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Environmental Statistics is by now an extremely broad field, in-
volving application of just about every technique of statistics.

Examples:
e Pollution in atmosphere and water systems
e Effects of pollution on human health and ecosystems
e Uncertainties in forecasting climate and weather
e Dynamics of ecological time series

e Environmental effects on the genome

and many more.



Some common themes:

e Most problems involve time series of observations, but also
spatial sampling, often involving irregular grids

e Design of a spatial sampling scheme or a monitor network is
important

e Often the greatest interest is in extremes, for example
— Air pollution standards often defined by number of cross-
ings of a high threshold
— Concern over impacts of climate change often focussed
on climate extremes. Hence, must be able to character-
ize likely frequencies of extreme events in future climate
scenarios

e Use of numerical models — not viewed in competition, but
how we can use statistics to improve the information derived
from models



I have chosen here to focus on three topics that have applications
across several of these areas:

I. Spatial and spatio-temporal statistics
e Interpolation of an air pollution or meteorological field
e Comparing data measured on different spatial scales
e Assessing time trends in data collected on a spatial net-
work

II. Network design
e Choosing where to place the monitors to satisfy some
optimality criterion related to prediction or estimation

III. Extreme values
e Probabilities of extreme events
e Time trends in frequencies of extreme events
e Assessing extremes on different spatial scales



TOPIC I: SPATIAL AND SPATIO-TEMPORAL
STATISTICS

I.1. Spatial covariances

I.2. Model identification and estimation

I.3. Prediction and interpolation

I.4. Spatial-temporal models

I.6. Example: Interpolation of fine particulate matter over the
U.S.



Major references

Cressie (1993)

Stein (1999)

Chiles and Delfiner (1999)
Banerjee, Carlin and Gelfand (2004)

and numerous others that have appeared over the past couple
of years.

My own course notes (Smith 2001):

http://www.stat.unc.edu/postscript/rs/envstat/env.html



Software
S-PLUS Spatial Statistics module

SAS — PROC MIXED (for ML or REML estimation of var-
iogram models) plus several more specialized spatial statistics
procedures

R in combination with the geoR and geoRglm libraries
(http://www.est.ufpr.br/geoR)

The “Fields” package from NCAR
(http://www.cgd.ucar.edu/stats/Software/Fields)

My own programs and data sets
(http://www.stat.unc.edu/postscript/rs/envstat/env2.html)
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I.1. Spatial covariances

Basic structure: A stochastic process {Y(s), s € D}, D C RY,
usually though not necessarily d = 2.

Mean function
u(s) =E{Y(s)}, seD.

Covariance function

C(s1,82) = Cov{Y (s1),Y(s2)}.
Y is Gaussian if all joint distributions are multivariate normal.

Y is second-order stationary if u(s) = p and

Cov{Y (s1),Y(s2)} = C(s1 — s2),
for all s;1 € D, s> € D, where C(s) is Cov{Y (s),Y(0)}.



The Variogram. Assume u(s) is a constant, which we may with-
out loss of generality take to be 0, and then define

Var{Y (s1) — Y(s2)} = 2v(s1 — s2).

This makes sense only if the left hand side depends on s and
s> only through their difference s;1 — s»>. Such a process is called
intrinsically stationary. The function 2~(-) is called the variogram
and ~(-) the semivariogram.

Intrinsic stationarity is weaker than second-order stationarity.
However, if the latter holds we have

v(h) = C(0) — C(h).

We shall usually assume second-order stationarity though some
applications require the wider class of intrinsically stationary
models (particulate matter example later).



Isotropy. Suppose the process is intrinsically stationary with
semivariogram ~(h), h € R%. If v(h) = ~o(||R||) for some function
Yo, I.€. If the semivariogram depends on its vector argument h
only through its length ||h||, then the process is isotropic.

Specification of functional forms for covariances and variograms
limited by positive definiteness. for any finite set of points sq, ..., sp
and arbitrary real coefficients aq,...,an, we must have

ZZaiajC(Si,Sj) Z 0.
L7

Corresponding conditions for variogram: if > a; = O,

> aaiy(si—s;) < 0.
J

1

More complete characterizations follow through spectral repre-
sentations (Stein, Fuentes and others)
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Some examples of variogram functions



The typical
ogram
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We give some examples of specific functional forms for a sta-
tionary isotropic variogram ~g or covariance function Cj

1. Exponential-power form:

(1) = 0 if t =0,
70 _{co—l—cl(l—e_|t/R|p) if ¢t > 0.

Here O < p < 2. p=1 is called exponential, p = 2 is Gaussian.

2. Spherical: (for d=1,2,3,)

0 if t =0,
oM ={co+ea{3h-3(R3 fo<t<h
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3. Power law:
0 ift=20,
Tolt) = {co +etd ift>0.
Valid if 0 < A< 2. X =1 is linear variogram. This case is not
second-order stationary.

4. Matérn:

1 (2\/@75) & (2\/@1;)

61 > 0 is the spatial scale parameter and 6>, > 0O is a shape
parameter. T(.) is the usual gamma function while Ky, is the
modified Bessel function of the third kind of order 6>. 6, = %
corresponds to the exponential form of semivariogram, and the

limit 6> — oo results in the Gaussian form.
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I.2. Model identification and estimation

Assume a process {Y (s), s € D} observed at a finite number of
points sy, ..., syN.-

The sample variogram is often used as an initial guide to the
form of spatial model. It can be drawn as either a variogram
cloud, or a binned variogram.
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tions in the northwest US
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Fitting parametric models

Sample variogram not negative definite: therefore, not accept-
able as an estimate of population variogram

Solution: fit a parametric model
e Curve fitting to the variogram,
e Maximum likelihood (ML),
e Restricted maximum likelihood (REML),

e Bayesian estimators.
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Maximum likelihood estimation (Mardia and Marshall 1984)

Assume Gaussian process. General model (includes regression
terms):

Y ~ N(XB,%),
> = aVi(h),

X a n x g matrix of covariates, « a scale parameter and V(0)
determined by 0, parameters of spatial model.

Maximum likelihood estimation reduces to minimizing the neg.
log. profile likelihood

2
G=(0) -+ % log [V (0)].

¢*(0) = const + g log

where G2(0) = (Z — XB)Tv ()~ (Z - XB),
B=(XTv©e)1x)"1xTv(6)~ly the GLS estimator of 8.
18



Restricted maximum likelihood

Let W = ALY be a vector of n—q linearly independent contrasts,
i.e. the n—q columns of A are linearly independent and Al'X =0,
then we find that

W ~ N (0, AT 4).

The density of W is taken to define the neg log likelihood func-
tion. After some manipulation, this reduces to minimizing

_ 200
n qlogG()

01 (0) = const + —I—% log |XTV(9)_1X|—|—% log |V (0)].

mn
Bayesian interpretation: this is the integrated likelihood at 0

assuming a uniform prior on 8 (Harville 1974)
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Advantages of REML over MLE

1. Asymptotic theory: although MLE and REMLE are first-order
equivalent, evidence suggests that REML performs better when
evaluated using second-order asymptotics (Smith and Zhu 2004,
preliminary work)

2. Much closer correspondence with Bayesian theory, e.g. the
“reference prior” for a Bayesian approach (Berger, de Oliveira
and Sanso, 2001) turns out to coincide with the Jeffreys prior
derived from the restricted likelihood

3. For models which are intrinsically stationary but not second-
order stationary, REML estimation works almost without modi-
fication
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I.3. Prediction and interpolation

Suppose we have the same universal kriging model as before but
extended to include some variable yg that we want to predict:

(o) ~1(35) (% )

where xg are new covariates corresponding to yq, o2 is the vari-
ance of yg and 7 is a vector of cross-covariances.

Note that yg is not restricted to being a single unobserved ele-
ment of the random field but could also be, for example, either
a spatial or a temporal average of the random field.

Traditional specification of best linear unbiased prediction:. find
a predictor jg = MY to minimize E{(@O—yO)Q} subject to
E{yo —yo} = 0.
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In vector-matrix notation, the problem is:

Find A to minimize
Vo=M'Zx-2aTr + 63
subject to

XTh = Q-

T he solution is
A="lr 4+ Ix(xTs 1 X)) HNag— XTI 1),
and the corresponding MSPE is

Vo = (20— XT= 1T (XTI X)) Yag-XT= 1) T 1r 403,

22



I.4. Spatial-temporal models

The direct generalization of spatial statistics to spatial-temporal
data is based on finding classes of spatial-temporal covariance
functions that obey the positive definiteness property, for which
the preceding theories of estimation, interpolation etc., go through
directly.

We concentrate here on two specific classes, separable models
and the dissociated processes. These are the simplest cases of
spatio-temporal models and can be viewed as the basic building
blocks from which more complicated models may be built.
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The separable model is defined by

C(h,u) = Co(h)y(u)

where C(h,u) denotes the covariance between two space-time
coordinates with spatial separation h and temporal separation w,
Co(h) is a pure spatial covariance and ~(u) is a temporal auto-
covariance. Since we may always transfer a constant between
the functions Cy and ~, there is no loss of generality in assuming
~(0) = 1, in other words, that ~ is a temporal autocorrelation
function.

The special case where ~v(u) = 0 for all uw # 0 was called the
repeated measurements model by Mardia and Goodall (1993).
I prefer dissociated processes to avoid the confusion with tradi-
tional repeated measurements models.

24



I.5. Example: Interpolation of fine particulate matter over
the U.S.

Ref: Smith, Kolenikov and Cox (2003)

A new set of air pollution standards, first proposed in 1997, is
finally being implemented by the U.S. Environmental Protection
Agency (EPA). One of the requirements is that the mean level
of fine particulate matter (PM»5 5) at any location should be no
more than 15 pg/m3. A network of several hundred monitors
has been set up to assess this.

The present study is based on 1999 data for a small portion of
this network, 74 monitors in North Carolina, South Carolina and
Georgia. We converted the raw values to weekly averages, but
even so more than % of the data are missing. The EPA also
recorded a ‘land-use” variable, classified as one of five types of
land-use: agricultural (A), commercial (C), forest (F), industrial

(I) and residential (R).
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Map of 74 Stations
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Preliminary analyses

We made a number of decisions based on plots of the data:

e Use square roots of PM> g to stabilize variances (approxi-
mately)

e [ime trend assumed to be common across all stations

e NO temporal correlation once time-trend is removed from
data

e [ here is spatial correlation — suggests a dissociated model

e [he form of the spatial correlation looks like a linear or
power-law variogram — different from traditional second-
order stationary models

27



“arianoe

Narianoe

16
1.2
0.3
0.4

0.3
0.6
0.4
nz

Mean-Variance Plots

Criginal Data
© L]
o " a} o o ? o ﬂl:}m_ =0 o :;::__?
[}
4 D.mmﬂ:&_‘3’=:,~:::::J .:,:3%% . ﬂ':'gl"-:- ﬁ,'&n w29 ¢ o o
12 14 16 18 20 22 24
Mean
Square Eoot Transform
[}
L]
:}ﬂ % o g L r
[} [} [u] L]
o el & o o
o ::':" . [u] o -:::-D‘f" &g:{:ﬂﬂﬁgﬂ-%%ﬂﬂ .:,:ZJE ] & o o .
L]
3.4 2.6 3.8 4.0 4.2 4.4 46 4.5
hean
Logarithmic Transform
=
4}
o =}
0 o o o
t1 " :}'I'ED e “o ﬂﬂnﬂ'%:} DD'#EE%':’D'JP:}DGQ ‘ngm‘}mﬂﬂ d:p DB‘} o
24 26 28 3.0

flean

28



Time Trend Fits to Entire Data Set
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Autocorrelation Plots for 74 Stations
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Basic model

Yt — Wt + Yo + 0z + Nyt

in which y,; is the square root of PM» 5 in location x in week
t, wy is a week effect, ¢, is the spatial mean at location z (in
practice, estimated through a thin-plate spline representation),
0, IS a land-use effect corresponding to the land-use as site z,
and n.;¢ IS @ random error.

We fit the power law variogram to {n;:} for each time point ¢
0 if h =0,
V() = | N
g + 01h if h > 0,
where g > 0, 61 >0, 0 <A< 2. MLE of A is 0.92 with standard
error 0.097 (close to A = 1, linear variogram)

33



Results

T he fitted model was used to construct a predicted surface, with
estimated root mean squared prediction error (RMSPE), for each
week of the year and also for the average over all weeks. The

latter is of greatest interest in the context of EPA standards
setting.

We show the predicted surface and RMSPE for week 33 (the
week with highest average PMs ) and overall for the annual
mean. We also show the estimated probability that any particular
location exceeds the 15 ug/m3 annual mean standard.
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Predicted PM2.5 Surfaces and RMSPFES

Predicted Surface for Week 33 RMSPE for Week 33
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/

Predicted Surface for Annual Average RMSPE for Annual Average
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Probability of Exceeding Standard

i

36



It can be seen that substantial parts of the region, including the
western portions of North and South Carolina and virtually the
whole of the state of Georgia, appear to be in violation of the
standard. Of the three major cities marked on the last figure,
Atlanta and Charlotte are clearly in the *“violation” zone; Raleigh
IS on the boundary of it.

T he actual EPA nonattainment regions suggest a rather different
picture.
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Attainment and Nonattainment Areas in the U.S.
PM, ; Standards

|| Attainment (or Unclassifiable) Areas (2916 counties)
] Nonattainment Areas (191 entire counties)
|| Nonattainment Areas (34 partial counties)

Current nonattainment areas (Source: EPA website, 12/18/2004).
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Postscript on spatial and spatio-temporal statistics

There are, of course, many more Kinds of models than the ones I
have presented here. I could have included whole chapters about
any of the following:

e Nonstationary models
e L attice models and their use in modern Bayesian methods

e Spatial-temporal models other than dissociated and separable
models

e Spatial GLMs (fitted by geoRglm module in R)
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I1.1.

I1.2.

I1.3.

I1.4.

TOPIC II: NETWORK DESIGN

Overview of different approaches

Predictive and estimative criteria

A new combined predictive-estimative approach

Example
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II.1. Overview of different approaches

The problem: We would like to monitor some environmental
variable over some region of interest.

Examples include both air and water pollution, meteorological
observing stations, fish and wildlife surveys, and many others.

The problem is where to place the monitors.

Traditional criteria for design of experiments, or for the design
of sample surveys, do not allow for spatial correlation among the
design points.

41



Some methodological approaches to design of a network with
spatial correlation:

e Approaches based on information theory and entropy (Zidek
and co-authors)

e Approaches based on the theory of optimal design (e.g. W.
Miiller (2000))

e Space-filling designs, e.g. Nychka and Saltzman (1998)

e Bayesian approaches, e.g. by P. Miller (1999)

Here I outline an approach (due to Stein and Zhu) that draws
explicit contrast between design for prediction and design for
estimation, and some recent work on a unified approach.
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II.2. Predictive and estimative criteria
Initial discussion follows Zhu (2002), Zhu and Stein (2004a,2004b)

Recall earlier universal kriging model where we indicate explicitly
that the covariance model depends on unknown parameters 6:

(o)~ 1045 )- (56 0 )
Yo 5 )7\ 77(©0) o3()

Universal kriging (assuming 6 known) leads to the following ex-
pression for the mean square prediction error (MSPE) of yq:

Vo = (zo— XTI ) T(XTE1X)  Yao—XT=1r) 7T 11403

Of course, this depends on 6.
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Predictive approaches:

For some yg of interest and known 6, choose the design to min-
imize V).

In practice, a family of yp's and 6 is unknown, but resolve the
latter issue either through a weighted minimax approach, or av-
eraging with respect to some prior distribution for 0.

Estimative approaches:

Choose the design to optimize the estimation of 6, via some
criterion like the determinant of the Fisher information matrix.

These are contrasting criteria, e.g. the predictive approach fa-
vors space-filling designs while the estimative approach often
leads to designs with clusters of neighboring points.
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Combined approaches (Zhu and Stein)

Harville and Jeske (1992) and Zimmerman and Cressie (1992)
proposed the following correction to the mean squared prediction
error:
— STvN\21 A~ _1 (O r O\
i = E{(yo—-Y)?} ~ Vo—l—tr{I (%> z(%)}
where 7 is the observed information matrix for 6. This formula
corrects for the error in specifying the kriging weights .

So one possibility is to use V7 (rather than V) as a design crite-
rion. However, this still doesn’t allow for error in estimating the
MSPE (important for prediction intervals).
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The error in estimating Vy depends on the quantity

OVo\ L oV,
= (50) 7 (%)
06 00
This suggest that some linear combination of V7 and % would

best measure the overall uncertainty. Zhu and Stein suggested

1 V5
Va = Vi 4+ =.-2
3 1 2
as a suitable combined criterion. However, it's not clear exactly

why this particular linear combination is appropriate.
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II.3. A new combined predictive-estimative approach

Assume the objective is to construct a two-sided 100(1 — «)%
prediction interval for yg, conditional on Y, with 8 and 5 un-
known.

Among all possible designs, we select the one that leads to the
smallest expected length of prediction interval, subject to the
constraint that the coverage probability be 1 — a.

Via second-order asymptotics, Smith and Zhu (preprint, 2004)
show that such a prediction interval can be calculated from
Bayesian principles, and the expected length criterion leads to
_ Lf-1 a2 V2
Ve = Vit et (1-5)) o
This has the unusual feature that the design might depend on
the desired coverage probability of a prediction interval.
47



II. 4. Example

Suppose we are considering redistributing 38 PM» 5 monitors in
North Carolina.

Assume the objective is to estimate population-weighted daily
average. Daily data from 2000. Assume individual days’ data
are independent replications of the model

0% if i =7,

0202~ %i/%2 if § £ j,

with y;,y; the PMj3 5 at locations ¢ and j, d;; is distance (units of
100 km.), and we estimated 61 = 6.495, 0>, = 4.019, 63 = .9423.

Treat this as the true model, but assume 64, 65,63 would have to
be re-estimated on any given day.

Cov(y;,y;) = {
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Population-weighted averages were calculated using data from
the 2000 U.S. census for the 809 zip code tabulation areas
(ZCTA) in North Carolina. Select 38 ZCTA out of 809 to place
the monitoring station to give most accurate prediction of the
total population PM2.5 exposure defined as

Yo = Y Pi¥i;

1
where p; is the population at the :'th ZCTA, and y; is the
PM2.5 level there. Vi and V4 with two-sided tail probabilities
a = 0.1,0.01,0.001 are used as design criteria, and a simulated
annealing algorithm is used to find the designs given in the fol-
lowing figure:
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Optimal Designs Under Four Criteria

V4 with alpha=0.1
/ VZIt alpha ) E

e \
00O 0] 0
0 0 Y 0
[0}

/ V4 with alpha=0.01 v\ / V4 with alpha=0.001 v\

Four designs selected using simulated annealing and the V4 cri-
terion (calculations due to Zhengyuan Zhu)
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All four designs tend to place monitors in regions of high pop-
ulation density (as does the current EPA network) but it is no-
ticeable that the criterion V,, especially for smaller «, tends to
favor a network with clusters of nearby monitors, reflecting the

role such clusters play in ensuring good estimation of model pa-
rameters.
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TOPIC III: EXTREME VALUES
III.1. Introduction and motivation
III.2. Basics of extreme value theory
III.3. Application: Insurance data
III.4. Trends in U.S. rainfall extremes

References: Coles (2001), Smith (2003)
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ITII.1. Introduction and motivation
From a paper by Smith and Goodman (2000):
We consider a dataset consisting of all insurance claims experi-
enced by a large international oil company over a threshold 0.5
during a 15-year period — a total of 393 claims.
Seven different ‘“claim types”

Total of all 393 claims: 2989.6

10 largest claims: 776.2, 268.0, 142.0, 131.0, 95.8, 56.8, 46.2,
45.2, 40.4, 30.7.
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Questions of interest
Estimate probabilities of extreme claims
Are the extremes associated with particular types of claims?
Is there any evidence of a time trend?

If so, are the trends in any way associated with climate
change? (Almost certainly not for this particular dataset,
but in many insurance-related questions, this is asked and
potentially of great interest.)

55



III.2. Basics of extreme value theory

We start with the extreme value limit laws (Fisher and Tippett
1928; Gnedenko 1943)

Let X4, X5,..., be independent identically distributed (IID) ran-
dom variables with distribution function F'.

Let M, = max(Xq,...,Xn). Then
PriM, <z} = F"(x) — 0O
for any x such that F(z) < 1.

To obtain interesting results renormalize: Find a, > 0, bp,

an
— G(x)

where G is a nondegenerate limiting distribution function.
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The Three Extreme Value Types
Type I (Gumbel)

N(x) = exp(—e "), —co <z < 0.
Type II (Fréchet)

Dolz) = {

Type III (Weibull)
Vo (z) = {eXp{_(—w)a}, if £ <0 (a>0),

0. if 2 <0,
exp(—x~%), ifxz>0 (a>0).

1, if £ > 0.
Generalized EV Distribution:
) L/¢
G@0=em>—{1+££—ﬁ}
o)y

(x4 = max(z,0)) where —oco < < 00, 0 <9 < 00, —o0 < § < oo0.
The limit & — 0 corresponds to the Gumbel case.

57



Exceedances Over Thresholds

Exceedances over a high threshold w.

Fuy) = Pr{X<u+y|X>u}
Flu+y) — F(u)
: >0
1~ F(a) (y > 0)
Look for scaling constants {c,} so that as v T wrp = sup{x :
F(x) < 1},

Fy(zey) — H(2)
where H is nondegenerate. In that case, H must be of form

z _1/5 .
1—e 27, if ¢ =0,

where o > 0 and —oo < £ < 0.

This is the Generalized Pareto Distribution (Pickands 1975).
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Statistical Approaches
Peaks Over Thresholds

Basic idea: fix a high threshold v say, and fit the Generalized
Pareto distribution (GPD) to exceedances over the threshold.

May need separate analysis to model the probability of crossing
the threshold as a function of covariates, e.g. logistic regression.

Extensions of the basic methodology:
e Selecting the threshold
e Incorporating covariates

e Dependence in the time series
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Statistical Approaches, Continued

Point process approach

The expected number of exceedances in a box of the form of A
IS assumed to be

N(A) = (t2 —t1) WV (y, 1, ¥, &)

where

(2

In practice, allow parameters to depend on covariates.

_ -1/¢
W (y; p, Y, &) = (1 +£—y “) .
_|_
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Diagnostics
Testing threshold exceedance rate

Assume probability of crossing threshold in a small time interval
(t,t + dt) is of the form A(t)dt. Exceedances at Ty,7To,...

t+h
Pri{Ty —Tp—1 > h|T1, ... T2, T_1 =t} = exp {—/ A(S)dS}
¢

independently of {T7,...,T,_1} (Tg = 0).

Alternatively,

Ty,
Z, =/ A(s)ds, k=12, ..
Tk 1

are independent exponentially distributed with mean 1.

In practice, use discrete analog of Z;..
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Testing distribution of excesses

High value Yy > u at t = 1Tj.

1 Y, —u
om dion (147
T, (e

or in the case {7, = 0,

YTk —u
br,

then the {W.} have independent exponential distributions with

mean 1, if the model is correct.

W =
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Uses of the Z and W statistics

e Plot Z;, and W, against time T} to look for trends

o QQ plots of ordered Z;. and W} to test for distribution

e Correlation plots to look for time series dependence
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II1.3. Application: Insurance data

GPD fits to various thresholds:

U Ny | Mean o &
EXxcess

0.5(393| 7.11 1.02 | 1.01
251132 | 17.89 | 3.47 | 0.91
5 73 28.9 6.26 | 0.89
10 | 42 | 44.05 | 10.51 | 0.84
15 | 31 | 53.60 | 5.68 | 1.44
20 | 17 | 91.21 | 19.92 | 1.10
25 | 13 | 113.7 | 74.46 | 0.93
50 6 37.97 | 150.8 | 0.29
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Point process approach:

u | Ny p log ¢ §
0.5]/393| 26.5 | 3.30 | 1.00
(4.4) | (0.24) | (0.09)
25]132] 26.3 | 3.22 | 0.91
(5.2) | (0.31) | (0.16)
5 | 73 | 26.8 | 3.25 | 0.89
(5.5) | (0.31) | (0.21)
10 | 42 | 272 | 3.22 | 0.84
(5.7) | (0.32) | (0.25)
15| 31 | 22.3 | 2.79 | 1.44
(3.9) | (0.46) | (0.45)
20 | 17 | 22.7 | 3.13 | 1.10
(5.7) | (0.56) | (0.53)
25 | 13 | 20.5 | 3.39 | 0.93
(8.6) | (0.66) | (0.56)

Standard errors

are in parentheses
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Insurance Data with Threshold 5

Z values vs.time

021 .

0.11 | .

0.0 .

01] ) )

02{
2 4 6 8 10

W values vs. time

0.2 1
0.1 1

0.0 1 e * *

-0.1 1 .

-0.2 1 °
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Conclusions for this example

e Either the GPD or the point process model fits very well,
but the point process model is easier to interpret because
the parameters are stable across different thresholds

e No evidence of an overall time trend (and no connection with
climate change)

e However, there is evidence of a type of claim effect and a
Bayesian hierarchical analysis (Smith and Goodman 2000)
shows the predicted probabilities of extreme events change
quite a bit if these are taken into account
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III.4. Trends in U.S. rainfall extremes

Data base: 187 stations of daily rainfall data from HCN network.
Most stations start from 1910 but this analysis is restricted to
1951-1997 during which coverage percentage is fairly constant.

T he analysis will assume that for each station, the data may be
described by a point-process model with parameters (ue, v+, &)
dependent on time t.

From this we shall estimate a ‘“trend in extremes’ for each sta-
tion.

Then we combine information across stations in a spatial analy-
SiS.
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Models

Model 1:
ut = po + ve, Yy = Yo, & = &o-

Model 2:
pe = poet, Py = Poe’t, & = &o.

Regression term:

v = > x5

where regressors may be

e Linear time trend in first covariate (x4 = t):

e Seasonal terms (coswt, sinwt)

e EXxternal signals, e.g. El Niho

70



Results of single-station analyses

For the overall analysis, model 2 was adopted, though it is not
clear that it fits better than model 1.

As an example of diagnostics, we show QQ plots for the Z-
statistics and W-statistics of four stations. Note outlier in W-
plot for Station 2 (Gunnison, CO).

The main focus was on the parameter (31, measured separately
for each station, representing the overall rate of increase in ex-
treme rainfall quantiles.
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Observed values

Observed values

(Station 1)

Expected values for z

(Station 2)

Expected values for z

Observed values

Observed values

(Station 3)

Expected values for z

(Station 4)

Expected values for z
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Observed values

Observed values

10

(Station 1)

Expected values for w

(Station 2)

Expected values for w

Observed values

Observed values

(Station 3)

Expected values for w

(Station 4)

Expected values for w
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Combining results

51 S
t > 2 25 74
t>1 73 | 134
t >0 125 | 162
t<O 59 22
t< -1 21 5
t< -2 10 1

Summary table of ¢ statistics (estimate divided by standard er-
ror) for extreme value model applied to 187 stations and 98%
threshold.

Question: How to integrate the results from 187 stations in a
meaningful way?
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Spatial integration of time trend parameter
B1(s): true but unobserved spatial field, indexed by location s
B1(s): estimate of B1(s) at site s

2-stage model: universal kriging model with measurement error

P~ N(XB,X),
G181 ~ N(Z,W).

Combined:

B~ N(Xv, =+ W].

In rainfall application, > taken as a exponential or Matérn spatial
covariance function. Possible systematic variation of (31 across
space taken into account by X~ term (in practice, a quadratic
polynomial in latitude and longitude)
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Interpolated rainfall trend

(0.0 .03 (.10 013

76



S.E. of interpolated trend

0.02% (0065 0075 0055
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o Regionl
N West Coast

o Region 2
e Mountains
[ ]

Five regions for regional analysis
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Results of Regional Analysis

Region | Extreme | (S.E.)
Rainfall
Trend

1 .055 .024

2 .092 017

3 115 .014

4 .097 .016

5 .075 .013

All .094 .007

Table represents mean trend (average spatially smoothed value
of trend parameter Bl) over each of five regions, and over whole
country. Also shown is the estimated standard error of the re-
gional average by the spatial smoothing technique.
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Conclusions and Summary

e Although the estimated (31 at a single site is generally not
significant, when combined across all sites, there is clear sig-
nificant evidence of positive 81 (meaning, positive trend in
the frequency of extreme events)

e [ here are, however, significant differences across regions

e [ he challenge for the future is to reconcile these results
with those of weather forecasting model reanalyses (e.g. by
NCEP, ECMWEF) and with climate models. If this exercise
IS successful, we can hope to use the model for probabilistic
prediction of extreme rainfall events in future climate change
scenarios (connection with Claudia Tebaldi's talk earlier to-

day)
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