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Summary

Bivariate extreme value distributions contain parameters of two types; those that
define the marginal distributions, and parameters defining the dependence between suit-
ably standardized variates. As an alternative to full maximum likelihood based on the
joint distribution, we consider a “marginal estimation” method in which the margin and
dependence parameters are estimated separately. This method is simpler to implement
computationally, but may be inefficient. Asymptotic results allow the inefficiency to be
quantified. The concepts are relevant to a large class of families of multivariate distribu-
tions, but the detailed analysis is restricted to Gumbel’s logistic model with Gumbel or
Generalized Extreme Value margins.
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1. INTRODUCTION

Bivariate extreme value distributions arise when one is interested in the joint distri-
bution of extremes of two variables, for instance, the heights of a river at two neighbouring
stations. The univariate margins are taken to be either the two-parameter Gumbel distri-
bution

F (x; µ, σ) = exp [−exp{−(x− µ)/σ}] (1.1)

(Gumbel 1958), or the three-parameter Generalized Extreme Value distribution

F (x; µ, σ, ξ) = exp
[
−{1− ξ(x− µ)/σ}1/ξ

+

]
(1.2)

where y+ = max(y, 0). Equation (1.2) reduces to (1.1) when ξ → 0; see Prescott and
Walden (1980) and Smith (1985) for asymptotic estimation theory and Hosking (1985) for
a Fortran algorithm to calculate maximum likelihood estimates.

There is a wide literature about bivariate and more generally multivariate extremes,
but almost all the information we need is contained in Tawn (1988). Tawn reviewed a
number of old and new models for bivariate extremes. A simple model which appears to
be widely applicable is the logistic model due originally to Gumbel. This is given by the
joint distribution function

F (x, y; µ, σ, ν, τ, α) = Pr {X ≤ x, Y ≤ y}
= exp

[
−

{
e−(x−µ)/σα + e−(y−ν)/τα

}α] (1.3)

in the case with Gumbel margins, or

F (x, y; µ, σ, ξ, ν, τ, η, α) = exp
[
−

{
(1− ξ(x− µ)/σ)1/αξ

+ + (1− η(y − ν)/τ)1/αη
+

}α]
(1.4)

with Generalized Extreme Value margins. Here α ∈ [0, 1] measures the dependence be-
tween X and Y , the limits α → 1, α → 0 corresponding respectively to independence
and complete dependence (meaning that there is a deterministic relation between the two
variables). Note that (1.3) arises from (1.4) by taking the limits ξ → 0, η → 0 in the same
way as (1.2) leads to (1.1). Tawn considered the asymptotic theory of maximum likelihood,
focussing in particular on the nonregular behaviour at α = 1.

When 0 < α < 1, maximum likelihood estimators have the usual regular asymptotic
properties, and asymptotically efficient estimators may be calculated by maximizing the
full likelihood function with respect to all the parameters. We call this joint estimation
because it is based on the joint distribution of X and Y . There is, however, another
method that also seems appealing. This is to estimate µ, σ and ξ (if we do not assume
ξ = 0) purely from the X values in the sample, ν, τ and η purely from the Y values, and
then apply the transformation
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Ŝ =
{

exp{−(X − µ̂)/σ̂}, (Gumbel case)
{1− ξ̂(X − µ̂)/σ̂}1/ξ̂, (GEV case)

T̂ =
{

exp{−(Y − ν̂)/τ̂}, (Gumbel case)
1− η̂(Y − ν̂)/τ̂}1/η̂, (GEV case)

based on estimates µ̂, σ̂, etc. If the estimates were replaced by their true values µ, σ, etc.,
then we could replace Ŝ, T̂ by S, T with joint distribution

P{S > s, T > t} = exp{−(s1/α + t1/α)α}, s > 0, t > 0 (1.5)

and it would be straightforward to estimate α by maximizing the one-parameter likelihood
derived from (1.5). This suggests we do the same thing with the joint distribution of (Ŝ, T̂ )
ignoring the effect of estimating the marginal parameters. We call this method marginal
estimation.

Computationally, it would simplify things a great deal if we could use marginal in
place of joint estimation. One could use established algorithms such as Hosking’s (1985)
to estimate the margin parameters, and there would be no messy maximization in 5 or 7
dimensions. This advantage is even more clear-cut in more complicated models with more
than one dependence parameter, or in multivariate extreme value distributions for more
than two variables. However, no study has been made so far of the relative efficiency of
marginal as compared with joint estimation. This is the principal motivation of the present
paper.

There are some related issues connected with regional methods in hydrology (NERC
1975). Hydrologists typically try to improve their estimates by combining data from sites
in the same region, assuming some or all the parameters to be common to the region. This
raises questions of (a) testing for equality of parameters, (b) estimation of parameters
under the assumption that they are equal at different sites. The traditional hydrological
approach ignores dependence between sites. The methods of this paper allow for some
theoretical analysis of the effects of that, though only in the case of two sites and logistic
dependence. For a more practical approach see Smith (1992), and Coles and Walshaw
(1992) for a similar problem involving wind directions.

The detailed study is restricted to (1.3) and (1.4), but the methodology is in principle
applicable to any problem in which there are observed variables (X1, . . . , Xp) and trans-
formed variables (S1, . . . , Sp) (where each Si is a function of Xi, depending on unknown
margin parameters), and the joint distribution of (S1, . . . , Sp) depends on additional “de-
pendence” parameters. All the multivariate extreme value distributions are of this form.

The study is also restricted to the traditional approach to extreme values based on
the extreme value distributions. The alternative “threshold” approach propounded for
univariate extremes by Davison and Smith (1990), has been extended to the bivariate case
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by Coles and Tawn (1991) and Joe, Smith and Weissman (1992). This raises similar issues
of joint versus marginal estimation.

A key part of the analysis is the calculation of the Fisher information matrix for the
model (1.3) or (1.4). In the case of (1.3), this has been done, with minor changes in
notation, in a recent paper of Oakes and Manatunga (1992). The extension to (1.4) is
considerably more complicated. However this appears to be worthwhile because, whereas
our results show that the marginal method of estimation is satisfactory for (1.3), in the
sense that the asymptotic variances of the two methods are generally very close, the same is
not true of (1.4), where for certain combinations of parameter values, the marginal method
can be very inefficient indeed. The latter result is supported by simulations; in fact it
was simulations of the problem which originally prompted us to pursue the theoretical
investigation in this paper.

2. COMPUTING THE FISHER INFORMATION

Let (X,Y ) denote a bivariate random variable with joint distribution function F (x, y)
given by (1.4). Define the successive transformations

S = {1− ξ(X − µ)/σ}1/ξ
, T = {1− η(Y − ν)/τ}1/η

, (2.1)

S = Zcos2αV, T = Zsin2αV, (2.2)

into first (S, T ) and then (Z, V ). In accordance with standard convention, upper-case
roman letters denote random variables, and their lower-case equivalents denote numerical
values. The joint density of (X,Y ), written as a function of (s, t), is

f(x, y) = ∂2F (x, y)/∂x∂y

= (στ)−1s1/α−ξt1/α−η(s1/α + t1/α)α−2.

.
{

(s1/α + t1/α)α − 1 + 1/α
}

exp
{
−(s1/α + t1/α)α

}
,

(2.3)

defined when s > 0, t > 0. Alternatively, if we transform to (Z, V ) and allow for the
Jacobean of the transformation, we find that their joint density is

(αz + 1− α)e−z sin 2v, 0 < v < π/2, 0 < z < ∞ (2.4)

which shows that Z and V are independent with easily characterized distributions: V may
be represented as (arc sin U1/2), where U is uniform on (0, 1), while Z is the 1 − α :
α mixture of a unit exponential random variable and the sum of two independent unit
exponential random variables. This representation, apparently due to Lee (1979), was also
the starting point for the paper by Oakes and Manatunga (1992). Amongst other things,
it suggests an easy way to simulate from the distribution (1.3) or (1.4).

To compute the Fisher information matrix, we need the components of the score statis-
tic, i.e. the derivatives of logf with respect to the parameters. These may be expressed in
terms of Z, V and
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W = (1− 1/α){2 + 1/(Z − 1 + 1/α)} − Z (2.5)

as follows:

∂logf

∂µ
=

1
σ

Z−ξ(cos V )−2αξ

(
1
α
− ξ + W cos2V

)
,

∂logf

∂σ
= − 1

σ
+

1
σξ

{
Z−ξ(cos V )−2αξ − 1

} (
1
α
− ξ + W cos2V

)
,

∂logf

∂ξ
= − log Z − 2α log cos V +

1
ξ2

(
1
α
− ξ + W cos2V

)
.

.
{
1− Z−ξ(cos V )−2αξ − ξ log Z − 2αξ log cos V

}
,

∂logf

∂α
= − 2

α
(log sinV + log cosV )− 1

α2(Z − 1 + 1/α)
− 2W (cos2V log cosV + sin2V log sinV ).

The expressions for ∂ log f/∂ν, ∂ log f/∂τ and ∂ log f/∂η are obtained from those for
∂ log f/∂µ, ∂ log f/∂σ and ∂ log f/∂ξ by making the obvious substitutions of τ for σ, η
for ξ, and replacing cos V by sinV everywhere. In the Gumbel case ξ = η = 0, these
expressions may be replaced by their easily calculated limits as ξ → 0, η → 0. The
Fisher information matrix is evaluated by calculating the variances and covariances of
these quantities. The details of that are extremely tedious, but routine, so we shall not
give any details of the calculation. For the Gumbel case, the answer has been given by
Oakes and Manatunga (1992). They used a different parametrization from us, considering
a bivariate Weibull form

Pr{T1 > t1, T2 > t2} = exp
[
−

{
(ηκ1

1 tκ1
1 )1/α + (ηκ2

2 tκ2
2 )1/α

}α]
, t1 > 0, t2 > 0. (2.6)

This may be transformed into (1.3) by writing κ1 = 1/σ, η1 = eµ, t1 = e−x, κ2 = 1/τ ,
η2 = eν , t2 = e−y. To transform the information matrix, note that, for example,

∂ log f

∂µ
=

∂ log f

∂η1

∂η1

∂µ
= eµ ∂ log f

∂η1

so that

E

{(
∂ log f

∂µ

)2
}

= −e2µE
{

∂2 log f

∂η2
1

}

with similar expressions for the other parameters. In this way the results for the Gumbel
case may be obtained directly from those in Oakes and Manatunga. Note that we do need
the new parametrization, (1.3) instead of (2.6), because (2.6) is not easily extended to the
Generalized Extreme Value case.
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For the Generalized Extreme Value case, the needed formulae are given in detail in
the Appendix.

We conclude this section by calculating some joint moments of S and T . From (2.2)
and (2.4) it may quickly be established that

E{SpT q} =
Γ(1 + αp)Γ(1 + αq)Γ(1 + p + q)

Γ(1 + αp + αq)
. (2.7)

Expectations involving log S and log T may also be calculated by differentiating with
respect to p and q in (2.7). We write Ψ(x) = (d/dx)logΓ(x) for the digamma function,
and note that γ = −Ψ(1) is Euler’s constant, and Ψ′(1) = π2/6. It then follows that

cov(S, T ) =
2Γ2(1 + α)
Γ(1 + 2α)

− 1, (2.8)

cov{(1− S)logS, T} = 2− (1 + α)γ − αΨ(1 + α)

− 2Γ2(1 + α)
Γ(1 + 2α)

[
3
2
− γ + αΨ(1 + α)− αΨ(1 + 2α)

]
,

(2.9)

cov{(1− S)log S, (1− T )log T} = 1 + γ2 − (1 + α2)
π2

6
+ 2α2Ψ′(1 + α)

− 2(1− γ){1− γ − αγ − αΨ(1 + α)}

+
2Γ2(1 + α)
Γ(1 + 2α)

[π2

6
− 5

4
− α2Ψ′(1 + 2α)

+
{

3
2
− γ + αΨ(1 + α)− αΨ(1 + 2α)

}2]
. (2.10)

These formulae will be used in Section 3.

The results on Fisher information were generated by direct calculation without com-
puter algebra. The algebraic manipulations have been checked several times, and we believe
as best as we can that they are completely correct. In addition, extensive numerical checks
have been run. All the expected-value formulae were checked by making comparisons with
averages of up to a million Monte Carlo observations, and in virtually every case the Monte
Carlo mean lay within 2.5 estimated standard errors of the calculated theoretical values.
This was true for numerous different combinations of the key parameters ξ, η and α. In
addition, the fact that all the computed covariance matrices were positive definite, and
all the inequalities between the joint and marginal methods went in the right direction
(i.e. the joint method being more efficient), itself served to corroborate that the algebraic
results were correct. Finally, as a check against typographical or transcription errors,
after the first draft of this manuscript had been completed, all the computer programs
were completely rewritten using just the manuscript to generate the code. This produced
identical results to the earlier ones that we had used while generating the results.
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A separate issue is that of the inherent numerical stability of the formulae. They are
unstable as ξ and η tend to 0, where in the limit it would be necessary to derive alternative
limiting forms, and also as α tends to 0 or 1, in the latter case because then the Fisher
information itself becomes unbounded (Tawn 1988). Numerical experience has suggested
that in the middle of the range (α close to 0.5) the results are satisfactory for |ξ| and |η|
as small as 0.001, but that it is necessary to be much more careful for values of α such as
0.1 or 0.9. All the results were programmed in double precision Fortran, using formulae in
Abramowitz and Stegun (1964) to generate the gamma, digamma and trigamma functions
to high accuracy, and using our own implementation of Simpson’s rule, on a grid of 1000
points, to evaluate the numerical integrals involved in the formulae in the Appendix.

3. COMPARISON OF JOINT AND MARGINAL ESTIMATORS

The general method to be outlined is applicable to any problem of the structure
described in Section 1, but the detailed discussion is restricted to the logistic model with
Gumbel margins, i.e. (1.3). The method is then directly applicable to the corresponding
problem for (1.4).

The model has five parameters µ, σ, ν, τ, α. Let J denote the 5× 5 Fisher information
matrix. The “joint” method of estimation consists of maximizing the full five-parameter
likelihood function. From standard theory, the covariance matrix of the parameter esti-
mates is given asymptotically by n−1J−1 where n is the sample size. This is obtained
directly from Oakes and Manatunga (1992) using the transformation described in Section
2.

The “marginal” method consists of estimating µ and σ by the maximum likelihood
estimates, µ̂ and σ̂ say, based on the X values alone, and similarly ν̂ and τ̂ based on the
Y values alone. These estimates are then used to transform X and Y to Ŝ and T̂ , and
the estimator α̂ is obtained by maximizing the one-parameter likelihood based on (1.5).
Note that we use µ̂, α̂, etc., to denote the marginal rather than joint estimators. This
will not cause confusion, because we shall nowhere need a separate notation for the joint
estimators. Let θ denote the column vector of parameters µ, σ, ν, τ . If h is a function
of θ we let ∂h/∂θ, ∂h/∂θT denote respectively the column and row vectors of first-order
derivatives, and ∂2h/∂θ∂θT the matrix of second-order derivatives with respect to the
components of θ. Let `n(θ, α) denote the log likelihood based on n observations, and
let `∗n(θ) = `n(θ, 1) denote the log likelihood for θ that arises from assuming X and Y
independent. This is obtained by differentiating log f∗, where f∗ is the density in this
case (i.e. after setting α = 1). We also let θ0, α0 denote the true values of θ and α. The
marginal estimator θ̂ is the value of θ that maximizes `∗n(θ), and α̂ maximizes `n(θ̂, α) with
respect to α.

A standard Taylor expansion shows that, to first order,

θ̂ − θ0 =
(
− ∂2`∗n

∂θ∂θT

)−1
∂`∗n
∂θ

(3.1)
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where (here and subsequently) derivatives are evaluated at (θ0, α0) unless otherwise indi-
cated. Thus

Cov(θ̂) ≈
(
−E

{
∂2`∗n

∂θ∂θT

})−1

Cov
(

∂`∗n
∂θ

) (
−E

{
∂2`∗n

∂θ∂θT

})−1

. (3.2)

Recall (from Gumbel 1958 or by setting α = 1 in the Fisher information matrix) that the
2× 2 Fisher information matrix for (µ, σ) is

1
σ2

[ 1 γ − 1
γ − 1 π2/6 + (1− γ)2

]
(3.3)

and similarly for (ν, τ). This leads at once to E
{−∂2`∗n/∂θ∂θT

}
, since the expected second-

order derivatives with respect to (µ, µ), (σ, σ), (µ, σ), (ν, ν), (τ, τ) and (ν, τ) are obtained
from (3.3) (with τ in place of σ where appropriate) and the derivatives with respect to
(µ, ν), (µ, τ), (ν, σ) and (σ, τ) are identically 0. Similarly, the diagonal and (µ, σ), (ν, τ)
off-diagonal elements of Cov (∂`∗n/∂θ) are derived from (3.3). However, the (µ, ν), (µ, τ),
(ν, σ) and (σ, τ) elements are non-zero and these terms require separate computation. In
terms of S and T , it is easily checked that

∂logf∗

∂µ
=

1− S

σ
,

∂logf∗

∂σ
= − 1

σ
{1 + (1− S)logS},

∂logf∗

∂ν
=

1− T

τ
,

∂logf∗

∂τ
= −1

τ
{1 + (1− T )logT}.

The covariances of these must, of course, be evaluated under the true model, for which
α 6= 1. Thus

στE

{
∂logf∗

∂µ

∂logf∗

∂ν

}
= Cov(S, T ), (3.4)

στE

{
∂logf∗

∂σ

∂logf∗

∂ν

}
= στE

{
∂logf∗

∂µ

∂logf∗

∂τ

}

= cov{(1− S)logS, T}, (3.5)

στE

{
∂logf∗

∂σ

∂logf∗

∂τ

}
= cov{(1− S)log S, (1− T )log T}. (3.6)

Expressions (3.4)-(3.6) are evaluated from (2.8)-(2.10). This allows the evaluation of (3.2)
to be completed.

Now we consider the properties of α̂ obtained by setting ∂`n/∂α = 0 at (θ̂, α̂). A
Taylor expansion of `n shows that, to first order,

α̂− α0 =
(
−∂2`n

∂α2

)−1 {
∂`n

∂α
+

∂2`n

∂α∂θT
(θ̂ − θ0)

}
, (3.7)
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where, again, the partial derivatives are evaluated at the true values (θ0, α0). This may be
combined with (3.1) to obtain an approximation for α̂ in terms of derivatives of `n and `∗n.
For first-order asymptotics, it suffices to replace all the second-order derivatives by their
expected values. We also have

Cov
(

∂`n

∂α
,
∂`∗n
∂θ

)
= 0. (3.8)

To see (3.8), observe that for any measurable function h of x alone,
∫

h(x)f(x, y; θ, α)dxdy
depends just on the marginal distribution of X and hence is independent of α. Hence,
differentiating,

Cov
{

h(X),
∂logf

∂α

}
= 0.

Of course, the same thing also applies to a function of Y alone. Since all the elements of
∂`∗n/∂θ are functions of either the X-values alone or the Y -values alone, (3.8) follows.

Combining (3.1), (3.7) and using (3.8), we deduce

Cov(θ̂, α̂) ≈
{
−E

(
∂2`n

∂α2

)}−1

E

(
∂2`n

∂α∂θT

)
Cov(θ̂), (3.9)

var(α̂) ≈
{
−E

(
∂2`n

∂α2

)}−1

+
{
−E

(
∂2`n

∂α2

)}−2

E

(
∂2`n

∂α∂θT

)
Cov(θ̂)E

(
∂2`n

∂α∂θ

)
.

(3.10)

In (3.9) and (3.10), the means and covariances involving `∗n are calculated using (3.3)-
(3.6) as before, while the remaining quantities are derived from the full Fisher information
matrix based on `n. Combining (3.2), (3.9) and (3.10) gives the full asymptotic covariance
matrix of (θ̂, α̂).

We now consider the application of these results to a number of specific problems:-

(a) Efficiency of parameter estimation. The formulae (3.2), (3.9) and (3.10) lead
directly to the asymptotic covariance matrix of the estimators under the marginal method.
This can be compared with the corresponding matrix for the joint method, obtained by
inverting the Fisher information matrix. In particular, the ratios of diagonal entries of these
matrices are a direct measure of the asymptotic relative efficiency of the two methods for
individual parameter estimates.

(b) D-efficiency, Q-efficiency. To summarize the information in the covariance matrices
into a single number, one commonly used measure is the determinant of the matrix. We
compute the ratio of the two determinants for the joint and marginal methods of estimation,
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and raise this to the power 1/m where m is the total number of parameters (5 or 7). The
last step acts as a scaling transformation, so that the various efficiencies are comparable.
This one will be referred to as the D-efficiency of joint vs. marginal estimation.

An alternative approach is to focus on specific functionals. In extreme value theory,
the functionals of most interest are usually quantiles of the distribution. For one of the
two margins, say X, the p∗-quantile of the distribution can be obtained as a function of
µ, σ and if present ξ, by solving F (x) = p∗ where F is given by (1.1) or (1.2). The
asymptotic variance of the resulting estimate can be calculated via the delta method. The
ratio of asymptotic variances for the joint and marginal methods provides another measure
of efficiency which we call Q-efficiency. Note that this is something that depends purely
on the marginal distribution of one of the two variables. Intuition would suggest that that
there is little to be gained from joint estimation in this case. Intuition can be wrong!

(c) Testing equality of margin parameters. An important issue in connection with
regional methods in hydrology is to test whether all or some of the margin parameters are
constant across a region. Here we consider a “region” consisting of just two sites. This can
be assessed by testing whether the vector (µ̂− ν̂, σ̂− τ̂) is 0. A naive approach would be to
do this ignoring the dependence between the two sites. Note that, as a consequence of (3.4)-
(3.6), although the marginal distributions of µ̂, σ̂, ν̂ and τ̂ are unaffected by dependence,
the cross-covariances of (µ̂, σ̂) with (ν̂, τ̂) are non-zero, meaning that covariances derived
under the assumption that X and Y are independent will be wrong. Equation (3.2) may
be used to evaluate the true covariances and hence to assess how far we would be in error
if we ignored the dependence altogether.

To put more substance on this, suppose the estimated covariance matrix of (µ̂−ν̂, σ̂−τ̂)
is C. That is to say, this is the covariance we would calculate if X and Y were independent
(directly from the Fisher information). Also let C0 denote the true covariance matrix,
which we can compute using the formulae for the marginal method. We can consider the
test statistic

(µ̂− ν̂, σ̂ − τ̂)T C−1(µ̂− ν̂, σ̂ − τ̂)

which also approximates the likelihood ratio statistic. The actual (approximate) distri-
bution of this, under the assumption that the true covariance matrix is C0, is a weighted
mixture of chi-squares, but a good summary is obtained from the mean, which we may
calculate as tr{C−1C0}/2, the division by 2 being to rescale it relative to the mean of the
χ2

2 statistic which would apply if C = C0. In the Generalized Extreme Value case, with
three parameters to test, this 2 is replaced by 3. For want of a better name, the resulting
scalar quantity will be called the testing efficiency.

This is not strictly a “joint” versus “marginal” estimation problem, so much as one
in which we take account of dependence versus one in which we do not. However, it is so
closely related to the main theme of this paper that it seems worth considering as part of
the same study. Intuitively one would expect the testing efficiency to be near 1 when α is
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near 1, since then the two components are approximately independent, but to be near 0 for
α near 0, when the components are highly dependent and the true variances of µ̂− ν̂ and
σ̂− τ̂ (under the null hypothesis) near 0. A testing efficiency between 0 and 1 means that
the χ2 statistic will be too small and thus the test will tend to accept the null hypothesis
when it should reject.

(d) Estimation assuming common margin parameters. Another issue arising in re-
gional methods is the effect of dependence on estimates of margin parameters when these
are assumed constant across a region (c.f. Hosking and Wallis 1988). Again considering a
“region” of only two sites, we may consider the estimation of µ, σ, ν and τ under the as-
sumption that µ = ν and σ = τ . Suppose we naively estimate µ and σ from the likelihood

constructed by assuming independence. If we partition θ =
(

θ1

θ2

)
where θ1 =

(
µ
σ

)
and

θ2 =
(

ν
τ

)
, we have the expansion (about the true values θ10, θ20),

`∗n(θ1, θ2)− `∗n(θ10, θ20) =

(θ1 − θ10)T ∂`∗n
∂θ1

+ (θ2 − θ20)T ∂`∗n
∂θ2

+
1
2

{
(θ1 − θ10)T ∂2`∗n

∂θ1∂θT
1

(θ1 − θ10) . . .

}
.

Setting θ1 = θ2 = θ3 say, θ10 = θ20 = θ30 and maximizing with respect to θ3, we have to
first order

θ̂3 =
(
− ∂2`∗n

∂θ1∂θT
1

− ∂2`∗n
∂θ1∂θT

2

− ∂2`∗n
∂θ2∂θT

1

− ∂2`∗n
∂θ2∂θT

2

)−1 (
∂`∗n
∂θ1

+
∂`∗n
∂θ2

)
= B−1c say. (3.11)

The asymptotic covariance matrix of θ̂3 is then given by B−1E{ccT }B−1, which reduces
to B−1 only in the case α = 1. By comparing these two matrices, we may assess how far
we would be in error if we ignored the dependence.

By analogy with our method for problem (c), one way to reduce this to a scalar measure
of efficiency is to compute tr[E{ccT }B−1]/m where m is 2 in the Gumbel case and 3 in
the Generalized Extreme Value case. We call this the common estimation efficiency, and
a value greater than 1 indicates that the sampling variances are being underestimated by
ignoring the dependence.

It should be pointed out that problems (c) and (d) do not correspond exactly to the
regional models usually adopted in hydrology. These assume the data over a region are
from a common distribution up to a site-dependent scaling constant. This would amount
to testing µ/σ = ν/τ in problem (c), and estimating under this constraint in problem (d).
We do not consider this problem separately, since in the context of our general development
it is no more than a minor variant.
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4. NUMERICAL AND SIMULATION RESULTS

This section contains the results of numerical computations of the various asymptotic
efficiencies described in Section 3. In addition, some limited simulations were performed
to try to determine actual efficiencies in finite samples.

Table 1 contains asymptotic efficiencies for the Gumbel model. The only parameter
that needs to be varied here is α, and this is given in the first column. The next three
columns contain asymptotic efficiencies for the estimation of µ, σ and α. Of course,
the asymptotic efficiencies for estimation of ν and τ are the same as those for µ and σ
respectively. The next four columns contain the D-efficiency, and the Q-efficiency for
p∗ =0.9, 0.99 and 0.999. The last two columns contain the testing efficiency and the
common estimation efficiency.

Table 1: Efficiencies in the Gumbel case

α µ-eff σ-eff α-eff D-eff Q-eff Q-eff Q-eff T-eff CE-eff
0.9 0.99 0.999

.001 1.000 1.000 1.000 .786 1.000 1.000 1.000 .000 2.000

.010 1.000 1.000 1.000 .789 1.000 1.000 1.000 .000 2.000

.100 .999 .987 .999 .820 .994 .991 .990 .032 1.968

.200 .997 .965 .997 .852 .981 .974 .971 .107 1.893

.300 .994 .945 .994 .882 .968 .957 .953 .207 1.793

.400 .992 .934 .992 .908 .957 .946 .942 .318 1.682

.500 .990 .932 .990 .931 .951 .941 .938 .433 1.567

.600 .988 .938 .988 .951 .950 .943 .941 .549 1.451

.700 .988 .951 .988 .968 .956 .952 .951 .664 1.336

.800 .990 .967 .990 .982 .968 .966 .966 .777 1.223

.900 .995 .986 .995 .993 .985 .985 .985 .889 1.111

.990 1.000 .999 1.000 1.000 .999 .999 .999 .989 1.011

.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .999 1.001

Ignoring the last two columns for the moment, it can be seen that the efficiencies of
the marginal method are very good virtually everywhere. The worst efficiencies for single
parameter estimates are those for σ, but even there the lowest value is 0.932. Results for
Q-efficiency usually lie between those for the estimation of µ and σ. Given the greater
practical ease of the marginal method, we could well conclude that the marginal method
is good enough for all practical purposes. Such a conclusion could have been anticipated
from Oakes and Manatunga (1992), who found an approximate orthogonality in the Fisher
information matrix between α and the margin parameters.

The last two columns of Table 1 tell a different story, but they are concerned with
a different question. The T -efficiency represents the extent to which the χ2 statistic is
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reduced by ignoring the dependence, and the CE-efficiency represents the extent to which
the variances of estimates of common margin parameters are inflated compared with those
that would be applicable if the margins were independent. In each case, therefore, the
results indicate anti-conservative behaviour, and the effect is quite substantial in the middle
of the table where the dependence is moderate.

The conclusion seems to be that it is satisfactory to use the marginal method for
estimation, but for the purposes of testing and common estimation, it is not satisfactory
to ignore the dependence altogether.

Now we turn to the Generalized Extreme value distribution, and find that, for cer-
tain combinations of parameter values, the qualitative conclusion drawn with the Gumbel
model, that marginal estimation is satisfactory, fails rather badly! Detailed results are
given only for Q-estimation with p∗ = 0.999, but the other definitions of efficiency have
also been computed and will be described briefly. Computations have been carried out
for r = 1/α of 1.1, 2 and 10, and for certain combinations of ξ and η listed in Table
2. Here Q1-efficiency and Q2-efficiency refer to the first (X) and second (Y ) components
respectively. Also included are simulation results for estimation in finite samples of sizes
n =30, 100 and 500. The rows of Table 2 labelled n = ∞ correspond to the asymptotic
calculations, while the others are based on simulation. All the simulations were carried
out on the Sheffield University Prime computer system and are based on averages of 500
replications in the cases of sample sizes n =30 and 100, and 200 replications for n = 500.
The relatively small number of replications was necessitated by the large amounts of CPU
time needed to run these simulations. Standard errors for the simulation results are not
reported in Table 2, but were substantial. Some indication of that may be gained from the
cases in which ξ = η, where the Q1 and Q2 efficiencies should be equal, but are not in most
cases. Note that the simulation results are reported as they came out with no attempt to
correct for the two efficiencies being equal in this case.

The main conclusion from the asymptotic results is that in some cases the efficiency
of the marginal estimation method is very low, below 0.1. This seems to occur when ξ and
η are of opposite sign, i.e. the long tail of one component corresponds to the short tail of
the other. It turns out, counter-intuitively, that it is the short tail (the one with positive
shape parameter) that is worse estimated by the marginal method. The effect is most
clearly demonstrated for r = 10, for which the two components are very highly dependent,
but even for r = 2 (a more typical value for practical applications) some of the efficiencies
are low enough to be of concern.

It seems paradoxical that efficiencies lower than 0.5 can be obtained at all. Imagine
the following experiment: you have n observations from the X component, say X1, ...., Xn,
and you want to estimate the extreme quantiles of X. Clearly this can be done without any
reference to Y , but it is conceivable that knowing the corresponding values of Y1, ..., Yn,
when the two components are highly dependent, would improve the estimation of the
distribution of X. So far, there is no paradox. Suppose, however, you are offered a choice:
either take Y1, ..., Yn, or a second sample of X values, say Xn+1, ..., X2n. Which do you

13



Table 2: Q-Efficiencies for the GEV model (r = 1/α)

ξ η n Q1-eff Q2-eff Q1-eff Q2-eff Q1-eff Q2-eff
r = 1.1 r = 1.1 r = 2 r = 2 r = 10 r = 10

-.40 -.40 30 .916 1.18 .541 .170 .230 1.93
-.40 -.40 100 .917 1.05 .671 .571 .443 .476
-.40 -.40 500 .996 .971 .775 .894 .667 .669
-.40 -.40 ∞ .968 .968 .783 .783 .631 .631
-.40 -.20 30 1.12 .989 .722 .913 .083 .116
-.40 -.20 100 .891 .931 .685 .677 .482 .468
-.40 -.20 500 .943 .956 .802 .727 .553 .469
-.40 -.20 ∞ .969 .959 .799 .703 .591 .429
-.20 -.20 30 .714 .808 .264 .269 .244 .286
-.20 -.20 100 .939 .987 .537 .679 .508 .497
-.20 -.20 500 .894 .951 .690 .710 .444 .514
-.20 -.20 ∞ .960 .960 .727 .727 .551 .551
-.40 .20 30 .822 1.18 .026 .805 .028 .356
-.40 .20 100 1.02 .911 .640 .661 .274 .256
-.40 .20 500 1.01 .967 .788 .578 .325 .198
-.40 .20 ∞ .970 .918 .782 .486 .324 .061
-.20 .20 30 .837 .926 .420 .757 .170 .404
-.20 .20 100 .949 .955 .589 .731 .398 .387
-.20 .20 500 .979 .957 .760 .635 .369 .245
-.20 .20 ∞ .962 .920 .734 .517 .237 .088
.20 .20 30 .979 .950 .467 .565 .409 .381
.20 .20 100 1.01 1.02 .719 .734 .587 .559
.20 .20 500 .945 .916 .652 .806 .592 .577
.20 .20 ∞ .924 .924 .614 .614 .460 .460
-.40 .40 30 .776 1.04 .331 .811 .111 .403
-.40 .40 100 .956 .972 .440 .607 .172 .219
-.40 .40 500 .923 .956 .694 .588 .351 .139
-.40 .40 ∞ .967 .868 .701 .349 .263 .055
-.20 .40 30 .676 1.03 .262 .818 .103 .417
-.20 .40 100 .889 .920 .552 .634 .254 .261
-.20 .40 500 .966 .924 .724 .597 .350 .170
-.20 .40 ∞ .959 .869 .645 .365 .139 .057
.20 .40 30 .928 1.08 .838 .864 .334 .470
.20 .40 100 .931 1.00 .776 .744 .441 .454
.20 .40 500 .889 .896 .723 .665 .410 .388
.20 .40 ∞ .923 .875 .568 .447 .072 .079
.40 .40 30 1.00 .950 .715 .794 .538 .479
.40 .40 100 .944 .965 .755 .730 .502 .531
.40 .40 500 .955 .959 .700 .776 .629 .641
.40 .40 ∞ .880 .880 .558 .558 .451 .451
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choose? Remember that the Y values have a different marginal distribution and their only
relevance to the problem at hand is the fact that X and Y are dependent. Nevertheless,
in those cases with a marginal vs. joint efficiency less than 0.5, the correct decision is to
take the Y sample.

In terms of comparing the simulated and asymptotic efficiencies, it has to be admitted
that the direct numerical match-up is not at all good. This is partly because of the very
high variability in the simulation results - which perhaps at least acts as a warning against
trying to resolve a problem like this entirely by simulation. It also seems likely to us that
some of the very small efficiencies in the table - those of .026 and .028 for ξ = −0.4,
η = 0.2, n = 30 - are spurious. In general, we would expect the simulated efficiencies to
be greater than the asymptotic efficiencies, the reason for this being that in small samples
the relative simplicity of the marginal method, not requiring nearly so complicated an
optimization, ought to be acting in its favour. Indeed, for n = 30 (especially) quite a
few of the results indicate that the marginal method is slightly the more efficient of the
two. However, the simulation results do provide independent evidence that for certain
combinations of parameter values the efficiency of the marginal method can be very much
less than 1, and they largely mimic the asymptotic results in predicting the combinations
of parameters for which this occurs.

Results for estimation of individual parameters show that the efficiencies for µ, σ, ν, τ
and α are always high (greater than 0.85 for all cases computed), but those for ξ and η can
be much smaller, often in the range 0.1-0.2 for those cases in which the Q-efficiency is less
than 0.1. These results have also been examined by simulation, with similar qualitative
conclusions as for Q-efficiency, i.e. less dramatic than the asymptotic results but still
confirming that the efficiency can be much less than 1.

Table 3: Testing and Common Estimation Efficiencies

ξ η T-eff CE-eff T-eff CE-eff T-eff CE-eff
r = 1.1 r = 1.1 r = 2 r = 2 r = 10 r = 10

-.40 -.40 .910 1.090 .481 1.519 .043 1.957
-.40 -.20 .920 1.162 .508 1.627 .067 2.047
-.20 -.20 .904 1.096 .460 1.540 .038 1.962
-.40 .20 1.045 1.909 .693 2.531 .271 2.933
-.20 .20 .916 1.580 .548 2.168 .153 2.572
.20 .20 .883 1.117 .403 1.597 .030 1.970
-.40 .40 1.162 4.831 .867 5.615 .469 6.017
-.20 .40 .980 3.551 .683 4.294 .320 4.700
.20 .40 .813 1.710 .450 2.342 .122 2.727
.40 .40 .863 1.137 .364 1.636 .025 1.975

Finally, Table 3 gives asymptotic results for T -efficiency and CE-efficiency. There
are some cases in which the T -efficiency is greater than 1 (indicating that the χ2 test is
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conservative), but in general the results confirm that the same problems exist as in the
Gumbel case but are significantly worse here.

5. SUMMARY AND CONCLUSIONS

The original motivation for this study was to try to demonstrate that the marginal
method, which seems intuitively very reasonable, would in fact have high asymptotic effi-
ciency with respect to the theoretically efficient joint method. For the models with Gumbel
margins, this is confirmed by the results. For the Generalized Extreme Value cases, how-
ever, it turned out that there are certain combinations of parameter values for which the
variances of the two methods were dramatically different. Simulation results failed to give
good numerical agreement, the result at least in part of the difficulty of obtaining accurate
simulation results, but they did confirm the general pattern.

In spite of these conclusions, we are inclined to recommend the marginal method for
practical use under most circumstances. The dramatic failures only occur when one tail
is short, the other long, and the dependence between the two components is high. This
would be an unusual combination of circumstances in practice. Nevertheless, our results
serve as a warning of what can go wrong.

The general methodology of the paper is applicable to much broader classes of multi-
variate models than the one that has been studied in detail. The “joint” versus “marginal”
issue arises whenever the multivariate structure is defined in terms of a reduced or stan-
dardized form of the marginal distributions. In the case of the multivariate normal the
issue is trivial because in this case the joint and marginal estimators coincide, but for most
non-normal classes the issue can be expected to be a live one.

The conclusions on T -efficiency and CE-efficiency are of rather a different nature and
serve primarily to warn against ignoring the dependence between components under these
circumstances.
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APPENDIX: GENERALIZED EXTREME VALUE MARGINS

The Fisher information matrix for the univariate Generalized Extreme Value distri-
bution was given by Prescott and Walden (1980); for the regularity conditions we require
ξ < 1

2 , η < 1
2 . Here we give (a) the Fisher information matrix for the bivariate case (1.4),

(b) the analogue of (3.4)-(3.6). Let f denote the density derived from (1.4), f0 the cor-
responding density in the Gumbel case ξ = η = 0, and f∗ the density corresponding to
f when α = 1. The beta function is denoted B(α, β) = Γ(α)Γ(β)/Γ(α + β); all other
notation is as in Section 2.

With Z and W defined by (2.2) and (2.5), let

Hk(ξ) = E
{
Z−ξ(log Z)k−1W 2

}
, k = 1, 2,

which must be evaluated by numerical integration. Also let

K1(ξ) = E

{
Z−ξW

Z − 1 + 1/α

}

= − α

1− α
H1(ξ) + Γ(1− ξ)

{
2(2− αξ)(1− αξ)

α
+

(2 + α− αξ)(1 + α− αξ)(1− ξ)
1− α

}
.

Define

A1(ξ) =
Γ(1− ξ)

α2

[
(1− αξ){γ + Ψ(3− αξ)}+ 1− 1

2− αξ

]

+
K1(ξ)

α2(2− αξ)
− H1(ξ){γ + Ψ(3− αξ)}

(2− αξ)(3− αξ)
,

B1(ξ) =
(

1
α
− ξ

)(
3ξ − 1

α

)
Γ (1− 2ξ) +

H1(2ξ)
3− 2αξ

,

B2(ξ, η) = B(2− αξ, 2− αη)H1(ξ + η)

− (1− αξ)(1− αη)(1− αξ − αη)
α2

B(1− αξ, 1− αη)Γ(1− ξ − η),

C1(ξ) =
H2(ξ)
3− αξ

− αH1(ξ)
(3− αξ)2

− 2− αξ

α
Γ(1− ξ)− (1− αξ)2

α2
Γ′(1− ξ),

C2(ξ) =
1− αξ

α
{γ + Ψ(1− αξ)− 1}Γ(1− ξ)− 1− αξ

α2
Γ′(1− ξ)

+
H2(ξ)

(2− αξ)(3− αξ)
+

αH1(ξ)
(2− αξ)(3− αξ)

{1− γ −Ψ(4− αξ)} ,

D1(ξ) = − (1− αξ)2

α2
Γ(1− ξ) +

H1(ξ)
3− αξ

,

D2(ξ) = −1− αξ

α2
Γ(1− ξ) +

H1(ξ)
(2− αξ)(3− αξ)

.
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Also let a1 = A1(0), b1 = B1(0) = D1(0), b2 = B2(0, 0) = D2(0), c1 = C1(0), c2 =
C2(0), and let a0, a2, d1, d2 respectively denote the expected values of (∂ log f/∂α)2,
σ(∂ log f/∂σ)(∂ log f/∂α), σ2(∂ log f/∂σ)2 and στ(∂ log f/∂σ)(∂ log f/∂τ) in the Gumbel
case. These expressions must be read off from Oakes and Manatunga (1992) via the
transformation described in Section 2.

We then have:

E

{(
∂ log f

∂α

)2
}

= a0,

E

{
∂ log f

∂µ

∂ log f

∂α

}
= −A1(ξ)

σ
,

E

{
∂ log f

∂σ

∂ log f

∂α

}
=

a1 −A1(ξ)
σξ

,

E

{
∂ log f

∂ξ

∂ log f

∂α

}
=

a2

ξ
+

A1(ξ)− a1

ξ2
,

E

{(
∂ log f

∂µ

)2
}

=
B1(ξ)

σ2
,

E

{
∂ log f

∂µ

∂ log f

∂ν

}
=

B2(ξ, η)
στ

,

E

{
∂ log f

∂µ

∂ log f

∂σ

}
=

B1(ξ)−D1(ξ)
σ2ξ

,

E

{
∂ log f

∂µ

∂ log f

∂τ

}
=

B2(ξ, η)−D2(ξ)
στη

,

E

{
∂ log f

∂µ

∂ log f

∂ξ

}
=

D1(ξ)−B1(ξ)
σξ2

− C1(ξ)
σξ

,

E

{
∂ log f

∂µ

∂ log f

∂η

}
=

D2(ξ)−B2(ξ, η)
ση2

− C2(ξ)
ση

,

E

{(
∂ log f

∂σ

)2
}

=
B1(ξ)− 2D1(ξ) + b1

σ2ξ2
,

E

{
∂ log f

∂σ

∂ log f

∂τ

}
=

B2(ξ, η) + b2 −D2(ξ)−D2(η)
στξη

,

E

{
∂ log f

∂σ

∂ log f

∂ξ

}
=

c1 − C1(ξ)
σξ2

− B1(ξ)− 2D1(ξ) + b1

σξ3
,

E

{
∂ log f

∂σ

∂ log f

∂η

}
=

c2 − C2(ξ)
σξη

+
D2(ξ) + D2(η)−B2(ξ, η)− b2

σξη2
,

E

{(
∂ log f

∂ξ

)2
}

=
d1

ξ2
− 2(c1 − C1(ξ))

ξ3
+

B1(ξ) + b1 − 2D1(ξ)
ξ4

,
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E

{
∂ log f

∂ξ

∂ log f

∂η

}
=

1
ξη

{
d2 − c2

(
1
ξ

+
1
η

)
+

C2(ξ)
ξ

+
C2(η)

η

}

+
B2(ξ, η) + b2 −D2(ξ)−D2(η)

ξ2η2
.

The remaining elements of the Fisher information matrix are computed using obvious
symmetries. For example,

E

{
∂ log f

∂ν

∂ log f

∂α

}
= −A1(η)

τ
.

Now let us turn to the analogues of (3.4)-(3.6). With S, T as in Section 2 and

P =
1− ξ − S

Sξ
, Q =

1− η − T

T η

we have

∂ log f∗

∂µ
=

P

σ
,
∂ log f∗

∂σ
=

P − 1 + S

σξ
,

∂ log f∗

∂ξ
= −P − 1 + S

ξ2
− 1 + (1− S) log S

ξ

with analogous expressions for differentiation with respect to ν, τ ,η. Formulae such as

−σξη2E

{
∂ log f∗

∂σ

∂ log f∗

∂η

}
= cov(P + S, Q + T ) + η cov{P + S, (1− T ) log T}

follow at once. To complete the picture, in addition to (2.8)-(2.10), we have from (2.7)
that

cov(P, Q) = (1− ξ)(1− η)(1− αξ − αη)Γ(1− ξ − η)B(1− αξ, 1− αη)
+ (1 + 2α− αξ − αη)Γ(3− ξ − η)B(1 + α− αξ, 1 + α− αη)
− (1 + α− αξ − αη)Γ(2− ξ − η).
. {(1− ξ)B(1− αξ, 1 + α− αη) + (1− η)B(1− αη, 1 + α− αξ)} ,

cov(P, T ) = Γ(2− ξ)
{
(1− ξ)(1 + α− αξ)B(1 + α, 1− αξ)

− (2− ξ)(1 + 2α− αξ)B(1 + α, 1 + α− αξ)
}
,

cov {P, (1− T ) log T} = Γ(2− ξ)
{

αΨ(1 + α− αξ)− αΨ(1− αξ)− 1
1− ξ

}

− (1− ξ)Γ(2− ξ)
Γ(1− αξ)Γ(1 + α)

Γ(1− αξ + α)
{αΨ(1 + α) + Ψ(2− ξ)− αΨ(1 + α− αξ)}

+ Γ(3− ξ)
Γ(1 + α− αξ)Γ(1 + α)

Γ(1 + 2α− αξ)
{αΨ(1 + α) + Ψ(3− ξ)− αΨ(1 + 2α− αξ)}

with analogous formulae for cov (Q,S) and cov {Q, (1− S) log S}.
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