the literature there lacks a standard technique on how to
do this. To date, the most comprehensive look at US precipitation is presented in Karl
and Knight (1998) which followed Karl, Knight, Easterling, and Quayle (1996) and
Karl, Knight, and Plummer(1995). Essentially their method is via summary statistics
— certain weighted spatial averages. More specifically, in Karl and Knight (1998) the
precipitation data was arithmetically averaged into 1° x 1° grid cells. These cells were
area weighted to calculate changes in precipitation for the nine regions they used. A

national average was calculated by area weighting the nine regions. Finally, they used a
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nonparametric Kendall 7 test (v = 0.05) to detect significant trends. They found that
since 1910 precipitation has increased in the continental US by about 10% but that one
statement, which is often quoted, is an oversimplification of their results. By focusing on
different quantiles of the precipitation data, they maintain the precipitation distribution
itself has changed, making this precipitation increase fairly complex. They found: this
increase is affected by both the frequency and intensity of precipitation; in all categories,
the probability of precipitation on any given day has increased; precipitation intensity
has increased only in the extremes; and in fact, the increase in total precipitation
derived from the extreme events is higher relative to the moderate and low events.
The last finding — that the increase in precipitation is primarily due to heavy/extreme
daily precipitation events — is most interesting. In fact, they found that 53% of the
rise in the total increase is due to a positive trend in the upper 10% of the probability
distribution despite the fact these upper tail events only constitute about 35-40% of
the total annual precipitation. This is seen predominantly in the summer and then
spring and in general holds for all regions across the US except for the far West and the
Southeast. In summary, since 1910 they are seeing a positive trend in total precipitation
and in the number and intensity of extreme events. Moreover the increase in the upper

percentiles is driving the increase in the total precipitation.

For the statistician, the tie between the trends of the means and extremes established
by Karl and Knight (1998) raises many interesting questions. The most important is,
what is the best way to model these seemingly dependent trends? Now Karl and Knight
(1998) derive their findings on statistically simple models run on summary statistics of
large data sets. What is unclear is exactly how some of the percentages are generated.
For example, they say that 53% of the rise in total increase is due to the increase in the
upper 10th percentile yet they do not provide a reliability measure for these percentages.
Certainly the use of simple models based on summary statistics obscures some of the
information in the system. Moreover while their results can be viewed by conditioning
on the extremes or means (or any particular quantile) and looking at the change in the

other, they do not vary both. They do not model the joint distribution.
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Another important question raised about their methodology is can additional in-
sights be gained by incorporating extreme value theory into the analysis? This argu-
ment is presented in Smith (1999). He looks at many of the issues in Karl and Knight
(1998). He uses the same data set, basing his analysis on daily precipitation and mini-
mum temperature. He begins by analyzing each station individually. For the extremes
in these series, he bases the analysis on the peaks over threshold (POT) model in ex-
treme value theory and estimates the trend of these extremes with maximum likelihood
estimates. To integrate over the individual stations, he first spatially smoothes the es-
timates. Using standard kriging theory, he then obtains region averages with standard
errors. His results are consistent with Karl and Knight (1998) but his methodology is
entirely different. Note his analysis focused just on the extremes in the rainfall series,

again, not on modeling the joint distribution of the means and extremes.

In this chapter, we want to investigate some of the ideas in Karl and Knight(1998)
and Smith (1999), focusing on the relationship between the means and the extremes in
the contiguous US rainfall series. To do so we use their joint distribution. In particular,
we want to study the trends in these series. As Smith(1999) utilized the extreme value
distributions to study the extremes in this rainfall series, we utilize the current results on
their joint distribution to study the mean and maximum in this series. In doing so, we
expect our analysis to represent an improvement due to the better methodology. There
are two important results on the joint distribution of the means and extremes: Chow
and Teugels’ (1978) asymptotic independence result and the higher order expansion for
the joint density developed in the previous chapters. Due to the empirical evidence of
dependence between the mean and the maximum, indicated in Karl and Knight (1998),
utilizing the higher order expansion for the joint density developed should prove an

even better model for the annual rainfall series.

Overall, the statistical questions that emerge are: In practice, does this new higher
order expansion for the joint density give better results than assuming independence?

Using the new expansion model, what can we say about the trends in the mean and
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extremes of contiguous US rainfall? In particular, are there trends in the annual total
rainfall, or the annual maximum rainfall? Are these trends increasing (decreasing) at

the same rate or at different rates?

5.3 The Data

The data set is calculated from the United States Historical Climatalogical Net-
work (USHCN), the same as used by Karl and Knight (1998) and Smith (1999).
The USHCN was consolidated from the US Cooperative Observing Network and is
maintained by the NCDC and the Carbon Dioxide Information and Analysis Cen-
ter (CDIAC) of Oak Ridge National Laboratory. It was constructed to help address
issues concerning climate change. It is a high quality, moderate size data set that
includes minimum and maximum temperatures along with precipitation. The data
set includes a total of 1221 stations within the contiguous US, although roughly be-
tween 180 and 190 stations are considered primary. In general, the records run from
1901 to 1997. The criteria for a station’s inclusion include length of record, percent-
age of missing data, number of station moves, and spatial coverage. These data have
gone through extensive quality control to correct for human error, time of observa-
tion bias, equipment adjustment, and urban warming. They do have a procedure to
estimate missing data. For precipitation, it involves generating gamma random vari-
ables. For more information concerning the USHNC, please see the NOAA website
(http://www.ncdc.noaa.gov/ol/climate/research /ushen /ushen.html).

Using the USHCN, a data set was constructed for 187 stations that contains annual
total precipitation (units in hundredths of an inch), annual maximum precipitation
(units in hundredths of an inch), number of wet days in each year, and number of
recorded days in each year. To each station we assign one of five regions which were
defined explicitly for this analysis, see Figure 5.1. Region 1 is the West Coast which con-

sists of 16 stations in Washington, Oregon, and California. Region 2 is the Mountains
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which consisting of 50 stations in Idaho, Montana, Nevada, Utah, Wyoming, Colorado,
Arizona, and New Mexico. Region 3 is the Plains which consists of 51 stations in
North Dakota, South Dakota, Minnesota, lowa, Nebraska, Kansas, Missouri, Illinois,
Wisconsin, Oklahoma, and Texas. Region 4 is the Northeast which consists of 32 sta-
tions in Maine, Vermont, New Hampshire, Massachusetts, Connecticut, Rhode Island,
New York, Pennsylvania, New Jersey, Ohio, Indiana, and Michigan. Finally, region 5 is
the South which consists of 38 stations in Arkansas, Louisiana, Mississippi, Alabama,
Florida, Georgia, South Carolina, North Carolina, Tennessee, Kentucky, Virginia, West
Virginia, Maryland, and Delaware. Note these regions do not correspond to the nine
regions used in Karl and Knight (1998) nor were they dictated by any other group’s
work. The regions were chosen so as to contain enough stations to get meaningful com-
parisons between the groups. We also wanted the regions to have some geographical

identity and hopefully within the region some similarity in the climate.

o Regionl
° West Coast

Region 2
e Mountains
°

°
Region 4
° Nonhea&t

Figure 5.1: Map of the contiguous United States of America showing the five regions
defined for this analysis and the 187 stations in the data set.
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5.4 Models

Since one of the objectives of this analysis is to characterize the impact the expan-
sion of the joint density has over the simple independent joint density model, we need
to run both cases when fitting the annual total and annual maximum rainfall series: (1)
The joint density of sum and the maximum assuming independence between them and
(2) the expansion of the joint density, derived from the conditional density of the sum

given the maximum, presented in the previous chapters.

5.4.1 Notation

Recall some of the notation introduced in Chapter 2. Let Xi,..., X, be an #d
sequence of random variables with common distribution function F', density f, mean

i, and variance o2.

. . . * Sn—
Define S, = "1, X; with the normalized version as S} = \/VT:L?“'

Let M,, = max{Xi, ..., X,} with the normalized version being M} = % where
Y, > 0,7, real. Note n, and v, are the appropriate normalizing constants needed for
the standard extreme value limit. In Chapter 2, 3, and 4, we used a,, and b,, for these
constants. We switch notation here for better consistency to the final applied form.

Recall the definition u,, = ¥, v + 1, for some fixed v.

The conditional random variable X* which is defined as X given X < wu, has
distribution function F,, (z) = F(z)/F(uy,), density f,. (z) = f(z)/F(u,), mean p(u,),

and variance o2 (uy).

The random variable Y is defined as the exceedance over the threshold wu,; that
is, Y = (X — u,)4+. The conditional distribution function of ¥ given X > w, is

F..(y) = %&ff“”), with conditional mean m(u,) and conditional variance s?(u,).
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Note this means that E(X|X > u,) = u, + m(u,) and Var(X|X > u,) = Var(Y|X >

u,) = 5%(uy). Also recall that A/ denotes the normal density.

5.4.2 Independent Case

Recall the result of Chow and Teugels (1978) on the asymptotic joint distribution of
S and M;: In our notation, we have (S, M) converge in distribution to a limit (S, M)
where neither S nor M is degenerate if and only if F' belongs in the domain of attraction
of a stable law and an extreme value distribution. The limits, S and M, are independent
unless F' belongs in the domain of attraction of a stable law with index less than 2. It
follows that if F' has a finite variance and S and M are non-degenerate then S has a
normal distribution and if F'(z) < 1,Vz then M has a Gumbel distribution or a Fréchet
distribution — ®, — with @ > 2. One of the extensions of Anderson and Turkman (1991)
is that the above results hold when F' belongs in the domain of attraction of a Weibull
distribution. Thus current results show that the asymptotic joint distribution of S
and M when F' has a finite variance is just the product of their marginal asymptotic

distributions.

Thus arguably a model for the joint density of S; and M is

fsz vz (w,v) = fss(w) % farz (v);
that is, we assume the asymptotic independence result for the joint density.

Now standard central limit theory (see Feller, 1971, Chapter XVI, Section 2, p. 533)
shows that S; has an asymptotically normal density. Recall pug, = np and variance
og = no’. Note these forms for pg, and og fall from the independent assumption of
the underlying random variables. We will comment on the credibility of this assumption
for precipitation data in Section 5.5.3. Thus again assuming the asymptotic result, we
use

1 w?
fs:(w) = e oo<w< 0. (5.1)

V2T
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Standard extreme value theory (Thm 1.4.2, Leadbetter et al., 1983, p. 11) provides
the asymptotic density of M. Depending on which domain of attraction M belongs
to, we have M has either an asymptotic Gumbel, Fréchet, or Weibull density. Since
we do not know a priori to which domain of attraction M, belongs, it is convenient to
combine the three classical extreme value densities into the Generalized Extreme Value

(GEV) density. So again if we use the asymptotic result for the density of M, we use:
Jaz(v) = exp{—(1 - kv)l/k} x {(1— kv)l/k_l}, (5.2)
for —oo < v < oo and (1 — kv) > 0.
The case when k£ = 0 should be interpreted as the limiting Gumbel density

lim fy:(v) =e™¢ " x e (5.3)
k=0~ "

where —oco < v < 00.

Thus assuming the asymptotic results (independence, the normal density, and the

GEV density), a model for a joint density of S} and M is (5.1)x(5.2),

w,v) = 16_1”72><ex— _Ul/lc>< _,Ul/lc—l
s ,naz (w, v) Jon p{—(1 —kv) "} x {(1 = kv) 1 (5.4)

or, when assuming that M is in the domain of attraction of the Gumbel density, we

use (5.1)x (5.3),

w2

1 —v
s (w,v) = ——e” 2 xe ¢ xe . 5.5
st 10) =~ 6:5)

Finally in practice, to implement this independent case we fit the following approx-

imation of the joint density to the annual maximum (M,) and the annual total (S,):

1 —(a—nw)? k(Y — 1) \1/k k(Y — 1) 1751
fonnn, (2,Yy) = ————=€ 20 X exp{—(1 — =)k} x {(1 - 224V
(5.6)
or when assuming that M, is in the domain of the Gumbel density
1 o) _y—nn —in
6_% X e € O X e_%. (5.7)

fSn,Mn(%?J) = \/ﬁ
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Now we can estimate the parameters 7n,, ¥,, k, o, and p by fitting these approx-
imations. Note we will use the same parametric form for both the independent and

dependent case.

5.4.3 Expansion Case

In the previous chapters, we have derived a higher order expansion term for the joint
density of the (annual) sum and the (annual) maximum under the 3 cases possible for the
domain of attraction of the maximum: the Gumbel (A), Fréchet (®,), and Weibull (¥,).
Now we wish to combine these into a higher order term for the Generalized Extreme
Value (GEV) form and in doing so establish an alternative model to the asymptotic

independence model for the joint density of M, and S, given in equation (5.6).
We will assume the same general set-up and notation as used in the previous sections.

In the previous chapters we focused on exhibiting explicitly the rate of convergence
in the three different forms of the expansion. The actual expansion we now seek for
the combined GEV form is slightly different since our purpose is now primarily for data
analysis, specifically using the maximum likelihood method. What we want to focus
on now is the additional information we can introduce into the sum and variance of
the (annual) total by conditioning on the (annual) maximum. The conditional mean
is extremely important since it contains information on the higher order term in the

expansion.

Recall the derivation of the standardized form of the higher order expansion term

in the previous chapters proceeded by

fsz: (0, v) = fsz iz (w[V) farz (v)

and consisted of three major steps: establishing the Edgeworth expansion of fg: s,
establishing the expansion for fj:, and deriving the approximations of the conditional

mean and variance of S¥|M,*. The key to the last step is in being able to write the
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conditional mean and variance as a function of the mean and variance of an exceedance

above the threshold.

Here we do not wish to work with the standardized form. Since we are now focusing
on the actual form to be used in practice, it is important to write it in the following

form

fsnnt, (2,9) = fs,an, (1Y) s, (y) (5.8)

Although here we proceed using equation (5.8), we make two important changes in
this derivation so as to insure that the approximation to the joint density is positive at
all data values. One is that we now look at the combined GEV form for the density
of M,,. The second is that we do not establish expansions for the densities of M,, and
Sn|M,, but rather focus on finding the approximations to the conditional mean and

variance of S, |M,. Our steps are thus:

Step A Establish using the GEV density for fy,,

Step B Establish using the (conditional) normal approximation for fg,|a,

Step C Compute the approximations to the conditional mean and variance of S, |M,,.

Step D Plug the approximations to the conditional mean and variance found in step
C into step B. Multiply steps A and B together to get an expansion to the joint
density of S,, and M,,.

Note: Usually, we condition on M, = u,; that is, in (5.8) we set y = u,, where,

again, t, = Y0 + Ny.

Step A: Here we assume F' € D(GEV); that is, there exist constants v, > 0,7, real
such that
lim F™(u,) = lim F™(1hv + 1) = exp{—(1 — kv)/*}. (5.9)
n—oo

n—oo
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Thus if we assume the asymptotic result, we may approximate

k(un_nn) %
T )k}

or, in terms of the density, we can use the approximation

Fu, (un) ~ exp{—(l -

k(un — ) 1/kY . k(un — 1) 1/k—1
Hn = )y s g0 - =)y

Up — Tin i k(un B 77n)
g o)

fat, (un) = exp{—(1 -

> 0.

where — oo <

We justify using just the asymptotic GEV density without any expansion terms by
looking at the results of the previous chapters: In each of case (A, ®,, ¥, ), the higher
order terms associated with the expansion of fys (u,) did not play a role in the final
higher order term of the joint density in the main theorems. Also in practice, people
model annual maxima using the GEV density despite the existence of higher order

approximations which theoretically improve on it.

Step B: Here we assume F’ lies in the domain of attraction of a stable law with index
equal to 2 or, in other words, that the variance associated with F'is finite. This gives us
that S,|M, has an asymptotic normal distribution. Thus if we assume the asymptotic
result at the density level, we may approximate fs, s, by

o - 1 _(z = B(Sa| My = un))?
s = ) = e T =) { 2V ar(SuMy = ) }

where u, = ¥,v + n,, and E(S,|M,) and Var(S,|M,) are determined in Step C.

Again we justify using just the asymptotic normal density without any expansion
terms by looking at the results of the previous chapters. In each of the previous cases
for fs,a, we use the Edgeworth expansion of N’. Now the Edgeworth correction is of
order O(ﬁ) We have seen that this is in general smaller than the other errors being
considered and ultimately we drop these terms in the Edgeworth expansion in the final

calculations in the previous chapters. Note when transforming from S,|M, to gn we
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need to introduce the Jacobian. Now, the main contribution to the Jacobian is the ratio
of 0% to 0%(u,). With Step C we are in fact incorporating the information from that

ratio already. Thus, we need not consider the Jacobian as a separate term.

Step C: Here we wish to establish E(S,|M,) and Var(S,|M,) for the combined

GEV case. Recall the formulae for these expressions from the previous chapters:

E(Sp My, =un) = (n—1)p(u,) + uy
= (- 1)[@@ (1= F(un))(m(un) + un)}] + tn

(5.10)

where E(X|X > u,) = u,+m(u,) and F(u,,) is the distribution function of X evaluated

at u,.

Var(Sy|M, = u,) = (n—1)0*(uy,)

= (n— 1){% [E(X?) — E(X?|X > u,)(1 — F(up))]

_ [%{E(X) — B(X|X > u,)(1 - F(Un))}r}

= = D{5T - s om0+ 5(0))

+

W (U Fu)) i+ mu)
Ty ™ P (un) ’ (5-1)

where s%(u,) = Var(X|X > u,) = Var(Y|X > u,).

In the above formulae we need to solve for m(uy,), s*(u,), and F(u,) in the combined
GEV form. Again, the key information involves the mean and variance of exceedances

above a threshold.

In this step we cannot cut off the higher order terms in the individual cases and im-
mediately get the results. This is because the terms which are important — particularly
in m(u,) — depend on the underlying tail properties of F' and hence in which particular

domain of attraction F' belongs.
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To see the general case for m(u,) and o%(u,), we need to exploit the relationship
between the GEV distribution and the Generalized Pareto distribution so as to be able
to write the mean and variance of the exceedances in terms of the equivalent GEV

parameters.

Recall the GP distribution:

oy 1= Q= ky/)YE ik #£0,9>0
G(y,k,v)—{l_exp(_y/y) if k=0,7>0

where the range of y is 0 < y < oco(k < 0) or 0 <y < v/k (k> 0) and which has mean

E(Y) = 1 where k£ > —1 and variance Var(Y) = m where k > —1.

Since we are assuming that F' € D(GEV), we have the relationship in equation

(5.9). We may define 7, such that 1 — F(n,) = =. As a consequence

lim
n—oo 1- F(T}n)

= (1 —kv)V/¥. (5.12)

So given the above GEV assumptions, we show the limiting distribution of the

exceedances is the GP distribution with parameters £ and 7y(u,) where the function

’Y(un) = %(1 - k’U):

We have lim, ,o, P(Y > y|X > uy,) is

1= F((un)y+un) 1= F(y(un)y + Ynv + 1) 1 — F(1n)
T I Flun) ok 1= Fm) 1= F (o + 1)
= lim 1— F(wn(v + (1 B k)y) + nn) 1— F(nn)
n—o0 1- F(T}n) 1- F(%U + 77n) -
Using (5.12),
lim 1 - F(fy(un)y + U'n) _ (1 — k(?) + (1 B kv)y))l/k
n—00 1— F(un) o (1 _ ]ﬂ))l/k
= (1—ky)"*

= 1-G(y; k,7), where v =y(us) = n(1 — kv)).
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Hence, we have shown that the limiting distribution of the exceedances is the GP
distribution with parameters k£ and v(u,). Thus the derivation of the approximate
values of m(u,) and s?(u,), the mean and variance of the exceedances, follows directly

from the limiting GP distribution. We use the following approximations:

,-Y(un) Yn(1=k(un—"1n)/¥n) lf k > —1
= T { S e
and
2 (Y (1=k(un—nn)/¥n))* - _1
52 (uy) = g 2(Un) _ ; (+k)2(112k) ?f k> 2 (5.14)
A+ me(l+28) | w2 if k=1

Finally, using the limiting GEV distribution from (5.9) we solve for an approximation

of the combined form of F'(u,,):

—(1 = k)Y itk £0
F n) = {exp( (1 kv)—l— )} 1 5.15
(un) { {exp(—exp(—v))}¥/™  if k =0, Gumbel case. (5.15)

In conclusion, if we substitute the approximations (5.13), (5.14), and (5.15) into
formulae (5.10) and (5.11), then we have the approximations of the conditional mean

and variance of S,|M,.
Step D:

So in practice, to implement this expansion case we fit the following approximation

of the joint density to the annual maximum (A/,) and the annual total (S,):
1 (z — E(Sp| M, = uy,))?

zuy) A exp(—
ESYACATY V2rVar (S, M, = u,) p{ 2y/Var(S,| My = u,)

exp{—(1 — Hm = I)yiy s gq - M Zdyugiesy L )

) X

Un Un Y
or when assuming that M, is in the domain of the Gumbel density
(.T - E(Sn|Mn == U,n))2 _ _%ﬂ _Un—Nn ]_
T, Uy) = exp(— X e ° Xe  vn —, 5.17
S ) ( 2¢/Var(S,| M, = uy,) ) Un (5:17)

where E(S,|M, = u,) and Var(S,|M, = u,) are given in (5.10) and (5.11), respec-
tively. Now we can again estimate the parameters n,, ¥,, k, o, and p by fitting these

expansions.
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5.5 Statistical Procedure

5.5.1 Level of Analysis

Recall that the data are collected at 187 stations throughout the US. At each
station, there is a single rain gauge. This presents a problem inherent to all precip-
itation analysis. Specifically, since rain gauges are not at every spot, it is difficult
to objectively estimate how much rain has fallen over a large area. This makes in-
ference about precipitation over a large area challenging. (Del Genio et al., 1999,

http://www.giss.nasa.gov/research/intro/delgenio.02/index.html)

We begin the analysis by fitting both forms of the joint density of S, and M,
on an individual station basis, in the same manner Smith (1999) begins his analysis
on extremes. This is a marked distinction from Karl and Knight (1998) who began
by averaging over a large number of stations. The obvious drawback is the increased
variability at the individual station level. This may impact the ability to make inferences

about the precipitation trends at the individual station level.

To combine the results from the individual stations, we use the two different meth-
ods: (1) relevant tests of hypotheses — likelihood ratio tests to compare models and
t-tests to test for significance in individual trend parameters and (2) a spatial smooth-
ing method provided by Smith (2000). This spatial method will lead to both a national
average for the estimates of the trends and a map of a smoothed version of the relevant

trend estimates.

5.5.2 Method

Based on the two competing forms of the joint density of S, and M, found in
(5.6) and (5.16), we can easily write down the likelihood functions and hence calculate
the maximum likelihood estimates. This is a standard method and is justified for the

extreme value parameters when the shape parameter in the extreme value density is less
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than 0.50; i.e., k < % In that case, the maximum likelihood estimators exist and have
their classical asymptotic properties, see Smith (1985). Under very general conditions,
the maximum likelihood estimates for the normal parameters exist and also have the

standard asymptotic properties, see Cox and Hinkley (1974), p. 284.

The likelihood functions are maximized — actually the negative log likelihood func-
tions are minimized — using a non-linear optimization routine, specifically a quasi-
Newton algorithm based on an algorithm number 21 of Nash (1979), p. 159-161. Quasi-
Newton algorithms are an effective class for optimizations. When they converge, they
do so relatively rapidly. Also, a beneficial by-product of using such an algorithm is an
estimate of the Hessian matrix from which we may estimate the standard errors of the
parameter estimates. For more details, see Nash (1979). The quasi-Newton algorithm
in the form implemented here employs an approximation to the gradient of the function

to be optimized. Here we use a first order approximation to the gradient:

f'(zo) = f(@o ) = flwo) where we use h = 107°.

h

The program runs this particular analysis efficiently when given reasonable starting
values. We use method of moment estimators for the starting values except for the trend
parameters which are initialized to 0. From the program we can obtain the maximum
likelihood estimates with the estimated standard errors and, of course, the value of the

log likelihood function evaluated at it maximum.

5.5.3 Form of the Log Likelihood Functions

In practice, we do not maximize the likelihood functions but rather minimize the
negative log likelihood function. The following formulae of the negative log likelihoods
come directly from equations (5.6) and (5.16) for the independent and expansion case

with one adaptation.
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Adaptation An adaptation is necessary due to the missing data within each year.
Not every year has a complete daily record; i.e.,the number of days in a year — actually
the number of recorded days in a year — is not necessarily 365. This presents a problem
in the parameters to be estimated. Recall four of the parameters depend on n: ug,, agn,
M, and 1,. To compensate, we need to adjust for the different values of n throughout

a station’s record.

Denote

N = number of years on record for the station and

n; = number of days recorded for year 7 at the station.

For the parameters associated with S,,, we simply use n; in the formulae; i.e., de-
fine S, as the total in year 7 and let the mean total rainfall in year i (based on n;

observations) be
Hs,, = Tifk
and the variance of the total rainfall in year ¢ be

2 _ . 2
05, = 10"

Note in our formulae for ogni and pg, we assume that the daily precipitation series
is independent. Although we do not try to justify this assumption, we claim that
our objectives are not unduly compromised by this. Recall our objectives are primarily
comparisons: differences between the fit in the independent case and the expansion cases
and between the estimates of the trend parameters for the different models. Since we
assume independence between daily rainfall for each model we run, we expect that any
effect this assumption may have will cancel out in the comparison; that is, essentially
each model will be handicapped in the same way so the comparisons should still be
valid. Also for our particular application of precipitation data, current findings indicate
that although rainfall events are dependent from day to day, rainfall amounts are not

necessarily. For more details, see Stern and Coe (1984) and Smith (1994).
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For the parameters associated with M,,, in particular 7, and 1,, the adaptation in-
volves the distribution itself. The basic formulation of the distribution of the maximum

for #2d random variables begins with:

P(M, <y)=P(X:<y,...,X, <y) =[F(y)]"

Now standard extreme value theory (Thm 1.4.2, Leadbetter et al. (1983)) tells us
F € D(GEV); that is, M, 5 GEYV , if we can find series of norming constants, 7, and
U, such that
lim F" (v +n,) = H(v)

n—oQ

where H is the GEV distribution.

In practice, when we approximate P(M,, < y) by its asymptotic GEV distribution,

we use y = ¥,V + 1, and set

F)I" = H(* ). (518)

Now remember that the problem with the data set is that the annual record for
each year is not consistently based on n = 365 days; that is, n in equation (5.18) is
not fixed at 365 but varies throughout the years due to missing data. If we define M,
as the maximum in year i (based on n; days), the parameters associated with M, are
My, and 1, — they vary from year to year. In our application we want to estimate
the parameters 7, and 1, when n = 365; that is, we want to estimate the parameters
associated with the annual maximum. So what we need is to adapt equation (5.18) for

n;, the actual number of days recorded in year i.

Define the distribution of the maximum rainfall for year i (based on n; days) as

P, (y) = P(My, <y) = [F(y)]™. (5.19)

Through our set-up, we can relate Fy, (y) to Fis,_s; (¥)
Fu,, (y) = [F()]™ = {[F(y)]"}" where n = 365. (5.20)
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Now we substitute (5.18) into (5.20) to find the asymptotic result we use in this

application
Far,,, (y) ={[F )"} » = {H( " )
In the density form, we have
n; Y= Mnyymig 1Y — N 1
, =—x{H »n X H X — where n = 365. 5.21
farn, (y) = — x {H( ™ )} ( ™ ) - (5.21)

So in calculating the negative log likelihood functions from equations (5.6) and
(5.16) for the independent and expansion case, we replace the form of f; by equation
(5.21). This will allow us consistently to be estimating the parameters for the annual
maximum while compensating for the fact the annual record within each station is not
consistently based on 365 days. In other words, the adaptation in equation (5.21) allows
us to write the density of M,,,, the maximum in year ¢ based on n; days, as a function
of the parameters for the maximum based on n = 365 days. We now drop the subscript
n in the parameters 7, and v, since with this adaptation we can take n — associated
with the parameters — to be 365 consistently. Note we will still need to keep the density

of the annual maximum a function of n; but NOT the parameters.

Set-up Now we may write down the negative log likelihood functions that are used

in this analysis. First we define
Is,»r = likelihood function for the joint density of S,, and M,,,,

Ipr = likelihood function for the density of M,,,,
ls = likelihood function for the density of S, and

Is;m = likelihood function for the conditional density of S, given M,,.
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Independent case For the independent case, the negative log likelihood function of

the joint density of S,, and M, is:

lS,M(MSniao-g'nianadjak;xay) = lSnz (,Usn ,Ug*n'l') + an (777,([) ky)

-3 st >+2NI G0 o ‘”)Wk
%8365’ T 22 365 %
IS (yi —n)
+ (1—E)Zlog(1— 7 )+ Nlog
=1

(5.22)

where we use s, = niu and g = n;0® and the constraints are o > 0, ¢ > 0 and

(1 oy 5 g,

In the Gumbel case, the above formula simplifies to

/o [ — Us,,)
ZS,M(:U’SniaO-g'ni:n,wa k;xﬂy) = NlOg +Zlog OS +Z 20_ —

Sn;

yz_ }+Zyz_ + Nlog

(5.23)

365 365

where the constraints are ¢ > 0, ¥ > 0.

Note in the independence case, the estimates are the same as if M, and S,, are fit

separately.

Expansion case For the expansion case, the negative log likelihood function of the

joint density of S, and M, is:

lS,M(,uSni’O-g’nianad)vk;xay) = lSnl|Mnl(uSnzvggnlan7¢:kaxay)+anl(77:¢7kay)

N N 2
Ty — US,. | My,
= Nlog\/27r+§ 10g1/0§ni|Mni+§:( 2SlIMl)
i=1 i=1

2(75“1 M,
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~ 01365 < 365 ¥
+ (1—1)2N:10 - Rwi=my Ny 4
- g( " ) + Nlogy (5.24)
=1

where
S | M, = E(Sp;| Mn, = uy)
and is given in equation (5.10),

agn”Mni = Var(Sp,| My, = up)

and is given in equation (5.11). The constraints on the parameters are the same as in

the independent case.

For the Gumbel case, the above formula simplifies to

T T — s, |m,,)°
lS,M(/LSni:O-gnianawak;xay) = NlOg +Zlog US | M, +Z -

2057% M,

yz_ }+Zyz_ + N log

(5.25)

365 365

with the same constraints as in the independent case.

Note to make the program run more effectively, we rescaled the trend parameters g

and

and v in the likelihood functions to 1(%0

1000
5.5.4 Maximum Likelihood in Action

There are many advantages to the maximum likelihood method both in modeling
and in model selection. One advantage in modeling is the flexibility of adding trends,
actually any covariate, to the parameters. A simple modification of the likelihood

function is all that is necessary — here, changing any parameter of interest into a function
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of time. In the above log likelihood functions, we allow p and 7 to be fit with a time

component.

Another advantage of the maximum likelihood method is the ability to test signif-
icance between models using a likelihood ratio test. Thus for any two models we wish
to compare, the ratio of their maximum likelihood functions measures the weight of
evidence for model 1 against model 2 provided by the data. Let L(X;#) be defined as
the likelihood function for X = (Xy,...,X,) and 6 is the parameter space. Under a

suitable test of significance we let A(z) be the likelihood ratio test; i.e.,

SUPmodell {L(X, 9) }
SupmodeZQ{L(Xa 0) }

AMX) =
Under suitable regularity conditions (see Cox and Hinkley, 1974, p 313) for large n

—2log A(X) has an approximate x? distribution.

When testing nested models with the same underlying distribution where model
1 has an r dimensional parameter space and model 2 has a ¢ (r > ¢) dimensional
parameter space, the degrees of freedom for the x? test are r — ¢, see (Cox and Hinkley,
1974, p. 323). When choosing between models — i.e. let f; and f; be two p.d.fs
that are candidates for the p.d.f of iid random variables X1, ..., X, — if the likelihood
ratio is suitable, the degrees of freedom are 1 (see Cox and Hinkley, 1974, Example
9.22). Note the regularity conditions necessary for this asymptotic distribution of log
A(X) are usually those sufficient for asymptotic normality and asymptotic consistency
of the maximum likelihood estimates. So when the standard asymptotic properties for
the normal and extreme value parameters hold, it follows that the likelihood ratio test
statistic is asympototically x2. See Cox and Hinkley, 1974, Section 9.3, p. 311 for
further details. Thus using the asymptotic theory we can perform tests of significance
between independent models and expansion models. We can also test within both the
independent case and the expansion case nested models. Specifically, we can test for

adding the trend parameters to the models using this method.
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Further, the asymptotic normality of the maximum likelihood estimators (again see
Cox and Hinkley, 1974, p. 294, and Smith, 1985) allow us to evaluate the parame-
ter estimates with their estimated standard errors. Asymptotic normality allows us to
calculate confidence intervals for the parameters and for the difference between param-
eters. This will allow us to perform t-tests for testing if individual trend estimates are
significantly different from zero. We will also be able to test for a significant difference

between those parameters.

5.6 Data Analysis
5.6.1 Descriptive Statistics

Figures (5.2) and (5.3) show box-plots for the annual maximum and annual total
rainfall, respectively, for the five regions. Overall, region 2 — the Mountain states — has
both the lowest annual maximum and total rainfall. Region 5 — the South — is at the
other end: the highest annual maximum and total rainfall. Regions 3 and 4 — the Plains
and the Northeast — are very similar. The Northeast has slightly higher annual total
rainfall but the Plains have slightly higher annual maximum rainfall. In other words,
the Plains are more likely to see a very heavy rainfall but have less overall rainfall than
the Northeast. Finally, the West coast is harder to categorize with the stations covering

the range from region 2 — the Mountains — up through region 4 — the Northeast.

As to any trend in the annual maximum precipitation series throughout the past
century, we first look at the average annual maximum rainfall across the stations for
each year from 1901 to 1997, Figure 5.4. We see that the average annual maximum
ranges from 2.0 to 2.8 inches. Even after averaging over all the stations, there is still
a great amount of variability from year to year. Overall there is a slight decrease from
1901 to 1930, then the process evens out until 1950 where there is a upwards shift. A
least squares fit shows a slope of 0.14868 (s.e. 0.04942) with associated p-value 0.0034
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Figure 5.2: Box-plot for the annual maximum rainfall in the five regions. The units are
in hundredths of an inch.
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Figure 5.3: Box-plot for the annual total rainfall in the five regions. The units are in
hundredths of an inch.
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which implies roughly a 6.5% increase in the past century. Note that this standard

error calculation assumes independence from year to year.

Average annual max precipitation
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Figure 5.4: The average annual maximum rainfall across the US each year from 1901
to 1997. The units are in hundredth of an inch. The line represents a least square fit
to the data.

If we look at the average annual precipitation across these 187 stations from 1901
to 1997, see Figure 5.5, we do not see any obvious trend. For the average annual total
series, the data are relatively stable, between 24 and 37 inches. There is more dispersion
after 1950 and this may represent an increase after 1980. Overall the graph suggests a
possible change in the annual total precipitation from the first half of the century to the
latter half. Here a least squares fit shows a slope of 2.566 (s.e. 0.924) with associated
p-value .0066. This implies roughly an 8.5% increase in the past century. Again, this
standard error calculation assumes year to year independence. To compare it with the
average annual maximum series, each are relatively stable from the 1930s to the 1960s
and then show possible increases after that. Both have significant least squares slope

parameter. It is notable that the annual maximum has a smaller p-value associated
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with its least squares trend than the annual total trend. Given the increased variability

in the maximum series this is an interesting result.

Average annual total precipitation

average total
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year
Average over stations

Figure 5.5: The average annual total rainfall across the US each year from 1901 to 1997.
The units are in hundredth of an inch. The line represents a least square fit to the data.

Now since we analyze the data on a station level, we look at the above graphs for
a few individual stations. In particular we select a station from each region. At the

station level, we expect more variability in the graphs.

Figure 5.6 show the plots of the annual total rainfall against the annual maximum
rainfall for each of the five stations: Berkeley, CA (region 1); Caldwell, ID (region 2);
Le Mars, IA (region 3); Eastport, ME (region 4); and Savannah, GE (region 5). The
Pearson correlation coefficient associated with each graphs (with associated p-values in
parenthesis) are 0.4724(7.2 x 107%),0.3839(6.7 x 107°),0.3742(8.0 x 107°),0.4757(4.2 x
1077), and 0.4624(1.4 x 10°9), respectively. We see on a station level that the annual
maximum and annual total are positively correlated. This bolsters the argument for

using the expansion model which has the higher order term that models this dependent

structure.
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Figure 5.7 give the graphs of the annual maximum precipitation series for the five
stations in the previous paragraph. Note at present we look only at the scatterplots
in Figure 5.7, not the lines that are fit. In Section 5.6.4, we discuss the trends that
are fit. Not only is there a greater variation at the station level than the national
average (Figure 5.4) but also there is no overall pattern among these stations. The
Berkeley annual maximum rainfall series has a possible increase in both the average
and in dispersion throughout the century. The Caldwell series shows a slight decrease
in the average with less dispersion in the latter half of the century. Le Mars is stable
throughout the century except for 3 outliers in the last 15 years. Eastport has the
greatest amount of dispersion throughout the century with a possible increase in the
average. Finally, Savannah has a relatively stable average with possible decrease in
dispersion. Overall no clear patterns in the annual maximum precipitation series emerge
from looking at these 5 stations. Clearly at a station level there is a greater amount of

variability in the annual maximum rainfall series.

Figure 5.8 shows the graphs of the annual total precipitation series for the 5 stations.
Again we see the greater variability in the station series as opposed to the national
average series (Figure 5.5). Again there is no overall consensus to a pattern in these
series, although these five stations’ annual total rainfall series are more similar than their
annual maximum rainfall series. In Berkeley (5.8c), Eastport (5.8¢c), Savannah (5.8¢c),
and even to a lesser extent Caldwell (5.8¢c), we see a possible increase in the annual
total rainfall with a possible increase in dispersion throughout the century in Berkeley,
Eastport, and Savannah. Le Mars(5.8d) is the exception with a possible decrease in the
average annual total rainfall and stable dispersion. In other words, at the station level
there is more visual evidence for a trend in the annual total precipitation series. Due
to the significant amount of variability, particularly at the station level, proving that

these trends are significant could be problematic.
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In conclusion from the descriptive statistics,

1. At the national average level, the annual maximum precipitation series depicts a
possible increase towards the end of the second half of the century. Certainly a

least squares fit to a linear trend is significant.

2. At the national average level, the annual total rainfall series appears to behave
differently from the first half of the century to the latter half. Again a least

squares linear fit is significant.

3. At the station level, the annual maximum and annual total rainfall are positively

correlated; i.e., evidence of dependence.

4. At the station level, there is no consistency among the 5 stations highlighted here

with respect to a trend to their annual maximum rainfall series.

5. At a station level, there is more consistency among the 5 stations with respect to

a trend to their annual total rainfall series which may show an overall increase.

6. At the station level, there is a significant amount of variability in both the annual

maximum and annual total rainfall series which may obscure any trends.

5.6.2 Introductory Model Specification

Before we begin fitting possible trends and comparing the independent joint density
model to the expansion of the joint density model, we need to make some initial decisions

about how to proceed with the analysis.

The first is how much of a year’s daily precipitation record must exist before we
count that year as representing a complete year? The period for which data are available
differs from station to station. The number of stations who start their record in 1901 is

105 but the last 3 stations did not start recording until somewhere between 1940 and
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1952. All stations suffer from some missing values throughout the time period of the
study. To reduce the bias that could result from too much missing data, it was decided
to establish a cutoff level for the number of days data required for a particular station
to be included in a particular year. Four cutoffs were considered, at 180, 240, 300,
and 330 days. There is a big jump between the number of station-year combinations
included with a 240 day cutoff compared with a 300 day cutoff. In fact, the percentage
of years in the total record which are cut off jumps more than doubles from 1.6% to
3.4% as the cutoff goes from 240 to 300 days. Initially, all four cutoffs were considered

and the results compared.

Varying the cutoff level (180, 240, 300, and 330) we fit the Gumbel distribution
with its two parameters to the annual maximum rainfall series for all the stations and
the normal distribution with its two parameters to the annual total rainfall series for
all the stations. We then compare the parameter estimates using a cut-off level of
180 days to the parameter estimates using a cut-off of 240 days, then compare the
parameter estimates based on 240 days to parameter estimates based on 300 days,
and finally compare the parameter estimates based on 300 days to estimates based
on 330 days — ultimately 2244 comparisons. We flagged parameter estimates as being
different if the difference between them is larger than the estimated standard error of
their difference. Recall an estimate of the standard error of the individual parameter
estimates is provided by taking the square root of the estimated Hessian matrix that
the computer program produces. Only 3 of these 2244 comparisons were flagged. This
means the model fit is essentially the same no matter where the cut-off is set. Our focus
on a cut-off level has narrowed to between 240 days and 300 days, the first big jump in
missing daily records. Since there is no significant difference in the parameters fit, we

choose 240 since it allows us to use more of the data.

Second, often when modeling climatological data, an important issue to address
is the amount of serial dependence that exists. To test the serial dependence in the

annual maximum and annual total rainfall series, we fit autoregressive time series models
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Model Selected | AR(0) AR(1) AR(2) AR(3) AR(4)
# stations 142 (76%) 24 (13%) 12 (6%) 6 (3%) 3 (1.5%)

Table 5.1: Results of the AR models for annual maximum rainfall series: The table
gives the AR model, the AIC criterion selected and the number of stations out of 187
which fell into the 5 models with the percentage of stations in parenthesis.

Model Selected | AR(0) AR(1) AR(2) AR(3) AR(4)
# stations 120 (64%) 33 (18%) 17 (9%) 12 (6%) 4 (2%)

Table 5.2: Results of the AR models for annual total rainfall series: The table gives the
AR model, the AIC criterion selected and the number of stations out of 187 which fell
into the 5 models with the percentage of stations in parenthesis.

of orders 0, 1, 2, 3, and 4 by the Yule-Walker equations, as implemented in S-Plus
(Venables and Ripley, 1994, p. 361). The best fitting model was selected using the AIC

criterion.

For the annual maximum precipitation series, the results of the time series analysis
are in Table 5.1. A majority (76%) of the stations selects the best model as AR(0); that
is, no significant serial dependence. Based on these findings, we justify an independence

assumption for annual maximum rainfall series.

For the annual total precipitation series, the results of the time series analysis are
in Table 5.2. Although the percentage of stations which are best modeled with AR(0)
is not as high as in the maximum case, the majority (here 64%) of the stations still
shows no significant dependence. Thus we conclude that if we take the whole data set

into consideration that we do not see any significant serial dependence in either series.

Note as stated in Section 5.5.3, we assume daily precipitation series is 7td. Again
we do not justify this assumption although we reiterate the findings of Stern and Coe
(1984) and Smith (1994) that whether it rains or not from day to day is more dependent

than the daily amounts of rain.
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Region (# st.) 1(16) 2(51) 3(50) 4(38) 4 (32) | Overall (187)
# sign GEV (%) | 2 (12.5) 12 (24) 15 (30) 15 (47) 9 (24)| 53 (28)

Table 5.3: Results on comparing Gumbel distribution to GEV distribution. The table
provides the five regions in the country with the number of stations in each region in
parenthesis and the number of stations which rejected the Gumbel distribution with
the % of rejection for each region in parenthesis.

The third step in the data analysis is to determine the appropriate model for the
annual maximum series. In the classical set-up, this would be deciding between the
Gumbel, Fréchet, or Weibull distribution. Using the GEV distribution, the decision is
formalized to testing whether there is significant evidence for the introduction of the
shape parameter of the GEV distribution into the model. We can do this using the
standard likelihood ratio test theory by calculating the difference between the maxi-
mum likelihood under the Gumbel distribution and under the GEV distribution. We
reject the null hypothesis that the Gumbel distribution is appropriate when the like-
lihood test statistic is greater than y? = 3.84. In the analysis, we find 55 out of 187
stations (less than 30%) are significantly different from the Gumbel distribution. Thus
for the majority of the stations there is no significant reason to reject the Gumbel dis-
tribution as the appropriate model for the annual maxima. If we make one decision
between modeling with the Gumbel or the GEV distribution for all the stations, then
an appropriate distribution to use for the annual maximum precipitation is the Gumbel

distribution.

Note the actual percentage of stations for which we reject the Gumbel distribution as
the appropriate model varies throughout the different regions, see Table 5.3. Although
for all regions, this percentage is less than 50%, there is a big difference between region
1 (West coast) and region 4 (Northeast). In region 1 (West Coast), the Gumbel distri-
bution appears to govern the behavior of the annual maximum. In region 4 (Northeast)

that is not as straightforward.
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For a few of the stations which rejected the Gumbel distribution as being the better
fit, Gumbel plots were produced. A Gumbel plot is a standard graphing device used in
extreme value theory which aids in judging the fit of the distribution and in detecting
outliers. In it, the ordered observations are plotted against the expected Gumbel series.
Obviously, the closer the graph is to a straight line the closer is the Gumbel fit to the
data. If the plot curves upward, this usually indicates a Fréchet fit. If it curves down-
ward, this usually indicates a Weibull fit. For more details, see Smith (1990). Figure
(5.9) show Gumbel plots for the following stations (the difference in the negative log
likelihood functions between the Gumbel and the GEV fit are in parenthesis): Albany,
Texas (15.45), Big Timber, Montana (13.90), Princeton, Indiana (7.63), Fredonia, New
York (4.01), St. Leo, Florida (11.2), and Goldsboro, North Carolina (3.38). From the
plots, we infer a variety of causes for the deviations from the Gumbel distribution. Fig-
ure (5.9) (a) and (b) — Albany, Texas and Big Timber, Montana — show the presence
of outlier/s which distort the Gumbel fit. Figure (5.9) (c¢) and (d) show the presence
of an upward curve indicating the Fréchet distribution as a more appropriate fit for
these stations. Finally, figure (5.9) (e) and (f) are not as readily deciphered — although
not a straight line, it does not indicate either the characteristic curve of the Fréchet or
Weibull distribution. Our conclusion is to use the Gumbel distribution to model the
annual maximum for all stations. Clearly some of the Gumbel plots do not support the
Gumbel distribution as the most appropriate model. On the other hand, the majority
of the stations do not reject the Gumbel distribution and even for some which do, there

is not an obvious better choice.

A final comment of the preliminary fit of the annual maxima concerns the shape
parameter of the GEV distribution. For all the 187 stations the estimate of &, the shape
parameter, is less than 0.50. In fact, the estimates live between -0.35 and 0.15 with
approximately 85% negative. Recall the maximum likelihood estimates exist and have
their classical asymptotic properties needed for the likelihood ratio test and the t-tests

for the extreme value parameter estimates provided £ < 0.50.
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Region 1 2 3 4 5 Overall
# sign Normal (%) | 4 (25%) 7 (14%) 6 (12%) 5 (11%) 8 (25%) | 29 (15.5%)

Table 5.4: Results on the Kolmogorov-Smirnov test for the sum. The table provides the
five regions in the country with the number of stations in each region in parenthesis and
the number of stations which rejected the Normal distribution with the % of rejection
for each region in parenthesis.

In the fourth preliminary decision to be made, we look at the asymptotic distri-
bution of the annual total precipitation which is approximately normal by standard
central limit theory. Since we model each station individually, the question is how well
does the normal distribution fit the 187 annual total precipitation series? We calculate
the Kolmogorov-Smirnov test for normality for each of the stations. The Kolmogorov-
Smirnov test is a standard non-parametric test with null hypothesis, in this case, that
the distribution is normal with alternative hypothesis that the distribution is not nor-
mal. We set an o = 0.05 level of significance and find 29 out of 187 stations (15.5%)
are significantly different than normal. Thus for the majority of the stations there is no
significant reason to reject the normal distribution for modeling the annual total rainfall

although we recognize some evidence of a discrepancy from the normal fit across the

US.

The actual percentage of stations where we reject the normal distribution as the
appropriate fit varies from region to region, but less than for the Gumbel distribution
in the annual maximum case, see Table 5.4. For all regions the percentage of stations
which reject the normal distribution is substantially below 50% but we see the interior
of the country (regions 2 and 3) and the Northeast (region 4) have fewer stations that
reject the normal distribution. The far West and the South (regions 1 and 5) have the

higher percentage of rejections.

Quantile plots were calculated for some of these stations which reject the normal
distribution for the annual total precipitation series. The quantile plot, like the Gumbel

plot, is a standard graphing technique which aids in judging the fit of the distribution
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and in detecting outliers. In it, the ordered observations are plotted against the expected
normal series. A linear relation reflects a good fit to the normal distribution. See
Johnson and Kotz(1982), p. 509 under probability plotting in the Ordered statistics
section for more details. Figure (5.10) shows quantile plots for the following stations (the
p-value associated with the Kolmogorov-Smirnov test is in parenthesis): (a) Goldsboro,
North Carolina (.0231), (b) Ojai, California (.0056), (c) Fort Collins, Colorado (.0137),
(d) Dillion, Minnesota (.0074), (e) Fredonia, New York (.0027), and (f) St. Leo, Florida
(.002). Figure (5.10) (a) shows 4 outliers which distort the normal fit. Except for Figure
(5.10) (a), the other plots show some variation of the S pattern associated with heavy
tailed distribution. These particular plots are important because they give evidence that
there is a small percentage of annual total rainfall series where the normal distribution is
not a convincing fit. Note Fredonia, New York, St. Leo Florida, and Goldsboro, North
Carolina show both deviations from normal and deviations from Gumbel. On the other
hand, given the relatively quick rate of convergence of the central limit theorem and the
fact that the majority of the stations do not reject normality, we conclude that using

the normal distribution is the only viable choice.

Finally before we address the trend analysis of the joint density of M, and S,, we
give a cursory look to what form the trend should take. Specifically, we compare the
exponential trend

n = aelt pe = o€ (5.26)
to the simple linear trend
m=oa+pt =0+t
Note Smith (1999) also fits trends to the scale parameter and likewise we could fit
trends to scale parameters, 1) and o. This was not done primarily because our focus

of this analysis is on the change in the location parameters — overall increases — not

dispersion.
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The linear form is offered primarily due to its simplicity and ease in interpretation.
The exponential form has the benefit that we can compare the trends in the annual
maximum and annual total rainfall; that is, the exponential trend can be interpreted

as a rate of increase as opposed to a magnitude.

We return to the plots of the annual maximum rainfall over the past century (Figure
5.7). At the station level for annual maxima, we find no overall pattern, including the
linear or the exponential trend. For the annual total rainfall over the past century at
the station level (Figure 5.8), there is more evidence of trends but due to the station

level variability there is no visual differentiation between either form.

To compare the two forms of the trend, we fit the Gumbel distribution to the 187
annual maximum rainfall series with the exponential form of the trend and the linear
form of the trend in the location parameter. Both the linear and exponential form model
significant trends in the exact same stations. In terms of log likelihood functions, each

form gives essentially the same value of the log likelihood function at its maximum.

We also fit linear and exponential trends to the location parameter of the annual
total rainfall series. We obtain the same type of results. Each form detects significant
trends in the same stations. Again there is no difference between the log likelihood
functions maximized. Clearly there is no significant difference in modeling these series

with either the exponential or linear trend.

A final note is that there are alternative forms of trend which we have not considered.
Figure 5.4 — the average annual maximum precipitation for the 187 stations — would
support a quadratic trend since the graph appears to dip down into the 1920s and 1930s,
then it slowly increases throughout 1940s, 50s and 60s, and finally the slope increases
from the 1950s. On the other hand, Figure 5.5 — the average annual total precipitation —
appears closer to an exponential trend. No particular form for the trend emerges as the
obvious choice for all stations for the annual maximum and annual total precipitation

series. We want to select one form for both series and for all stations. Due to lack of
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any significant evidence in this data set to differentiate between the two forms and the
interpretation of exponential form, we stay with the exponential form of the trend as

defined in (5.26).

Conclusions from the introductory model specification

1. We use 240 days as the minimum number of days in a year which must be recorded

in order to consider the year as not missing.

2. Overall, we find no significant evidence for serial dependence in the annual maxi-

mum and annual total precipitation series for the majority of the stations.

3. For the majority of the stations, the Gumbel distribution is an appropriate choice
for the limiting distribution for the annual maximum precipitation series and we

use it to model all the annual maximum precipitation series.

4. For the majority of the stations, the normal distributions is a good fit to the annual
total precipitation series and we use it to model all the annual total precipitation

series.

5. We use the exponential form of the trend in the location parameter x4 and 7 in

our trend analysis.

5.6.3 Model Analysis

As stated before there are two main themes in this analysis: (1) analyzing annual
maximum and annual total rainfall with particular interest in the trends in these series
and (2) comparing the independent and expansion models. At this point, we wish to
specify the objectives in this analysis, in particular with respect to the trend analysis.
The comparison between independent and expansion models fall from the results of the

trend analysis. So if we focus on the trend analysis, we can ask the following questions:
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Q1 Is there any evidence of a trend in either the means or the maxima of the annual

rainfall series?

Q2 Is there any evidence that the trends in Q1 are predominantly in either the means

or in the maxima?
Q3 Is there any evidence that the trends in Q1 are common?

Q4 Ultimately what model best estimates the trends in the annual rainfall series?

To study these questions we select the following models in Table 5.5 to run. The
independent case refers to models based on the joint density defined in equation (5.7)
whose log likelihood function is (5.23), the Gumbel versions. The models assume in-
dependence between the maximum and sum. The density has four base parameters:
location and scale parameter for M,, — n and ) — and location and scale parameter for S,
— 1 and o. The expansion case refers to models based on the higher order expansion of
the joint density of M,, and S,, defined in (5.17) whose log likelihood function is (5.25),
the Gumbel versions. It is developed using the expansion of the conditional density of
Sn| My = u,. This expansion uses the same four base parameters as the independent
case: 1,v, i, 0. In models 14 and E4, the parameters § and 7 take a common value

denoted by 7 which is referred to in Q3.

Preliminary Comparison between the Independent and Expansion Models

First we compare the overall fit of the data using the independent models versus
using the expansion models. Let us focus on the results obtained in models I1 and E1,
the base models (i.e. no trends). We find that in 186 out of 187 stations the expansion
model has a larger maximum log likelihood function, indicating an overall better fit
for the expansion model. The only exception was station # 308944, Wanakena Ranger

Station, New York. In 185 stations, the difference between the maximum log likelihood
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Models Run
Parameters Fit Independent Case Expansion Case
N, Y, j, 0 I1 (Base Model) E1 (Base Model)
n=ae’ o 12 (Max trend) E2 (Max trend, Total trend =0)
n, Y, u=10de", o I3 (Total trend) E3 (Total trend, Max trend = 0)
n=cae Y, p=20e",0 I4 (Common trend) E4 (Common Trend)
n=ae’ Y, u=7de" o 15 (Full Model) E5 (Full Model)

Table 5.5: Models run in the trend analysis. The table give the independent models
and expansion models that are run, labeling each model and specifying the parameters.

functions of I1 and E1 was greater than 2. By analog to the nested model case this
difference implies the improvement of the fit using the expansion model is significant.
Note if we compare the maximum log likelihood functions of models I5 and E5 (the
full models), we get the exact same comparison — the expansion model has a larger

maximum likelihood function; that is, the expansion model gives a better fit.

Next we consider the difference between the models which are fit using I1 and E1 —
in particular, the parameter estimates and their standard errors. Figure 5.11 shows the
plots of the parameter estimates based on I1 versus E1 for n,, u, and o, respectively.
Given the linear relation in all four plots, we conclude that the independent and expan-
sion models are giving comparable estimates. The estimates for p are strikingly similar.
The estimates for o — the standard deviation of daily rainfall — are most different. This
is readily explained. In the expansion model, o is estimated conditionally on knowing
what the maximum daily rainfall in the year is. In the independent case, the maximum
rainfall — the value with the most variability — is treated as unknown and thus adds to
the spread of daily rainfall. In fact, if we look more closely at the estimates of o, the
number of stations whose estimate of ¢ in E1 is smaller than in I1 is 170 out of 187.
Further, the number of times the difference between these estimates is greater than the

estimate of the standard error of this difference is 56 out of 187.
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This decrease in the scale parameter of the total is mirrored to a lesser extent in the
scale parameter of maximum, ¢. In 175 out of 187 stations, the estimate of 1) under E1 is
smaller than under I1. However these differences are not statistically significant — none
of these differences were larger than the estimated standard error of their difference. A
final comment on the parameter estimate is that for the locations parameters — u and
1 — the expansion model E1 produces estimates that are larger that the independent
model I1. In 162 stations, the estimates of n are larger for the E1 model than the 11
model. In 169 stations, the estimates of y are larger for the E1 model than the T1
model. None of these differences are significant but it does show a pattern. Overall the
addition of the higher order term in the expansion model influences more significantly

the estimate of ¢ than the other parameters.

A last note on the difference between the fit of the models from the independent
to the expansion cases in I1 and E1 involves how accurately the above parameters are
being estimated. We assess this by looking at the standard errors of these parameters.
Recall a by-product of the quasi-Newton optimization routine used to calculate the
maximum likelihood estimates is an estimate of the standard errors. If the estimates
of the standard error in the expansion case are smaller than in the independent case,
we claim the expansion model estimates the parameters more precisely. Table 5.6 lists
the parameters and the number of stations out of 187 that the estimate of the standard
error in the expansion case are less than or equal to the independent case. In over
60% of the stations the expansion model more accurately estimates each of the four
parameters. Note it is possible that this decrease in the estimates of the standard error
is due to a latent bias in the expansion versus the independent model. There is no basis
for assuming this bias and currently it is believed that this decrease truly represents a

genuine difference in the precision of the estimates.

In conclusion from the comparison between the independent and expansion models:

1. Except for one station, the expansion model always gives a better fit as measured

by the likelihood function.
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Parameter 7 () 1 Y
# stations 111 118 124 124

Table 5.6: Standard error comparison of parameter estimates in the independent base
model and expansion base model. The table give the parameters in the base models and
the number of stations whose estimated standard error for each parameter is smaller in
model E1 than in model I1

2. The expansion and independent model give comparable parameter estimates al-
though the estimates of the the scale parameters, particularly the standard devi-
ation of daily rainfall, are smaller for the expansion model while the estimates of

the location parameters are larger.

3. The expansion model has smaller estimated standard errors for the parameter es-
timates which we believe to represent an increase in the accuracy of the parameter

estimates.

Trend Analysis

There are essentially two methods used in the trend analysis which aid in the
interpretation of the 187 individual station results: tests of hypotheses and a spatial
smoothing method. There are two groups of tests of hypothesis that are used: (1)
Asymptotic likelihood ratio tests are used to compare the models set up in the previous
section. (2) t-tests for the estimates of the trend parameters to test whether the trends
are significantly different from zero. The latter uses the asymptotic normality of the
maximum likelihood estimators. The spatial smoothing technique will provide both a
national average for the trends of interest and a smoothed version of the estimates of the
trends across the entire contiguous US. Using these methods, we will draw conclusions
about the estimates of the trends of the annual maxima and totals across the contiguous

US at both the national, regional, and local level.
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Test H, H, Ind Models Exp Models X

TT B=7=0  B£07=0 I201 E2-El = 3.84
T2 B=y=0  ~7#0,4=0  I3I1 E3-El 2= 3.84
T3 7=0 40 14-11 E4El 2= 3.84
T4 B=vy(1#0) v#p 15-14 E5-E4 X2 = 3.84
T5 B=0=0 ~#8 15-11 E5-E1 2= 5.99
T6 B=0,720 B£0,7%£0 E5-E3 =384
T7 B#0,y=0 [B#£0,7%£0 E5-E2 2= 3.84

Table 5.7: Likelihood ratio tests to be performed. The table gives the test number,
the null and alternative hypothesis (H, and H,) being tested, the two models whose
log likelihood functions will form the likelihood ratio test, and the critical value for the
likelihood ratio test based on o = 0.05 level of significance. Recall § = the trend in
the annual maximum rainfall, v = the trend in the annual total rainfall, and 7 = the
common trend (8 = 7).

Likelihood ratio test of hypothesis The first way to address the questions
in Section 5.6.3 is to perform the following hypothesis tests using standard asymptotic
likelihood ratio test theory, comparing the log likelihood functions of the above mod-
els. Note that the critical values correspond to the limiting x? test with 0.05 level of
significance. Table (5.7) lists the tests performed in the analysis concerning the trends

in the annual maximum and annual total rainfall series.
Specifically we are testing for the following information:

In the independent case, T1 tests for the presence of (just) a trend in the annual
maximum rainfall disregarding any information about the annual total rainfall. This
test compares a model (which is based only on annual maximum rainfall) with no trend
in the maximum to a model with a trend in the maximum. In the expansion case,
T1 tests for the presence of a trend in the annual maximum while the trend in the
annual total rainfall is set to 0; i.e., this assumes no trend in the annual total rainfall

and tests for a possible trend in the maximum. In the expansion case, T6 tests for the
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presence of a trend in the annual maximum rainfall given a trend for the annual total
rainfall is already present in the model. Note the difference between the independent
and the expansion test. In the independent test, no matter what we wish to test
about the annual maximum what is happening to the trend in the annual total rainfall
is irrelevant. In the expansion cases, that is not the case. Since it models the first
order correction to the dependent structure, it contains information on both the annual
maximum and annual total rainfall. So whether we include the trend in the annual total
or not implies an assumption about this trend in the total rainfall. In the expansion

case, we can no longer separate the trends completely.

In the independent case, T2 tests for a presence of (just) a trend in the annual total
rainfall disregarding any information about the annual maximum rainfall. This test
compares a model (which is based only on annual total rainfall) with no trend in the
annual total to a model with a trend in the annual total rainfall. In the expansion case,
T2 tests for the presence of a trend in the annual total while the trend in the annual
maximum rainfall is set to 0. In the expansion case, T7 tests for the presence of a
trend in the annual total rainfall given that a trend for the annual maximum rainfall is
already present in the model. Again note the difference in the interpretations between

the independent and the expansion cases.

In both the independent and the expansion cases, T3 tests for the significance of a
single trend for both the maximum and the total annual rainfall; i.e., this test compares
a model with no trends in either the annual maximum or annual total to a model with

a common trend to the annual maximum and the annual total rainfall.

In both the independent and expansion cases, T4 tests for the significance of adding
a second trend parameter to the model. This test compares a model with a common
trend to both the annual maximum and annual total rainfall to a model that has a

separate trend for the annual maximum and annual total rainfall.

In both the independent and expansion cases, T5 tests for the significance of adding

separate trend parameters for the annual maximum and annual total rainfall to the
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Independence Case
# | H, US(187) RI1(16) R2(51) R3(50) R4(32) R5H(38)
TL | B#0 19 (10) 2 (125) 6(12) 4(8) 2(6) 5 (13)
T2 | v #0 42 (22)  3(19) 12(24) 9(18) 11 (32) 7 (18)
T3 |7#0 49 (26) 4 (25) 13(25) 13 (26) 11 (32) 8 (21)
T4 | p#q9B=y 2(1) 0(0) 1(2) 0(0) 0(0) 1(3)
T5 | B£0,7#0 40(21) 4(25) 10(20) 11(22) 8 (25) 7 (18)

Table 5.8: Results of the likelihood ratio tests in the independent case. The table
gives the results of the tests in Table (5.7) for the independent models. It breaks down
the number of significant alternative hypotheses throughout the regions and gives the
percentage of significant alternative hypothesis in parenthesis.

model simultaneously. This test compares a model which has no trend parameters to
one which has a trend for the annual maximum rainfall and another for the annual total

rainfall.

The results for these tests are given in Table 5.8 and Table 5.9 for the independent
and expansion models, respectively. Since we use a 5% level of significance in our
likelihood ratio test, we would expect that in 5% of these stations a trend would be
detected by chance alone; that is, the test would claim a trend is significant when in
fact no trend exists. Thus the percentages in Table 5.8 and 5.9 take on more meaning.
When the percentage goes over 5% (note we do not define how far over 5% we need to
be), we claim that there exist evidence for this trend across the US or region. In other
words, some underlying change has occurred to explain the percentage of significant
trends — they did not occur by chance. Obviously the bigger the percentage the more
proof there is behind the significance of the trend.

Results of the likelihood ratio tests Plainly the majority of the stations do not
yield statistically significant trends in the annual maximum or annual total rainfall
series no matter what model is being fit. This is understandable due to the large
variability at the station level. That is not to say that the results do not give insights

into the changes in the annual maximum and annual total rainfall over the past century.

203



Expansion Case

# | H, US(187) RI1(16) R2(51) R3(50) R4(32) R5(38)
T1 | B#0 105) 2(125) 0(0) 1(2) 3(9) 11
T2 |y #£0 42 (22) 2(125) 14 (27) 8(16) 9 (28) 24
T3|7+#0 40 (21) 4 (25) 11(22) 9 (18

T4 | B#9B=y 15(8) 1(8 6(12) 2(4)  2(6)
T5 | B#0,7#0 40 (21) 4(25) 14(27) 6 (12) 9 (28)
T6 | BA0y#0 14(7) 2(125) 5(10) 2(4) 2 (6) (8)
T7 |y#08#0 42(22) 2 (12.5) 14 (27) 8(16) 10 (31) 8 (21)

N SN N N N

18
11
18

4 (
9 (
) 9(28) T(
4 (
7(
3

Table 5.9: Results of the likelihood ratio test in the expansion case. The table gives the
results of the tests in Table (5.7) for the expansion models. It breaks down the number
of significant alternative hypotheses throughout the regions and gives the percentage of
significant alternative hypothesis in parenthesis.

Having previously established that the expansion models fit the data better than the
independent models, we look for the “best” model among the expansion models although
we have also run all the independent models. The results for the independent models
will be used both to continue the comparison with the expansion models and to help

validate these findings.

First let us concentrate on [ — the trend in the annual maximum precipitation. If we
look at tables (5.8) and (5.9), we see there is little evidence for significant trends in the
maximum no matter which model is fit — expansion T1, expansion T6, or independent
T1 which have 7%, 5%, and 10% of the stations with significant s, respectively. The
drop from 10% in independent T1 to 5% in expansion T1 has some interesting inter-
pretations although we caution against too much weight on this particular comparison
due to the small percentage of significant Bs. This drop is primarily due to region 2.
In independent T1, there are 6 stations with significant £s. In expansion T1, none of
these stations have significant f#s. In fact, in expansion T1, there are no stations with
significant s west of Texas except for the far west coast. Interestingly in expansion T6,
five of these six stations in region 2 have significant 8s again. Why is this notable? In
the independent case, disregarding information on the annual total trend and setting

this trend equal to 0 are equivalent. In the expansion models, this is not the case. In
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expansion T1, H, assumes no trend in the annual total. In expansion T6, H, assumes
the trend in the annual total is not equal to 0. With respect to region 2, these two
expansion models give different results and we need to be mindful of the interpretation
of these expansion models throughout the analysis. Overall we conclude there little
evidence of a trend — on its own — in the annual maximum precipitation across the

continental US.

Looking at v — the trend in the annual total rainfall series, we see substantial evi-
dence of this trend no matter which model is fit. In all models which test for significance
of 7 by itself — expansion T2, expansion T7, and independent T2 — we have 22% of the
stations with significant trend in the annual total rainfall. Given the amount of station
variability this is a high number — more than 4 times the percentage that would be de-
tected by chance alone if ¥ = 0. The stations with significant s are spread throughout
the country. We conclude there is substantial evidence of a trend — on its own — in the

annual total precipitation in the continental US.

The test for the inclusion of a common trend for the annual maximum and annual
total precipitation series into the model turns out to be insightful from the point of
view of highlighting the differences between the expansion and independent cases. The
comparison between the results for the expansion test T3 and the independent test T3
illustrate the biggest difference between the models in terms of the likelihood ratio test
results. First both models show a substantial percentage of stations where including
a common trend is significant; that is, there is significant evidence that some trend
exists in this data. The expansion test T3 detects a significant common trend in 21%
of the stations. For the independent model, this is 26%. Although this change is not
big enough to be significant, it does indicate a difference between the expansion and
independent models. Further, these stations that drop out do so evenly throughout the
country. We conclude that there is strong evidence in the data set to indicate that if
we assume a common trend to the annual maximum and total rainfall series, then it is

non-zero.
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Next we look at tests for adding a second trend parameter above a common trend
parameter to the model — expansion T4 and independent T4. These tests are the flip
side of tests T3. In both cases, there is little to no evidence for adding a separate
trend parameter for both the annual maximum and annual total rainfall series. In the
independent T4 test just 1% of the stations detect a significant need for differentiating
between the trend in the annual maximum and annual trend in the total. This per-
centage goes up to 8% for the expansion case. Although neither of these cases lead us
to believe differentiating between the trends is significant, this difference in percentages
between the tests E4 and 14 reiterates the fact that there is a subtle distinction between
how the expansion and independent models estimate these trends. Altogether we see
in the independent case more evidence for a common trend for the maximum and the
total but once the common trend is in the model essentially no evidence that adding a
second parameter is significant. On the other hand in the expansion models we see less
evidence for a common trend but more evidence for the need of a separate parameter for
differentiating between the trends in the annual maximum and the annual total rainfall.
Ultimately we conclude there is no significant evidence to differentiate between the two

trends in terms of the likelihood ratio tests.

Finally, the results for test TH — adding a separate parameter for the maximum and
the total, simultaneously, to the model — are identical in the expansion and independent
cases. Both show that simultaneously adding 8 and 7 into the model is significant in
21% of the stations. Certainly this is a substantial percentage and indicates that there
exist some kind of a trend in the annual maximum and annual total rainfall series. Note
of the stations which are significant in expansion T2 (y # 0,8 = 0), T3(r # 0), and
T5(y # 0,8 #0), 26 are common to all tests.

In conclusion for the likelihood ratio tests:

1. There is significant indication that some trend exists in the annual maximum and

annual total rainfall series.

2. Three of the expansion models are arguably an appropriate model: (1) E3, model
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with only the trend for the annual total rainfall (y # 0,8 = 0); (2) E4, model
with a common trend for the annual maximum and annual total rainfall (7 # 0);

and (3) E5, model with separate trends for the annual maximum and annual total

(v#0,8#0).

3. Due to the substantial evidence of a significant trend in the annual total rainfall
in expansion test T2 and T7 and little evidence of a significant trend in the annual
maximum rainfall in the expansion test T1 and T6, the likelihood ratio test results

lean toward model E3 as the most appropriate model.

4. Finally, in general the expansion and the independent models give similar results.
This is particularly true concerning models and tests associated with (just) the
trend in the annual total rainfall — expansion T2, expansion T7, and independent
T2. This also holds for tests T5. What appears to be the biggest difference is in

estimating the trend in the annual maximum and fitting a common trend.

t-tests To get another perspective on the estimates of these trend parameters, we
look at t-tests for these parameters based on the maximum likelihood estimates of
these trends. Recall we fit each model using the maximum likelihood method and
thus obtain maximum likelihood estimates for our trend parameters with estimates of
their associated standard errors. Using the asymptotic normality property of maximum
likelihood estimates, we can therefore calculate a test statistic for testing if a trend
parameter for an individual station is 0 or not. We give the results of the t-tests for
the individual stations for all the models that we have run. The models which give
estimates for g are E2, E5, and I5 (which is equivalent to 12). The models which give
estimates for vy are E3, E5, and I5 (which is equivalent to I3). The models which give
estimates for the common trend 7 are E4 and 14. We focus primarily on the results of
the estimates for the trend parameters in model E5 and E4 although for comparison

we give all of the results. Note we do not use the results for the estimates of § in E2
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Trend in max Trend in total Common trend
H,:6=0H,:8+#0 Hy,:vy=0H,:v#0 Hy,:7=0H,:7#0
B B B y Ay v 7 7

in I5 in E5 in E2 in I5 in E5 in E3 in 14 in E4

t<—2| 7(4) 13(7) 16(9) | 6(3)  8@)  5(3) | 14(8)  9(5)

t<—1] 26(14) 32(17) 44(24) | 18(10) 19(10) 19(10) | 25(13)  23(12)
t>0 | 111(59) 109(58) 90(48) | 128(68) 131(70) 134(72) | 130(70) 132(71)
t>1 | 57(31) 56(30) 27(14) | 77(41) 83(44) 84(45) | 86(46)  T5(40)
t>2 | 28(15) 23(12) 10(5) | 36(19) 39(21) 37(20) | 48(24)  44(24)

Table 5.10: Results of t-tests of trend parameters. The table gives the t-test for the
parameter estimates by dividing the results into the three different trend parameters
that were estimated. For each the table gives the test which is performed, the model
the estimate comes from, and the number of stations(% in parenthesis) which shows
significant evidence to reject H,. Let 7 be the common trend v = .

(B # 0, = 0) since the likelihood ratio tests conclude convincingly that v does not

equal 0 and thus model E2 is not an appropriate model.

Table 5.10 lists the results of these t-tests. It breaks the results down into the
estimates for B,y and 7 where recall 7 is the common trend parameter. It gives the
null and alternative hypothesis that are being tested. Finally it shows the percentage
of stations which have a test statistic less than -2, less than -1, greater than 0, greater
than 1, and greater than 2. In the spirit we interpreted the results of the likelihood
ratio tests, we claim evidence that the associated trend is not zero for these models if
the percentage of stations with these test statistics are larger than 2.5%, 15%, 50%,
15%, and 2.5%, respectively.

Results of the t-tests To begin, the trend in the annual total rainfall series is
certainly easiest to interpret. First, the results of these t-tests are nearly identical no
matter if the tests are based on estimates of v from model 15, E5 or E3. In other words,
these three models give comparable estimates for the trend in the annual total rainfall.
Looking at the results in the ¢ > 0 row, we see around 70% of the estimates of the

trend in the total are positive. If there was no trend in the annual total rainfall series,
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this should be near 50%. If there was no trend the percentage of stations whose test
statistic would be above 1 would be near 15% but the actual percentage is around 3
times that or 44%. The percentage of test statistics above 2 would be near 2.5% if no
trend existed but here the actual percent is 8 times that number or 20%. Not only are
the estimates for 7 positive but they are significantly positive. We also see that these
estimates are not significantly negative. Granted 30% of the estimates are negative but
by looking at the rows associated with ¢t < —2 and t < —1, we see the percentage in
each row is actually lower than the percentage expected by chance alone if there were no
such trend; that is, there are no significantly negative trends in the annual total rainfall.
Thus these results concur with the likelihood ratio tests that 7y is significantly different

from 0, here positive, and the independent and expansion models give the same results.

The results of the t-test for 7 are also similar to results both for the t-tests associated
with v and also the likelihood ratio tests for the common trend estimates. Certainly
there is substantial evidence that the common trend is not zero. In both the expansion
and independent models, 70% of the estimates are positive (compared to 50%) and over
24% of the test statistics are over 2 (compared to 2.5%). Clearly overall the common
trend is positive. In fact, there appears to be even a higher percentage of truly significant
(test statistic greater than 2) estimates than for any t-test associated with the annual
total. Finally, the results for the common trend are nearly identical to the results for
the trend in the annual total. This substantiates the idea that the trend in the annual
total rainfall dominates the common trend and hence the trend in the annual maximum

rainfall.

Finally the results in the t-test concerning the annual maximum rainfall are markedly
different from the likelihood ratio tests. First, there is evidence that 8 # 0. For both
the estimates in E5 and I5, we have roughly 60% are positive. More importantly, we
see more than five times the percentage of stations whose test statistic is greater than
2 than would happen by chance if 3 = 0 — somewhere between 12% and 15%. This

indicates 8 > 0. Another difference from the likelihood ratio tests is that the expansion
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and the independent models give comparable results. Currently there is no obvious
reason why the likelihood ratio tests and the t-test are giving such different results.
Since each of these tests rely on asymptotic results, this may explain the difference. It
may also have to due with how well the estimates of the standard errors perform. Note
there is a slight difference between the estimates for 5 in E5 versus I5 with respect to
those estimates which are negative. For the estimates of 8 in E5, we see slightly more
significant negative estimates. In particular, there are almost twice as many estimates
in E5 whose test statistic is below -2 than in the I5 versions. This 7% for E5 is nearly
three times as much as would be expected by chance alone if 5 = 0. Thus although
the percentage of estimates of 5 whose absolute value of the test statistic is greater
than 2 is the same for E5 (19%) and I5 (19%) and thus both show clearly 5 # 0, the
estimates in E5 are more significantly negative than in I5. Whether this slight difference
has an impact on the results is not readily known. So to conclude, the results for the
t-test concerning the trend in the annual maximum rainfall indicates that 5 # 0. More
specifically, in the E5 estimates of § there are a significant number of positive estimates

and a significant number of negative estimates.

Note although the model E2 is clearly not a viable model since it assumes that v =0
and all evidence is to the contrary, it does show us the effect assuming that the trend in
the annual total rainfall has on the estimates of the trend in the annual maximum. First
it lowers the estimates for the trend in the annual maximum — only 48% are positive.
Second it eliminates a large percentage of the significant positive estimates of the trend
in the annual maximum and increases the number of significant negative estimates of

the trend in the annual maximum.

Finally, although the results in the t-tests show that both the trend in the annual
maximum and annual total rainfall are significantly different from 0, there are important
differences between the two trends. The t-tests indicate that more of the estimates for
trend in the annual total rainfall are positive (¢ > 0), more are significantly positive

(t > 2), and less are significantly negative ({ < —2). So there is less significance in the
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annual maximum rainfall series and lower estimates.

In conclusion from the t-test results:
1. Some of the results concur with and refine the result of the likelihood ratio tests.

A There is significant evidence that the trend in the annual total rainfall series

is different from 0 (y # 0). In fact, there is significant evidence that v > 0.

B There is significant evidence that the common trend is different from 0 (7 # 0).

In fact, there is substantial evidence that 7 > 0.

C The trend in the annual total rainfall series dominates the common trend and

hence the trend in the annual maximum rainfall.
2. Some of the results differ from the results in the likelihood ratio tests.

A Here there is significant evidence that the trend in the annual maximum rainfall
series is different from 0 (8 # 0). In fact, there is some evidence that overall
B > 0 although in the expansion model there is a higher percentage of

stations which are significantly negative.

B Roughly, the results in the independent and expansion models when estimating

[ are comparable — again, except for the slight increase in significant negative

Bs.

3. Based on these t-test, there is evidence that in selecting an appropriate model to
estimate the trends in the annual maximum and annual total rainfall series, one
must use a model which has a trend in the annual maximum rainfall somehow
(E5 or E4). Since the results for the estimates for S are different from the results
for 7 and hence 7y, we would conclude based on the t-test results that the most

appropriate model is E5 (8 # 0, # 0).
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Introduction to Spatial Smoothing Method The other two methods we use to
help interpret the 187 station trend estimates are products of a spatial smoothing
method established by Smith (2000). From this method we will procure a national
average for the estimates of these trends and a smoothed version of these 187 sta-
tions results, interpolated to the entire contiguous US. We begin by summarizing the
procedure in Smith (2000). Then we outline the steps taken in that method for this
application of the trend analysis. Next we organize the national averages obtained in
the previous step and explain these results with respect to the results of the previous
hypothesis tests and the questions to be answered. After making our recommendation
for the most appropriate model in this analysis, we interpret the results of this model’s
trend estimates on a national level, using the national averages; on a regional level by
looking once again at the likelihood ratio table and by producing mapped estimates of
the trends in the annual maximum and annual total rainfall series; and at a local level
by looking at how well these final estimates of the trends fit the five stations we studied

in Section 5.6.1.

Spatial smoothing method In this Section we outline the method developed
in Smith (2000) for spatially smoothing the trend estimates of the previous sections.

To do so, we introduce the following model.

Let A(s) be a parameter of interest. Note Smith (2000) develops the method with a
parameter vector. Since in any given instance we are looking at just a trend estimate,
we drop reference to the parameter vector. It is assumed A(s) varies smoothly as a
function of spatial location s lying in some domain S. For each finite subset of locations
s € {s1,...,8,} we observe a time series Y (s,t) where ¢ is time and whose distribution

depends on A(s). Suppose we have the following heirarchical model:

(0.9) ~ m(0,9) (5.27)
Ao~ f(AB) (5.28)
Vi(s,.) ~ g(y(s,)A(s), 8). (5.29)
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where (5.27) gives the prior density of the nuisance parameters 6 and ¢, (5.28) defines the
spatial distribution of {\(s),s € S} as a function of 6, and (5.29) gives the distribution

of the time series at one site s as a function of A(s) and possible nuisance parameter ¢.

Instead of implementing a full Bayesian approach, Smith (2000) develops an alter-
native approximate method for estimating a smoothed estimate of A(s). From (5.29)
one can estimate the parameter A(s) from the observed data at each s € {s1,...,s,}.
Let A(s) be the estimate and define the error as n(s) = A(s) — A(s). Now to obtain
the distribution of :\, we use the following three pieces. First we exploit the asymptotic
normality of {n(s1),...,n(s,)} which has mean 0 and covariance matrix W. Then we
assume the underlying random field {A(s), s € S} is Gaussian with mean and covariance
matrix given by a finite parameter model with respect to 8. In particular, let the mean
and covariance matrix be u(0) and 3(#), respectively. Finally, we assume A(s) and 7(s)

are independent, Thus Smith (2000) can then writes the estimate as

A(s) ~ N(u(0),%(0) + W) (5.30)

Note we may let 3(f) take the form
X(0) = aV(0)

where « is an unknown scale parameter and V () is a vector of standardized covariances

determined by an unknown parameter 6.

Once € has been estimated — using any standard estimation method, such as maxi-
mum likelihood — one can estimate A(s) at both the actual stations and across the entire

domain S by standard kriging. These estimates are the smoothed estimates 5\(3)

Now to fit the above model, one must specify the parametric models for u(6), 3(9)

and specify the error covariance matrix W.

Finally, from A(s) the smoothed estimates of A(s) for s € S, we can obtain regional

averages for any subset of S by integrating these estimates over the region of interest
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A where A C S. Define A(A) as the regional average of A(s) over region A. We have:

X(A) — fA:\(s)ds

where |A| is the area in the grid corresponding to A.

The corresponding standard errors to these regional averages can be calculated

through standard kriging techniques, see Smith (2000) for further details.

Smith (2000) has established an algorithm/program which fits the above method. In

it, he specifies the following features to be considered and the options that are available:

1.

For estimating 6, we can choose either ML, maximum likelihood method, or
REML, restricted maximum likelihood method. See Smith(2000) for details be-

tween the two.

For the error covariance matrix W, one can take W to be a diagonal matrix,
implying independence among the stations’ errors. Note the obvious input for W
when using a quasi-Newton algorithm in the estimation process is the estimate
of the Hessian matrix that the algorithm provides. Alternatively, one can input
a sample correlation matrix into the program to model dependence between the

stations in the error process.

For ¥(6), one can choose from five forms: exponential, Gaussian, wave, spherical,

and Matérn. See Smith (2000) for further details on the difference between these.

. There is an option to include the nugget effect in 3(#). The nugget effect arises

from a discontinuity point and has the interpretation as either measurement error
when observations are being replicated at a site or a microscale process which
involves discontinuities at distances smaller than the distances between the sites

themselves.

There is an option to take an orthogonal transformation if the data are suspected
of geometric anisotropy. Anisotropy refers to the situation when the dependence

between the sites is both in terms of distance and direction.
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6. Finally for (), it may take a deterministic form or a polynomial of order 0,1,2,3,

or 4.

Application to the Spatial Smoothing Method The above method allows us to
take the trend parameters from our analysis of the 187 stations and interpolate to the
entire contiguous US. Thus we can get an idea of how the trends in the annual maximum
and annual total rainfall behave across the US. Specifically in the above model, let A(s)
be the trend estimate (either 3, v, or the the common trend 7), s = {s1,..., s187} be

the 187 station sites, and S be the contiguous US grid.
In the Smith (2000) program we use:
1. The maximum likelihood method of estimation for 6.

2. To specify the error covariance matrix W, we assume W to be diagonal with
entries determined by the standard errors of the maximum likelihood analysis.
Note in doing so, we are assuming no correlations between the stations’ estimated

trends.
3. No nugget effect in V(0).

4. The error covariance matrix oV () takes an exponential form; that is, where the

(i, ') entry — without a nugget effect — is

vij = ae” /"

where d;; is the distance between the i and the j sampling points and R > 0
is the unknown range parameter. Note the other forms make no overall difference

to the mapped estimates.
5. Assuming no orthogonal transformations, i.e., assuming no anisotropy in the data.

6. For u(f): We fit polynomials of order 0, 1, 2, 3, or 4 to the data and choose
the best fit by comparing likelihood ratio test statistics, AIC criterion, and BIC

criterion.
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Trend in Total (y): Expansion Model
order of poly # of par’s mle of log(a) mleof R nllh  AIC/2 BIC/2
0 2 202 1.249 166.83 168.83 172.06
1 4 192 1.248 166.61 170.61 177.07
2 7 A71 1.223 165.89 172.89 184.20
3 11 .150 1.154 165.42 176.42 194.20
4 16 -.012 904 159.12 175.12 200.97

Table 5.11: Spatial model results for v in expansion case. The table gives the order of
the polynomial and number of parameters in the model, mle of parameters, negative
log likelihood, and the AIC and BIC criterion.

Note the decision rules for the criterion in the above model selection are as followed:

Likelihood ratio test Let [, be the log likelihood function of a model based on ¢
parameters and [, be the log likelihood function of a nested model based on
p parameters with ¢ > p. We claim there is significant evidence to reject the
model based on p parameters in favor of the model based on ¢ parameters if

lg — 1, > 5x2_,- Note for negative log likelihood functions, we use [, — I,

AIC Choose model which minimizes the AIC function: —21, 4 2p.

BIC Choose the model which minimizes the BIC function: —2I, + plog(n) where n is

sample size.

Note the following tables give the step by step results in this process for the trend
in the annual total rainfall — v — for full expansion model, the trend in the annual
maximum rainfall — § — for full expansion model, and the common trend — 7 — for

expansion model.

Trends for v in expansion model

The results for the spatial analysis for the trend parameter for the annual total rainfall in

the full expansion model are in Table 5.11. We find for y(#) we should use a polynomial
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Trend in Maximum (3): Expansion Model
order of poly # of par’s mle of log(a) mleof R nllh  AIC/2 BIC/2
0 2 180 965 170.48 172.48 175.71
1 4 134 .844 168.84 172.84 179.30
2 7 .041 .628 165.99 172.99 184.30
3 11 -.002 .065 164.25 175.25 193.02
4 16 -.176 .360 156.97 172.97 198.82

Table 5.12: Spatial model results for 5 in expansion case. The table gives the order of
the polynomial and number of parameters in the model, mle of parameters, negative
log likelihood, and the AIC and BIC criterion.

of order 0 because: (a) The drop in the log likelihood function from the model using
polynomial of order 0 to order 4 is not significant; i.e., 2 x (166.83 — 159.12) = 15.42 <
Xi4,.05 = 23.685. (b) AIC is minimized for polynomial of order 0. (c) BIC is minimized
for polynomial of order 0. Thus we maintain that the best model for ;4() is u. Using the
estimates in the table 5.11 for order 0 polynomial, we can estimate ~ at the 187 stations
and across the 100 x 100 grid covering the contiguous US. Converting the integral in
(5.31) into the appropriate sum over the grid, we can evaluate this average. Since we
sum over the gird encompassing the continetal US, this is a national average. Standard
kriging techniques (see Cressie(1993) for more details) provides a similar formula to
calculate standard errors. Based on a fit with order 0 we find a national average of

71131 with a standard error of .01265.

Note for comparison we find the national average based on polynomial of order 4
to be .67059 with a standard error of .01304. The difference between the national
averages in the model which uses a polynomial of order 0 and one which uses order
4 is relatively small, what will amount to 0.4% difference in the percent increase of
annual total rainfall in the past century. Thus we see the spatial smoothing method
is relatively stable, although the difference in the national averages are not negligible,

with respect to the order of the polynomial in the mean of the Gaussian random field.
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Trends for [ in expansion model

The results for the spatial analysis for the trend parameter for the annual total rainfall
in the full expansion model are in Table 5.6.3. We find the overall the best model
for u() appears to be a polynomial of order 0. The BIC criterion clearly signals the
polynomial of order 0 as the best fit. For the AIC criterion, the polynomial of order 0
is again selected but the margin is slight compared to the fit with polynomial of order
1 or 4. Finally, the likelihood ratio test is somewhat contradictory. The drop in the log
likelihood function from a model with a polynomial of order 0 to order 4 is only just
significant at 0.05 level of significance. Here 2 x (170.48 — 156.97) = 27.02 > X§4,_05 =
23.685 and the biggest jump in log likelihood functions is from order 3 to order 4.
This implies that polynomial of order 4 should be considered a competitor for the most
appropriate model. There are three reasons as to why a polynomial of order 4 may
not be suitable: (a) It is just significant — not overwhelming evidence that this is the
correct model. (b) It is difficult to extrapolate a polynomial of order 4 beyond its exact
domain. (Recall we are trying to obtain smoothed estimates for the entire contiguous

US.) (c) In all other cases, a model using a polynomial of order 0 is the best fit.

When we look at the difference in the national averages based on a model which fit
a polynomial of order 0 and of order 4, we find for a model based on a fit with order
0, a national average of .29675 with a standard error of .01304. Based on a polynomial
of order 4, we find a national average of .22573 with a standard error of .01265. At
this point we do not elect one of these averages as the correct version. Rather we view
these as giving an idea of a range in which the true national average fits. In fact, for
all of these trends which we find a smoothed version of the estimates we give both the
national average for the fit with a polynomial of order 0 and of order 4. We consider
the averages calculated as representing this range of possible values for the national
average. Ultimately, we will quote the national average based on a polynomial of order

0 fit but here we show both averages to understand the spatial smoothing process.
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Common Trend (7): Expansion Model
order of poly # of par’s mle of log(a) mleof R nllh  AIC/2 BIC/2
0 2 277 .580 164.76 166.76 167.00
1 4 .240 .506 163.30 167.30 173.46
2 7 184 .364 160.40 167.40 176.09
3 11 142 285 158.32 169.32 187.09
4 16 120 .216 157.32 173.32 199.17

Table 5.13: Spatial model results for 7 in expansion case. The table gives the order of

the polynomial and number of parameters in the model, mle of parameters, negative
log likelihood, and the AIC and BIC criterion.

Trends for 7 in expansion model

The results for the spatial analysis for the trend parameter for the annual total rainfall
in the full expansion model are in Table 5.6.3. We find for u(6), we should clearly use
a polynomial of order 0. Again the drop in log likelihood functions from a model with
polynomial of order 0 and of order 4 is not significant. Here we have 2 x (164.76 —
157.32) = 14.88 < x3, o5 = 23.685 . Also, both the AIC and BIC are minimized for a
fit with polynomial of order 0. Based on a fit with order 0 we find a national average

of .56835 with a standard error of .01378.

Note based on a fit with order 4, we find a national average of .47076 with standard
error of .01378. Here the difference in the national average is more substantial but since
the common trend is not ultimately considered the best overall model, this difference

is not considered important.

Spatial analysis for independent model

Note: The above steps in Smith’s (2000) program were also performed for the indepen-
dent version of the estimates for the trend in the annual total rainfall, annual maximum
rainfall, and common trend in the annual total and annual maximum rainfall. The fol-

lowing tables give the results:
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Trend in Total (7y): Independent Model
order of poly # of par’s mle of log(a) mleof R nllh  AIC/2 BIC/2
0 2 295 1.147 175.36 177.36 180.59
1 4 .286 1.144 175.06 179.06 185.52
2 7 279 1.151 174.72 181.72 193.03
3 11 .252 1.070 173.99 184.99 202.76
4 16 .087 910 166.94 182.94 208.79

Table 5.14: Spatial model results for v in independent case. The table gives the order
of the polynomial and number of parameters in the model, mle of parameters, negative
log likelihood, and the AIC and BIC criterion.

Trend in Maximum (3): Independent Model
order of poly # of par’s mle of log(e) mleof R nllh  AIC/2 BIC/2
0 2 135 .668 189.99 191.99 195.22
1 4 .098 .b64 188.19 192.19 198.65
2 7 .030 421 186.42 193.42 204.73
3 11 .001 458 185.47 196.47 214.24
4 16 -.188 .344 178.95 194.95 220.80

Table 5.15: Spatial model results for 8 in independent case. The table gives the order

of the polynomial and number of parameters in the model, mle of parameters, negative
log likelihood, and the AIC and BIC criterion.

Decision for v : From Table 5.6.3, we find the following. For u(6) we should use a
polynomial of order 0. The drop in the log likelihood function is 2 x (175.36 —166.94) =
16.84 < X%4’_05 = 23.685 which is not significant. Also the AIC and BIC are minimized
for polynomial of order 0. Based on a fit with order 0 we find a national average of

73837 with a standard error of .01342.

For comparison, based a model with polynomial of order 4 we find a national average
of .65125 with a standard error of .01342. Note in all the comparisons this is the only
case where the national average of the estimates of the trend in the independent model

are smaller than the expansion model.
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Common Trend (7): Independent Model
order of poly # of par’s mle of log(a) mleof R nllh  AIC/2 BIC/2
0 2 .258 .348 161.64 163.64 166.87
1 4 .236 319 160.29 164.29 170.75
2 7 216 290 158.96 165.96 177.27
3 11 154 230 156.27 167.27 185.04
4 17 152 194 155.86 171.86 197.71

Table 5.16: Spatial model results for 7 in independent case. The table gives the order
of the polynomial and number of parameters in the model, mle of parameters, negative
log likelihood, and the AIC and BIC criterion.

Decision for § : From Table 5.6.3 we make the following decision. For p(6) we should
use a polynomial of order 0. The drop in the log likelihood function is 2 x (189.99 —
178.95) = 22.08 < xi, 5 = 23.685 which is not significant. Again AIC and BIC concur
with the likelihood ratio test. Based on a fit with order 0 we find a national average of

145144 with a standard error of .01304.

To compare with a fit using order 4, we find a national average of .3342 with a

standard error of .01304.

Decision for 7 : Table 5.6.3 contains the results for this case. For u(6#) we should use
a polynomial of order 0. The drop in the log likelihood function is 2x (161.64—155.86) =
11.56 < x74 05 = 23.685. Again, the AIC and BIC criterion agree. Based on a fit with

order 0 we find a national average of .58763 with a standard error of .01414.

To compare with a fit based on a polynomial of order 4 we find a national average

of .51714 with a standard error of .01449.

Not only did the above spatial fit using the Smith (2000) method and program yield
the national averages but the program also produced smoothed estimates of the above

trends across the contiguous US. Using these smoothed estimates we may plot mapped
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Fit with Polynomial of Order 0
T B ol
Independent 0.588 (0.014) | 0.451 (0.013) | 0.738 (0.013)
Expansion 0.568 (0.014) | 0.297 (0.013) | 0.711 (0.013)
Difference: I-E 0.020 0.153 0.027

Table 5.17: National averages of the trend estimates produced by spatial model with
polynomial of order 0. The table gives the national averages for parameter estimates of
7 in model 14 and E4 and the estimates of § and 7 in model I5 and in model E5 with
estimated standard errors in parentheses. Table also gives the difference between the
independent and expansion models for the estimates of 7, 3, and 7.

estimates of these trend estimates. These plots are used in the analysis, see Section

(5.6.4).

National Average Results From the spatial smoothing analysis we construct the
following tables. First, let us denote the national average for the trend in the annual
maximum rainfall series as 3; the national average for the trend in the annual total
rainfall as 7; and the national average for the common trend in the annual maximum
and annual total rainfall series as 7. Table 5.17 gives the national averages for the fit
using a polynomial of order 0 in u(c). Table 5.18 gives the national averages for a fit
using a polynomial of order 4 in p(o). In each table we present the national average
calculated from the estimates of S in model E5 and 15, the estimates of v in model
E5 and 15, and the estimate for the 7 in models E4 and 14. Given the results of the
likelihood ratio test, we narrow the possible models for the trend analysis to E3, E4, or
E5. Given the results of the t-tests, particularly, 8 # 0, we narrow the results further
to model E4 or E5. Here we present the national averages for the estimates in E5 and
E4 to distinguish the “best” model. The independent versions are given for a cross

reference.

Recall we do not take either the national averages based on a polynomial of order
0 or of order 4 as being correct and the other as being wrong. Again, we view the

difference between these national averages as a range in which the national average lie.
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Fit with Polynomial of Order 4
T B ol
Independent 0.517 (0.014) | 0.334 (0.013) | 0.651 (0.013)
Expansion 0.471 (0.014) | 0.226 (0.013) | 0.671 (0.013)
Difference: I-E 0.046 0.108 -0.020

Table 5.18: National averages of the trend estimates produced by spatial model with
polynomial of order 4. The table gives the national averages for parameter estimates of
7 in model 14 and E4 and the estimates of § and 7 in model I5 and in model E5 with
estimated standard errors in parentheses. Table also gives the difference between the
independent and expansion models for the estimates of 7, 3, and 7.

First we note that in all the cases the averages based on a polynomial of order 0 are
higher than the corresponding averages based on order 4. The spatial model based
on order 4 tends to smooth out the estimates, in particular, extending the negative
regions. Also the spatial model using order 0 always produces national averages for
the expansion models which are lower than the independent models. In the spatial
model using order 4 the average common trend in expansion model E4 is less — not
significantly less — than the average for the common trend in the independent I4. In
further discussion we will quote results based on the spatial model using a polynomial
of order 0 but the conclusions are equivalent for the results using a polynomial of order

4.

We conclude the following from the national averages for the estimates in E4 and E5.
Clearly by comparing the national averages to their standard errors, at a national level
the trend in the annual total rainfall is significantly positive: 7 = 0.711 (0.013). This
concurs with both the likelihood ratio test and the t-tests. Also concurrent with both
types of tests, we have at a national level the common trend is significantly positive:
7 = 0.568 (0.014). Now one of the most important results from these averages is that
at a national level the trend in the annual maximum rainfall is significantly positive:
B = 0.296 (0.013). This reinforces the t-test results (as opposed to the likelihood ratio

tests) that the appropriate model for the annual rainfall must have a parameter that

models, in some way, the trend in the annual maximum — either E4 or E5.
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There are two more important conclusions that can be drawn from these national
averages. The first is that at a national level 7 # 3. For example, a t-test for H, : 7 = 3
vs H, : 7 # j3 gives a test statistic of 22.186 — overwhelmingly significant. In fact, we
see the national average for the trend in the annual total is more than twice the national
average for the trend in the annual maximum. This again gives evidence that the most
appropriate model is E5 which contains a separate parameter for both the trend in the
annual maximum rainfall and the trend in the annual total rainfall. Second is that
the national average for the common trend 7 is ”closer” to the national average for
the trend in the annual total. The difference between 7 and 7 is 0.143. The difference
between 7 and S is 0.271. This supports the previous conclusions from the tests that

the trend in the annual total rainfall dominate the common trend.

Finally, a quick comparison between the expansion and independent models. We see
the national averages for the estimates of the trend in the annual total rainfall 7 and for
the common trend 7 there is no real difference between the results in the expansion and
independent models. This is not the case for the national averages for the trend in the
annual maximum rainfall 3. The national average based on model E5 is substantially
and significantly (test statistic 8.32) less than the national average based on model I5.
In fact, the national average for the model E5 is roughly a third smaller. This bears
out the results in the likelihood tests that for the trend in the annual maximum rainfall

using the expansion model does impact the analysis.

In conclusion from the national averages produced by the spatial method

1. The national average of the trend in the annual total rainfall is significantly pos-

itive: 0.711 (0.013).

2. The national average of the trend in the annual maximum rainfall is significantly

positive: 0.296 (0.013).

3. The national average for the common trend is significantly positive and is domi-

nated by the trend in the annual total rainfall: 0.568 (0.014).
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4. The national average of the trend in the annual maximum rainfall does not equal

the national average of the trend in the annual total rainfall: 3 # 7.

5. There is a significant difference between the expansion model and the independent
model with respect to the national average for the trend of the annual maximum.
The expansion model produces a smaller estimate for this national average. This
difference is not seen in the national averages for the annual total rainfall or the
common trend. Note this difference between the expansion and the independent
model with regard to the trend in the annual maximum rainfall also is seen in the

likelihood ratio test results, although to a much lesser extent.

Conclusion of Model Analysis

What emerges from the results in the likelihood ratio tests, the t-tests, and the
national averages is a clear yet more subtle view of the relationship between the trend
of the annual maximum and annual total rainfall. We look back to the questions raised

in Section 5.6.3.

For Q1 (question 1) We find that there is substantial evidence that both the trend
in the annual total and annual maximum rainfall are overall significantly positive.
This is well established for the trend in the annual total rainfall: the models in
the likelihood ratio tests that have the highest percentage of significance are those
which include a parameter for the trend in the annual total rainfall; the t-tests
for v that detect significance from 0 are those in the positive range; finally, the
national average is significantly positive. This conclusion of significant evidence
for the trend in the annual maximum rainfall is more ambiguous: the likelihood
ratio tests are non-significant for models with (just) a trend in the annual maxi-
mum; the t-test have a considerable percentage of significant positive trends but
also a distinct percentage of significant negative trends; the national average is
significantly positive but not as high as the national average in the annual total

rainfall.
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For Q2 The trend in the annual total rainfall is more dominant both in terms of
significant evidence and magnitude. In the likelihood ratio tests and the t-tests,
more stations are significant for models which contain a parameter for the trend
of the annual total than one which contain a parameter for the trend in the annual
maximum. The national average for v in E5 is 0.711 which is much larger than
the national average for 8 in E5 which is 0.297. This does not mean that the

trend in the annual maximum rainfall should be disregarded.

For Q3 There is sufficient evidence to conclude that introducing a common trend pa-
rameter into the model is significant and that trend is positive: the likelihood
ratio tests have a substantial percentage of significant outcomes, the t-tests have
a substantial percentage of significant positive test statistics, and the national
average is significantly positive. What is less conclusive is whether a model which
differentiates between the trend in the annual maximum and the trend in the
annual total is a better model? The likelihood ratio test results would indicate
that the model should not distinguish between the trend in the annual maximum
and the trend in the annual total rainfall. Those results differ from the results
of the t-tests and the national averages. The t-test results indicate that the ma-
jority of the estimates for the trend in the annual maximum is positive (60%).
In fact, the percentage of significant positive trends is substantially higher than
expected if there was no trend in the annual maximum. There is also a number of
significant negative trends. Overall the national average is significantly positive.
In comparing the estimates of the trends in the annual maximum and annual to-
tal rainfall, we see see fewer significant positive trends (test statistics over 2) and
more significant negative trends (test statistics under -2) for the annual maximum
as opposed to the annual total. This is evident in the national averages where the
average annual total rainfall [0.711(0.013)] is twice as large as the average for the
annual maximum rainfall [0.297 (0.013)]. We conclude the trends in the annual
maximum and the annual total are different — both in level of significance and

magnitude. The trend in the annual total rainfall is higher for both criteria. We
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conclude that the trends are not the same and we should model them differently.

For Q4 The expansion model which contains a separate parameter for the trend in the
annual maximum and the annual total rainfall is the model E5 (5 # 0, # 0).
Based on the discussions for the above questions (Q1-Q3), we claim this is the
most appropriate model for the annual rainfall series with respect to modeling the

trends in the annual maximum and annual total rainfall for the contiguous US.

5.6.4 Applying the Results of the Data Analysis

At the National Level

Obviously the best way to look at the trend in the annual maximum and annual
total rainfall at the national level is by looking at the national averages of those trends:
B and 7. Having decided the full expansion model E5 which has a separate parameter
for both the trends is the “best” fit, we find that over the past century the annual

maximum rainfall has increased by

.297

eioon (190) = 9297 — 1 030 or 3.0%.

The annual total rainfall has increased by

711

eiood(190) = 0711 — 1 074 or 7.4%.

This means the annual total rainfall is increasing more than twice the rate of the

annual maximum rainfall.

In comparison, the independent model 15 gives rates of 4.6% and 7.7%, respectively,
for estimate of the trend in the annual maximum and annual total rainfall. Recall from
the beginning descriptive statistics that the least squares estimates for the trends for
the average annual maximum and average annual total rainfall across the stations were

6.5% and 8.5%, respectively.
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Again we see that the expansion model and the independent models give very similar
results for the trend in the annual total rainfall — around a 7.5% increase. We also see
that the least squares estimates results — although an entirely different approach and
methodology — is also very close to the other results for the annual total. Clearly the

annual total rainfall in the contiguous US is increasing and the rate is somewhere near

7.5%.

As for the trend in the annual maximum rainfall, we see results that are substantially
different from the expansion model to the independent model and certainly from the
results based on the summary statistics. The independent model gives an estimate of
this increase 50% higher than the expansion case. The summary statistics method —
least squares fit — gives a result over 100% higher than the expansion model. Although
the estimates of this increase differ from model to model, each is significantly positive;
thus, we conclude the annual maximum rainfall at the national level is increasing. We
can see for all the models that this increase is less than the increase for the annual total

rainfall.

At the Regional Level

To see how the 187 station estimate of the trends in the above model vary across
the US, we produce mapped estimates of these trends — both 5 and v — from the full

expansion model E5.

Using the “best” spatial model from the previous section which used a polynomial
of order 0 in the mean of the Gaussian random field, a standard kriging procedure
interpolates these 187 stations estimates to a 100 x 100 grid which covers the entire
continental US. Due to the fact the US is not a rectangle, there are actually 6319 sites

estimated in this procedure.

An important part of this spatial procedure is that the 6319 estimates produced

have been smoothed. This smoothing procedure extends to the original 187 individual
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stations. The diversity of the 187 individual stations sites is dampened due to the
spatial model which is now incorporated. These smoothed estimates tend to be more
consistent and thus have a smaller variance. For example, the original estimates of
from model E5 for the 187 stations range from -5.10 to 5.11 with a mean of .261 and
standard deviation 1.50. For the original 187 estimates of 7 in E5, the range is -6.51 to
11.47 with a mean of .701 and standard deviation of 1.64. The 6319 smoothed estimates
for 8 have a range of -1.91 to 2.34 with a mean of .297 and standard deviation of .374.
The 6319 smoothed estimates for v have a range of -2.73 to 2.74 with a mean of .711
and standard deviation of .481. From these summary statistics, we see the estimates for
the trend in the annual maximum tend to be more consistent, with a smaller range and
less variability, than the smoothed estimates of the trend in the annual total rainfall.

We see more variance in the annual total trend estimates.

These smoothed estimates were then entered into an S-Plus program to produce the
graphs. The graphs were constructed by sorting the trend estimates into nine colors
using a linear transformation. The scales of the graphs for the smoothed estimates of 8
and v were made consistent so that we could make direct comparisons between the two
graphs. Note due to the large range in the four smallest smoothed estimates of v, these
four estimates were Winsorized (to -2) before being inputted into the S-Plus program.
The mapped Winsorized smoothed estimates of 8 and « are shown in Figure 5.12 (a)
and (b) respectively.

To interpret these graphs, particularly in differentiating between colors on these
graphs, we look at the standard errors associated with these 6319 Winsorized smoothed
trend estimates of 8 and . For the smoothed estimates of 3, the average of these 6319
standard error is 1.05. For the 7 case, the average of these 6319 standard errors is 1.02.
If we look at the legend associated with these graphs, the range of these nine colors is
4.7445 so that the range between any of the two adjacent colors is 0.527. We see first that
the negative estimates are associated with colors purple down to black. The positive

estimates are associated with the colors magenta up to white. We also see to declare
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any significance between colors we need them to be separated by 3 almost 4 shades.
For example, we could infer that the black regions are significantly different from the
purple, certainly the magenta or lighter colors. The true yellow region is significantly
higher than the magenta, certainly the purple region. The hardest to decipher and most
important color comparison is the blue to magenta colors. Each is not far enough away
from the border of purple/magenta which is roughly the break between the negative and
positive estimates to declare significantly different from 0. But the question is are they
significantly different from one another? The estimates at the center of the two blue
zones are around -.92. The estimates at the center of the two magenta zones are around
0.66. The distance between these centers is thus 1.58 — near significance. Roughly we
can infer that the colors are far enough away from each other to indicate a difference in
these trends (negative/positive) but that this difference is not overwhelming. In other
words, each color is not significantly different from the next color, but across the whole
range of colors, it is significant. In fact, the lowest level (black) is significantly different
from the mid-level (magenta) which is significantly different from the highest estimates

(yellow).

We can draw some basic conclusions. First is that for both the estimates of 5 and 1,
the graphs display more positive than negative estimates — strengthening our conclusion
that these trends are overall positive. Second is that the estimates for  are higher than
the estimates for 5. The estimates for 5 are negative for a larger percentage of the
country. For the estimates of 7, there are only a few patches of negative estimates
and more importantly a higher percentage of very positive (yellow) estimates. This
also shows the estimates of 7 have a larger range than the estimates of 5. Clearly
the estimates of the trend in the annual total rainfall are higher than in the annual

maximum rainfall.

Due to the somewhat inconclusive distinction between the magenta and blue zones,
interpreting within the graphs is more problematic, particularly for the estimates of 5.

Although there are sporadic patches of blue in the mountain region, the upper midwest,
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the mid-atlantic states and southern Florida, the only concentrated regions of negative
estimates of the trend in the annual maximum rainfall (blue) are in the northwest coast
and the Missouri/Mississippi area. Also there are no extremely high estimates of
(yellow) except for a handful of isolated sites. Again we reiterate that the estimates
of 3 tend to be more consistent throughout the US. The few significant differences we
see tend to be more local as opposed to fitting into any regions — particularly the five

regions defined previously.

At first the estimates of v look more consistent throughout the country than esti-
mates of 8 — mostly positive (magenta). On closer inspection, we see more levels in
this graph than in the one for 5. Given that the difference between the yellow and the
magenta is roughly 2.00 in the magnitude of the estimates (recall the average standard
error is around 1.00), these colors are more significantly different than the blue to ma-
genta — the main comparison in the # graph. The west coast and the mountain region
is the most active — certainly a number of areas of very high estimates of v (yellow)
within very close proximity to areas with low to very low estimates of v (black/blue).
East of the Rockies, the estimates of v tend to be uniform except for a cluster of very
high estimates (yellow) in upper Mississippi and a cluster of somewhat negative esti-
mates (blue) in the mid-atlantic states. In other words for the estimates of - there
are numerous pockets of very different trends — significantly negative and significantly
positive estimates within 250 miles of each other — which make the estimates of 7 less
consistent than the estimates of 3. This does not imply there are significant regional
differences with respect to the estimates of . Again these differences tend to be more

local than any regional classification.

Finally, we make some observations of the difference between the estimates of 5 and
v. Again we caution on emphasizing these observations based on the color differences
since we lack an exact criterion for differentiating between these colors. Having said
that, there are two interesting pieces to note. The first is that every pocket of blue in

figure (5.12)(b) for v corresponds to a blue zone in figure (5.12) (a) for 8. In other
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words, if a region has a decreasing trend in the annual total rainfall, we see a decreasing
trend in the annual maximum rainfall. This does not work the other way. There
are regions where the trend in the annual maximum is not increasing but the trend
in the annual total rainfall is increasing. The biggest difference between the trends
in the annual maximum and the annual total rainfall is our second comment. Look
at the region around Missouri/Louisiana to Alabama. For the trend in the annual
maximum, this area is blue, indicating a region where the trend is decreasing. For
the trend in the annual total rainfall, this area is magenta to bright yellow, indicating
significantly increasing trends. Over the past century this region is less likely to see a
very heavy rainfall but overall to see more rain throughout the year. Due to the lack of
overall significantly regional differences in either the estimates of 3 or 7y, depicting any

significant difference between the graphs is not necessarily reliable.

Clearly there is no visual confirmation to the five regions previously defined in
Section 5.3. Not only are both the estimates for § and ~ roughly uniform throughout
the country but any exceptions are in local spots throughout the US. To confirm this,
x? tests between the five regions were performed on the results of the likelihood ratio
tests for the expansion models, see Table 5.9. The x? tests looked for significant regional
differences between the results. None of the tests was significant. The smallest p-value
was 0.16. This was associated with the test T4 — the significance of adding a second
trend parameter above the common trend parameter into the model. Region 2 — the
mountains — shows the highest percentage of stations which significantly differentiate
between [ and 7. Note in Figure 5.12(b) for v we see many pockets of yellow and even
black compared to Figure 5.12(a) which is uniform for the mountain region. Region 3 —
the plains — has the smallest percentage of stations which differentiate between the two
trends. Note in both Figures 5.12(a) and 5.12(b) that this region is mostly magenta —

positive estimates.
In conclusion, at a regional level,

1. The range of Winsorized smoothed estimates mapped in figures 5.12(a) and 5.12(b)
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is -2 to 2.74 with an average standard error near 1.00. This implies making any
declaration of significant difference based on the different colors in the graphs
should be done cautiously. This does not mean that the different colors represent
statistical noise. We do need 3 or 4 shades between the colors though, before we

infer the estimates as being significantly different.

. Overall the estimates for v — the trend in the annual total rainfall — tend to be

higher than the estimates for § — the trend in the annual maximum rainfall.
. The estimates of § tend to be more consistent throughout the country.

. The estimates of v show more variability within closer proximity, particularly in

the western third of the country.

. Neither the estimates of S nor v show any significant regional differences. Each
displays pockets where the estimates are different from neighboring spots — more
for the estimates of v — but these pockets tend to be more local than any sweeping

regions.

. This lack of visual differentiation into regions is consistent with the lack of any
significant difference in the regions with respect to the x? tests performed on the

likelihood ratio test results.

. The best interpretation of these trends is either (1) to ignore the batches of vari-
ability and focus on the national level or (2) to find a better definition for a local

average.

At the Local Level

Given the results of the trend analysis, we go back to the five individual stations

we have highlighted to see how these results fit at the individual station level. To

understand the differences between these stations, we look at the results of the analysis

for the individual stations themselves in Table 5.19.
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IndT1 (B#0) IndT2(y#0) ExpT3(r#0) ExpT4(B+#7)
Berkeley, CA 5.46 (4.63) 3.77 (2.16) 4.18 (4.75) 5.11, 3.25 (.44)
Caldwell, ID -.71 (.14) 1.76 (1.66) 1.14 (.87) -.78,1.87 (2.15)
Le Mars, IA .19 (.01) -.28 (.05) -.32 (.09) .20, -.41 (.12)
Eastport, ME 3.71 (6.07) 2.62 (6.98) 2.84 (11.00)  3.36, 2.66 (.33)
Savannah, GA 71 (.12) 1.63 (2.45) 1.63 (2.77) 48, 1.70 (.55)

Table 5.19: Some individual station results for the trend estimates and their associated
likelihood ratio tests. The table gives the station and the parameter estimates of the
trends with the difference in the log likelihood functions for the given tests in paren-
thesis. Recall significance when the difference in log likelihood functions greater than
1.92

In Table 5.19 we see that Berkeley and Eastport are similar: Both have v and
[ significant in the independent models, common trend significant for the expansion
model but not significant for the additional parameter estimate. Savannah has just
v significant in the independent model and just the common trend significant in the
expansion models. Caldwell has just v almost significant but not a significant common
trend but significant separate trends for the expansion models. Le Mars has nothing
significant. Note that Le Mars has a negative estimate of v and Caldwell has a negative

estimate of 8 although neither is significant.

If we go back to Figures 5.7 and 5.8, we now focus on the trends that were fit: the
separate trends in model E5 on an individual basis, the separate trends in model E5 on

a national average level.

We see that the national average for 5 and 7 in the expansion model E5 is acceptable.
Acceptable means that the trend lies within the observations and does not visually
contradict the fit except for the estimate of § and 7 in Eastport and the estimate of
B in Berkeley. Note that these estimates at the individual station level are very high
compared to other stations and the national average. Certainly for the stations whose
estimates are significantly higher than the national average, the station results obviously

fit better.
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The benefit of the national average is in the stations whose parameter estimates are

not significant at the individual station level. For example, look at the following:

Caldwell The estimate of 5 has an individual station estimate which is not significant

and slightly negative but the national average is not visually too far off and
significant. Thus adding the information from the rest of the country helps in this

case.

Le Mars The estimate of 8 which is not significant is essentially the same as the

national average which is significant. The estimate of v which was not significant

and negative is not so different from the national average of ~.

Savannah The estimate of § follows the national average closely and with the addi-

tional information from the rest of the US is now significant.

In conclusion at the local level,

1.

For the pockets of stations where § and 7 are very different from the national
average, certainly the individual station parameter estimates fit the data more

closely and display a larger trend.

Except for the stations which are extremely different from the national average,

these national averages of v and 8 do a credible job with the trends.

. The national average for 8 does a better job than for «. This is because the

estimates for 8 are more compact; that is, there is less fluctuation between the
largest and the smallest of the estimates of these trends across the US and thus
the national average is closer to the individual station results. Thus the national

average has more meaning at the individual station level.

Since the estimates of v have a greater range between the largest and the smallest
estimates throughout the country, the national average for v has less meaning at
the individual station level and reveals a need to solve correctly for a more local

averaging of these 7s.
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5.7 Comparison of Results to Other Findings

Smith (1999) found a 4.2% increase in the annual maximum precipitation across
the US from 1951 to 1996. We found a 3.0% increase across the US from 1901 to 1997.
Note our independent model estimated this increase in the annual maximum at 4.6%
— comparable to Smith (1999). Thus we see the influence of adding information on the
annual total rainfall is a decrease in the estimate of the trend in the annual maximum.
Currently, there is no explanation as to why our result concerning the increase in the
annual maximum rainfall is so different from Smith (1999) but recall it is this estimate

which has conflicting evidence as to its significance.

Karl and Knight (1998) found a 10% increase in annual total rainfall across the
US from 1901 to 1997. We found only a 7.4% increase. In both the expansion and
independent cases, our models produce a smaller estimate than Karl and Knight (1998).
Since the model used in Karl and Knight (1998) is completely a different model, the
difference between the increase in the annual total rainfall is understandable. Recall
from Chapter 1, Findlay et al. (1994) and Letternaier et al. (1994) found a 5% increase
in annual precipitation. In other words, our estimate comes out in between the 5% and

10% others are finding.

As to the hypothesis of Karl and Knight (1998) that the increase in the extremes
are driving the increase in the totals, we found that there is less evidence of a significant
increase in annual maximum rainfall and this increase is significantly smaller than the
increase in annual total rainfall. Finally, although the hypothesis of Karl and Knight
(1998) suggests that the trend in the annual maximum rainfall should be driving the
trend in the annual total rainfall; that is, 5 should be increasing at least at the same
magnitude as 7, we do not see this. These two rates are different, implying the change

in the annual rainfall distribution is more complex than a shift in the distribution.

For regional differences, Smith (1999) found no regional differences for the trend in

the annual maxima. Karl and Knight (1998) found no significant regional differences
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in upper percentiles of the rainfall distribution except for the far west and Southeast.
Our findings here are consistent with their results. We find no significant regional
differences with respect to the percentage of significant trends in either the annual
maximum or annual total rainfall series. Further from the mapped estimates, we see
that the estimates of 5 are more uniform across the US except for the Northwest and
possibly the Southeast. As to the trends in the annual total rainfall, we see more
variability across the US but the different levels of the estimates do not fall into the
regions as defined in this chapter, or in Smith (1999), or Karl and Knight (1998).

237



max

max

max

Figure 5.6: The annual total rainfall to annual maximum rainfall for stations:

Annual Max precipitation to Annual total precipitation

700
600
500
400 H
300
200 - RS :
-~ ’.
L %
100 * .
T T T T
1000 2000 3000 4000
total
(a) Region 1: Berkeley, CA (#40693)

Annual Max precipitation to Annual total precipitation
800
600
400 H

.
200 4 - . N R
T T T T T T
1500 2000 2500 3000 3500 4000
total
(c) Region 3: Le Mars, IA

Annual Max precipitation to Annual total precipitation
800 —
600 -
400 .t

.
w5,
200 IS
T T T T T
2000 3000 4000 5000 6000 7000

total
(e) Region 5: Savannah, GA (97847)

max

max

250

200

150

100

50

400

300

200

100

Annual Max precipitation to Annual total precipitation

1000 1500

total
(b) Region 2: Caldwell, ID (101380)

Annual Max precipitation to Annual total precipitation

3000 4000 5000 6000
total

(d) Region 4: Eastport, ME

(a)

Berkeley, CA (b) Caldwell, ID (c¢) Le Mars, IA (d) Eastport, ME (e) Savannah, GE.
The units are in hundredth of an inch.

238



600

500

max

400

200

100

600

max

400

200

1200

1000

800

max

600

400

200

Figure 5.7: The annual maximum rainfall for the years of record in stations: (a) Berke-
ley, CA (b) Caldwell, ID (c) Le Mars, IA (d) Eastport, ME (e) Savannah, GE. The
units are in hundredth of an inch. The lines fit are (1) the individual station estimate
of the trend from the full expansion model and (2) the national average based on the

Annual Max Precipitation: Region 1

Annual Max Precipitation

N 250
rrrrrrr station -------  station
— — - separate national — — - separate national
200
| % 150
£
] 100
i T e et Lt et ind o e — T — e —
B T 50 - c o . . .
T T T T T T T T T T
1920 1940 1960 1980 2000 1920 1940 1960 1980 2000
(a) Region 1: BiMSley, CA (40693) (b) Region 2: ci&ell, 1D (101380)
Annual Max Precipitation Annual Max Precipitation
400
4 station
—————— station — — - separate national
— — - separate national
i 300
3
£
T 200 *
° it e Al it
P, SN S Y S P
. e, .. * ..' . c 100 -
T T T T T T T T T T T T
1900 1920 1940 1960 1980 2000 1900 1920 1940 1960 1980 2000
(¢) Region 3: L&MRars, 1A (134735) (d) Region 4: E&MSort, ME (172426)
Annual Max Precipitation
rrrrrrr station
— — - separate national
" .r i i S e S
T T T T T T
1900 1920 1940 1960 1980 2000

(e) Region 5: Andersor&!rg%uth Carolina (#380165)

trend estimates from the full expansion model.

239



Annual total precipitation: Region 1 Annual total precipitation

—————— station
4000 — — - separate national . 1500 —
3000 4 - : R . . . . - e
g F1000 4 [fe o lelee L I
2000 4 e T L et e —— -
1000 | oL ° . . 500 -
"""" station
— — - separate national
T T T T T T T T T T
1920 1940 1960 1980 2000 1920 1940 1960 1980 2000
(a) Region 1: B8R8ley, CA (40693) (b) Region 2: ci&ell, 1D (101380)
Annual total precipitation Annual total precipitation
4000
""""" station
— — - separate national . 6000 - -
3500 - . station ‘
— — - separate national ..
3000 ~ 5000
s IR S =
] mm LT . e
2500 .. 4000 4 . . Ceeaes
. I A it - T T
2000
3000
1500
T T T T T T T T T T T T
1900 1920 1940 1960 1980 2000 1900 1920 1940 1960 1980 2000
(¢) Region 3: L&MRars, 1A (134735) (d) Region 4: E&MSort, ME (172426)
Annual total precipitation
7000
6000
=
<] FRIN e . . .
5000 4 | . LI T T
4000
3000
—————— station

— — - separate national

T T T
1900 1920 1940

(e) Region 5: Andersor&!rg%uth Carolina (#380165)

Figure 5.8: The annual total rainfall for the years of record in stations: (a) Berkeley,
CA (b) Caldwell, ID (c) Le Mars, IA (d) Eastport, ME (e) Savannah, GE. The units
are in hundredth of an inch. The lines fit are (1) the individual station estimate of the
trend from the full expansion model and (2) the national average based on the trend
estimates from the full expansion model.

240



Gumbel plot

3000 —

2500

2000

1500 -

1000

500

T T T
0 2 4

(a) Albany, Texas

Gumbel plot

1000

800

600

400 —

200

T T T
0 2 4

(c) Princeton, Indiana

Gumbel plot

1200
1000
800
600
400

200 - , oo

(e) St. Leo, Florida

Figure 5.9: Gumbel plots for stations: (a) Albany, Texas (b) Big Timber,Montana (c)
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North Carolina.
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Figure 5.10: Quantile plots for stations: (a) Goldsboro, North Carolina (b) Ojai, Cali-
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Leo, Florida.
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(a.) Beta in ES

(b.) Gamma in E5

Figure 5.12: Mapped estimates for (a.) 8 and (b.) v in model E5. Note color scale is
consistent for both 3 and +y estimates. The four smallest estimates of v were Winsorized
so as to give a more informative graph.
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