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Abstract

We present a suite of Bayesian hierarchical models that synthesize ensembles of climate
model simulations, with the aim of reconciling different future projections of climate change,
while characterizing their uncertainty in a rigorous fashion. Posterior distributions of future
temperature and/or precipitation changes at regional scales are obtained, accounting for many
peculiar data characteristics, like systematic biases, model-specific precisions, region-specific
effects, changes in trend with increasing rates of greenhouse gas emissions. We expand on
many important issues characterizing model experiments and their collection into multi-model
ensembles. Also, we address the need of impact research, by proposing posterior predictive
distributions as a representation of probabilistic projections. In addition, the calculation of the
posterior predictive distribution for a new set of model data allows a rigorous cross-validation
approach to confirm the reasonableness of our Bayesian model assumptions.
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1 Climate change and human influences, the current state
and future scenarios

There is substantial consensus on many aspects of climate change. It is already with us; we
have a large responsibility in many facets of it; and future changes in the absence of significant
curbing of greenhouse gas emissions are going to be much more dramatic than what is already
experienced, with consequences that will be predominantly detrimental to social and natural
systems. Adaptation and mitigation decisions need however detailed information about the re-
ality and the future of climate change, and more often than not at regional, rather than global
mean scales. To produce this information, deterministic numerical models are run under differ-
ent hypothetical scenarios corresponding to alternative greenhouse gas emission pathways into
the future. These extremely complex computer models discretize the surface of the Earth, the
depths of the oceans and the layers of the atmosphere into regularly spaced grid boxes. Compu-
tations through differential equations provide the evolution of a high dimensional state vector
representing climate variables, by applying our understanding of climate dynamics and climate
interacting processes over land, water, air and sea ice (Washington and Parkinson, 2005). With
the evolution of science and technology, more and more processes at increasingly finer scales
can be represented explicitly in these simulations, but there still remains the need for approxi-
mations, for those processes that act at scales not explicitly represented. It is in these approxi-
mations that the source of large uncertainties resides.

1.1 Many climate models, all of them right, all of them wrong

Because of the complexities and high dimensional nature of global climate simulations, many
alternative solutions to the representation and parameterization of processes are consistent with
the state of our scientific understanding. Thus, different models approach the simulation of
climate over the Earth with different strategies. It may be as basic as the choice of the resolution
used to discretize the globe in its three dimensions (which also affects the time step of the finite
difference equations). This choice has important consequences on the range of processes that
can be directly simulated and those that have to be represented by parameterization of the
sub-grid scales1. Of course there are less basic choices, like the processes that are included,
independently of the computing limitation: is an interactive carbon cycle present? Is vegetation
changing with climate? Are urban areas and their effect on climate represented? Even for
a given resolution and a given set of processes, the actual computation of the time-evolving
series of quantities that make up the climate system may differ because of different values in
exogenous parameters of the equations (usually estimated by studying the individual processes
in the field) or of different numerical solvers adopted.

Within this large population of model configurations we are hard pressed to find first and
second class citizens. There are more than a dozen global climate models (many of which run
at different resolutions) which are comparable in terms of overall performance, when validated
against the observed record and paleo-climate proxy records. Of course some models are better
than others for a given set of metrics (average temperature over North America, precipitation
in the monsoon region, the frequency and intensity of the El Niño Southern Oscillation phe-
nomenon) but for any set of ”better than average models” a different set of metrics can be
found for which those models will underperform compared to a different set (Gleckler et al.,
2007).

Thanks to international efforts like the Intergovernmental Panel on Climate Change periodic
assessment reports, the last of which was published in 2007 (IPCC, 2007), modeling centers
participate in concerted sets of experiments, running their models under standardized scenar-
ios of external forcings. These are standard greenhouse gas concentration pathways, derived

1Parameterization is performed by estimating the relation between the large scale, resolved processes and the small
scale, unrepresented processes that happen within a model grid box. Observational or experimental studies provide the
basis for the estimation of the parameters that govern the interaction between them. Uncertainties in observations and
in the relations themselves are at the source of the uncertainties in parameterizations, causing a range of values for these
parameters to be consistent with their function, but at the same time causing sugnificant differences in the evolution of
quantities in the model integrations.



after scientists devised a set of alternative, but equally plausible, future story-lines about the
social, political, technological and economic future of our world. From these story lines con-
sequences in terms of greenhouse gases and other pollutants’ emissions were derived using
economic integrated modeling. For different families of scenarios (varying from a future of fast
technological progress and international collaboration to one of slower integration and fossil-
fuel-intensive economies) very different trajectories of greenhouse gas rates of emissions over
this century and beyond are specified. These scenarios of greenhouse gas emissions, known as
SRES scenarios (Nakicenovic, 2000), have been used by climate modelers as external inputs to
run simulations of alternative climate scenarios in the future. By the second half of this cen-
tury, different emission scenarios cause significantly different climate outcomes, starting from
global average temperature change but riverberating in all aspects of Earth’s climate. By the end
of this century, the uncertainty across scenarios of greenhouse gas increases is larger than the
inter-model differences under a specific scenario. However, the climate community feels it inap-
propriate to attach probabilities to different emission pathways, and we are left with performing
our uncertainty analyses conditionally on a given SRES scenario.

After running model experiments under alternative SRES scenarios, the modeling centers
are contributing the resulting simulations’ output into open access archives. These collections
of model simulations have been labelled ensembles of opportunity, i.e., multiple models’ collec-
tions that are not the result of a statistically designed experiment or random sampling from a
population of models, but a post facto collection of what is available, thanks to the voluntary and
self-selecting participation of the world’s largest and most advanced research centers. The most
recent and largest archive of such data sets is maintained by the Program for Climate Model
Diagnosis and Intercomparison (PCMDI) at Lawrence Livermore National Laboratory (LLNL),
and can be found at http://www-pcmdi.llnl.gov/ipcc/about ipcc.php

1.2 Goals and challenges of analyzing ensembles of opportunity

The most direct way to obtain regionally detailed future projections is to process the output of
global climate models and determine statistics of the regional climate variables of interest. De-
termining which model to trust above all others is a daunting task, and one defensible strategy
is to utilize all that are available, synthesizing the projections and their uncertainty through a
rigorous statistical analysis. This will provide optimal estimates of the changes in store, and
will quantify their uncertainty, conditionally on the available information. This kind of repre-
sentation is of great value to decision makers and stakeholders, notwithstanding the need of
communicating the underlying limitations of our current understanding and working hypothe-
ses as embodied by these models, and the assumptions that are at the basis of any statistical
representation of the data. Bayesian statistics has a natural advantage in this particular setting,
not only because we are dealing with uncertain events that are not easily framed in a frequentist
perspective, but more fundamentally because of its natural framework for incorporating expert
judgement, and updating current assessment with the in-flow of additional pieces of informa-
tion. There are great challenges underlying any statistical analysis of such multi-model ensem-
bles (Tebaldi and Knutti, 2007). They stem from the non-systematic and conversely non-random
nature of the sampling of models, which hampers a full representation of the uncertainties at
stake; from the dependence among the models in the ensemble, some sharing components,
some sharing even their full name, when the same modeling center contributes output from
runs at different resolutions; from the lack of a theory linking model performance for current
climate, that we can measure and validate, to model reliability for future projections. A particu-
lar difficulty is the impossibility of verifying models’ future projections, which sets this problem
well apart from weather forecasting, where feedback about the performance of the model can
be as immediate as six hours after the forecast is issued.

All these challenges stand in the way of a robust representation of climate change projec-
tions, especially at regional scales and especially for variables other than temperature, which
is relatively easier to model because of its smoothness. We are using ”robust” here in a more
generic sense than is usually understood by the phrase Bayesian robustness, though the latter
may also be worth exploring in our setting. Climate scientists, hydrologists and agricultural
modelers – among others – are often interested in studying the impacts of climate change and
of adaptation measures. The traditional scientists’ approach is through scenarios, where alter-



native futures used to span a range of outcomes are fed through impact models. In contrast with
this approach, we argue for a rigorous uncertainty analysis via Bayesian statistics. In fact much
of the impact research efforts are veering towards full probabilistic analysis, and probabilistic
projection of climate change constitute their stepping stone(Tebaldi and Lobell, 2008). We think
it is fair to say that the area is still in a phase of methodological development. We hope that
this chapter will offer enough motivation, and open up enough interesting research directions
to invite fresh perspectives to this important application of statistical analysis.

2 A world of data. Actually, make that ’many worlds’

The most up to date archive of a multimodel ensemble, hosted by PCMDI at LLNL, contains over
35 terabytes of data. It collects output from 23 models, run under a range of SRES emission
scenarios. Scores of variables constitute the output of a climate model simulation, as familiar
as temperature and precipitation or as esoteric as the mass of water that evaporates over an ice
sheet, or metrics of ocean overturning. Many of the variables are archived as daily or monthly
means, some are 6-hourly, some are yearly averages. The potential for statistical analysis of
model output is practically infinite, when we consider that these quantities are produced at
each point of grids that discretize the entire Earth surface, and at many layers in the atmo-
sphere and oceans. The median resolution of the climate models in the PCMDI archive is about
2.75 degrees in latitude/longitude, making the standard grid output for each variable and each
time step, when vectorized, 8,192 components in length. A typical climate change experiment
consists of a simulation that starts from conditions describing the state of the system at a pre-
industrial time, chosen often by convention as 1870, and run with only external forcing imposed,
otherwise in a self consistent and isolated manner, until year 2100. External forcings are meant
to represent changing greenhouse gas concentrations over time, aerosols, volcano eruptions and
solar cycles. The system evolves (at a few minutes time step) according to the laws of physics
known to govern climate dynamics. To the extent permitted by their resolution, climate models
represent coastlines and topography, and they impose vegetation types, often evolving along
the simulation timeline, in order to represent urbanization, deforestation, switches from natural
vegetation to crop growing areas and vice versa. Even for a given experiment (i.e., a given SRES
scenario of external forcings) a model is run for a handful of slightly different initial conditions.
The trajectories of the members of these single model ensembles give a handle on the character-
ization of natural internal variability of the system, generated by the intrinsically chaotic nature
of weather and, in the long run, climate processes. For an analysis of climate change, its signal
has to be isolated and extracted from the background noise of natural variability by averaging
the members of the initial-conditions ensemble, and by considering differences between two at
least 20-year averages, usually. The idea is that there is initial condition uncertainty to take
care of, and there are low frequency natural modes of variability (decadal oscillations and other
phenomena like the alternating phases of El Niño/La Niña conditions in the Pacific) that need
to be averaged out before starting to talk about anthropogenic (i.e., externally forced by human
actions) climate change.

Averaging in time is one way of facilitating the extraction of the signal of change. Averaging
over space is its natural counterpart. Local climate is noisy, and climate models, because of their
coarse resolution, are not expected to reproduce faithfully the statistics of local climate. Even in
the face of a constant push to provide regionally detailed information from these models, it is
fair to say that our confidence in their ability to simulate climate is highest when large regions of
sub-continental size are concerned, and their climate considered in terms of large area-averages.

3 Our simplified datasets

In the following sections of the chapter we present a suite of statistical analyses combining
output from ensemble of climate models, from now on referred to as GCMs (General Circulation
Models). We will significantly simplify the problem by using summary statistics of their output,
regional means of temperature and precipitation, seasonally averaged and aggregated as 10
or 20 year means. We always condition our analysis to a given experiment, defined in terms



of the greenhouse gas emission scenario (SRES) used as part of the external forcings by the
simulation. For a given scenario a number of GCMs have run simulations covering the period
1870 through 2100 and have archived temperature and precipitation output. We also have
observed records (in some region of the world extending as far back) that can be used to gauge
the GCM ability to reproduce historic conditions. The model runs take account of changes in
forcings, including observed changes in emissions or solar output, but they are not directly
calibrated to observational climate data. One consequence of this is that the model outputs
include dynamical features such as El Niños, but the El Niños of the model do not correspond
in time to the El Niños of the observational climate record. One reason for considering 20-year
averages is that over a 20-year time span, such short term fluctuations are likely to average out.

Suppose there are M GCMs, Xj is a projection of some current climate variable generated
by GCM j, and Yj a projection of some future climate variable generated by GCM j. We also
have an observation X0 of the true current climate, with its associated standard error λ−1/2

0 that
we can estimate from the observations’ series and fix in our model. In our typical application,
Xj is the mean temperature or precipitation in a particular region for the period 1981–2000,
X0 is the corresponding value calculated from the observational climate record, and Yj is the
corresponding temperature average calculated from the 2081–2100 segment of the GCM simu-
lation.

A modification of this simple setup will involve R regional averages at a time. Accordingly,
we add a subscript i = 1, . . . , R to the variables, and consider Xij , Yij , Xi0, λ0i.

Finally we will model the joint distribution of two variables, say temperature and precipita-
tion, for a given region and season, and over the entire length of the simulation, as a bivariate
time series of decadal averages. Accordingly we will consider Xjt, t = 1, . . . , 15 a bivariate vec-
tor of temperature and precipitation averages derived from the j-th GCM output. Here the time
index corresponds to the decades centered at 1955, 1965, . . . , 2005, 2015, . . . , 2095, so that both
historical and future periods will be modelled jointly. Similarly, Ot, t = 1, . . . 6 will indicate a
two-component vector of observed temperature and precipitation averages. In this case the time
index, t, corresponds to the decades centered at 1955, 1965, . . . , 2005 (the last one at present is
approximated by an estimate based on 8 years of data only).

4 A hierarchy of statistical models

Our strategy in presenting our approach to multi-model synthesis and uncertainty characteriza-
tion is to start from a basic representation, highlight its shortcomings and increase the complex-
ity of the statistical treatment gradually to account for as many additional details as possible.
This way, we hope to highlight issues, limitations and solutions step by step. Hopefully this will
help the reader achieve familiarity with the data and the ultimate goals of the analysis that will
engender his or her constructive criticisms and original thinking in the face of this challenging
application.

4.1 One region at a time

Let us then start from the simplest series of assumptions. We treat each region separately, and
we assume the following likelihood model: For j = 1, . . . ,M ,

Xj ∼ N(µ, λ−1
j )

Yj ∼ N(ν, (θλj)−1)

and for the observed mean climate variable (from now on we referred to it as temperature, for
simplicity) ,

X0 ∼ N(µ, λ−1
0 ). (1)

This likelihood model simply states that each GCM approximates the true mean temperature
of the region (µ for current, ν for future climate) with a Gaussian error, whose variance is
model specific. The parameter θ allows for the possibility that future precision will be different



than current precision, by a factor common to all GCMs (i.e., the likely degradation of the
accuracy of future projections affects all GCMs equally). Notice that this is an assumption
dictated by our data, which would not permit the identification of a parameter modeling GCM-
specific change in precision. In fact the precision parameter λj will be estimated on the basis
of the minimum necessary number of datapoints, two. Also, the likelihood model assumes no
correlation between the error of GCM j in simulating current climate and its error in simulating
future climate.

The use of uninformative improper priors for µ and ν, U(−∞,+∞), and proper but very dif-
fuse Gamma priors for the precision parameters λj and θ, Ga(a, b), with a = b = 0.01 completes
this basic model. A simple Gibbs sampler can be used to explore the joint posterior distribution
of the parameters (see Appendix B1). This approach was first presented in Tebaldi et al. (2004,
2005).

Here we highlight a few features of the approximate posterior estimates for the parameters
µ, ν and λj . The form of the means of µ and ν, given λ0, λj , j = 1, . . . ,M as well as given the
Xs and Y s is respectively,

µ̃ =
λ0X0 +

∑
λjXj

λ0 +
∑
λj

and

ν̃ =
∑
λjYj∑
λj

.

The posterior distribution of λj can be approximated by

λj | rest ∼ Ga
[
a+ 1, b+

1
2

(Xj − µ)2 +
θ

2
{Yj − ν}2

]
.

An easy addition to this model may accommodate the obvious critique that we expect corre-
lation between errors within a single GCM’s simulations of current and future climate. We can
substitute to the likelihood of Yj the following:

Yj |Xj ∼ N(ν + β(Xj − µ), (θλj)−1).

By so doing we estimate a possible correlation between Xj and Yj . Here as before with θ we
are forced to assume a common correlation across all GCMs. Perhaps this is too simplistic an
assumption, but it is needed for identifiability of the parameter β. The posterior distribution
of β will tell us if such assumption is indeed substantiated by the data. The interpretation of
the parameter is particularly interesting if we note that β = 0 corresponds to Xj and Yj being
independent, while β = 1 corresponds to Xj and Yj −Xj being independent, conditionally on
the other model parameters. We choose an uninformative prior for the correlation parameter
by assuming β ∼ U(−∞,+∞), and the Gibbs sampler with an added step still converges to a
stable set of posterior estimates for all random variables.

We are being extremely liberal, here, letting each of the parameters have their own diffuse
prior. We will see in the application section that the result is indeed a Markov Chain converg-
ing to a stationary distribution, but the posterior distribution of temperature change appears
extremely sensitive to the actual location of the GCMs’ projections in a way that is not easily
supported by the scientific understanding behind this application. The difficulty is illustrated
by Figure 1 where we show some posterior distributions of ν − µ based on actual climate
models data, in comparison to two alternative approaches introduced later. The current ap-
proach (dashed line in Figure 1) often shows multimodal posterior distributions, with modes
sometimes corresponding to single climate models’ projections (see also the original analysis
in Tebaldi et al. (2004, 2005), which is based on an older set of experiments, prepared for the
third assessment report of the IPCC, published in 2001). However, we would expect change in
temperature over a given time period to have a smooth distribution. This is the result of dealing
with a limited set of climate models, that happen to populate the interval between the extremes
of their range very sparsely, and of a statistical model that attributes an uneven set of weights
to the participating members of the ensemble, as the λj parameters may actually be interpreted
according to the form of µ̃ and ν̃.



Let us then formalize the fact that we do not expect such an uneven distribution of weights
among the different models’ precision parameters in this ensemble. The natural way to do that
is to use a hierarchical approach, and hypothesize that all λjs are samples from the same prior
distribution with parameters that we estimate in turn, as in

λj ∼ Ga(aλ, bλ)

with aλ, bλ sampled from a Gamma prior, Ga(a∗, b∗).
This simple extra layer has the effect of smoothing out the estimates of λjs and, accordingly,

the shape of the posterior for ν − µ. Thus, sensitivity of the estimates to the precise location
of Xj and Yj values is significantly diminished as well, as Figure 1 demonstrates by comparing
posterior estimates by the first model (dashed lines) to its hierarchical variation (dotted lines),
for the same values of the GCMs’ Yj−Xj . The only operational consequence is that the joint pos-
terior for this model is no longer estimated by a simple Gibbs sampler, but a Metropolis-Hastings
step needs to handle the iterative simulation of aλ, bλ (see Appendix B1). This modification of
the univariate approach was introduced in Smith et al. (2009), but there too the application
uses the older data set from IPCC 2001.

4.2 Borrowing strength by combining projections over multiple regions

It is sensible to assume that the characteristics of each GCM, which in our development so far
were represented by the parameters λj , θ and β, could be estimated by gathering information
on the model’s simulations over a set of regions, rather than just a single one. Consider then Xij

and Yij , which in addition to representing different models j = 1, ...,M , also represent different
regions i = 1, ..., R. We also have a set of Xi0, the current observed mean temperature in region
i which is an estimate of the true current mean temperature with standard deviation λ−1/2

0i .
The likelihood model is a natural extension of the univariate case, where

Xi0 ∼ N [µ0 + ζi, λ
−1
0i ], (λ0i known), (2)

Xij ∼ N [µ0 + ζi + αj , (ηijφiλj)−1], (3)

Yij | Xij ∼ N [ν0 + ζ ′i + α′j + βi(Xij − µ0 − ζi − αj), (ηijθiλj)−1]. (4)

We choose joint prior densities as in:

µ0, ν0, βi, β0, ζi, ζ
′
i ∼ U(−∞,∞), (5)

θi, φi, ψ0, θ0, c, aλ, bλ ∼ Ga(a, b), (6)

λj‖aλ, bλ ∼ Ga(aλ, bλ) (7)

ηij‖c ∼ Ga(c, c), (8)

αj |ψ0 ∼ N [0, ψ−1
0 ], (9)

α′j | αj , β0, θ0, ψ0 ∼ N [β0αj , (θ0ψ0)−1], (10)

all mutually independent unless explicitly indicated otherwise.
This approach is presented in Smith et al. (2009). As can be noticed, there are a few substan-

tial changes from the model of Section4.1: new parameters αj and α′j , ζi and ζ ′i are introduced
in the mean components of the likelihood, and the variances in (3) and (4) have a more complex
structure.

The parameters αj and α′j represent model biases. They are model-specific quantities, but
they are constant across regions, thus introducing correlation between projections from the
same model in different regions. By (10) we introduce the possibility of a correlation between αj
and α′j , i.e, between the bias in the current period of the simulation and the future period, using
the regression parameter β0. Similarly, ζi and ζ ′i represent region-specific mean components.
The idea is that different regions will tend to warm differently, and this region effect will be
common to all GCMs. We treat these two sets of mean components in a fundamentally different
manner by imposing on the αj , α′j Gaussian priors with mean zero, while letting the priors for
ζi, ζ

′
i be improper priors, U(−∞,+∞). It is the difference between allowing for significantly

different region effects, unconstrained by one another, and imposing a shrinkage effect across
model biases according to the expectation that they should cancel each other out.



The variances in (3) and (4) are modeled as three multiplicative factors, one model-specific,
one region-specific, one allowing for an interaction. In the case where ηij ≡ 1 (a limiting case
of (8) in which c → ∞) the variance factorizes, with λj representing a model reliability and
either φi or θi a region reliability. (We note here that two different parameters for current and
future simulations of a given region have the same effect of what the model in Section 4.1
accomplished by using the parameter θ.) Compared with fitting a separate univariate model to
each region, there are many fewer parameters to estimate, so we should get much improved
precision. However there is a disadvantage to this approach: if model A has higher reliability
than model B for one region, then it will for all regions (and with the same ratio of reliabilities).
This is contrary to our experience with climate models, where it is often found that a model’s
good performance in one region is no guarantee of good performance in another. The parameter
ηij , then, may be thought of as an interaction parameter that allows for the relative reliabilities
of different models to be different in different regions. As with the other reliability parameters,
we assume a prior gamma distribution, and there is no loss of generality in forcing that gamma
distribution to have mean 1, so we set the shape and scale parameters both equal to some
number c that has to be specified. However, if c is too close to 0, then the model is in effect
no different from the univariate model, allowing the variances for different models in different
regions to be completely unconstrained. Our recommendation is that c should be chosen not
too close to either 0 or ∞, to represent some reasonable judgment about the strength of this
interaction term. A different solution will be to let c be a random variable, and let the data give
us an estimate of it. We can give c a diffuse prior distribution, as with c ∼ Ga(0.01, 0.01).

The Gibbs sampler, with a Metropolis Hastings steps to sample values for c, is described in
detail in Appendix B2. Together with the rest of the discussion of the multivariate approach, it
was first detailed in Smith et al. (2009).

4.3 A bivariate, region-specific model

The statistical treatment described in the preceding section can be applied separately to temper-
ature and precipitation means. The latter does not need to be logarithmically transformed. In
our experience, since the data points are seasonal, regional and multidecadal means, the Gaus-
sian likelihood model fits the data without need for transformations. Many studies of impacts
of climate change are predicated on the availability of joint projections of temperature and pre-
cipitation change. A warmer, wetter future is very different from a warmer, drier one if you are
dealing with adaptation of agricultural practices, or water resources management (Groves et al.,
2008). Here we propose a joint model for the two climate variables at the individual regional
level that we first introduced in Tebaldi and Sansó (2008). Rather than simply extending the set
up of Section 4.1, we consider decadal means covering the entire observed record and the entire
simulation length. These additional data points will help estimate the correlation coefficients.
We will model trends underlying these decadal mean time series, and estimate a correlation
parameter between temperature and precipitation, once the trend is accounted for.

Here are the new assumptions:

• The vector of observed values Ot is a noisy version of the underlying temperature and
precipitation process, with correlated Gaussian noise (we estimate the correlation from
the data, through the estimation of the parameter βxo).

• The true process is piecewise linear, for both temperature and precipitation. We fix the
“elbow” at year 2000, which may allow for future trends steeper than the observed ones.
Of course a slightly more general model could use a random change point approach, but
given the coarse resolution of our time dimension and the limited amount of data at our
disposal we choose to fix the change point.

• The model output Xjt is a biased and noisy version of the truth. We assume an additive
bias and a bivariate Gaussian noise.

• We expect the model biases to be related across the population of models, i.e., we impose
a common prior, and we estimate its mean parameter, so that we may determine an overall
bias for the ensemble of model simulations, different from zero.



In the notation, superscripts T and P refer to the temperature and precipitation components of
the vectors. Thus, the likelihood of the data is:

OTt ∼ N(µTt ; ηT ) for t = 1, . . . , τ0
OPt |OTt ∼ N(µPt + βxo(OTt − µTt ); ηP ) for t = 1, . . . , τ0 (11)

where βxo ∼ N(β0, λo),
XT
jt ∼ N(µTt + dTj ; ξTj ) for t = 1, . . . , τ∗ and j = 1, . . . ,M

XP
jt|XT

jt ∼ N(µPt + βxj(XT
jt − µTt − dTj ) + dPj ; ξPj )

for t = 1, . . . , τ∗ and j = 1, . . . ,M.

In Equations (11) we specify bivariate normal distributions for Ot and Xjt using conditionality.
After accounting for the underlying trends and biases terms, βx1, . . . , βxM are used to model
the correlation between temperature and precipitation in the climate model simulations, while
βxo is fixed at the value estimated through the observed record. Also in the likelihood of the
observations, ηT and ηP are fixed to their empirical estimates.

The time evolution of the true climate process µ′t = (µTt , µ
P
t ), consists of a piecewise linear

trend in both components:(
µTt
µPt

)
≡

(
αT + βT t+ γT (t− τ0)I{t≥τ0}
αP + βP t+ γP (t− τ0)I{t≥τ0}

)
. (12)

The priors for the parameters in Model (11) are specified hierarchically by assuming that

βxj ∼ N(β0, λB),

dTj ∼ N(aT ;λTD),

dPj ∼ N(aP ;λPD)

for j = 1, . . . ,M
ξTj ∼ Ga(aξT , bξT )

and
ξPj ∼ Ga(aξP , bξP ).

λo is fixed to a value estimated on the basis of the observed record.
All the other quantities are assigned uninformative priors:

β0, a
T , aP ∼ U(−∞,+∞)

and
λB , λ

T
D, λ

P
D, aξT , bξT , aξP , bξP ∼ Ga(g, h),

where g = h = 0.01. Similarly, for the parameters in (12), we assume

αT , βT , γT , αP , βP , γP ∼ U(−∞,+∞).

We are assuming that each climate model has its own precision in simulating the true tem-
perature and precipitation time series, but we impose common priors to ξTj and ξPj ∀j, whose
parameters are in turn estimated by the data. As we discussed in Section 4.1, this choice pro-
duces more robust estimates of the relative precisions of the different GCMs, not overly sensitive
to small perturbations in the GCM trajectories.

The model-specific bias terms dTj , d
P
j are assumed constant over the length of the simulation.

They model systematic errors in each GCM simulated variable. All the GCM biases for tempera-
ture, like all GCM biases for precipitation, are realization from a common Gaussian distribution,
whose mean (aT or aP ), as mentioned, may be different from zero, when the set of model
trajectories is distributed around the truth non-symmetrically. We do not expect a systematic
behavior across models when it comes to precipitation versus temperature biases, that is, we do
not expect that models having relatively larger temperature biases would show relatively larger
precipitation biases, so we do not model a correlation structure between dTj , d

P
j . In fact, this



correlation structure, if there at all, would not to be identifiable/separable from the correlation
modeled through βxo, βx1, . . . , βxM , given the configuration of the present dataset. Notice that
the correlation coefficients, βxo and βxj also have a common mean, β0 possibly different from
zero and that will be heavily influenced by the value of the observed correlation coefficient,
βxo. All the remaining parameters of the model have non-informative, conjugate distributions.
Notice that we use improper priors for the location parameters of the Gaussian distributions
and linear regression parameters in the correlation structure and in the trend structure, and
proper but diffuse priors for the precision parameters and as hyper-priors of the ξ. parameters.
The likelihood and priors form a conjugate model, and as before a Gibbs sampler can be pro-
grammed to explore the posterior distributions for this model, with a Metropolis-Hastings step
used to generate sample values for aξT , bξT , aξP , bξP . See Appendix B3 details of the Markov
chain Monte Carlo implementation, or the original article Tebaldi and Sansó (2008).

5 Validating the statistical models

Climate predictions are a fairly safe business to be in: validation of the forecast comes about
no sooner than every 10 or 20 years! We have already commented on how this situation sets
climate forecasting well apart from weather forecasting, where statistical calibration of numeri-
cal models can be fine tuned continuously, using diagnostics of their performance coming at the
steady and frequent rate of every six hours or so. The work by Adrian Raftery, Tilmann Gneiting
and colleagues (Raftery et al. (2005) and references therein) has set the standard for Bayesian
statistical methods brought to bear on ensemble weather forecast calibration and validation. In
our application, we are also forecasting conditionally on a specific scenario of greenhouse gases
emissions, which is always an idealized scenario. This discussion shows why we are not going
to rely on observations to validate our statistical approaches. Rather, we validate our statistical
assumptions by performing cross-validation. In all cases but for the simplest univariate model
introduced first, we can estimate a posterior predictive distribution for a new model’s trajec-
tory or change. We can therefore compare the left-out model projections with their posterior-
predictive distribution. In both cases we can do this exercise over all possible models, regions
and – separately or jointly – both climate variables, temperature and precipitation averages.
Statistical theory provides us with null hypotheses to test about the expected distribution of the
values of P (x∗) where x∗ is the left-out value and P () is the posterior predictive cumulative
distribution function of that quantity. We expect the values of P (x∗) obtained by performing the
cross-validation exercise across models and across regions to be a sample from a uniform distri-
bution. In all cases, after conducting the tests, we do not reject the hypothesis more frequently
that what would be expected as a result of multiple testing. In the remainder of this section we
detail the procedure of the cross-validation exercise, for each of the statistical models proposed.
More details and actual results from the cross validation exercises can be found in Smith et al.
(2009); Tebaldi and Sansó (2008).

5.1 Univariate model with hyperprior on precision parameters

The predictive distribution can be calculated under the assumption that the climate models are
exchangeable. Conditionally on the hyperparameters µ, ν, β, θ, aλ and bλ, the distribution of
YM+1 − XM+1 can be derived derived from conditioning on λM+1 ∼ Ga(aλ, bλ), since, then,
YM+1 −XM+1|λM+1 ∼ N(ν − µ, {(β − 1)2 + θ−1}λ−1

M+1).
The conditional distribution should then be convolved with the joint posterior distribution

of (µ, ν, β, θ, aλ, bλ), to obtain the full posterior predictive distribution. In practice we can carry
out this integration within the Gibbs-Metropolis algorithm by

1. sampling at each step n the hyperparameter values a(n)
λ , b

(n)
λ , ν(n), µ(n), β(n), θ(n), cor-

responding to one draw from their joint posterior distribution. A draw of a random
λj,n ∼ Ga(a(n)

λ , b
(n)
λ ) can be generated and the statistic

U
(n)
j = Φ

 Yj −Xj − ν(n) + µ(n)√
{(β(n)

x − 1)2 + θ(n)−1}(λj,n)−1





calculated.

2. Over all n iterations we can compute Uj , the mean value of U (n)
j , representing an estimate

of the predictive distribution function, evaluated at the true Yj − Xj . If the statistical
model is consistent with the data, Uj should have a uniform distribution on (0, 1).

3. By computing Uj for each region, and each GCM we have a set of test statistics that we can
evaluate for discrepancies, applying tests of fit to evaluate the hypothesis that the values
are samples from a uniform distribution

5.2 Multivariate model, treating multiple regions at once

The procedure for cross validation in this model is very similar to what was just described. In
this setting we do cross-validation of the variable Yij−Xij , model j’s projected change in region
i. The full conditional, predictive distribution of this quantity is

Yij −Xij | rest ∼ N
(
ν0 − µ0 + ζ ′i − ζi + α′j − αj ,

1
ηijλj

{
(βi − 1)2

φi
+

1
θi

})
.

The implementation of the cross validation exercise within the Gibbs-Metropolis algorithm is as
follows:

1. We leave model j out and we run the Gibbs-Metropolis simulation.

2. After burn-in, at every step n, on the basis of the set of parameters currently sampled we
generate corresponding values of λ(n)

j , α(n)
j , α′(n)

j and η(n)
ij as

λ
(n)
j ∼ Ga

(
a

(n)
λ , b

(n)
λ

)
α

(n)
j ∼ N

(
0,

1

ψ
(n)
0

)

α
′(n)
j ∼ N

(
β

(n)
0 α

(n)
j ,

1

ψ
(n)
0 θ

(n)
0

)
,

η
(n)
ij ∼ Ga

(
c(n), c(n)

)
.

3. From these values we compute the statistic

Uij =
1
N

N∑
n=1

Φ

Yij −Xij − (ν(n)
0 − µ(n)

0 )− (ζ ′(n)
i − ζ(n)

i )− (α′(n)
j − α(n)

j )√
(λ(n)
j η

(n)
ij )−1

{
(φ(n)
i )−1(β(n)

i − 1)2 + (θ(n)
i )−1

}
 . (13)

by generating a sample value at each iteration and averaging them at the completion of
the simulation.

4. As with the univariate analysis, we then perform various goodness of fit tests on the statis-
tics Uij . If the model is a good fit, they should be consistent with independent draws from
the uniform distribution on [0, 1].

5.3 Bivariate model of joint temperature and precipitation projections

After leaving each individual GCM’s trajectories out in turn, we simplify the validation of the bi-
variate time series model by computing three marginal bivariate predictive distributions, one for
current climate (defined as the bivariate distribution of average values of temperature and pre-
cipitation for the period 1981-2000), one for future climate (defined as the corresponding dis-
tribution for average values over the period 2081-2100) and one for climate change (defined as
the joint distribution of the temperature and precipitation differences between the two same pe-
riods). We can then compute the two sets of pairs (U1 = PT (XT

∗ = xT∗ ), U2 = PP |T (XP
∗ = xP∗ ))

for both current and future time windows, and the pair (U1 = PT (∆XT
∗ = ∆xT∗ ), U2 =



PP |T (∆XP
∗ = ∆xP∗ )) where the first univariate distribution function is simply the marginal

predictive distribution of temperature change, while the second distribution function is the pre-
dictive distribution of precipitation change, conditional on the corresponding simulated temper-
ature change. Finally we test the null hypothesis that the pairs of (z1j , z2j) for j = 1, . . . ,M are
independent and identically distributed random variates, sampled from uniform distributions
on the (0, 1) interval. The form of the posterior predictive and the way we simulate the U statis-
tics is similar to what we described in the previous subsections, with all the parameters being
sampled from the estimated value of the hyperparameters within the Gibbs sampler, and the
conditional marginal predictive distributions having a manageable Gaussian form.

5.4 U -statistics and goodness-of-fit tests

Following Smith et al. (2009), in all cases described in Sections 5.1 through 5.3, the sets of Uij
(or Zj) can be tested for goodness of fit with respect to a uniform distribution and indepen-
dence by traditional tests like Kolmogorov-Smirnov, Cramér-von Mises and Anderson-Darling.
Smith et al. (2009) also proposes the use of a correlation test where the ordered values of
Uij , j = 1, . . . ,M are correlated to the sequence 1/(M + 1), 2/(M + 1), . . . ,M/(M + 1) and
large values of the correlation coefficient (or small values of 1− cor) indicate a close fit. In most
cases the goodness-of-fit tests result in acceptance of the null hypothesis that the Uij or Zj are
independent within each region i.

6 Application: the latest model projections, and their synthe-
sis through our Bayesian statistical models

The website of PCMDI provides instructions for the download of model output from all the GCMs
that have contributed their simulations to the IPCC-AR4 effort. We choose a set of experiments
run under a scenario of greenhouse gas emissions that can be thought of as a ”business-as-usual”
scenario, where concentrations of greenhouse gases increase over this century at a rate similar to
what is being emitted currently, worldwide. We extract average temperature and precipitation
projections from seventeen models. We area-average their output over standard subcontinental
regions that have been used by IPCC and many studies in the literature (Giorgi and Francisco,
2000), see Figure 2. We consider two seasonal averages, December through February (DJF) and
June through August (JJA). For the models treating temperature or precipitation separately we
also average twenty-year periods, 1980-1999 as the current climate averages and 2080-2099 as
the future. For the model that estimates the joint distribution of temperature and precipitation
we consider time series of fifteen decadal averages covering the period 1950-2100. We compute
the joint posterior distribution of all random parameters according to the univariate (one region
at a time, with or without hyperprior over the precision parameters), multivariate (all regions at
the same time) and bivariate (temperature and precipitation jointly) models. We then proceed
to display and compare results for some quantities of interest. Most importantly, we consider
changes in temperature (and precipitation) for all the regions, across the different statistical
treatment. We also show posterior distributions of other parameters of interest, like model
biases and interaction effects.

6.1 Changes in temperature, univariate and multivariate model

The eight panels of Figure 1 compare the posterior distribution of temperature change ν −µ for
the two univariate models (dashed and dotted curves) and ν0 + ζ ′i − µ0 − ζi for the multivariate
model (solid line) for a group of four regions in DJF and a different group of four regions in JJA.
We have already mentioned in Section 4.1 that the first model, where the GCM-specific precision
parameters are each a sample from a diffuse Gamma prior, suffers from an uneven distribution
of ”weight” among GCMs’ projections. The multimodality of some of the PDFs in Figure 1 is an
indication of this behavior. And even more generally, the fact that these PDFs are often shifted
significantly from the location of the ensemble mean (indicated by a cross along the x-axis,
whereas the individual GCMs are marked by dots along the basis of the curves) is the effect of



some of the GCMs ”stealing the show”, i.e., being attributed a much larger precision than others,
where we would not expect such difference in relative importance among this family of state-
of-the-art climate models. The univariate model with a common prior over the λjs produces
smoother, better centered PDFs that are not significantly different from those produced by the
multivariate model (comparing the dashed and solid lines). The two series of boxplots (one
for DJF, to the left and one for JJA, to the right) in Figure 3 offer a comparison of the three
distributions for each region/season combination. For each region, the first boxplot from the
bottom shows interquartile range, median and 5th-95th quantiles of the posterior distribution
estimated by the unconstrained version of the univariate model, the second and third boxplot
show the extent of the posterior for the univariate model with common prior for the λjs and the
multivariate model. These two sets of boxplots confirm the results of Figure 1, with the position
of the first boxplot in each triplet often shifted away from the other two, which are more similar
to one another. This display of all the 22 region is also indicative of the large differences in
the amount of warming across regions. This justifies the choice of modeling region-specific
parameters in the mean component of the likelihood of the multivariate model, ζi, ζ ′i, with a
Uniform prior over the real line that does not have a shrinkage effect towards zero.

6.2 Changes in temperature, multivariate and bivariate model

We now take the same eight region/season combinations of Figure 1 and compare, in Figure 4,
the posterior distribution of temperature change for the multivariate model, ν0 + ζ ′i − µ0 − ζi,
(solid line) to the marginal posterior distribution of the temperature change signal from the
bivariate model (dotted line). We also show the posterior predictive distribution of a new un-
biased GCM’s projection of temperature change (dashed line) in the same panels. We note
immediately that the posterior distribution from the bivariate model is much narrower than the
posterior from the multivariate model. This is no surprise, given that we are using a much
richer dataset (6 observed decades, 15 simulated decades for each of seventeen GCMs) and we
are hypothesizing a piecewise linear function of time as the trajectory of mean temperature, thus
we are in fact estimating only three parameters αT , βT and γT . Note that the joint posterior
distribution from the bivariate model is a probabilistic representation of the entire trajectory of
temperature (ad precipitation) over the decades (µTt ) but the availability of the Gibbs sample
makes it straightforward to compute any deterministic function of it (in this case the difference
between two bi-decadal means). The other obvious feature in the majority of these panels is
that the posterior distributions from the bivariate model are significantly shifted from the center
of the multivariate model’s PDFs. Remember that the bivariate model is not simply ”smooth-
ing” sets of GCM ”snapshots” in terms of multidecadal averages, but rather fitting a trend to
their whole trajectories, anchoring its estimation to the observed series. We are thus comparing
two different definitions of ”temperature change”, at least in terms of how the statistical model
is estimating it. Likely, some of the models produce steeper trends than the underlying trend
estimated from the entire ensemble, thus filling the distribution of the ”snapshots” estimate to
the right of the trend estimates’, and shifting the mean accordingly. This feature may be sce-
nario dependent, with lighter emission scenarios (forcing less of an acceleration in the trends)
facilitating a better agreement between the two methods’ results. The dashed curves in each fig-
ure are posterior predictive distribution of a new GCM’s projection. The signal of temperature
(change) underlying truth and model simulation is an abstract concept. Even the observations
are a noisy representation of this signal. We could be justified then if we thought of a model tra-
jectory as a possible future path for our climate, and accordingly we represented the uncertainty
in this future projection by the posterior predictive distribution of a new GCM, whose width is
of the same order of magnitude as the range of model projections, rather than being an inverse
function of the square root of the number of data points, as the posterior distribution width
is. In Figure 5 we complete the representation of probabilistic projections of climate change by
showing contours of the posterior (tighter set of contours in each panel) and posterior predictive
(wider set of contours in each panel) for the same set of region/season pairs of Figures 1 and 4.



6.3 Other uncertain quantities of interest, their full probabilistic charac-
terization

Even the simple univariate treatment, after imposing the regularizing common prior over the
λjs, offers additional information besides the posterior PDFs of temperature change that may
be used in applications of impact analysis. Posterior means of λjs can be regarded as optimal
estimates of model reliabilities, and utilized as ”weights” for some further analysis of climate
change impacts. For example, Fowler et al. (2007) shows how the normalized set of reliabilities
can be used for a Monte Carlo simulation of weather scenarios at regional scales by stochastic
weather generator models ”driven” by different GCMs. The larger the GCM reliability, the larger
the number of weather scenarios one wants to generate according to that GCM, and the total
number of Monte Carlo simulations from the weather generator may be divided up proportion-
ally to the normalized weights. In Figure 6 we show boxplots of the 16 GCM-specific λj ’s for
the 8 region/season combinations of Figures 1 and 4, according to the univariate treatment,
displaying them in each panel in increasing order from left to right according to their posterior
means. From the figure we note how the distribution of ”weight” among GCMs is very balanced,
with no disproportionate attribution to a small subset of models. It is true however that different
models gain different ranking depending on the region and season combination. This is consis-
tent with the shared opinion among climate scientists and modelers that no model outperforms
all others in every respect, different models showing different strengths in the simulation of
regional climates, seasonal processes and so on.

We may be interested in evaluating the posterior estimates of the model-specific mean factors
in the multivariate treatment, αj and α′j , as they may be interpreted as global average biases
that a specific GCM imposes on its simulation of temperature. Figure 7 shows boxplots of the
two sets of parameters for the simulation of temperature in DJF, as an example. The models
have been ordered with respect to the value of the posterior mean of the respective parameter in
the current climate simulation (αj). As can be assessed by the two series of boxplots, there are
models with biases that are significantly different from zero, mostly with negative (cold) biases
in the left plot. Many more GCMs show significant biases in the future part of the simulation,
on both sides of the zero line.

Another interesting question that can be answered through the computation of the marginal
posterior distribution of a set of parameters in the multivariate model regards the form of the
precision (or variance) components in the likelihood of the GCM simulated temperatures. The
parameters ηijs are let free to assume values significantly different from one, if an interaction
between model-specific and region-specific behavior is deemed necessary to fit the dataset at
hand. As Figure 8 demonstrates, however, by showing the distributions of ηi. and η.j , i.e. by
combining all sample values in the Gibbs simulation across models and across regions, the
distribution of these parameters is always centered around the value one, lending support to
a model that factorizes the variance component into two terms without interaction (boxplots
of all 22*16 region-and-model-specific parameters do not reveal any behavior inconsistent with
this averages).

Last, we show posterior PDFs of the γT , γP trend parameters in the bivariate model. Recall
that these parameters are introduced in order to estimate a possible change in the trend under-
lying the observed and modelled time series, after the year 2000. As can be seen from Figure 9
for the usual region/season combinations (listed along the vertical axis), all the parameters of
the temperature trends are significantly different from zero (the zero line does not even appear
in the plot). The trend parameters estimated for precipitation instead show a whole range of
behaviors, with some of the distributions straddling the zero line, some indicating a significant
decrease in the rate of change (with the distributions lying for the most part to the left of the
zero line), some, at the contrary, estimating an increase in the trend.

7 Further Discussion

We have presented a series of statistical models aiming at combining multiple climate model
simulations. The goal is to arrive at a rigorous characterization of the uncertainty in model
projections, quantifying it into probability distributions of climate change. More precisely, we



determine PDFs of average temperature and precipitation change at seasonal, multi-decadal
and regional scales, that can be used for further development as input to impact models in
vulnerability and adaptation studies.

The challenge of synthesizing multiple model projections stems from the idiosyncratic nature
of the data sample. GCMs are arguably not independent, they do not span the entire range of
uncertainty, being fairly conservative guesses of the future trajectory of our climate system, and
they may have systematic errors (biases) in their simulation of climate, that do not necessarily
cancel out in an overall mean.

Given access to the recently organized, rich archives of GCM data, we are however able
to start making sense of these ensembles of simulations. In this chapter we have shown how
increasingly complex statistical models can account for features of the data like correlations
between current and future simulation errors, biases, differential skill in different periods of
the simulation or different regions of the globe by a given model. We have also shown how
the difficulty of validating climate predictions may be side-stepped thanks to the calculation of
posterior predictive distributions that open the way to cross validation exercises.

We have dedicated some time to discuss two ways of characterizing the uncertainty of these
climate change experiments. One approach cares especially about the common central tendency
of these models, and the uncertainty around this estimated central tendency. Thanks to the
number of models available and the observed record that ”anchors” our estimates of the true
signal of climate, the central tendency is very precisely estimated, within a narrow band of
uncertainty. The reality of climate change, however, may look more like one of these model
trajectories than like this abstract climate signal. If we subscribe to this view, then a more
consistent representation of our uncertain future is naturally found in the posterior predictive
distribution, after integrating out all the uncertain parameters of the Bayesian model. The
posterior predictive width is of the same order of magnitude as the range of model projections,
much wider than the posterior estimate of the climate (change) signal’s uncertainty and may
look to expert eyes as a more realistic representation of the uncertainty at hands.

There are many ways by which the kind of analyses presented here may be carried forward.
Two in particular seem germane to our approach. Furrer et al. (2007) chose to model the entire
high resolution fields of variables that constitute the original output of these models, after regis-
tering them to a common grid. This approach has the advantage of providing a representation of
projections that is very familiar to the climate science community, in the form of detailed maps
of change, with the added dimension of a probabilistic characterization of their likely ranges.
Rougier (2007) uses a set of experiments aimed at perturbing the parameterization of a specific
climate model, the Hadley Center GCM. The work therefore represents a natural complement to
ours, where intra-model uncertainties are fully characterized. Ideally, it could be incorporated
in our framework, in order to treat within model and between model variability in concert.

We think of two main avenues for further development of multi-model analysis. The first
is the representation of models’ dependencies, which would protect us from the over-optimistic
narrowing of the uncertainty with the increasing number of members in these ensembles. It
seems clear that not all models add an independent piece of information to the ensemble, while
the treatment of each one as independent of the other makes the estimate of the central tendency
increasingly more precise with the increasing number of GCMs.

A second direction should lead to the exploration of models’ performance within current
climate simulations and how it correlates to models’ reliability in the future part of their simu-
lation. In our treatment, a coarse metric of performance was implicitly found in the difference
between models’ average projections in the part of the simulation that overlaps with observed
records and the corresponding observed climate average. There are potentially many alternative
metrics of performance that could be relevant for a model’s ability to simulate future climate
reliably, but the question is open, as is that of how to incorporate this information into our
statistical models.



Appendices

A. Broader Context and Background

All of Bayesian statistics derives ultimately from the formula

π(θ | x) =
π(θ)f(x | θ)∫

Θ
π(θ′)f(x | θ′)dθ′

. (14)

Here:

• x is an observation vector, lying in some sample space X ;

• θ is a vector of unknown parameters, lying in a parameter space Θ;

• π(θ) represents the prior distribution. If Θ is discrete, this is a probability mass function;
if Θ is continuous, this is a probability density function.

• f(x | θ) is the likelihood function; that is, the conditional distribution of x given θ. This
is a probability mass function if X is discrete and a probability density function is X is
continuous.

In the following discussion, we first review simple applications of (14) using conjugate priors;
then we describe extensions to hierarchical models; finally we describe computational methods
via the Gibbs Sampler and the Hastings-Metropolis Sampler, which the two best known examples
of Markov chain Monte Carlo (MCMC) algorithms. We illustrate these concepts with reference
to the models for climate change projections that form the bulk of this chapter.

A1. Conjugate Priors

The simplest examples of (14) have the following structure: both π(θ) and f(x | θ) have a
parametric structure, which is such that π(θ | x) has the same parametric structure as that of
π(θ). In that case, the prior is known as a conjugate prior.

A simple example is the Beta prior for a Binomial distribution. In this case, X = {0, 1, 2, ..., n}
for known n, Θ = [0, 1], and f(x | θ) = n!

x!(n−x)!θ
x(1 − θ)n−x (the binomial distribution with n

trials and probability of success θ). Consider the prior density

π(θ) =
Γ(a+ b)
Γ(a)Γ(b)

θa−1(1− θ)b−1, θ ∈ [0, 1], (15)

the Beta distribution with constants a > 0, b > 0. Then, after cancelling common terms in the
numerator and denominator, (14) becomes

π(θ | x) =
θa+x−1(1− θ)b+n−x−1∫ 1

0
(θ′)a+x−1(1− θ′)b+n−x−1dθ′

. (16)

But the fact that (15) is a proper probability density for all a > 0, b > 0 implies∫ 1

0

(θ′)a+x−1(1− θ′)b+n−x−1dθ′ =
Γ(a+ x)Γ(b+ n− x)

Γ(a+ b+ n)
.

Hence (16) reduces to

π(θ | x) =
Γ(a+ b+ n)

Γ(a+ x)Γ(b+ n− x)
θa+x−1(1− θ)b+n−x−1.

Thus, the posterior distribution is of the same parametric form as the prior (15), but with a and
b replaced by a+ x and b+ n− x. This is the key idea of a conjugate prior.

A second example of a conjugate prior is the gamma-normal prior. Consider the sequence of
conditional distributions

λ ∼ Ga(a, b), (17)

µ|λ ∼ N [m, (kλ)−1], (18)

x1, ..., xn|µ, λ ∼ N [µ, λ−1] (independent). (19)



In this case the data equation (19) consists of normal observations with unknown mean and
variance, but for notational convenience, we have written the variance of the normal distribu-
tion as λ−1 rather than the more conventional σ2. The parameter λ is often called the precision.

In this case, equations (17) and (18) together define the joint prior of (λ, µ), with joint
density

baλa−1e−bλ

Γ(a)
·
√
kλ

2π
exp

{
−kλ

2
(µ−m)2

}
∝ λa−1/2 exp

[
−λ
{
b+

k

2
(µ−m)2

}]
. (20)

Now consider the prior × likelihood

baλa−1e−bλ

Γ(a)
·
√
kλ

2π
exp

{
−kλ

2
(µ−m)2

}
·
(
λ

2π

)n/2
exp

{
−λ

2

∑
(xi − µ)2

}
. (21)

Noting the side calculation

k(µ−m)2 +
∑

(xi − µ)2 =
kn

k + n
(m− x̄)2 +

∑
(xi − x̄)2 + (k + n)

(
µ− km+ nx̄

k + n

)2

and defining x̄ = 1
n

∑
xi, m̂ = km+nx̄

k+n , (21) reduces to

√
kbaλa+(n−1)/2

(2π)(n+1)/2Γ(a)
exp

[
−λ
{
b+

kn

2(k + n)
(m− x̄)2 +

1
2

∑
(xi − x̄)2 +

k + n

2
(µ− m̂)2

}]
. (22)

Comparing (22) with (20), we see that the posterior distribution is of the same form but with
the constants a, b,m, k replaced by â, b̂, m̂, k̂, where

â = a+
n

2
,

b̂ = b+
kn

2(k + n)
(m− x̄)2 +

1
2

∑
(xi − x̄)2,

m̂ =
km+ nx̄

k + n
,

k̂ = k + n.

In practice, we generally try to choose the prior to be as uninformative as possible. In (20), this
is often achieved by setting k = 0 (in which case the improper conditional prior for density µ,
derived from (18), is just a flat prior over (−∞,∞)) and setting a and b to very small constants,
such as a = b = 0.01.

A2. Hierarchical Models

Although all Bayesian statistical models may ultimately be written in the form (14), this may
not be the most convenient form either for conceptual model building or for mathematical
solution. Often it is better to impose some structure on the unknown parameters that makes
their interdependence clear. The most common way to do this is through a hierarchical model.

The simplest structure of hierarchical model consists of three layers:

• a top layer of parameters, that are common to all the individual units of the model,

• a middle layer of parameters that are specific to individual units,

• a bottom layer consisting of observations.

An example is the main univariate model considered in Smith et al. (2009), which is defined



by the equations

µ, ν, β ∼ U(−∞,∞), (23)

θ ∼ Ga(a, b), (24)

aλ, bλ ∼ Ga(a∗, b∗), (25)

λ1, ..., λM | aλ, bλ ∼ Ga(aλ, bλ), (26)

X0 | µ ∼ N [µ, λ−1
0 ], (λ0 known) (27)

Xj | µ, λj ∼ N [µ, λ−1
j ], (28)

Yj | Xj , µ, ν, θ, λj ∼ N [ν + β(Xj − µ), (θλj)−1], (29)

Here the top layer of parameters consists of (µ, ν, β, θ, aλ, bλ), with prior distributions specified
by (23)–(25). The middle layer is (26), which defines the precisions λ1, ..., λM of the M climate
models. The bottom layer is (27)–(29), which defines the distributions of the data X0 (present-
day observed climate mean) andXj , Yj (present-day and future projection under the jth climate
model, 1 ≤ j ≤ M). In this case, λ0 is not considered a parameter because it is assumed
known. The constants a, b, a∗, b∗ are not unknown parameters of the model but are fixed
at the start of the analysis — in practice we set them all equal to 0.01. Sometimes they are
called hyperparameters to distinguish them from parameters that are actually estimated during
the course of the model fitting.

The more general “multivariate” model of Smith et al. (2009) may also be represented in
this three-layer hierarchical form, where the model precisions λj , having the same prior distri-
bution (26), and the interaction parameters ηij , with independent prior distributions Ga(c, c),
are in the middle layer of the hierarchy to indicate their dependence on additional unknown
parameters aλ, bλ and c. For this model, there are many more unknown parameters, but the
basic structure of the model is not more complicated than the univariate version of the model.
In general, hierarchical models may have more than three layers, or may be subject to more
complex dependencies (e.g. the components of the model may be represented as the vertices
of a graph, where the edges of the graph represent the dependence structure), but the simple
three-layer structure is sufficient for the present application.

A3. MCMC

Any hierarchical model may be represented conceptually in the form (14) by representing all
the unknown parameters together as a single long vector θ. However, in virtually all such cases,
the model cannot be solved by simple analytic integration to compute the posterior density,
while standard numerical methods of integration, such as the trapezoidal rule, are too slow or
insufficiently accurate to yield practical results. Markov chain Monte Carlo (MCMC) methods
are a class of Monte Carlo simulation techniques whose purpose is to simulate a random sample
from the posterior distribution of θ. Although these methods are also used in non-hierarchical
problems, in cases where a conjugate prior is not available or is inappropriate for a particular
application, they really come into their own in solving hierarchical Bayesian problems. The
name derives from the fact that they generate a random sample from a Markov chain, which
can be proved to converge to the true posterior distribution as the size of the Monte Carlo
sample tends to infinity.

The Gibbs sampler is based on first partitioning θ into components θ1, ..., θp. Here, p may
simply be the total number of unknown parameters in the model, though it is also possible for
group parameters together when it is convenient to do so (for example, in the gamma-normal
prior, we are effectively grouping λ and µ together as a single parameter θ: in a hierarchical
model, the precision and mean for a single unit could together be one of θ1, ..., θp). The key
element is that it must be possible to generate a random variable from any one of θ1, ..., θp
conditional on the other p − 1 held fixed: this is often achieved in practice through the use of
conjugate priors. The algorithm is then as follows:

1. Choose arbitrary starting values θ1, ..., θp, say θ(1)
1 , ..., θ

(1)
p . Set the counter b = 1.

2. Given current values θ(b)
1 , ..., θ

(b)
p , generate a Monte Carlo random variate from the dis-

tribution of θ1, conditional on θj = θ
(b)
j , j = 2, ..., p. Call the result θ(b+1)

1 . Next, gen-



erate a Monte Carlo random variate from the distribution of θ2, conditional on θ1 =
θ

(b+1)
1 , θj = θ

(b)
j , j = 3, ..., p. Call the result θ(b+1)

2 . Continue with θ3, θ4, ..., up to gen-

erating a Monte Carlo random variate θ(b+1)
p from the distribution of θp, conditional on

θj = θ
(b+1)
j , j = 1, ..., p− 1.

3. Set counter b→ b+ 1 and return to step 2.

4. Continue until b = B, the desired number of Monte Carlo iterations. The value of B
depends on the complexity of the problem and available computer time, but a value in the
range 5,000–100,000 is typical.

5. The first B0 < B samples are discarded as burn-in samples, reflecting that the Markov
chain has not yet converged to its stationary distribution. Among the last B−B0 iterations,
it is usual to retain only every tth iteration, for some suitable t > 1. This reflects the fact
that successive iterations from the Gibbs sampler are highly correlated, but by thinning in
this way, the remaining iterations may be treated as approximately uncorrelated.

6. The resulting (B − B0)/t values of θ are treated as a random sample from the posterior
distribution of θ. Posterior means and standard deviations, predictive distributions, etc.,
are calculated by averaging over these random samples.

As an example, let us consider the simpler form of (23)–(29) in which equation (25) is
omitted and aλ, bλ are treated as known constants. As a notational point, θ in (24) is a single
(scalar) parameter in a multi-parameter model, not to be confused with our notation of θ as the
vector of all unknown parameters in (14). The context should make clear which of the two uses
of θ is intended in any particular instance.

In this case, the joint density of all the unknown parameters and observations is proportional
to

θa+M/2−1e−bθe−
1
2λ0(X0−µ)2

M∏
j=1

[
λaλj e−bλλj · e− 1

2λj(Xj−µ)2− 1
2 θλj{Yj−ν−β(Xj−µ)}2

]
. (30)

It is not possible to integrate (30) analytically with respect to all the unknown parameters
µ, ν, β, θ, λ1, ..., λM . However, for any single one of these parameters, we can integrate using
standard forms based on the normal or gamma densities. For example, as a function of θ alone,
conditional on all the others, (30) is proportional to

θa+M/2−1e−θ[b+
1
2

P
j λj{Yj−ν−β(Xj−µ)}2],

which in turn is proportional to a gamma density with parameters a+ M
2 and b+ 1

2

∑
j λj{Yj −

ν − β(Xj − µ)}2. Therefore the updating step for θ is to generate a random variate with this
gamma distribution, replacing the previous value of θ.

Similarly, the conditional density of λj (for fixed j ∈ {1, 2, ...,M}) is gamma with parameters
aλ + 1 and bλ + 1

2 [(Xj − µ)2 + θ{Yj − ν − β(Xj − µ)}2]. The remaining parameters µ, ν, β
have conditional normal distributions that can be calculating by completing the square in the
exponent. As an example, we give the explicit calculation for µ. Expressed as a function of µ,
(30) is of the form e−Q(µ)/2, where

Q(µ) = λ0(X0 − µ)2 +
∑
j

λj(Xj − µ)2 + θ
∑
j

λj{Yj − ν − β(Xj − µ)}2.

Completing the square,

Q(µ) = (λ0 +
∑
j

λj + θβ2
∑
j

λj)

{
µ−

λ0X0 +
∑
j λjXj − θβ

∑
j λj(Yj − ν − βXj)

λ0 +
∑
j λj + θβ2

∑
j λj

}2

+ const

where “const” contains terms that do not depend on µ. But based on this representation, we
recognize that e−Q(µ)/2 has the form of a normal density with mean and variance

λ0X0 +
∑
j λjXj − θβ

∑
j λj(Yj − ν − βXj)

λ0 +
∑
j λj + θβ2

∑
j λj

,
1

λ0 +
∑
j λj + θβ2

∑
j λj

,



so the Gibbs sampling step for µ is to generate a random variate from this normal distribution.
The calculations for ν and β are similar so we omit the details.

In a typical application of this algorithm, the Gibbs sampler was run for an initial 12,500 iter-
ations as a burn-in, followed by 50,000 iterations, with every 50th iteration being saved. Thus,
we ended up with a Monte Carlo sample of size 1,000, which are approximately independent
from the joint posterior distribution of the unknown parameters.

A4. The Metropolis-Hastings Algorithm

The Gibbs sampler still relies on the assumption that, after partitioning θ (the full vector of
unknown parameters) into θ1, ..., θp, the conditional distribution of each θj , given all the θk, k 6=
j, may be represented in a sufficiently explicit form that it is possible to generate a Monte Carlo
variate directly. In cases where this is not possible, there are by now a wide variety of alternative
MCMC algorithms, but the oldest and best known is the Metropolis-Hastings algorithm, which
we now describe.

Its general form is as follows. We assume again that θ is an unknown parameter vector
lying in some parameter space Θ. Suppose we want to generate Monte Carlo samples from
θ, with the probability mass function or probability density function g(θ). We also assume we
have some stochastic mechanism for generating an “update” θ′, given the current value of θ,
that is represented by a Markov transition kernel q(θ, θ′). In other words, for each θ ∈ Θ,
we assume there exists a probability mass function or probability density function q(θ, ·), that
represents the conditional density of θ′ given θ. In principle, q(θ, θ′) is arbitrary subject to only
mild restrictions (for example, the Markov chain generated by q(θ, θ′) must be irreducible, in
the sense that samples generated by this Markov chain will eventually cover the whole of Θ). In
practice, certain simple forms such as random walks are usually adopted.

The main steps of the algorithm are:

1. Start with an initial trial value of θ, call it θ(1). Set counter b = 1.
2. Given current value θ(b), generate a new trial θ′ from the conditional density q(θ(b), θ′).
3. Calculate

α = min
{
g(θ′)q(θ′, θ(b))
g(θ(b))q(θ(b), θ′)

, 1
}
.

4. With an independent draw from the random number generator, determine whether we
“accept” θ′, where the probability of acceptance is α.

5. If the result of step 4 is to accept θ′, set θ(b+1) = θ′. Otherwise, θ(b+1) = θ(b).
6. Set counter b→ b+ 1 and return to step 2.
7. Continue until b = B, the desired number of Monte Carlo iterations.

As with the Gibbs sampler, it is usual to discard a large number of initial iterations as “burn-
in”, and then to retain only a thinned subset of the remaining iterations, to ensure approximate
independence between Monte Carlo variates.

A key feature of the algorithm is that the acceptance probability α depends only on ratios of
the density g — in other words, it is not necessary to specify g exactly, so long as it is known
up to a normalizing constant. This is precisely the situation we face with (14), where the
numerator π(θ)f(x | θ) is known explicitly but the denominator requires an integral which is
typically intractable. However, with the Metropolis-Hastings algorithm, it is not necessary to
evaluate the denominator.

A simpler form of the algorithm arises if the kernel q is symmetric, i.e. q(θ′, θ) = q(θ, θ′) for
all θ 6= θ′. In that case, the formula for the acceptance probability reduces to

α = min
{
g(θ′)
g(θ(b))

, 1
}
.

In this form, the algorithm is equivalent to the Monte Carlo sampling algorithm of Metropolis
et al. (1953), which was used for statistical physics calculations for decades before the algo-
rithm’s rediscovery by Bayesian statisticians. The general form of the algorithm, and its justifi-
cation in terms of the convergence theory of Markov chains, was due to Hastings (1970).



Although it is possible to apply the Metropolis-Hastings sampler entirely independently of
the Gibbs sampler, in practice, the two ideas are often combined, where the Gibbs sampler is
used to update all those components of θ for which explicit conditional densities are available
in a form that can easily be simulated, and a Metropolis-Hastings step is used for the remaining
components. This is exactly the way the algorithm was applied in Smith et al. (2009). To be
explicit, let us return to the model defined by equations (23)–(29), where now we treat aλ, bλ
as unknown parameters with prior density (25). Isolating those parts of the joint density that
depend just on aλ, bλ, we have to generate Monte Carlo samples from a density proportional to

g(aλ, bλ) = (aλbλ)a
∗−1e−b

∗(aλ+bλ)
M∏
j=1

baλλ λaλj e−bλλj

Γ(aλ)
. (31)

This is not of conjugate prior form so we use the Metropolis-Hastings algorithm to update aλ and
bλ. The form of updating rule is that given the current aλ and bλ, we define a′λ = aλe

δ(U1− 1
2 ),

b′λ = bλe
δ(U2− 1

2 ), for random U1 and U2 that are uniform on [0, 1] (independent of each other
and all other random variates). Both the form of this updating rule and the choice of δ are
arbitrary, but we have found it works well in practice, and have used δ = 1 in most of our
calculations. With this rule,

q{(aλ, bλ), (a′λ, b
′
λ)} =

1
δ2a′λb

′
λ

, a′λ ∈
(
aλe
−δ/2, aλe

δ/2
)
, b′λ ∈

(
bλe
−δ/2, bλe

δ/2
)
.

Therefore q{(a′λ, b′λ), (aλ, bλ)}/q{(aλ, bλ), (a′λ, b
′
λ)} = a′λb

′
λ/(aλbλ) and the acceptance probabil-

ity α reduces to

min
{
g(a′λ, b

′
λ)a′λb

′
λ

g(aλ, bλ)aλbλ
, 1
}
.

A5. Diagnostics

In this section, we briefly review some of the available diagnostics.
With the Metropolis-Hastings algorithm, the kernel q(θ, θ′) often contains a tuning parameter

(δ in the above example), which controls the size of the jumps. This raises the question of how
to choose the tuning parameter. For a specific class of Metropolis sampling rules based on a
multivariate normal target, Gelman et al. (1996) showed that there is an optimal acceptance
probability α, which ranges from 0.44 in one dimension to 0.23 as the dimension tends to ∞.
Using this result as a guideline, it is often recommended that for general Metropolis sampling
rules, the acceptance probability should be tuned so that it lies between about 0.15 and 0.5 on
average. There are many specific proposals for adaptively optimizing this choice; the paper by
Pasarica and Gelman (2008) contains one recent proposal and reviews earlier literature.

The question of how many iterations of a MCMC algorithm are required to achieve adequate
convergence to the stationary distribution has been the subject of much research. One well-
regarded procedure was proposed by Gelman and Rubin (1992) and extended by Brooks and
Gelman (1998). The Gelman-Rubin procedure requires running several samplers in parallel,
using widely dispersed initial values for the parameters. Then, it calculates “potential scale
reduction factor” R. This can be interpreted as an estimate of the possible reduction in variance
of the posterior mean of a particular parameter, if the Markov chain were run to convergence,
compared with the current iterations. Since R is itself an unknown parameter estimated from
the sample output, it is common to quote both the median and some upper quantile (say, the
.975 quantile) of the sampling distribution. The ideal value of R is 1; values much above 1 are
taken to indicate non-convergence of the MCMC procedure.

Another issue is inference after sampling. Suppose we are trying to estimate the posterior
mean of a particular parameter; in our climate application, ν, the estimated mean of future
values of a climatic variable, is of particular interest. If we had a Monte Carlo sample of in-
dependent estimates of ν, the usual standard error calculation would give an estimate of the
sampling variability of the posterior mean of ν. In an MCMC sample, it is desirable to take
account of the fact that successive draws from the sample may be autocorrelated. There are
many possible procedures; one method, due to Heidelberger and Welch (1981), constructs a



nonparametric estimate of the spectral density at low frequencies, and uses this to correct the
standard error.

The Gelman-Rubin and Heidelberger-Welch procedures are included, among several others,
in the CODA diagnostics package (Plummer et al., 2006), which is available as a downloadable
package within R (R Development Core Team, 2007).

A6. Further reading

There are by now many books on the principles of Bayesian data analysis and MCMC algorithms;
a small selection includes Gamerman and Lopes (2006); Gelman et al. (2003); Robert and
Casella (2004). The book by Robert (2005) is a somewhat more theoretical treatment that
makes the link between modern practices in Bayesian statistics and classical decision theory and
inference.

B. Computational details

B1. Computation for the univariate model

We detail here the Gibbs/Metropolis algorithm to sample the posterior distribution of the model
in Section 4.1, fitting one region at a time, with a hyperprior on the parameters of the prior for
the precisions, λjs. This algorithm is originally described in Smith et al. (2009).

Under the region-specific model, the joint density of θ, µ, ν, β, aλ, bλ,X0 and λj , Xj , Yj , , (j =
1, ...,M) is proportional to

θa+M/2−1e−bθe−
1
2λ0(X0−µ)2aa

∗−1
λ e−b

∗aλba
∗−1
λ e−b

∗bλ ·

·
M∏
j=1

[
λaλj e−bλλj · e− 1

2λj(Xj−µ)2− 1
2 θλj{Yj−ν−β(Xj−µ)}2

]
. (32)

Define

µ̃ =
λ0X0 +

∑
λjXj − θβ

∑
λj(Yj − ν − βXj)

λ0 +
∑
λj + θβ2

∑
λj

, (33)

ν̃ =
∑
λj{Yj − β(Xj − µ)}∑

λj
, (34)

β̃ =
∑
λj(Yj − ν)(Xj − µ)∑

λj(Xj − µ)2
. (35)

In a Monte Carlo sampling scheme, all the parameters in (32), with the exception of aλ and
bλ, may be updated through Gibbs sampling steps, as follows:

µ | rest ∼ N

[
µ̃,

1
λ0 +

∑
λj + θβ2

∑
λj

]
, (36)

ν | rest ∼ N

[
ν̃,

1
θ
∑
λj

]
, (37)

β | rest ∼ N

[
β̃,

1
θ
∑
λj(Xj − µ)2

]
, (38)

λj | rest ∼ G

[
a+ 1, b+

1
2

(Xj − µ)2 +
θ

2
{Yj − ν − β(Xj − µ)}2

]
, (39)

θ | rest ∼ G

[
a+

M

2
, b+

1
2

∑
λj{Yj − ν − β(Xj − µ)}2

]
. (40)

For the parameters aλ, bλ, the following Metropolis updating step is proposed instead:

1. Generate U1, U2, U3, independent uniform on (0, 1).

2. Define new trial values a′λ = aλe
δ(U1−1/2), b′λ = bλe

δ(U2−1/2). The value of δ (step length)
is arbitrary but δ = 1 seems to work well in practice, and is therefore used here.



3. Compute

`1 = Maλ log bλ −M log Γ(aλ) + (aλ − 1)
∑

log λj − bλ
∑

λj + a∗ log(aλbλ)− b∗(aλ + bλ),

`2 = Ma′λ log b′λ −M log Γ(a′λ) + (a′λ − 1)
∑

log λj − b′λ
∑

λj + a∗ log(a′λb
′
λ)− b∗(a′λ + b′λ).

This computes the log likelihood for both (aλ, bλ) and (a′λ, b
′
λ), allowing for the prior den-

sity and including a Jacobian term to allow for the fact that the updating is on a logarithmic
scale.

4. If
logU3 < `2 − `1

then we accept the new (aλ, bλ), otherwise keep the present values for the current itera-
tion, as in a standard Metropolis accept-reject step.

This process is iterated many times to generate a random sample from the joint posterior dis-
tribution. In the case where aλ, bλ are treated as fixed, the Metropolis steps for these two param-
eters are omitted and in this case the method is a pure Gibbs sampler. An R program (REA.GM.r)
to perform the sampling is available for download from http://www.image.ucar.edu/˜tebaldi/REA.

B2. Computation for the multivariate model

The following computations are originally described in Smith et al. (2009). Omitting unneces-
sary constants, the joint density of all the random variables in the model that treats all regions
at the same time is

(caλbλ)a−1e−b(c+aλ+bλ) ·

[
R∏
i=0

θa−1
i e−bθi

]
·

[
R∏
i=1

φa−1
i e−bφi

]
·

 M∏
j=1

λaλ−1
j e−bλλj

bλ
Γ(aλ)

 · [ψa−1
0 e−bψ0

]
·

·

 R∏
i=1

M∏
j=1

ηc−1
ij e−cηij

cc

Γ(c)

 ·
 M∏
j=1

√
ψ0e
− 1

2ψ0α
2
j

 ·
 M∏
j=1

√
θ0ψ0e

− 1
2 θ0ψ0(α′j−β0αj)

2

 ·
·

[
R∏
i=1

e−
1
2λ0i(Xi0−µ0−ζi)2

]
·

 R∏
i=1

M∏
j=1

√
ηijφiλje

− 1
2ηijφiλj(Xij−µ0−ζi−αj)2

 ·
·

 R∏
i=1

M∏
j=1

√
ηijθiλje

− 1
2ηijθiλj{Yij−ν0−ζ′i−α′j−βi(Xij−µ0−ζi−αj)}2

 (41)



Define

µ̃0 =

∑
i λ0i(Xi0 − ζi) +

∑
i φi

∑
j ηijλj(Xij − ζi − αj)−

∑
i βiθi

∑
j ηijλj{Yij − ν0 − ζi − α′j − βi(Xij − ζi − αj)}∑

i{λ0i + (φi + β2
i θi)

∑
j ηijλj}

,

(42)

ν̃0 =

∑
i θi
∑
j ηijλj{Yij − ζ ′i − α′j − βi(Xij − µ0 − ζi − αj)}∑

i θi{
∑
j ηijλj}

,

(43)

ζ̃i =
λ0i(Xi0 − µ0) + φi

∑
j ηijλj(Xij − µ0 − αj)− βiθi

∑
j ηijλj{Yij − ν0 − ζ ′i − α′j − βi(Xij − µ0 − αj)}

λ0i + (φi + β2
i θi)

∑
j ηijλj

,

(44)

ζ̃ ′i =

∑
j ηijλj{Yij − ν0 − α′j − βi(Xij − µ0 − ζi − αj)}∑

j ηijλj
, (45)

β̃0 =

∑
j α
′
jαj∑

j α
2
j

, (46)

β̃i =

∑
j ηijλj(Yij − ν0 − ζ ′i − α′j)(Xij − µ0 − ζi − αj)∑

j ηijλj(Xij − µ0 − ζi − αj)2
, (i 6= 0), (47)

α̃j =
β0θ0ψ0α

′
j + λj

∑
i ηijφi(Xij − µ0 − ζi)− λj

∑
i ηijθiβi{Yij − ν0 − ζ ′i − α′j − βi(Xij − µ0 − ζi)}

ψ0 + β2
0θ0ψ0 + λj

∑
i ηijφi + λj

∑
i ηijθiβ

2
i

, (48)

α̃′j =
β0θ0ψ0αj + λj

∑
i ηijθi{Yij − ν0 − ζ ′i − βi(Xij − µ0 − ζi − αj)}

θ0ψ0 + λj
∑
i ηijθi

. (49)

The conditional distributions required for the Gibbs sampler are as follows:



µ0 | rest ∼ N

[
µ̃0,

1∑
i{λ0i + (φi + β2

i θi)
∑
j ηijλj}

]
, (50)

ν0 | rest ∼ N

[
ν̃0,

1∑
i{θi

∑
j ηijλj}

]
, (51)

ζi | rest ∼ N

[
ζ̃i,

1
λi + (φi + β2

i θi)
∑
j ηijλj

]
, (52)

ζ ′i | rest ∼ N

[
ζ̃ ′i,

1
θi
∑
j ηijλj

]
, (53)

β0 | rest ∼ N

[
β̃0,

1
θ0ψ0

∑
j α

2
j

]
, (54)

βi | rest ∼ N

[
β̃i,

1
θi
∑
j ηijλj(Xij − µ0 − ζi − αj)2

]
, (i 6= 0) (55)

αj | rest ∼ N

[
α̃j ,

1
ψ0 + β2

0θ0ψ0 + λj
∑
i ηijφi + λj

∑
i ηijθiβ

2
i

]
, (56)

α′j | rest ∼ N

[
α̃′j ,

1
θ0ψ0 + λj

∑
i ηijθi

,

]
, (57)

θ0 | rest ∼ Gam

a+
M

2
, b+

1
2
ψ0

∑
j

(α′j − β0αj)2

 , (58)

θi | rest ∼ Gam

a+
M

2
, b+

1
2

∑
j

ηijλj{Yij − ν0 − ζ ′i − α′j − βi(Xij − µ0 − ζi − αj)}2
 , (i 6= 0)

(59)

φi | rest ∼ Gam

a+
M

2
, b+

1
2

∑
j

ηijλj(Xij − µ0 − ζi − αj)2

 , (60)

λj | rest ∼ Gam

[
aλ +R, bλ +

1
2

∑
i

ηijφi(Xij − µ0 − ζi − αj)2

+
1
2

∑
i

ηijθi{Yij − ν0 − ζ ′i − α′j − βi(Xij − µ0 − ζi − αj)}2
]
, (61)

ψ0 | rest ∼ Gam

a+M, b+
1
2

∑
j

α2
j +

1
2
θ0

∑
j

(α′j − β0αj)2

 , (62)

ηij | rest ∼ Gam

[
c+ 1, c+

1
2
φiλj(Xij − µ0 − ζi − αj)2

+
1
2
θiλj{Yij − ν0 − ζ ′i − α′j − βi(Xij − µ0 − ζi − αj)}2

]
. (63)

Were aλ, bλ and c fixed, as in the univariate analysis, the iteration (50)–(63) could be re-
peated many times to generate a random sample from the joint posterior distribution. Having
added a layer by making the three parameters random variates, two Metropolis steps are added
to the iteration (50)–(63), as follows.

For the sampling of aλ and bλ jointly, define U1, U2 two independent random variables dis-
tributed uniformly over the interval (0, 1), and the two candidate values a′λ = aλe

(δ(u1− 1
2 )) and

b′λ = bλe
(δ(u2− 1

2 )), where δ is an arbitrary increment, chosen as δ = 1 in the implementation to



follow. We then compute

l1 = MRaλ log(bλ)−MR log(Γ(aλ) +R(aλ − 1)
∑
j

log(λj)−Rbλ
∑
j

λj + a log(aλbλ)− b(aλ + bλ),

(64)

l2 = MRa′λ log(b′λ)−MR log(Γ(a′λ) +R(a′λ − 1)
∑
j

log(λj)−Rb′λ
∑
j

λj + a log(a′λb
′
λ)− b(a′λ + b′λ).

(65)

In (64) and (65) we are computing the log likelihoods of (aλ, bλ) and (a′λ, b
′
λ), allowing for the

prior densities and including a jacobian term, allowing for the fact that the updating is taking
place on a logarithmic scale. Then, within each iteration of the Gibbs/Metropolis simulation,
the proposed values (a′λ, b

′
λ) are accepted with probability el2−l1 .

Similarly, the updating of c takes place by proposing c′ = ce(δ(u3− 1
2 )), where u3 is a draw

from a uniform distribution on (0, 1), and computing

k1 = MRc log(c)−MR log(Γ(c)) + (c− 1)
∑
i

∑
j

log(ηij)− c
∑
i

∑
j

ηij + a log(c)− bc

(66)

k2 = MRc′ log(c′)−MR log(Γ(c′)) + (c′ − 1)
∑
i

∑
j

log(ηij)− c′
∑
i

∑
j

ηij + a log(c′)− bc′.

(67)

Then, within each iteration of the Gibbs/Metropolis simulation, the proposed value c′ is accepted
with probability ek2−k1 .

The method is available as an R program (REAMV.GM.r) from
http://www.image.ucar.edu/˜tebaldi/REA/.

B3. Computation for the bivariate model

The MCMC algorithm for the bivariate model is taken from Tebaldi and Sansó (2008). Note that
in the following, the “prime” symbol denotes the operation of centering a variable (Ot or Xjt)
by the respective climate signal µt = α+ βt+ γtI{t>=τ0}.

Coefficients of the piecewise linear model:
Define

A = τ0η
T + τ0η

Pβ2
xo + τ∗

∑
j

ξTj + τ∗
∑
j

ξPj β
2
xj

and

B = ηT
∑
t≤τ0

(OTt − βT t) + ηP
∑
t≤τ0

β2
xo(O

T
t − βT t− βxoOP

′

t ) +
∑
j

ξTj
∑
t≤τ0

(XT
jt − βT t− dTj ) +

∑
j

ξTj
∑
t>τ0

(XT
jt − βT t− γT (t− τ0)− dTj ) +

∑
j

ξPj β
2
xj

∑
t≤τ0

(XT
jt − βT t− dTj − βxj(XP ′

jt − dPj )) +

∑
j

ξPj β
2
xj

∑
t>τ0

(XT
jt − βT t− γT (t− τ0)− dTj − βxj(XP ′

jt − dPj )).

Then
αT ∼ N (

B

A
, (A)−1).

Define
A = τ0η

P + τ∗
∑
j

ξPj

and

B = ηP
∑
t≤τ0

(OPt − βP t− βxoOT
′

t ) +
∑
j

ξPj
∑
t≤τ0

(XP
jt − βP t− dPj − βxj(XT ′

jt − dTj )) +

∑
j

ξPj
∑
t>τ0

(XP
jt − βP t− γP (t− τ0)− dPj − βxj(XT ′

jt − dTj )).



Then
αP ∼ N (

B

A
, (A)−1).

Define
A = ηT

∑
t≤τ0

t2 + ηPβ2
xo

∑
t≤τ0

t2 +
∑
j

ξTj
∑
t≤τ∗

t2 +
∑
j

ξPj β
2
xj

∑
t≤τ∗

t2

and

B = ηT
∑
t≤τ0

t(OTt − αT ) + ηP
∑
t≤τ0

β2
xot(O

T
t − αT )− βxotOP

′

t ) +
∑
j

ξTj
∑
t≤τ0

t(XT
jt − αT − dTj ) +

∑
j

ξTj
∑
t>τ0

t(XT
jt − αT − γT (t− τ0)− dTj ) +

∑
j

ξPj
∑
t≤τ0

t(β2
xj(X

T
jt − αT − dTj )− βxj(XP ′

jt − dPj )) +

∑
j

ξPj
∑
t>τ0

t(β2
xj(X

T
jt − αT − γT (t− τ0)− dTj )− βxj(XP ′

jt − dPj )).

Then
βT ∼ N (

B

A
, (A)−1).

Define
A = ηP

∑
t≤τ0

t2 +
∑
j

ξPj
∑
t≤τ∗

t2

and

B = ηP
∑
t≤τ0

t(OPt − αP − βxoOT
′

t ) +
∑
j

ξPj
∑
t≤τ0

t(XP
jt − αP − dPj − βxj(XT ′

jt − dTj )) +

∑
j

ξPj
∑
t>τ0

t(XP
jt − αP − γP (t− τ0)− dPj − βxj(XT ′

jt − dTj )).

Then
βP ∼ N (

B

A
, (A)−1).

Define
A =

∑
j

ξTj
∑
t>τ0

(t− τ0)2 +
∑
j

ξPj β
2
xj

∑
t>τ0

(t− τ0)2

and

B =
∑
j

ξTj
∑
t>τ0

(t−τ0)(XT
jt−αT−βT t−dTj )+

∑
j

ξPj
∑
t>τ0

(t−τ0)(β2
xj(X

T
jt−αT−βT t−dTj )−βxj(XP ′

jt −dPj )).

Then
γT ∼ N (

B

A
, (A)−1).

Define
A =

∑
j

ξPj
∑
t>τ0

(t− τ0)2

and
B =

∑
j

ξPj
∑
t>τ0

(t− τ0)(XP
jt − αP − βP t− dPj − βxj(XT ′

jt − dTj )).

Then
γP ∼ N (

B

A
, (A)−1).

Bias terms and their priors’ parameters:
Define

A = τ∗ξTj + τ∗ξPj β
2
xj + λTD



and
B = ξTj

∑
t≤τ∗

XT ′

jt + ξPj
∑
t≤τ∗

(β2
xjX

T ′

jt − βxj(XP ′

jt − dPj )) + λTDa
T .

Then
dTj ∼ N (

B

A
, (A)−1).

Define
A = τ∗ξPj + λPD

and
B = ξPj

∑
t≤τ∗

(XP ′

jt − βxj(XT ′

jt − dTj )) + λPDa
P .

Then
dPj ∼ N (

B

A
, (A)−1).

Define A = MλTD and B = λTD
∑
j d

T
j , then

aT ∼ N (
B

A
, (A)−1).

Define A = MλPD and B = λPD
∑
j d

P
j , then

aP ∼ N (
B

A
, (A)−1).

λTD ∼ G(1 +
M

2
; 1 +

∑
j(d

T
j − aT )2

2
).

λPD ∼ G(1 +
M

2
; 1 +

∑
j(d

P
j − aP )2

2
).

The correlation coefficients between temperature and precipitation in the models, and their
prior parameters:
Define A = ξPj

∑
t(X

T ′

jt − dTj )2 + λB and B = ξPj
∑
t(X

T ′

jt − dTj )(XP ′

jt − dPj ) + λBβ0, then

βxj ∼ N (
B

A
, (A)−1).

Define A = MλB + λo and B = λB
∑
j>0 βxj + λoβxo, then

β0 ∼ N (
B

A
, (A)−1).

λB ∼ G(0.01 +
M

2
; 0.01 +

∑
j(βxj − β0)2

2
).

Precision terms for the models:

ξTj ∼ G(aξT +
τ∗

2
; bξT +

∑
t(X

T ′

jt − dTj )2

2
).

ξPj ∼ G(aξP +
τ∗

2
; bξP +

∑
t(X

P ′

jt − dPj − βxj(XT ′

jt − dTj ))2

2
).

Only the full conditionals of the hyperparameters aξT , bξT , aξP , bξP cannot be sampled di-
rectly, and a Metropolis step is needed. We follow the solution described in Smith et al. (2009).
The algorithm works identically for the two pairs, and we describe it for aξT and bξT (the sam-
pling is done jointly for the pair). We define U1, U2 as independent random variables, uniformly
distributed over the interval (0, 1), and we compute two proposal values a′ξT = aξT e

(δ(u1− 1
2 ))



and b′ξT = bξT e
(δ(u2− 1

2 )), where δ is an arbitrary increment, that we choose as δ = 1. We then
compute

`1 = MaξT log bξT −M log Γ(aξT ) + (aξT − 1)
∑
j

log ξTj − bξT
∑
j

ξTj +

0.01 log(aξT bξT )− 0.01(aξT + bξT ),
(68)

`2 = Ma′ξT log b′ξT −M log Γ(a′ξT ) + (a′ξT − 1)
∑
j

log ξTj − b′ξT
∑
j

ξTj +

a log(a′ξT b
′
ξT )− b(a′ξT + b′ξT ).

(69)

In (68) and (69) we are computing the log likelihoods of (aξT , bξT ) and (a′ξT , b
′
ξT ). Then, within

each iteration of the Gibbs/Metropolis algorithm, the proposed values (a′ξT , b
′
ξT ) are accepted

with probability e`2−`1 if `2 < `1, or 1 if `2 ≥ `1.
An R program that implements this simulation is available as REA.BV.r from

http://www.image.ucar.edu/˜tebaldi/REA/.
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Figure 1: Posterior PDFs of temperature change for a set of four regions and two seasons (December
through January, DJF and June through August, JJA). Dashed line: simplest univariate model;
dotted line: univariate model with common prior for λjs; solid line: multivariate model.



Figure 2: The 22 Giorgi regions. Output of temperature and precipitation for each GCM and
observations is area-averaged over each of these large regions, for a given season and (multi-)
decadal periods.



Figure 3: Posterior distributions of temperature change for the 22 regions of Figure 2 in DJF (left
panel) and JJA (right panel). For each region we show three boxplots corresponding to the pos-
terior distributions derived from the three statistical models represented also in Figure 1. The
labeling along the vertical axis and the horizontal lines in the plot region identify each region by
the acronyms of Figure 2. For each region, the lower boxplot, lightest in color, corresponds to the
simplest univariate model. The middle boxplot corresponds to the univariate model with hyperprior
on the reliability parameters. The third boxplot, darkest in color corresponds to the multivariate
model.



Figure 4: Similar to Figure 1, but now the three PDFs are the posterior from the multivariate model
(solid line), the posterior from the bivariate model (dotted line) and the posterior predictive from
the bivariate model (dashed line). The curves drawn as solid lines are the same as in Figure 1



Figure 5: Contours of joint changes in temperature and precipitation (the latter as percentage of
current average precipitation) for the same set of regions/seasons as in Figures 1 and 4. The tight
contours correspond to the posterior PDF from the bivariate model. The wider contors represent
the posterior predictive PDFs for the projections of a new GCM, unbiased.



Figure 6: Posterior PDFs for the model reliability parameters λjs derived from the univariate model
with common prior on them. The region/season combinations are the same as in Figures 1 and 4.
Each boxplot in a given panel corresponds to a GCM. Relatively larger values of λj are interpretable
as better model reliability in the given region/season.



Figure 7: Posterior distributions of model-specific mean effects in the multivariate model. The left
panel shows boxplots for the αjs, interpretable as global average biases in each model’s current
climate simulation. The corresponding distributions of the α′

js, interpretable as future simulation
biases, are shown in the panel on the right.



Figure 8: Interaction effect parameters (ηij) of the precisions in the likelihood of the multivariate
model. Left panel shows their posterior distributions integrated over regions (η.j). Right panel
shows the distributions integrated over models (ηi.).



Figure 9: Incremental trend parameters γT (temperature time series) and γP (precipitation time
series) in the bivariate model. When significantly different from zero they estimate a change in the
slope of the linear trend after 2000.


