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ABSTRACT
STANISLAV KOLENIKOV: A modification of the EM algorithm with

applications to spatio-temporal modeling.
(Under the direction of Prof. Richard L. Smith.)

This dissertation outlines the use of the maximum likelihood procedures for estima-

tion of the parameters of spatial and spatio-temporal processes when some observations

are missing, and reviews the realizations of ML and EM procedures in the presence of

missing data when the data are correlated. A version of the EM algorithm is sug-

gested that has a promise of being computationally more efficient due to reduction

of the number of matrix inversions, although at a price of the loss of the estimator’s

consistency and asymptotic efficiency. Corrections that restore unbiasedness of the es-

timating equations implied by the EM algorithm are proposed. Asymptotic properties

(consistency and normality) of the resulting estimators are established. Applications

of the new procedure are considered: an analytically tractable case of AR(1) process,

and an application to real data on PM2.5 measurements.
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Chapter 1

Introduction

This dissertation outlines the methods of dealing with the missing data in the context

of spatially correlated environmental monitoring network data.

In their recent paper, Smith, Kolenikov & Cox (2003) analyzed a spatio-temporal

data set that featured repeated measurement of spatially correlated data. For each week

t = 1, . . . , T , there were up to K measurements available at certain fixed locations of

the monitors. The log likelihood of such model (assuming normality of the response

variable) can be written down as

lnL(θ, β;y, X) ∼ −1

2

{ T∑
t=1

ln |Σt(θ)|+ tr
[
(yt −Xtβt)(yt −Xtβt)

TΣt(θ)
−1
]}

(1.1)

where X is the design matrix, the vector β represents the trends in time, space, and

other covariates such as land use, and θ is the set of parameters for the geostatistical

model of spatial covariance. The subindex t denotes a possible dependence of the

dimensionality of the vectors and matrices on time t, as long as some data are missing.

The independence over time is justified by the analysis of the residual correlation that

shows no significant dependencies.

The likelihood (1.1) can be maximized explicitly with a nonlinear optimization rou-

tine, but it would possibly involve inverting T matrices of rather big size (in Smith

et al. (2003), K = 74, but more realistic applications may have K ∼ 103 − 105) and

computing their determinants1. An appealing method to reduce those computational

costs seems to be the EM algorithm (Dempster, Laird & Rubin 1977, McLachlan &

1 Those two operations may be performed jointly thus reducing computational burden if appropriate
matrix inversion methods relying on either spectral decomposition or Cholesky decomposition of a
matrix (Demmel 1997), are used.
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Krishnan 1997). This is an iterative procedure of Bayesian origin that increases the

likelihood with each iteration by taking the conditional expectation of the missing data

given the observed data and the current estimate of the parameters, and then maxi-

mizing the likelihood by the standard complete data methods. Various modification of

the algorithm to simplify computations have been proposed. See Section 2.3 for more

details.

The modification that is especially useful in our context involves splitting the max-

imization step of the EM algorithm into maximization over the trend parameter β

subspace and the covariance parameter θ subspace (a version of the EM known as

expectation-conditional maximization, ECM). Also, instead of maximizing the likeli-

hood at each M step, the algorithm may aim at just increasing it in a single step

(generalized EM algorithm, GEM). So the algorithm steps used in Smith et al. (2003)

are as follows:

1. Initialize the trend parameters β by OLS over the available cases;

2. Initialize the covariance parameters θ by some reasonable guesses;

3. (E-step, h-th iteration) Compute y
(h)
it = yit if available, xTitβ

(h) otherwise;

4. (E-step, h-th iteration) Compute the regression residuals e
(h)
t ;

5. (E-step, h-th iteration) Compute the conditional expectation of the sufficient

statistic

E
∑
t

[
e
(h)
t

(
e
(h)
t

)T |θ(h)
]
; (1.2)

or an approximation to it. Thus at the completion of the E-step, we have some-

thing a “current prediction” of the second term in (1.1): the cross-products in

(1.1) are replaced by their (approximate) conditional expectations given by (1.2).

6. (M-step, h-th iteration, part 1) Maximize, by a nonlinear maximization routine,

the log likelihood (1.1) with respect to the covariance parameters θ;

7. (M-step, h-th iteration, part 2) Run weighted least squares regression of y(h)

with the weighting matrix Σ(θ(h)) to maximize the likelihood over the trend /

regression parameter subspace. (If the weighting matrix were the true covariance

matrix Σ = Cov[y], then this step will become a GLS regression.)

8. Declare convergence according to a suitable criteria, or reiterate to step 3.
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A computational difficulty remains in the above procedure at steps 4–5 to estimate

the residuals and compute the sufficient statistic of the data given the observed values

and the current parameter estimates. The exact implementation of the EM algorithm

would require universal kriging (see Section 2.1.2) for each time point at the locations

of the missing data at step 5 to predict the missing regression residuals, their vari-

ances and their covariances that are required for the likelihood. However, this provides

no improvement in the computational speed over the classical MLE procedure based

on straightforward maximization of (1.1) as this step would require the same matrix

inversions separately for each t.

What this dissertation proposes is an alternative method based on the approximate

expectations of the residuals at the E-step. An opportunity to save on computations

may be to use eitejt in (i, j)-th position of the t-th term in (1.2) whenever both residuals

were available, and use σij(θ
(h)) otherwise. In other words, the conditional expectations

are replaced by unconditional, or marginal, expected values. A question must then be

asked, by how much the above approximation to the conditional expectation is biased,

can this bias be eliminated, what is the efficiency of the implied estimating equations,

and what kind of other problems the procedure may lead to. This question is probably

more pertinent for the covariance parameter estimates as long as the trend parameters

estimates will be unbiased and consistent for any weighting matrix in the weighted least

squares estimator, and asymptotically independent of the variance parameters.

The remainder of the thesis is organized as follows. Chapter 2 gives a basic introduc-

tion to the two prime themes of the proposal, the spatial and spatio-temporal models,

and the missing data models. In particular, section 2.1 reviews the main models used in

geostatistical research, while the sections 2.2 and 2.3 describe the basic approaches to

the missing data analysis. Chapter 3 analyzes the properties of the proposed modifica-

tion to the EM algorithm when the correlation structure is simple enough to lend itself

to an analytical solution. Namely, we use AR(1) process to analyze the behavior of the

estimates. Further, the application of the algorithm to the real data set (an abridged

version of Smith et al. (2003)) is given in Chapter 4. The general treatment of the

dissociated processes is given in Chapter 5. Finally, the possible directions for future

research are suggested in Chapter 6. Certain technical results necessary for Chapter 5

are given in the Appendices.
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Chapter 2

Literature review

This research attempts to find computationally efficient estimating equations for the

spatio-temporal models, or repeated spatially correlated measurements. We shall firstly

review the ways to model spatial correlations for a single time instance in Section 2.1,

then proceed to the incorporation of the temporal component in Section 2.1.4. As long

as the real data sets have missing observations, the methods that work nicely on the

full data sets start running into problems when some portions of the data are missing,

as discussed in Section 2.2. One of the most natural ways to take the missing data into

account is to use the EM algorithm that was designed specifically for those purposes.

A general introduction to the EM algorithm will be given in Section 2.3, with a focus

on the repeated measurement and spatio-temporal models.

2.1 Geostatistical models

The models of covariance that assume some parametric relation between observations

with given spatial coordinates are known as geostatistical models. A concise introduc-

tion to the topic is given in Smith (2003), and extended references are Cressie (1993)

and Stein (1999).

2.1.1 Setup

Suppose we have a sample Z(s1), . . . , Z(sn) of measurements taken at locations s1, . . . , sn

from a spatial process

Z(s), s ∈ D (2.1)
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for some domain D ⊂ IRd. In the discussion of models and applications, we have to

deal primarily with d = 2, although there is nothing special to two dimensions, and

analysis in higher dimensions is also possible.

To be able to estimate the mean and the variance of a linear functional of the

process, such as the value in an unsampled location, or an areal mean, we have to

assume that the underlying process has well defined means and variances, too:

µ(s) = EZ(s), VZ(s) <∞ s ∈ D (2.2)

The process is said to be (strictly) stationary if ∀h ∈ IRd and ∀k, s1, . . . , sk ∈ D such

that s1 + h, . . . , sk + h ∈ D, the distributions of the original and shifted data are the

same:

Z(s1, . . . , sk)
D
= Z(s1 + h, . . . , sk + h) (2.3)

The process is said to be second-order stationary if µ(s) = µ∀s ∈ D, and

∀s1, s2 ∈ D ,Cov
[
Z(s1), Z(s2)

]
= C(s1 − s2) (2.4)

for some function C(·) : IRd → IR.

The process said to be Gaussian if any finite sample from it has a multivariate

normal distribution. For Gaussian processes, the two definitions of stationarity are

equivalent.

2.1.2 Spatial prediction: kriging

Suppose one wants to obtain a point estimate and the standard error of that estimate

at a new location s0 not available in the data set. Suppose we can model the spatial

trend as

Z(si) = X(si)β + η(si), η ∼ N(0,Σ), i = 1, . . . , n (2.5)

so that the mean, or the fixed effect, or the trend of the process is µ = Xβ, η is the

realization of a spatially correlated noise in given locations, and Σ = Σ(θ) is the known

spatial covariance matrix of the observed elements of the spatial process parameterized

by a low dimension vector θ. (In the examples below, θ has two to four components.)

The new observation is supposed to also follow the model

Z(s0) = x0β + η0 (2.6)
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where η0 comes from the same field, and its covariance with the observed data can be

found as

E η0η = τ (2.7)

It can be shown (Cressie 1993, Smith 2003) that the best linear unbiased predictor

(BLUP) for Z(s0) can be found as

ẑ0 = xT0 β̂ + τTΣ−1(Z −XT β̂), (2.8)

β̂ = β̂GLS = (XTΣ−1X)−1XTΣ−1Z (2.9)

The first term of (2.8), xT0 β̂, is the prediction from the linear regression part, and the

other term is capturing the spatial correlation of residuals η. 01 The mean squared

prediction error (assuming Σ(θ) is known) is given by

MSPE[ẑ0] = V[ẑ0 − z0] = σ2
0+

+(x0 −XTΣ−1τ)T (XTΣ−1X)−1(x0 −XTΣ−1τ)− τTΣ−1τ (2.10)

where σ2
0 = V[η0]. The first two terms represent the standard formulae for the prediction

variance in a linear regression, and the terms involving τ show the reduction of the

variance due to the information used from the spatially correlated measurements.

Those formulae are known as the universal kriging. A simpler version of the ordinary

kriging is obtained when no regressors are present, so that the trend part of the model

is simply

Xβ = µ1I (2.11)

where 1I = (1, . . . , 1)T . The name of the method comes from the early works by Krige,

a mining engineer, one of the founders of geostatistical models.

If the parameters θ of the spatial covariance process are to be estimated, the equa-

tion (2.10) is estimating only a part of the total variance that Cressie (1993) calls

probabilistic prediction error, and that is related to the variability only in the new

observation. The other part is the statistical prediction error, and it is related to the

sampling variability of the estimates. The appropriate corrections are difficult to come

by in the analytical frequentist framework, and Bayesian models have a greater promise

in this respect.

A BLUP of an areal average can also be obtained in a similar way as a linear

combination of the observed data along with the standard error. See Smith (2003).
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2.1.3 Variograms and semivariograms

The dependence in a spatial field is usually characterized by a variogram. Assuming

for transparency µ(s) = 0 (which we shall do later anyway as we shall be modelling the

residual covariance in a regression model), denote

V
[
Z(s1)− Z(s2)

]
= 2γ(s1 − s2) (2.12)

The function γ(·) is referred to as semivariogram, and 2γ(·), as variogram. If the

process admits such representation, it is called intrinsically stationary, which is a weaker

concept than stationarity. A 2D Brownian shield is not stationary, but intrinsically

stationary with γ(h) ∝ ‖h‖. A process is called isotropic if the variogram only depends

on the Euclidean distance between the two points:

γ(h) = γ0(‖h‖), γ : IRd 7→ IR, γ0 : IR 7→ IR (2.13)

The typical shape of the variogram function of a stationary isotropic process has

three main features shown on Fig. 2.1. The sill is the asymptotic value of γ(h) as

‖h‖ → ∞, if such a value exists. The nugget models the jump of γ(·) in the vicinity

of zero, and is most often attributed to the white noise measurement error, and the

value of the nugget is the variance of this error. The range is the distance at which the

nugget

sill

range

Figure 1: Typical variogram

1

Figure 2.1: A stylized variogram function.
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spatial correlation drops to zero, and the variogram reaches its maximum value (the

sill). For some models, the sill is never achieved, but still one can talk about the range

as the characteristic distance at which most of the action in the variogram occurs.

A special concern in variogram modelling is making sure the implied covariance

function is non-negative definite:

∀k, ∀s1, . . . , sk ∈ D, ∀a1, . . . , ak ∈ IR,

V
[∑

i

aiZ(si)
]

=
∑
i

∑
j

aiaj Cov
[
Z(si), Z(sj)

]
≥ 0 (2.14)

and the corresponding variograms are non-positive definite:

∀k, ∀s1, . . . , sk ∈ D, ∀a1, . . . , ak ∈ IR,
∑
i

ai = 0⇒
∑
i

∑
j

aiajγ(si− sj) ≤ 0 (2.15)

If this property is not satisfied, the variances of the spatial predictions (2.10) may

become negative.

There are a number of analytical forms for variograms of stationary isotropic processes

that guarantee sign definiteness. The most popular examples are given in Table 2.1.3

adopted from Smith (2003). The power law can be used to model a non-stationary, but

intrinsically stationary, field, with a special case of λ = 1 corresponding to the linear

form of the variogram (such as in Brownian motion). The spherical model is only ap-

plicable for d ≤ 3. It fails positive definiteness in higher dimensions. The exponential

power variogram has special cases p = 1, exponential form; and p = 2, Gaussian form.

The Gaussian form is so called because of the similarity of the correlation function to a

normal density, and does not imply that the process itself is Gaussian. The wave form

is not monotonic and may be useful if the observations further apart in the space may

have larger correlations than those closer in space.

A rather special class of specifications is Matérn class derived from the bivariate

spectral density of the process:

f(ω) =
1

(1 + ‖ω‖2/θ2
1)
−θ2−1

(2.16)

It is expressed in terms of covariances rather than a variogram:

C0(t) =
1

2θ2−1
Γ(θ2)

(
2
√
θ2t

θ1

)θ2
Kθ2

(
2
√
θ2t

θ1

)
(2.17)
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γ0(t) = Notes

Power law c0 + c1t
λ c1 > 0, non-stationary, 0 < λ ≤ 2

Spherical c0 + c1

[
3
2

t
R −

1
2

(
t
R

)3], t < R c1 > 0

(d < 4) c0 + c1, t > R c0 + c1 is sill, R is range

Exponential- c0 + c1(1− e|t/R|p) c1 > 0; c0 + c1 is sill; R > 0 is range

power 0 < p ≤ 2 is shape parameter
p = 1 — exponential, p = 2 — Gaussian

Rational c0 + c1
t2

1+t2/R2 c1 > 0, c0 + c1 is sill

quadratic R > 0 is range

Wave c0 + c1(1− R
t sin t

R ) c1 > 0

Table 2.1: Parametric forms for variograms. For all specifications, γ0(0) = 0, so c0 > 0
is nugget.

where θ1 is the scale parameter, 0 < θ2 < ∞ is the shape parameter (the case θ → ∞
corresponds to the Gaussian variogram function), and Kν(z) is the modified Bessel

function of the third kind of order ν (Abramovitz & Stegun 1964). It is a solution to

the differential equation

z2d
2w

dz2
+ 2z

dw

dz
− [z2 + ν(ν − 1)]w = 0 (2.18)

The examples of all those functions are given in Fig. 2.2 (reproduced, with permis-

sion, from Smith (2003)).

The parameters of the variogram models can be estimated by (versions of) the

least squares method fitting the parametric model to the empirical variogram, by the

maximum likelihood, or by restricted maximum likelihood. In this paper, we shall

concentrate on the likelihood-based methods as long as they allow explicit treatment

of the missing data.

2.1.4 Spatio-temporal models

There are several approaches to incorporate the time dependence in spatio-temporal

models.

The first big strand of literature starts off with the geostatistical models and allow

the dependence on time. In the simplest form (which is what we concentrate further on

in the proposal), such a model is a set of uncorrelated over time repeated measurements
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Figure 2.2: Examples of isotropic variogram functions: (a) linear; (b) spherical; (c)
exponential-power, p = 0.5; (d) exponential (exponential-power with p = 1); (e)
exponential-power, p = 1.5; (f) Gaussian (exponential-power with p = 2; Matérn
with θ2 = ∞); (g) rational quadratic; (h) wave; (i) power law, λ = 0.5; (j) power law,
λ = 1.5; (k)-(o) Matérn function with θ2 = 0.1, 0.5, 1, 2, 10. Courtesy of Smith (2003).
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Zst where the subindex s enumerates locations and t, time:

Zt ∼ i.i.d. N(µt,Σ(θ)) (2.19)

where the trend µst may have both a spatial and temporal components. The model is

treated in more detail in Section 2.4.

This model is plausible if correlations over time are small. If they are not, a model

that accounts for such correlations needs to be built. Such model can be recast in

the form of the spatio-temporal field that leads back to the formulation like (2.1), but

the domain D will now be a subset of IR3 to encompass both spatial and temporal

dependence.

The simplest extension of (2.19) is to assume that despite the temporal correlation,

the process is separable:

Cov(Z(s1, t1), Z(s2, t2) = Cs(s1 − s2)Ct(t1 − t2) (2.20)

In this case, the covariance matrix has a Kronecker structure that is reasonably easy to

deal with (see Appendix B), and the log-likelihood can be straightforwardly maximized

over the parameters of the spatial and temporal covariance functions Cs(·) and Ct(·),
respectively.

In more interesting (and more realistic) cases, the covariances are non-separable.

One approach to model such covariances is to use non-parametric or semi-parametric

models (Haas 2002) that estimate the empirical spatio-temporal variogram based on

certain concepts of the spatio-temporal neighborhoods, with some resemblance to the

kernel density / regression estimates. An alternative approach is to find the appropri-

ate global spatio-temporal variograms that possess all the required properties such as

negative definiteness by inverting the appropriately behaved spectral densities (Cressie

& Huang 1999, Gneiting 2002, Stein 2002).

Another big strand of literature has Bayesian origin. Those models (sometimes

referred to as physical-statistical models, and also used in connection with data as-

similation models) are aimed at combining the data observed from fixed monitors or

satellites with the predictions obtained from the weather models based on complex sys-

tems of multidimensional partial differential equations describing atmosphere, ocean,

and their interaction, and solved by grid methods. The scientifically motivated models

provide the prior distributions (or the main parameters of such priors, such as means

or modes), and the actual observations serve for Bayesian updating. Thus, regional
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maps of the quantities of interest (such as winds, temperature, humidity and other

characteristics of the atmosphere) can be obtained. The examples of this approach are

Hoar, Milliff, Nychka, Wikle & Berliner (2003) and Wikle, Milliff, Nychka, & Berliner

(2001) in atmospheric research, and Wikle (2003) also uses the same approach in an

ecological problem.

2.2 Missing data challenges

One of the practical complications arising between the theory and the available data

sets is the fact that some of the observations may be missing from the data.

The main principles of the analysis of the data with missing values are laid out in

Little & Rubin (2002). Their framework is as follows.

The researcher’s interest lies in the model of the form

Yi ∼ f(y;X, θ) (2.21)

where X represent explanatory exogenous variables, Yi are observations on the depen-

dent variable conditionally independent given x, and θ are parameters of interest, such

as regression slopes and spatial covariance parameters in our application. Some of the

observations on Yi, however, may be missing, so along with Yi’s that may or may not

be observed, the data set contains indicators of missing data

Zi =

{
1, Yi is missing

0, Yi is observed
(2.22)

and the mechanism of the missing data is described by a model with parameters Ψ:

IPr[Zi = 1|Y,X,Ψ] (2.23)

The following typology is suggested. The data are said to be missing completely at

random (MCAR), if

IPr[Zi = 1|Y,X,Ψ] = p(Ψ) (2.24)

that is, constant across all observations. The data are said to be missing at random

(MAR) if the probability may depend on the observed variables:

IPr[Zi = 1|Y,X,Ψ] = p(X,Ψ) (2.25)
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Finally, the data are not missing at random (NMAR), if the probability in (2.23) de-

pends on the missing value Y itself. If a measurement on a pollutant concentration

below or above a certain threshold cannot be obtained, then the mechanism is NMAR.

If the probability of not getting the measurement depends on the day of the week and

the altitude of the monitor, say, but not on Y , then the data is MAR. The missing data

mechanism is ignorable (i.e. the straightforward maximum likelihood estimation, as if

the data matrix were full, yields consistent and asymptotically efficient estimates for

the given sample size, just as the estimation procedure that would model the missing

data mechanism) if the mechanism is MAR, and the parameters of the primary model

and the missing data mechanism are disjoint (i.e. the vectors θ and Ψ do not have any

common or functionally dependent components).

The fact that some of the data are missing is formally not much of a trouble for

maximum likelihood. If the random field is assumed to be normal and observations

are independent over time, the likelihood function for each moment in time t can be

written as

l(θ|yt) = (2π)−nt/2|Σt(θ)|−1/2 exp
[
−1

2
(yt − xtβt)Σt(θ)

−1(yt − x′tβt)
]

(2.26)

where the subindex t indicates that observations from different sites are available at

different points in time, so the dimensions of the measured PM2.5 concentration yt,

the explanatory variables xt, and the vector of the various trends coefficients βt, are

changing from one week to another, according to the number of available sites. However,

computing many determinants and the inverse matrices is likely to be time consuming.

For an arbitrary symmetric matrix, the fastest inversion algorithm is through Cholesky

decomposition (Demmel 1997) that can also give the determinant as the product of

eigenvalues of a matrix. For a matrix of size k, this decomposition requires O(k3)

floating point operations. For larger matrices, a greater computational time arises

due to different access times for different types of memory such as registers, processor

cache, main memory, and disk memory, with access times differing by a factor of about

102 − 103 from one type of memory to the next slowest.

One alternative to the straightforward MLE is the EM algorithm.



15

2.3 The EM algorithm

The expectation-maximization (EM) algorithm is a procedure to find the local extrema

of the likelihood surface that works through incorporation of the missing data into

the estimation procedure. The missing data in question may be an “authentic” missing

data, i.e., the observation failed to be taken properly; or it may be an artificial construct,

such as class labels in one of the important applications of the EM algorithm in k-means

clustering / mixture decomposition.

The term was introduced by Dempster et al. (1977) where the history of similar

methods was given, and the main convergence results were proved. The contempo-

rary suggested monographs on the topic are Little & Rubin (2002) and McLachlan &

Krishnan (1997).

The algorithm delivers the ML estimates for the case when the missing data mech-

anism is ignorable (see discussion in the previous section). It does so by alternating

expectation (E) and maximization (M) steps.

At the expectation step, the conditional expected value of the log likelihood is

computed given the observed data Yobs and the current value of the parameter vector

θ(h) that combines both the model of interest (2.21) and the missing data model (2.23).

That is, the expectation is taken over the distribution of the missing data Ymiss:

Q(θ|θ(h), Yobs, X) =

∫
l(θ|Y )g(Ymiss|Yobs, X, θ = θ(h)) dYmiss (2.27)

One can think of this step as of a sort of imputation step, although imputation usually

refers to coming up with a number for a missing datum, while the E step of the EM

algorithm works on other moments, cross-products, etc. Another expression often used

is “to integrate out” the missing values. In fact, if there is a sufficient statistic for the

model, then it is enough to compute the expected value of this statistic conditional on

the observed values of the variables involved, and on the current parameter values.

At the maximization step, the full likelihood is maximized with respect to the pa-

rameters by using the “imputed” missing values or the expected values of the sufficient

statistic:

θ(h+1) = arg max
θ
Q(θ|θ(h), Yobs, X) (2.28)

The procedure is iterated until convergence, which may be operationally defined that

the successive parameter values do not change much, or the likelihood does not change

much, or any sensible combination of the two. (As long as the EM algorithm does not
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involve the gradients, the closeness of the gradient to zero, which is usually the best

convergence criterion, cannot be used.)

It is shown (Dempster et al. 1977, Little & Rubin 2002) that the EM algorithm con-

verges to a stationary point of the log likelihood functions under regularity conditions

that seem to be quite general (smoothness of the likelihood function, interchangeabil-

ity of expectation and differentiation operators, boundedness of the likelihood function

from above). For some likelihoods and for some special starting values, however, the

EM algorithm can converge to the saddle point of the likelihood, or even to a local

minimum if that was a starting point.

A version of the algorithm (generalized EM, or GEM; see Section 3.3 of McLachlan

& Krishnan (1997)) attempts to increase the likelihood at the M step rather than fully

maximize it:

Q(θ(h+1)|θ(h), Yobs) ≥ Q(θ(h)|θ(h), Yobs) (2.29)

As the only requirement for the convergence of the EM algorithm is that the (true)

likelihood is increasing (weakly) at each step, the GEM algorithm also converges, with

the same qualifications on the likelihood surfaces and starting points that apply to the

generic EM algorithm.

Another possible modification of the EM algorithm is to split the parameter space

into subspaces Θ = (Θ(1), . . . ,Θ(R)) that fully span the original parameter space, so

that the maximization at the M-step is performed separately over each of the subspaces.

This version is referred to as expectation–conditional maximization (ECM) algorithm

(McLachlan & Krishnan 1997, Section 5.2). In our application, the obvious choice is to

maximize over the regression slopes subspace (where the maximization is simply a GLS

regression), and the spatial covariance subspace. The latter may be further divided into

overall scale, nugget, range and shape parameters. Thus a computationally expensive

iterative nonlinear maximization is confined to a small number of parameters (two to

four) and is likely to be much faster.

One of the weak points of the EM algorithm and its modifications is that they do

not produce standard errors in the way Newton-Raphson likelihood maximization pro-

cedures do. It is still possible to obtain the standard errors by producing the empirical

Jacobian J(θ̂) of the likelihood surface. The procedure is known as supplemented EM

algorithm (Meng & Rubin 1991, McLachlan & Krishnan 1997, Section 4.5), and has

some similarities with Louis (1982). In the presence of the missing data, the information
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contained in the data can be described as

I(θ̂, y) = Ic(θ̂, y)[I − J(θ̂)], I−1(θ̂, y) = I−1
c (θ̂, y) + ∆V,

∆V = [I − J(θ̂)]−1J(θ̂)I−1
c (θ̂, y) (2.30)

where Ic(·) is the conditional expected complete-data information matrix. After the

convergence of the EM algorithm is achieved, so that θ̂ = (θ̂1, . . . , θ̂p) is the ML estimate

of the parameters, the probing values θ̃(j) = (θ̂1, . . . , θ̂j + hj, . . . , θ̂p) are formed, with a

suitable step size hj that does not lead too far away from the MLE, and one step of the

EM algorithm is performed resulting in θ̃d(j). Then the approximate Jacobian is formed

by combining the entries of the form

Jij =
θ̃di,(j) − θ̂i

hj
, (2.31)

and the corrected information matrix / asymptotic covariance matrix can be formed

through (2.30).

2.4 Repeated measurement

and dissociated models

The spatio-temporal model (2.19) has some similarities with the repeated measures

(longitudinal, panel) models, in which each individual is observed a number of times,

and also mixed models that have multiple random and fixed effects. The general form

for such models can be given as follows:

yi = Xiα+ Zibiεi (2.32)

where Xi and Zi are the covariates / design matrices corresponding to the fixed and

random effects, respectively; α are the fixed effects coefficients; bi are the random

effects with mean zero and variance matrix D (so the assumption most often made is

that bi ∼ N(0,D)); and εi are individual (measurement) errors independent of all other

variables in the model (say εi ∼ N(0, σ2I)). The parameters α and the free elements

of D are to be estimated.

In the repeated measurement model, the vector of yi corresponds to all observations

made on i-th unit, and the simplest model with a single random effect to the intercept
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has a random (univariate) variable ei that enters all observations on the unit through the

unit design vector: Zi = 1I. Laird, Lange & Stram (1987) derive the particulars of the

EM algorithm for this model by working out the required sufficient statistics, where the

missing data are the random effects bi. The matrix D is assumed to be free (besides

being non-negative definite). Laird et al. (1987) also discuss a simplifying formulae

for matrix inversion when not all of the components of the vector y are observed,

so that the likelihood contribution involves (an inverse of) the matrix Di = ZiDZi

(which is a minor of the matrix D). Ibrahim, Chen & Lipsitz (2001) discuss the

implementation of the Monte Carlo EM algorithm for the generalized linear mixed

models with non-ignorable missing data mechanism. It uses the EM by the method of

weights (Ibrahim 1990), and it samples from the conditional distributions of the missing

data and unobserved random effects bi via the Gibbs sampler. Each observation i with

missing data is expanded into a set of completed data, and given a weight 1/mi wheremi

is the number of Monte Carlo samples taken for this observation. The complete data M-

step can now be taken by the standard complete-data routines, and the process iterated

until convergence. Ibrahim et al. (2001) also give the formulae to estimate the observed

information matrix based on the derivative of Q(·|·) and the completed likelihood scores

(i.e., the information matrix reported by the complete-data routine). The procedure is

unlikely to be of practical use in the current environmental applications, however, as

in the typical data sets, one has 101− 103 missing observations at each time point, and

Ibrahim et al. (2001) note that this can lead to inefficient and computationally unstable

Gibbs samplers, as well as highly autocorrelated series of MCMC samples. Besides, the

spatial correlation cannot be represented in form (2.32) unless the dimension of bi is the

same as number of sites, and sampling from the conditional distribution again requires

inversion of many covariance matrices for each instance of time.

There are methodological differences between repeated measurement / mixed /

panel models described above, and spatio-temporal applications we are interested in.

In the latter, potentially all observations may be correlated through both spatial cor-

relations across the units at the same time, and through the time series process for

a single location. Sometimes, it turns out to be possible to model the temporal de-

pendence through a trend, so the residual processes at each site are approximately

uncorrelated temporally. The spatial correlation is more difficult to deal with, so one

ends up with a model that is a “transposed” version of (2.32) where the correlated

measurement are those taken at the same time. The index i is then running over time,

and there is a spatial correlation built into matrix D. As mentioned in section 2.1, this

matrix is assumed to be dependent on a relatively few parameters such as the overall
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variance, the range and the shape parameters, unlike the case of the model (2.32) where

the matrix D is often assumed to be a free symmetric and non-negative definite matrix.

The individual errors ei can be thought of as the measurement errors contributing to

the nugget effect if it is not modelled explicitly in the specification of the semivariogram.

Such models can be called dissociated models, so as not to create confusion with the

repeated measurement and panel models, where the incidental correlations are the ones

over time within the same unit, while in our spatio-temporal models, the important

correlations are those that occur between different units contemporaneously.

Another methodological aspect is the need for averaging that does not arise very

often with the biostatistical longitudinal data. Some of the EPA standards, including

those on particulate matter, require averaging over time, although they do not require

the use of spatial averaging or computing areal averages. The averaging is understood

as computing arithmetic averages of the available observations. The EPA does note

however that “the use of averages from single or multiple community-oriented sites

is more closely linked to the underlying health effects information, which relates area

wide health statistics to averaged measurements of area wide air quality” (EPA 1997a).

Averaging over space can be an important problem, too. Researchers studying trends

in air pollution often use spatial averages as an indicator of the overall exposure in a

population.
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Chapter 3

Approximate EM algorithm for

AR(1) process

The previous chapters have overviewed the main estimation problems in the geostatis-

tical spatio-temporal model framework, including the general approach to model the

spatial covariances with parameterized variograms, and the difficulties that arise be-

cause of missing data. The EM algorithm seems to be a promising tool in this problem,

but a straightforward implementation of the algorithm seems to require a lot of compu-

tation. As was proposed in Chapter 1 and in Smith et al. (2003), some computational

time savings are possible with an approximate EM algorithm (or its generalizations)

that uses the unconditional expected values for the sufficient statistic in Q(·). The

properties of such approximation are unknown at this point, and investigation into

those is the prime goal of this proposal and further research, as outlined in Chapter 6.

This chapter takes a simple analytical model of an AR(1) time series process to

analyze the performance of the proposed approximation to the EM algorithm. In this

example, we are going to have a single instance of the correlated data, with an analogy

of a single instance of the observed spatial field in the environmental applications, or an

inseparable spatio-temporal field with correlations penetrating throughout the whole

data set. Another specific feature of the time series is a distinct ordering of observations

which does not have any analogue in the spatial or spatio-temporal context.

The problem of missing data in time series has been receiving substantial attention

in the literature, as the missing data break otherwise nice structure of time series.

Besides, due to autocovariance of the observations, a single missing data point may

lead to a loss of many degrees of freedom (p + q in a näıve implementation of an

ARMA(p, q) model) as long as a single datum appears several times in the estimation
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procedure. A number of approaches has been outlined in the time series literature.

The likelihood of the time series with missing observations can be derived explicitly,

as in Ljung (1982) or Penzer & Shea (1997). Alternatively, state-space models such

as Kalman filter can be used to estimate the missing observations and parameters of

the model (Kohn & Ansley 1986, Harvey & Pierse 1984). Regression-based methods of

estimating the missing observations can be used, too (Beveridge 1992).

We, however, only use the AR(1) time series to provide a tractable analytic frame-

work. We begin with the likelihood and estimating equations when the sample is com-

plete, and no data are missing (Section 3.1). Then we shall introduce a gap of missing

data and derive the estimating equations in the likelihood context (Section 3.2). The

EM algorithm, as should have been expected from the general theory, gives the same

estimating equations (Section 3.3). The proposed approximation, however, gives biased

estimates (Section 3.4), and a correction to eliminate the bias is proposed. Finally, a

more realistic scenario with many gaps of size 1 is considered in Sections 3.5 (ML ap-

proach) and 3.6 (approximate EM). The approximate EM gives biased estimates, but

the bias terms in the estimating equations can be compensated for.

3.1 AR(1) process

Consider an AR(1) time-series process

yt = a+ ρyt−1 + εt, t ∈ I ⊂ Z, εt ∼ i.i.d. N(0, σ2
ε ) (3.1)

Assume |ρ| < 1, so the series is stationary. The mean of the process is

µ = E yt =
a

1− ρ
, (3.2)

so the process can also be written in deviations form as

yt − µ = ρ(yt−1 − µ) + εt (3.3)

The variance of the process is

σ2
y = V yt =

σ2
ε

1− ρ2
(3.4)
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If a sample of yt, t = 1, ..., T is observed, then the log likelihood of the data is

lnL(µ, ρ, σ2
ε ;y) = −T

2
ln 2π − 1

2
ln |Σ| − 1

2
(y − 1Iµ)TΣ−1(y − 1Iµ) (3.5)

where 1I = (1, . . . , 1)T is the column vector of ones. The covariance matrix, its inverse

and its determinant are

Σ =
σ2
ε

1− ρ2


1 ρ ρ2 . . . . . . ρT−1

ρ 1 ρ ρ2 . . . ρT−2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ρT−2 ρT−3 . . . ρ 1 ρ

ρT−1 ρT−2 . . . ρ2 ρ 1

 , (3.6)

Σ−1 =
1

σ2
ε


1 −ρ 0 . . . . . . . . . . . 0

−ρ 1 + ρ2 −ρ 0 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 . . . . . . . . . . . −ρ 1 + ρ2 −ρ
0 0 . . . 0 −ρ 1

 , (3.7)

|Σ| = σ2T
ε

1− ρ2
, (3.8)

so the likelihood simplifies to

lnL(µ, ρ, σ2
ε ;y) = −T

2
ln 2π − 1

2

(
T lnσ2

ε − ln(1− ρ2)
)
−

− 1

2σ2
ε

[
(1 + ρ2)

T∑
t=1

(yt − µ)2 − ρ2
(
(y1 − µ)2 + (yT − µ)2)

)
− 2ρ

T∑
t=2

(yt − µ)(yt−1 − µ)
]

(3.9)

From (3.9), the minimal sufficient statistic of the data is

( T∑
t=1

yt,

T∑
t=1

y2
t ,

T∑
t=2

ytyt−1, y1, yT

)
(3.10)

As explained in Section 2.3, the sufficient statistic plays an important role in the EM

algorithm. We shall use (3.10) in Section 3.3.
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Note that the variance estimator is

σ̂2
ε =

1

T
Q(y, µ, ρ), (3.11)

Q(y, µ, ρ) = (y − 1Iµ)TΣ(ρ)−1(y − 1Iµ) =

= (1 + ρ2)
T∑
t=1

(yt − µ)2 − ρ2
(
(y1 − µ)2 + (yT − µ)2)

)
−2ρ

T∑
t=2

(yt − µ)(yt−1 − µ) (3.12)

so the log likelihood concentrated with respect to σ2
ε is then

lnLc(µ, ρ;y) = lnL(µ, ρ, σ̂2
ε ;y) =

= −T
2

ln 2π − 1

2

(
T ln

Q(y, µ, ρ)

T
− ln(1− ρ2)

)
− T

2

(3.13)

Differentiating (3.13) with respect to µ and setting the derivative to zero gives

(1− ρ)
T−1∑
t=2

(yt − µ) + (y1 − µ) + (yT − µ) = 0 (3.14)

Differentiating (3.13) with respect to ρ and setting the derivative to zero gives

ρ

T−1∑
t=2

(yt − µ)2 −
T∑
t=2

(yt − µ)(yt−1 − µ) + α(ρ, T )Q(y, µ, ρ) = 0, (3.15)

where

α(ρ, T ) =
2ρ

T (1− ρ2)
= O(T−1) (3.16)

ML estimates of the parameters are

µ̂c:ML =
1

T

T∑
t=1

yt − α(ρ̂c:ML, T )
( 1

T

T∑
t=1

yt −
y1 + yT

2

)
+ op(T

−1), , (3.17)

ρ̂c:ML =

∑T−1
t=2 (yt − µ̂c:ML)2 + α(ρ̂c:ML, T )Q(y, µ̂c:ML, ρ̂c:ML)∑T

t=2(yt − µ̂c:ML)(yt−1 − µ̂c:ML)
=
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=

∑T−1
t=2 (yt − µ̂c:ML)2∑T

t=2(yt − µ̂c:ML)(yt−1 − µ̂c:ML)
+

+α(ρ̂c:ML, T )
Q(y, µ̂c:ML, ρ̂c:ML)∑T

t=2(yt − µ̂c:ML)(yt−1 − µ̂c:ML)
+ op(T

−1) (3.18)

The subindex c:ML indicates that the estimates are obtained from the complete data

set by maximum likelihood. The estimates can be computed by a numeric maximization

procedure. Alternatively, one-step estimates that are asymptotically equivalent to the

ML estimates can be obtained as follows. First, the OLS estimates

µ̂OLS = ȳ =
1

T

T∑
t=1

yt (3.19)

ρ̂OLS =

∑T−1
t=2 (yt − µ̂OLS)2∑T

t=2(yt − µ̂OLS)(yt−1 − µ̂OLS)
(3.20)

are obtained which are consistent estimates of the corresponding parameters, then

α(ρ̂OLS, T ) and Q(y, µ̂OLS, ρ̂OLS) are computed to improve the estimates up to the

first order terms by (3.17) and (3.18).

3.2 AR(1) with missing data: ML approach

Now, suppose a portion of data that came from the AR(1) process is missing, so we first

have n observed data points (y1, . . . , yn), then l missing observations (yn+1, . . . , yn+l),

and then again m observed points (yn+l+1, . . . , yT ), T = n+ l +m. The log likelihood

is then

lnL(µ, ρ, σ2
ε ;y) = −m+ n

2
ln 2π − 1

2
ln |Σo| − 1

2
(y − 1Iµ)TΣo−1(y − 1Iµ) (3.21)

where Σo has a block structure:

Σo =

(
Tn R

RT Tm

)
, (3.22)
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Ts =
σ2
ε

1− ρ2


1 ρ ρ2 . . . . . . ρs−1

ρ 1 ρ ρ2 . . . ρs−2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ρs−2 ρs−3 . . . ρ 1 ρ

ρs−1 ρs−2 . . . ρ2 ρ 1

 , (3.23)

which is a s× s matrix, s = n, m, and its inverse is given by (3.7). Further,

R =
σ2
ε

1− ρ2


ρl+n ρl+n+1 . . . . . . . . . . ρl+m+n−1

ρl+n−1 ρl+n ρl+n+1 . . . ρl+m+n−2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ρl+1 ρl+2 . . . . . . . . . . ρl+m

 =

=
σ2
ερ

l+1

1− ρ2


ρn−1

...

ρ

1

 (1, ρ, . . . , ρm−1) (3.24)

is a rank 1 matrix of dimensions n×m.

By using the formulae for block inverses (see e.g. Mardia, Kent & Bibby (1980)),(
A B

C D

)−1

=

(
E F

G H

)
,

E =
(
A−BD−1C

)−1
, G = −D−1CE,

H =
(
D − CA−1B

)−1
, F = −A−1BH (3.25)

the component blocks of (
Σo
)−1

=

(
Σo 11 Σo 12

Σo 21 Σo 22

)
(3.26)

can be obtained as follows.

RT−1
m RT =

σ2
ερ

l+1

1− ρ2
(ρn−1, . . . , ρ, 1)T (1, ρ, . . . , ρm−1, ρm)×
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× 1

σ2
ε


1 −ρ 0 . . . . . . . . . . . 0

−ρ 1 + ρ2 −ρ 0 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 . . . . . . . . . . . −ρ 1 + ρ2 −ρ
0 0 . . . 0 −ρ 1

×

×σ
2
ερ

l+1

1− ρ2
(1, ρ, . . . , ρm−1, ρm)T (ρn−1, ρn−1, . . . , ρ, 1) =

=
σ2
ερ

2(l+1)

(1− ρ2)2
(ρn−1, . . . , ρ, 1)T (1− ρ2, 0, . . . , 0)×

×(1, ρ, . . . , ρm−1, ρm)T (ρn−1, ρn−1, . . . , ρ, 1) =

=
σ2
ερ

2(l+1)

1− ρ2
(ρn−1, . . . , ρ, 1)T (ρn−1, . . . , ρ, 1) =

=
σ2
ερ

2(l+1)

1− ρ2


ρ2n−2 ρ2n−3 . . . ρn ρn−1

...
...

. . .
...

...

ρn−1 ρn−2 . . . ρ 1

 (3.27)

To proceed with (Tn −RT−1
m RT )−1, the following matrix identity can be used:

(V +W )−1 = V −1
(
I +WV −1

)−1
(3.28)

In using this formula, we shall have V = Tn with known inverse, and W is the negative

of (3.27). Then

WV −1 = −ρ
2(l+1)

1− ρ2


ρn−1

...

ρ

1



ρn−1

...

ρ

1


T


1 −ρ 0 . . . . . . . . . . . 0

−ρ 1 + ρ2 −ρ 0 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 . . . . . . . . . . . −ρ 1 + ρ2 −ρ
0 0 . . . 0 −ρ 1

 =

= −ρ
2(l+1)

1− ρ2


ρn−1

...

ρ

1

 (0, 0, . . . , 0, 1− ρ2) =


0 0 . . . 0 −ρ2l+n+1

...
...

. . .
...

...

0 0 . . . 0 −ρ2l+3

0 0 . . . 0 −ρ2l+2

 (3.29)
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Further,

(I +WV −1) =


1 0 . . . −ρ2l+n+1

0 1 . . . −ρ2l+n

. . . . . . . . . . . . . . . . . . . . .

0 . . . 1 −ρ2l+3

0 . . . 0 1− ρ2l+2

 ,

(I +WV −1)−1 =


1 0 . . . ρ2l+n+1/(1− ρ2l+2)

0 1 . . . ρ2l+n/(1− ρ2l+2)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 . . . 1 ρ2l+3/(1− ρ2l+2)

0 . . . 0 1/(1− ρ2l+2)

 ,

V −1(I +WV −1)−1 =

=
1

σ2
ε


1 −ρ . . . . . . . . . . . 0

−ρ 1 + ρ2 . . . . . . . . . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 . . . −ρ 1 + ρ2 −ρ
0 . . . 0 −ρ 1




1 0 . . . ρ2l+n+1/(1− ρ2l+2)

0 1 . . . ρ2l+n/(1− ρ2l+2)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 . . . 1 ρ2l+3/(1− ρ2l+2)

0 . . . 0 1/(1− ρ2l+2)



=
1

σ2
ε


1 −ρ 0 . . . . . . 0 0

−ρ 1 + ρ2 −ρ 0 . . . 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 . . . 0 −ρ 1 + ρ2 −ρ
0 . . . . . . . . . . . . . . 0 −ρ φ(ρ, l)

 = Σo 11, (3.30)

φ(ρ, l) =
1− ρ2l+4

1− ρ2l+2
(3.31)

which is the upper left block of
(
Σo
)−1

.
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The next block of Σo−1 is

Σo 21 = −T−1
m RTΣo 11 =

1

σ2
ε


1 −ρ 0 . . . . . . . . . . . 0

−ρ 1 + ρ2 −ρ 0 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 . . . . . . . . . . . −ρ 1 + ρ2 −ρ
0 0 . . . 0 −ρ 1

×

×σ
2
ερ

l+1

1− ρ2


1

ρ
...

ρm−1

 (ρn−1, . . . , 1) Σo 11 =

= −ρl+1


1

0
...

0

 (0, . . . , 0,
1− ρ2

1− ρ2l+2
) =


0 . . . 0 −ψ(ρ, l)

0 . . . 0 0
...

. . . . . . . . . . . . . .

0 . . . . . . 0

 , (3.32)

ψ(ρ, l) = ρl+1 1− ρ2

1− ρ2l+2
(3.33)

The computations identical to (3.27)–(3.30) yield

Σo 22 =
1

σ2
ε


φ(ρ, l) −ρ 0 . . . . . . 0 0

−ρ 1 + ρ2 −ρ 0 . . . 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 . . . 0 −ρ 1 + ρ2 −ρ
0 . . . . . . . . . . . . . . 0 −ρ 1

 , (3.34)

and finally Σo 12 =
(
Σo 21

)T
.

The changes due to the missing data are concentrated near the place where it

is missing, as it should have been expected from the Markovian character of AR(1)

process. Let us consider the two limiting cases.

If l = 0, no data is missing, and one can verify that φ(ρ, 0) = 1 + ρ2, ψ(ρ, 0) = ρ.

Then
(
Σo
)−1

has the form of (3.7).

If l → ∞, there are two independent samples of possibly different length from

AR(1), and both the covariance matrix and its inverse are block matrices with off-
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diagonal block equal to zero matrices.

The determinant of
(
Σo
)−1

can be shown to be

∣∣Σo−1
∣∣= [φ(ρ, l)− ρ2

]2 − ψ2(ρ, l), (3.35)

which can be verified to give the appropriate limits 1 − ρ2 and (1 − ρ2)2 when l = 0

and l =∞, respectively.

Let us now derive the normal equations. The generalized sum of squares is

Qo(y, µ, ρ) = (y − 1Iµ)TΣo(ρ)−1(y − 1Iµ) =

= (y1 − µ)2 + (yT − µ)2 + (1 + ρ2)
[ n∑
t=2

(yt − µ)2 +
T∑

t=n+l+2

(yt − µ)2
]
+

+φ(ρ)
[
(yn − µ)2 + (yn+l+1 − µ)2

]
−

−2ρ
[ n∑
t=2

(yt − µ)(yt−1 − µ) +
T∑

t=n+l+2

(yt − µ)(yt−1 − µ)
]

−2ψ(ρ)(yn − µ)(yn+l+1 − µ) (3.36)

The likelihood can again be concentrated w.r.t. σ2
ε :

σ̂2
ε i:ML =

Qo(y, µ, ρ)

n+m
, (3.37)

lnLc(µ, ρ;y) = −n+m

2
ln 2π−

−1

2

(
(n+m) ln

Qo(y, µ, ρ)

n+m
− ln

{[
φ(ρ, l)− ρ2

]2 − ψ2(ρ, l)
})
−n+m

2

(3.38)

The subindex i:ML denotes that this is the ML estimate for the incomplete data.

Differentiating w.r.t. µ gives

(1− ρ)(y1 − µ+ yT − µ) + (1− ρ)2
[n−1∑
t=2

(yt − µ) +
T−1∑

t=n+l+2

(yt − µ)
]
+

+(φ(ρ, l)− ψ(ρ, l)− ρ)
[
(yn − µ) + (yn+l+1 − µ)

]
= 0, (3.39)
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so

µ̂i:ML =

=

(1− ρ)(y1 + yT ) + (1− ρ)2
[n−1∑
t=2

yt +
T−1∑

t=n+l+2

yt

]
+ (φ(ρ, l)− ψ(ρ, l)− ρ)(yn + yn+l+1)

2(1− ρ) + (n+m− 4)(1− ρ)2 + 2(φ(ρ)− ψ(ρ)− ρ)
=

=
1

n+m

[ n∑
t=1

yt +
T∑

t=n+l+1

yt

]
+ α(ρ, n+m)

y1 + yT
2
−

− 1

n+m

[ n∑
t=1

yt +
T∑

t=n+l+1

yt

] 2

n+m

1− ρ− φ(ρ, l)− ψ(ρ, l)

1− ρ
+

+
φ(ρ, l)− ψ(ρ, l)− 1

(n+m)(1− ρ)
(yn + yn+l+1) + op

(
(n+m)−1

)
(3.40)

where the first term is Op(1), and all others are Op

(
(n+m)−1

)
. The second term is the

correction due to the terminal points similar to the complete data case, and the other

two are corrections for the missing data.

The derivatives with respect to ρ are as follows:

dφ(φ, l)

dρ
= ρ2l+1 (2l + 2)(1− ρ2l+4)− (2l + 4)ρ2(1− ρ2l+2)

(1− ρ2l+2)2
(3.41)

dψ(φ, l)

dρ
= ρl

[
(l + 1)(1− ρ2)− 2ρ2

]
(1− ρ2l+2) + ρ2l+2(1− ρ2)(2l + 2)

(1− ρ2l+2)2
(3.42)

1

2

∂Qo(y, µ, ρ)

∂ρ
=

ρ
[ n∑
t=2

(yt − µ)2 +
T∑

t=n+l+2

(yt − µ)2
]

+ φ′(ρ, l)
[
(yn − µ)2 + (yn+l+1 − µ)2

]
−

−
[ n∑
t=2

(yt − µ)(yt−1 − µ) +
T∑

t=n+l+2

(yt − µ)(yt−1 − µ)+

+ψ′(ρ, l)(yn − µ)(yn+l+1 − µ)
]

(3.43)

1

2

d ln |Σo−1|
dρ

=
(
φ(ρ, l)− ρ2

)(
φ′(ρ, l)− 2ρ

)
− ψ′(ρ, l)ψ(ρ, l) (3.44)
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Then the normal equation for ρ is

1

2

∂Qo(y, µ, ρ)

∂ρ
=

Qo(y, µ, ρ)

n+m

(φ(ρ, l)− ρ2)(φ′(ρ, l)− 2ρ)− ψ(ρ, l)ψ′(ρ, l)

(φ(ρ, l)− ρ2)2 − ψ2(ρ, l)
= R(y, µ, ρ), (3.45)

ρ̂i:ML

∑n
t=1(yt − µ)2 +

∑T
t=n+l+1(yt − µ)2

n+m
−

−

n∑
t=2

(yt − µ)(yt−1 − µ) +
T∑

t=n+l+2

(yt − µ)(yt−1 − µ)− (yn+l+1 − µ)(yn − µ)

n+m
=

=
1

n+m
R(y, µ, ρ)− φ′(ρ̂i:ML, l)− ρ̂i:ML

n+m

[
(yn − µ)2 + (yn+l+1 − µ)2

]
−

−ψ
′(ρ̂i:ML, l)− 1

n+m
(yn − µ)(yn+l+1 − µ) (3.46)

where the terms in the LHS are of the order Op(1), and the terms in the RHS are of

the order Op

(
(n+m)−1

)
.

Just as in the case of the ML estimates for the complete data, the explicit analytic

solution cannot be obtained. In practice, one would need to use two-step or iterative

procedures. The starting values can be based on the sample mean and the sample cor-

relation between yt and yt−1, as before. It should be noted however that the corrections

due to the missing data are of order Op

(
(n+m)−1

)
.

3.3 AR(1) with missing data: the EM algorithm

The EM algorithm is an iterative procedure of finding the critical points of the like-

lihood function. See Section 2.3 for a general overview and the main features of this

estimating procedure. The particular version of the EM algorithm that we want to

consider is the expectation-conditional maximization (ECM) variant of the EM algo-

rithm in which the maximization can be performed separately over subspaces of the

parameter space spanning the whole space. We would like to split the maximization

into maximization over the mean parameter subspace (µ in our case, or regression co-

efficients if covariates are allowed for) and the variance subspace that may be split

further into the overall constant σ2
ε that lends itself to a simple enough estimate such

as (3.11), and the covariance structure parameter, which in this case is ρ.
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As was shown above in (3.10), the sufficient statistic of the complete data set is

( T∑
t=1

yt,

T∑
t=1

y2
t ,

T∑
t=2

ytyt−1, y1, yT

)
(3.47)

Thus, to get an implementation of the EM algorithm, we need to be able to predict the

three sums given the parameter estimates and the available observations, which boils

down to prediction of yt, y
2
t and ytyt−1 when at least one of yt, yt−1 is missing.

To derive the aforementioned conditional expectation, consider four-variate normal

distribution
yn

yn+r−1

yn+r

yn+l+1

 ∼ N

1Iµ,
σ2
ε

1− ρ2


1 ρr−1 ρr ρl+1

ρr−1 1 ρ ρl−r+2

ρr ρ 1 ρl−r+1

ρl+1 ρl−r+2 ρl−r+1 1


 , 2 ≤ r ≤ l (3.48)

By the standard multivariate normal theory, the distribution of the unobserved

yn+r−1, yn+r conditional on yn, yn+l+1 is bivariate normal with mean

E

[(
yn+r−1

yn+r

)∣∣∣∣∣
(

yn

yn+l+1

)]
=(

µ+ 1
1−ρ2l+2

[
(ρr−1 − ρ2l−r+3)(yn − µ) + (ρl−r+2 − ρl+r)(yn+l+1 − µ)

]
µ+ 1

1−ρ2l+2

[
(ρr − ρ2l−r+2)(yn − µ) + (ρl−r+1 − ρl+r+1)(yn+l+1 − µ)

]) , (3.49)

and covariance matrix

1− ρ2

σ2
ε

V

[(
yn+r−1

yn+r

)∣∣∣∣∣
(

yn

yn+l+1

)]
=

(
1 ρ

ρ 1

)
−

−

(
ρr−1 ρl−r+2

ρr ρl−r+1

)(
1 ρl+1

ρl+1 1

)−1(
ρr−1 ρr

ρl−r+2 ρl−r+1

)
=

=

(
1 ρ

ρ 1

)
− 1

1− ρ2l+2
×

×

(
ρ2r−2 − 2ρ2l+2 + ρ2l−2r+4 ρ2r−1 − ρ2l+1 + ρ2l−2r+3 − ρ2l+3

ρ2r−1 − ρ2l+1 + ρ2l−2r+3 − ρ2l+3 ρr − 2ρ2l+2 + ρ2l−2r+2

)
, (3.50)
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This is also the kriging estimator in the univariate case.

Hence, the conditional expectations of the relevant sums are as follows:

E

[
n+l∑

t=n+1

yt

∣∣∣∣∣
(

yn

yn+l+1

)]
= lµ+

1

1− ρ2l+2

{
(yn − µ)

l∑
r=1

[
ρr − ρ2l−r+2

]
+

(yn+l+1 − µ)
l∑

r=1

[
ρl−r+1 − ρl+r+1

]}
=

= lµ+
ρ(1− ρl)(1− ρl+1)

(1− ρ)(1− ρ2l+2)

[
(yn − µ) + (yn+l+1 − µ)

]
, (3.51)

E

[
T∑
t=1

yt

∣∣∣∣∣ observed data

]
=

n−1∑
t=1

yt +
T∑

t=n+l+2

yt + lµ+

+
(1− ρl+1)(1− ρl+2)

(1− ρ)(1− ρ2l+2)

[
(yn − µ) + (yn+l+1 − µ)

]
(3.52)

This can now be substituted into the likelihood and the normal equations. For

instance, the normal equation for µ, equation (3.14), becomes

0 = (1− ρ) E

[
T∑
t=1

yt

∣∣∣∣∣ observed data

]
− (1− ρ)Tµ+ (y1 − µ) + (yT − µ) =

= (1− ρ)
[n−1∑
t=1

yt +
T∑

t=n+l+2

yt

]
+ (y1 − µ) + (yT − µ)

+
(1− ρl+1)(1− ρl+2)

(1− ρ2l+2)

[
(yn − µ) + (yn+l+1 − µ)

]
− (1− ρ)(T − l)µ (3.53)

which after a number of simplifications coincides with (3.39). Other equations can be

verified in the same way to demonstrate the equivalence of the EM algorithm and the

maximum likelihood estimates.

3.4 AR(1) with missing data:

the approximate EM algorithm

The proposed approximate version of the EM algorithm suggests that the predictions

of the missing data statistics be simply the total, or unconditional, expected values.
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Denoting the approximate conditional expectation as Ẽ, we have

Ẽ
[
yt|observed data, µ, ρ, σ2

ε

]
= µ, (3.54)

Ẽ
[
y2
t |observed data, µ, ρ, σ2

ε

]
= µ2 +

σ2
ε ,

1− ρ2
, (3.55)

Ẽ
[
ytyt−1|observed data, µ, ρ, σ2

ε

]
= µ2 + ρ

σ2
ε ,

1− ρ2
(3.56)

which is obviously quite different from what was derived in the previous section, and

does not account for the observed correlated data at all. Those are the values that can

be substituted in place of the missing components of (y − 1Iµ)(y − 1Iµ)T of (1.1).

Let us see what the estimating equations are that this version of the EM algorithm

implies. The approximate conditional expectation of the generalized sum of squares is

ẼQl(y, µ, ρ) = (y1 − µ)2 − 2ρ(y1 − µ)(y2 − µ) + . . .− 2ρ(yn − µ)(yn−1 − µ)+

+(1 + ρ2)(yn − µ)2 − 2
ρ2σ2

ε

1− ρ2
+
σ2
ε (1 + ρ2)

1− ρ2
− . . .+ σ2

ε (1 + ρ2)

1− ρ2
− 2

ρ2σ2
ε

1− ρ2
+

+(1 + ρ2)(yn+l+1 − µ)2 − 2ρ(yn+l+2 − µ)(yn+l+1 − µ) + . . .−

−2ρ(yT − µ)(yT−1 − µ) + (yT − µ)2 =

= (1 + ρ2)
[ n∑
t=1

(yt − µ)2 +
T∑

t=n+l+1

(yt − µ)2
]
− ρ2

[
((y1 − µ)2 + (yT − µ)2

]
−

−2ρ
[ n∑
t=2

(yt − µ)(yt−1 − µ) +
T∑

t=n+l+2

(yt − µ)(yt−1 − µ)
]
− 2σ2

ε (1 + ρ2)

1− ρ2
+ lσ2

ε (3.57)

and the approximate, or pseudo-likelihood, being maximized is

ln L̃(µ, ρ, σ2
ε ;y) = −T

2
ln 2π − 1

2

{
(T − l) lnσ2

ε − ln(1− ρ2)+

+(1 + ρ2)
[ n∑
t=1

(yt − µ)2

σ2
ε

+
T∑

t=n+l+1

(yt − µ)2

σ2
ε

]
− ρ2

σ2
ε

[
((y1 − µ)2 + (yT − µ)2

]
−

−2ρ
[ n∑
t=2

(yt − µ)(yt−1 − µ)

σ2
ε

+
T∑

t=n+l+2

(yt − µ)(yt−1 − µ)

σ2
ε

+
1 + ρ2

1− ρ2

]}
(3.58)
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Let us concentrate with respect to σ2
ε :

∂ ln L̃

∂σ2
ε

= −T − l
2σ2

ε

+
Q̃(y, µ, ρ)

2σ4
ε

; (3.59)

Q̃(y, µ, ρ) = (1 + ρ2)
[ n∑
t=1

(yt − µ)2 +
T∑

t=n+l+1

(yt − µ)2
]
−

−ρ2
[
(y1 − µ)2 + (yT − µ)2

]
−

−2ρ
[ n∑
t=2

(yt − µ)(yt−1 − µ) +
T∑

t=n+l+2

(yt − µ)(yt−1 − µ)
]

(3.60)

σ̂2
ε i:aEM =

1

T − l
Q̃(y, µ, ρ) =

1

n+m
Q̃(y, µ, ρ) (3.61)

which is different by Op

(
(n + m)−1

)
from the ML estimate given by (3.2) since the

terms Qo(·) and Q̃(·) differ by terms of Op(1) related to the corrections for the missing

data at the boundaries of the gap. The subindex i:aEM stands for incomplete data,

estimation by approximate EM algorithm.

The concentrated pseudo-likelihood is now

ln L̃c(µ, ρ;y) =

= −T
2

ln 2π − 1

2

{
(n+m) ln

Q̃(y, µ, ρ)

n+m
− ln(1− ρ2) + n+m+

1 + ρ2

1− ρ2

}
(3.62)

Differentiating with respect to µ gives

−1

2

∂Q̃(y, µ, ρ)

∂µ
= (1 + ρ2)

[ n∑
t=2

(yt − µ) +
T−1∑

t=n+l+1

(yt − µ)
]
+

+(y1 − µ) + (yT − µ)− 2ρ
[n−1∑
t=2

(yt − µ) +
T−1∑

t=n+l+2

(yt − µ)+

+
1

2

{
(y1 − µ) + (yn − µ) + (yn+l+1 − µ) + (yT − µ)

}]
=

= (1− ρ)2
[ n∑
t=2

(yt − µ) +
T−1∑

t=n+l+1

(yt − µ)
]

+ (1− ρ)
[
(y1 − µ) + (yT − µ)

]
+

+ρ
[
(yn − µ) + (yn+l+1 − µ)

]
, (3.63)
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µ̂i:aEM =

n∑
t=2

yt +
T−1∑

t=n+l+1

yt +
1

1−ρ(y1 + yT ) + ρ
(1−ρ)2 (yn + yn+l+1)

(n+m− 2) + 2/(1− ρ)2
(3.64)

This differs from the ML estimates (3.40) by Op

(
(n+m)−1

)
. Note the same principal

term
∑

t yt in the numerator; all other terms are of order Op

(
(n+m)−1

)
.

The derivatives with respect to ρ are as follows.

1

2

∂Q̃

∂ρ
= ρ
[ n∑
t=2

(yt − µ)2 +
T−1∑

t=n+l+1

(yt − µ)2
]
−

−
[ n∑
t=2

(yt − µ)(yt−1 − µ) +
T∑

t=n+l+2

(yt − µ)(yt−1 − µ)
]
, (3.65)

∂ lnLc
∂ρ

= − n+m

Q̃(y, µ, ρ)

{
ρ
[ n∑
t=2

(yt − µ)2 +
T−1∑

t=n+l+1

(yt − µ)2
]
−

−
[ n∑
t=2

(yt − µ)(yt−1 − µ) +
T∑

t=n+l+2

(yt − µ)(yt−1 − µ)
]}
− ρ(3− ρ2)

(1− ρ2)2
(3.66)

ρ

n∑
t=2

(yt − µ)2 +
T−1∑

t=n+l+1

(yt − µ)2

n+m
−

−

n∑
t=2

(yt − µ)(yt−1 − µ) +
T∑

t=n+l+2

(yt − µ)(yt−1 − µ)

n+m
=

= − 1

n+m

ρ(3− ρ2)

(1− ρ2)2

Q̃(y, µ, ρ)

n+m
(3.67)

The terms in the LHS are of the order Op(1), and the term in the RHS are of the order

Op

(
(n+m)−1

)
. Note that the principal term is the same as for the ML case except for

the term (yn+l+1− µ)(yn− µ)/(n+m) which is Op

(
(n+m)−1

)
, so the two expressions

differ by Op

(
(n+m)−1

)
.

As noted in the end of Section 3.2, the corrections for the missing data are of order

(sample size)−1. The suggested procedure essentially affects the weights of the bordering

observations yn and yn+l+1 only, with differences in resulting estimating equations of

order (sample size)−1. It is then asymptotically equivalent to the maximum likelihood

estimates since their deviations from the true values of the parameters are of the order

(sample size)−1/2, as given by the asymptotic normality of the estimates.
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Thus, the approximate EM algorithm is asymptotically first-order equivalent to the

exact EM algorithm and the MLE for the considered case of a single gap of missing

data in the time series. This equivalence, however, only holds for a small amount of

missing data, i.e., a small number of affected observations. In the AR(1) case, the

data missing as a gap in the middle of the series, however long that gap is, only affects

the bordering observations yn, yn+l+1, and those observations have a weight of (sample

size)−1 in the estimating equations.

The situation will change as we move towards more realistic missing data mecha-

nisms.

3.5 AR(1) with many gaps

Let us now assume that there is not a single gap, but a number of small gaps. Within

each gap, there is only one observation missing, and two gaps are separated by at least

two non-missing observations1. If we denote the observed data by “◦”, and missing

data by “×”, then a plausible series may look like

◦ ◦ ◦ × ◦ ◦ × ◦ ◦ ◦ × ◦ ◦ ◦ ◦ ◦ × ◦ ◦ × ◦ ◦

These assumptions look a bit artificial, but their sole purpose at this point is to make

the analysis tractable. The contributions to the likelihood of the missing observations

come only from the neighboring observations, and they are of the same structure that

has been derived earlier. Also, each of the non-missing observations contributes to at

most one missing observation.

If yt is an observation from AR(1) process (3.1), we can derive the conditional

distributions of the next two observations as follows:

yt+1|yt ∼ N(µ+ ρ(yt − µ), σ2
ε ), (3.68)

yt+2|yt ∼ N(µ+ ρ2(yt − µ), σ2
ε (1 + ρ2)), (3.69)

The overall likelihood is then

lnL(θ) = ln l(y1|θ) +
∑
t∈I

ln l(yt+1|yt, θ) +
∑
t∈B

ln l(yt+2|yt, θ)

1 These assumptions are needed so that the likelihood function is simple enough to include only
first and second lag correlations.
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θ = (µ, ρ, σ2
ε )

ln l(y1|θ) = −1

2
ln 2π − 1

2
lnσ2

ε +
1

2
ln(1− ρ2)− 1− ρ2

2σ2
ε

(y1 − µ)2,

ln l(yt+1|yt, θ) = −1

2
ln 2π − 1

2
lnσ2

ε −
1

2σ2
ε

[
(yt+1 − µ)− ρ(yt − µ)

]2
ln l(yt+2|yt, θ) = −1

2
ln 2π − 1

2
lnσ2

ε −
1

2
ln(1 + ρ2)

− 1

2σ2
ε (1 + ρ2)

[
(yt+2 − µ)− ρ2(yt − µ)

]2
(3.70)

where t ∈ I are all the time points for which the next point is observed (interior), and

t ∈ B are the points for which the next one is missing (boundary). If there are M = νT

missing data points over the period 1, . . . , T (ν is the fraction of the missing data),

then there are M terms in the second (boundary) sum, and T − 2M − 1 ≈ T (1− 2ν)

in the first (interior) sum. Combining the terms, we obtain:

lnL(θ) = −T (1− ν)
2

ln 2π − T (1− ν)
2

lnσ2
ε +

1

2
ln(1− ρ2)− Tν

2
ln(1 + ρ2)−

−1− ρ2

2σ2
ε

(y1 − µ)2 − 1

2σ2
ε

∑
t∈I

[
(yt+1 − µ)− ρ(yt − µ)

]2−
− 1

2σ2
ε (1 + ρ2)

∑
t∈B

[
(yt+2 − µ)− ρ2(yt − µ)

]2
(3.71)

The score equations can be derived as follows:

∂ lnL

∂µ
=

1

σ2
ε

{
(1− ρ2)(y1 − µ) +

∑
t∈I

(1− ρ)
[
(yt+1 − µ)− ρ(yt − µ)

]
+

1

1 + ρ2

∑
t∈B

(1− ρ2)
[
(yt+2 − µ)− ρ2(yt − µ)

]}
(3.72)

with the sufficient statistic (y1,
∑
yt,
∑

t∈B yt,
∑

t∈B yt+2). The next equation is

∂ lnL

∂σ2
ε

= −T (1− ν)
2

1

σ2
ε

+
1

2σ4
ε

Q̆,

Q̆(y, µ, ρ) = (1− ρ2)(y1 − µ2) +
∑
t∈I

[
(yt+1 − µ)− ρ(yt − µ)

]2
+

+
1

1 + ρ2

∑
t∈B

[
(yt+2 − µ)− ρ2(yt − µ)

]2
(3.73)
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Finally, the parameter of the greatest interest, the variance structure, is found from

the following equation:

∂ lnL

∂ρ
=

− ρ

1− ρ2
− ρνT

1 + ρ2
+

ρ

σ2
ε

(y1 − µ)2 +
1

σ2
ε

∑
t∈I

[
(yt+1 − µ)− ρ(yt − µ)

]
(yt − µ)

+
1

σ2
ε (1 + ρ2)2

{∑
t∈B

2ρ(1 + ρ2)
[
(yt+2 − µ)− ρ2(yt − µ)

]
(yt − µ)

+
∑
t∈B

ρ
[
(yt+2 − µ)− ρ2(yt − µ)

]2}
(3.74)

The direct verification, of course, gives that the expected value of each of the score

equations is zero. The MLEs of the parameters can be obtained by solving the score

equations (3.72)–(3.74), or by maximization of (3.71).

The implementation of the (exact) EM algorithm would imply computation of the

conditional expectations of the relevant functions of the missing data. Suppose yt+1 is

missing, and it is bordered by observed yt, yt+2:

E[yt+1|yt, yt+2, θ] = µ+
ρ

1 + ρ2
[(yt − µ) + (yt+2 − µ)] (3.75)

from (3.49),

E[y2
t+1|yt, yt+2, θ] =

{
E[yt+1|yt, yt+2, θ]

}2

+ V[yt+1|yt, yt+2, θ],

V[yt+1|yt, yt+2, θ] =
(1− ρ2)2σ2

ε

1 + ρ2
(3.76)

from (3.50), and

E[ytyt+1|yt, yt+2, θ] = yt E[yt+1|yt, yt+2, θ],

E[yt+1yt+2|yt, yt+2, θ] = yt+2 E[yt+1|yt, yt+2, θ], (3.77)

These expressions can now be used in the E-step in computing the expected values

of the sufficient statistics in Section 3.1. For instance, equation (3.14) becomes



41

0 = (1− ρ) E
[T−1∑
t=2

(yt − µ)|observed data
]
+ (y1 − µ) + (yT − µ) =

= (1− ρ)
[∑

yt +
ρ

1 + ρ2

∑
(yt−1 + yt+1 − 2µ)− (T − 2)µ

]
+ (y1 − µ) + (yT − µ)

(3.78)

where the first sum in the last line is over the available observations, and the second

one, over the missing observations. This form of the estimating equation is much clearer

than equivalent (3.72).

3.6 AR(1) with many gaps: approximate EM

Let us utilize our approach of using unconditional estimates for the sufficient statistics

of the missing data. Then, denoting the approximate expectations by Ẽ,

Ẽ[yt+1|θ] = µ,

Ẽ[(yt+1 − µ)2|θ] =
σ2
ε

1− ρ2
,

Ẽ[(yt − µ)(yt+1 − µ)|θ] =
ρσ2

ε

1− ρ2
(3.79)

Substituting those back to (3.9), we obtain

ln L̃(θ;y) =− 1

2

(
T ln 2πσ2

ε + ln(1− ρ2)
)

+
ρ2

2σ2
ε

(
(y1 − µ)2 + (yT − µ)2)

)
− 1

2σ2
ε

{
(1 + ρ2)

∑
t∈I

(yt − µ)2 + (1 + ρ2)
σ2
ενT

1− ρ2

− 2ρ
∑
t∈I∗

(yt − µ)(yt−1 − µ)− 2ρ
ρσ2

ε2νT

1− ρ2

}
=

=− 1

2

(
T ln 2πσ2

ε + ln(1− ρ2)
)
− νT (1− 3ρ2)

2(1− ρ2)

− 1

2σ2
ε

[
(1 + ρ2)

∑
t∈I

(yt − µ)2 − ρ2
(
(y1 − µ)2 + (yT − µ)2)

)
− 2ρ

∑
t∈I∗

(yt − µ)(yt−1 − µ)
]

(3.80)
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where t ∈ I∗ are the points for which neither yt−1 nor yt+1 is missing. We made an

assumption earlier that only one of the two can be missing. |I∗| = T−2M = T (1−2ν),

so the last term in the first equality has a factor of 2νT .

The derivatives of this objective function yield the following estimating equations.

0 =
∂ ln L̃

∂µ
=

1

σ2
ε

[
(1 + ρ2)

∑
t∈I

(yt − µ)− ρ2
(
(y1 − µ) + (yT − µ)

)
− ρ

∑
t∈I∗

(yt − µ) + (yt−1 − µ)
]

= 0 (3.81)

This equation gives a consistent estimate of µ as its expected value is zero.

∂ ln L̃

∂ρ
=

ρ

1− ρ2
− νT 2ρ

(1− ρ2)2
− 1

σ2
ε

[
ρ
∑
t∈I

(yt − µ)2

− ρ
(
(y1 − µ)2 + (yT − µ)2)

)
−
∑
t∈I∗

(yt − µ)(yt−1 − µ)
]

= 0 (3.82)

Dividing through by T and taking probability limits, we obtain:

−ν 2 plim ρ̂im:aEM

(1− plim ρ̂2
im:aEM)2

− 1

plim σ̂2
ε

[
plim ρ̂im:aEM (1− ν)σ2

ε − (1− 2ν)ρσ2
ε

]
= 0 (3.83)

The subindex im:aEM shows that this is the case of incomplete data with many

gaps, estimation by the approximate EM algorithm. We would also need to derive the

estimate of σ2
ε and analyze the two limits together. If we can get a consistent estimate

of σ2
ε , then (3.83) shows inconsistency of ρ̂, as the equation (3.83) becomes

ν
2 plim ρ̂

(1− plim ρ̂2)2
+ (1− ν) plim ρ̂− (1− 2ν)ρ = 0 (3.84)

Clearly, the plim ρ̂im:aEM 6= ρ unless ν = 0. The expansion by ν near zero gives

plim ρ̂im:aEM = ρ+ Aν +Bν2 + o(ν2),

A = −2 + (1− ρ)2

(1− ρ)2
ρ,

B =
A

(1− ρ)2

[
(1− ρ)2 + 2A(1− ρ) + 2ρ(1− ρ)− 2

]
(3.85)
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Fig. 3.1 characterizes the resulting bias of the estimator ρ̂im:aEM. The probability

limits of (3.84) are understating the true correlation, and the ratio of the estimate to

the true ρ primarily depends on ν rather than on ρ.

If we further take expansion over ρ near 0,

plim
ρ̂

ρ
= 1− 3ν + o(ν) + o(ρ), (3.86)

so the correction for the bias can be made as

ρ̃ = ρ̂(1− 3ν)−1 (3.87)
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Figure 3.1: plim ρ̂im:aEM from the approximate EM algorithm.
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Finally, the estimating equation for σ2
ε is

0 =
∂ ln L̃

∂σ2
ε

=
T

2σ2
ε

− 1

2σ4
ε

[
(1 + ρ2)

∑
t∈I

(yt − µ)2

− ρ2
(
(y1 − µ)2 + (yT − µ)2)

)
− 2ρ

∑
t∈I∗

(yt − µ)(yt−1 − µ)
]

(3.88)

or

σ̂2
ε im:aEM =

1

T

[
(1 + ρ̂2

im:aEM)
∑
t∈I

(yt − µ)2

− ρ̂2
im:aEM

(
(y1 − µ)2 + (yT − µ)2)

)
− 2ρ̂im:aEM

∑
t∈I∗

(yt − µ)(yt−1 − µ)
]

(3.89)

The probability limit of this estimate is

plim σ̂2
ε = (1 + plim ρ̂2

im:aEM)(1− ν) σ2
ε

1− ρ2
− 2 plim ρ̂im:aEM (1− 2ν)

ρσ2
ε

1− ρ2
(3.90)

so even if ρ is estimated consistently,

plim σ̂2
ε im:aEM = σ2

ε

[
(1− ν) + 2ν

ρ2

1− ρ2

]
(3.91)

which gives the right answer only for ρ2 = 1/3. The remedy may be found by noting

that the term in the curly brackets of (3.80) divided by T gives a consistent estimate

of σ2
ε provided that ρ can be consistently estimated by some ρ̃, too:

σ̃2
ε =

1

T

{
(1 + ρ̃2)

∑
t∈I

(yt − µ̂)2 + (1 + ρ̃2)
σ̃2
ενT

1− ρ̃2

− 2ρ̃
∑
t∈I∗

(yt − µ̂)(yt−1 − µ̂)− 2ρ̃
ρ̃σ̃2

ε2νT

1− ρ̃2

}
=

=
{

(1 + ρ̃2)
∑
t∈I

(yt − µ̂)2 − 2ρ̃
∑
t∈I∗

(yt − µ̂)(yt−1 − µ̂)
}/

T
{

1− ν 1− 3ρ̃2

1− ρ̃2

}
(3.92)
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So the estimate of σ2
ε is better obtained from the (generalized) residual sum of

squares Q̆ rather than from the maximization procedure itself.

That said, we need to come up with the way of correcting bias in the estimation of

the correlation coefficient. Let us look back at (3.84) and rewrite it as

−ν 2 plim ρ̂im:aEM

(1− plim ρ̂2
im:aEM)2

− νρ = (1− ν)(plim ρ̂im:aEM − ρ) (3.93)

Integrating the left hand side, we get

−ν
∫

[
2ρ

(1− ρ2)2
+ ρ] dρ = −ν 1

1− ρ2
+ ν

1− ρ2

2
(3.94)

Thus, if the “penalty” term

P(ρ) = νT
[ 1

1− ρ2
− 1− ρ2

2

]
(3.95)

is added to the likelihood (3.80), then the following procedure will yield consistent

estimates:

Penalized approximate ECM algorithm:

1. Initialize the estimates in some reasonable way (say µ(0) = ȳ, ρ(0) = 0, σ2
ε
(0)

= s2)

2. Update µ(j) by (3.81)

3. Update ρ(j) by maximizing ln L̃(θ;y) + P(ρ) from (3.80) and (3.95) conditional

on µ(j), σ2
ε
(j−1)

by numerical maximization

4. Update σ2
ε
(j)

by (3.92)

5. j ← j + 1, iterate steps 2-4 until convergence

3.7 Conclusion

Let us summarize the main results of this chapter. We have derived the maximum

likelihood estimates for the AR(1) process with missing data, and demonstrated that

the (exact) EM algorithm produces the same estimating equations as those implied by

the MLE.
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The approximate EM algorithm where the unconditional expectations are taken at

the E step faced problems. The estimation of the mean parameter µ does not pose

any specific concerns, as even such simple estimator as the sample mean is going to be

unbiased and consistent no matter what the correlation structure is. The estimation

of the overall variance parameter σ2
ε can also be performed consistently from the gen-

eralized sum of squares rather than from the likelihood maximization procedure given

that a consistent estimate of the correlation structure can be found.

The estimation of the correlation structure parameter ρ from the basic approximate

EM is the most difficult part, as neglection of the correlation structure is the main loss

of information incurred by using the approximation in the approximate EM algorithm.

Generally, it leads to an inconsistent estimate in non-trivial cases when the correlation

is not zero and the proportion of missing data is not zero. This inconsistency can be

corrected in a number of ways. First, a penalty term can be added to the likelihood

to compensate for the bias, and the resulting procedure gives consistent estimates of

ρ. Second, a simple correction for the proportion of missing data can be performed

that would make the estimate approximately consistent. Both of those ways require

knowing the data generating process, and being able to derive the properties of the

estimating equations for the approximate EM algorithm. Neither of the corrections,

however, is intuitive enough to lend itself easily for the spatio-temporal process we are

most interested in.

A number of other possible implications for the spatio-temporal processes may be

put further. First, the (exact) EM algorithm that involves kriging is equivalent to the

maximum likelihood, so depending on the availability and versatility of the general

maximization routine in someone’s favorite software and kriging procedures, either

method can be chosen.

Second, the approximate EM algorithm, although easier to implement, needs at-

tention, at least in the estimation of the parameters affecting the correlation structure.

Most likely, it needs to be supplemented with correction terms whose structure needs to

be derived analytically. The need for and availability of such corrections in the context

of dissociated processes is the topic of Chaper 5.



Chapter 4

Application to the spatio-temporal

modelling

This chapter applies the EM algorithm and its modifications discussed in Chapter 2

to the EPA data set on the particulate matter. It is based on Smith et al. (2003) and

earlier drafts of it. The substantive output of the paper are the maps of the estimated

and kriged PM2.5 concentrations for the states of Georgia, North Carolina, and South

Carolina that showed that all of them are at risk of violating the new EPA standard

on PM2.5.

Section 4.1 describes interest in the particulate matter, the main measurement issues

and the EPA standards. Section 4.2 describes the data and poses the research questions.

Section 4.3 presents the semiparametric model that accounts for trends in space and

time, as well as for the residual spatial covariance. Then Section 4.4 briefly reviews the

EM algorithm, and shows how it can be applied in our setting. Section 4.5 presents the

estimation results and discusses kriging to obtain maps of the PM2.5 concentrations,

and Section 4.6 concludes

4.1 Particulate matter

Airborne particulate matter has become an important topic of epidemiological and

environmental studies in the last decade when it was understood that particulate mat-

ter is an important determinant of deaths, especially in the elderly, even though the

biological mechanisms of its effect are not quite clear yet. The United States Envi-

ronmental Protection Agency regulates the admissible levels of PM10 and PM2.5, the

indicators of the concentration of the particulate matter of sizes 10 and 2.5 µm, re-



48

spectively1. The federal standard for PM2.5, the particulate matter size studied in

this paper, was introduced in 1997. The long term exposure part states that the 3-

year average of annual arithmetic mean PM2.5 concentrations from single or multiple

community-oriented monitors should not exceed 15µg/m3. The extreme exposure part

states that the 3-year average of the 98-th percentile of 24-hour PM2.5 concentrations

at each population-oriented monitor within an area should not exceed 65µg/m3 (EPA

(1997b)). (EPA 1997b). The standard had a thorny path towards its implementation.

It was immediately rebutted by the industrial lobby, and in May 1999, a panel of the

U.S. Court of Appeals for the D.C. Circuit, in a split decision, held that the Clean Air

Act was unconstitutional as an improper delegation of legislative authority to EPA.

The EPA appealed the decision to the U.S. Supreme Court, and in February 2001, the

latter upheld EPAs authority to set national air quality standards. In March 2002, fol-

lowing the Supreme Court decision on the constitutional issues, the Court of Appeals

rejected all remaining challenges to the 1997 standards.

The EPA has also outlined a number of research topics related to the particulate

matter, and one of the statistical questions raised is, “Can spatial interpolation methods

provide more accurate estimates of individual exposures to particulate air pollution?”

(Cox 2000).

A further step can be made to incorporate the temporal dimension of the data,

especially as long as this is the natural way data comes from monitoring stations. We

show that the data can be thought of as independent over time, and propose to refer

to this type of data as dissociated models. Mathematically, they have a lot in common

with repeated measurement / panel data, but in the latter, the important correlations

are over time within the same unit, while in our application, the important correlations

are those in space across units, while the time correlations are negligible.

4.2 The data

The data used in this research are a part of the EPA data set for 1999 on the monitors of

particulate matter2. The total number of continental US monitors in the data set is 780.

The measured variable is the concentration of the particles with aerodynamic diameter

less than 2.5 microns (PM2.5). The observation frequencies generally vary from site to

1 The definition of the PM2.5 is the particle size at which 50 per cent of the particles of this size
(aerodynamic diameter) are collected by the monitoring device (Cox 2000).

2The data were provided by David Holland of EPA.
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site. The majority of sites have observations recorded once in three days; there are

some that have daily records, and there are some that only have a few observations

for the whole period. The characteristics of the monitor itself include the geographic

position (latitude and longitude), the area type as a combination of two categorical

factors, urbanization (rural, urban, suburban) and land use (agricultural, industrial,

commercial, residential, forest)3, altitude of the monitor, the testing method, and some

other technical information.

We only used a fraction of this rich data set related to North Carolina, South

Carolina, and Georgia. There were 74 monitors across those states (23 in Georgia, 31

in North Carolina, 20 in South Carolina). The map of the monitors is given on Fig. 4.1.

Heavily populated metropolitan areas of Atlanta and Charlotte have clusters of closely

located observations sites. No data are available for Georgia in the fourth quarter of

the year. The data were further aggregated into weekly averages to reduce temporal

autocorrelation and reduce the fraction of the missing data. Some biases might have

been introduced at this stage due to the day of the week effect4.

We ended up with 2613 observations. The proportion of missing data is rather high

at 27.9%: compare the above figure with 74 × 49 = 3626 observations that should be

in the complete data set.

4.3 The spatio-temporal model

There are several components of the spatio-temporal model in Smith et al. (2003).

Some of them are also similar to the approach in Holland, De Oliveira, Cox & Smith

(2000).

The Box-Cox transformation (Box & Cox 1964) was used to combat skewness of

the original data and stabilize variance. The chosen transform was the square root of

the original data based on an exploratory analysis of the variance trends.

The mean of the spatio-temporal process at each station was modelled as a general-

ized additive model (Hastie & Tibshirani 1990) with components representing the time

trend, the spatial trend, and the land use (individual characteristic of the monitor). The

time trend was initially modelled by the B-splines (Green & Silverman 1994), which is

3 Some cells are empty: there are no combinations of forest and urban or suburban, as well as
agricultural and urban.

4 The PM2.5 concentrations are generally lower on the weekends when there is not as much industrial
activity and traffic as during the business days, so if the weekends were under- or overrepresented in
a given week, then the weekly average would be biased up- or downwards.
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an expansion of a flexible spline function through piecewise cubic basis functions, with

the coefficients of those functions that can be estimated by OLS or maximum likelihood

in more general GAM context. The between week variability was found to be so high

that the best fit was provided by the saturated model with weekly dummy variables.

One can also think of this as a saturated model with 49 B-spline basis function, by

the number of the weeks available in the data. The time trend picked the effect of

hurricane Floyd that had a devastating effect on North Carolina in September 1999. It

showed up as a sharp twofold increase of the PM2.5 concentrations that subsided about

six weeks later. This natural experiment gives a rough estimate of the relative scope

of natural and anthropogenic particulate matter processes.

The space trend was also estimated in a semiparametric fashion with the bivariate

splines that allow expansion by the thin plate spline basis (Green & Silverman 1994).

In both of those expansions, the smoothness of the spline is controlled by the number

of knots, or spline centers. The number and location of nodes for the spatial trend

J required certain decision making. Holland et al. (2000) use k-means clustering to

reduce the number of nodes and analyze the data by region. Smith et al. (2003)

use clustering to reduce the number of nodes and thus control the smoothness of the

aggregation interval is long enough for successive observa-
tions to be uncorrelated). By using geostatistical methods to
interpolate the random component, we are able to estimate
the weekly average PM2.5 at any point in the region and
hence to estimate derived quantities, such as the long-term
average, at any site. As with any statistical interpolation
procedure, a major question of interest is the uncertainty of
the estimation procedure.
[6] A particular methodological issue raised by our anal-

ysis is how to deal with the rather high proportion of missing
data (�28%) in the context of a maximum-likelihood fitting
of a spatial or spatiotemporal model. Two methods are
outlined to deal with this. For a pure spatial model without
any temporal dependence it is possible to calculate an exact
likelihood function by computing and inverting the spatial
covariance matrix for each week’s data; typically, the spatial
covariance matrix is different for each week because the
available monitoring network is different for each week.
This is feasible but computationally inefficient and, even
conceptually, may not work for a truly spatiotemporal model
that includes temporal as well as spatial correlations. The
alternative method, which is, in principle, applicable to any
spatiotemporal model for the data, uses the expectation-
maximization (EM) algorithm to account for the conditional
distributions of missing observations. We give particular
attention to this second method and variants known as the
generalized EM (GEM) and the expectation-conditional
maximization (ECM) algorithms, and we show how it may
be used to calculate approximate maximum likelihood
estimators for the spatial model under consideration.
[7] The structure of the paper is as follows. Section 2

describes the data and poses the research questions. Section
3 presents the semiparametric model that accounts for trends
in space and time as well as for the residual spatial covari-
ance. Section 4 describes the principle of the EM algorithm
and shows how it can be applied in our setting. Section 5
presents the estimation results, and Section 6 concludes.

2. Data Used in This Study

[8] The data used in this research are a part of the EPA
data set for PM2.5, collected for 49 weeks during 1999. The
observation frequencies generally vary from site to site:
Most sites have observations recorded once in 3 days, but
some have daily records, and others have much sparser
records. Information about the monitors includes geographic
position (latitude and longitude); urbanization classified as
rural, urban, or suburban; land use classified as agricultural,
industrial, commercial, residential, or forest; altitude of the
monitor; the measurement method; and some other technical
information.
[9] We only used a fraction of this rich data set related to

North Carolina, South Carolina, and Georgia. There were
74 monitors across those states (23 in Georgia, 35 in North
Carolina, 16 in South Carolina), mapped in Figure 1. No
data are available for Georgia in the fourth quarter of the
year. The data were further aggregated into weekly aver-
ages: For each week and for each monitoring station a
suitably weighted average is computed based on all readings
available during that week. There is a possibility of some
bias by this method because PM2.5 values are typically

lower on weekends than on weekdays, but we ignore that
aspect here.
[10] We ended up with 2613 observations. The proportion

of missing data is rather high: Comparing the above figure
with 74 � 49 = 3626 observations that should be in the
complete data set, almost 28% of the data are missing.

3. Building a Spatiotemporal Model

[11] This section presents an initial analysis of the data
described in section 2, leading up to the detailed specifica-
tion of the model shown in equation (5). Then, section 4
describes the detailed approach to fitting that model.

3.1. Transforming the Raw Data

[12] Initial inspection of the data shows that both the
mean and the variance of the PM2.5 data tend to be higher in
Georgia than in the other two states. It would be desirable to
find a variance-stabilizing transformation, i.e., one that
makes the variance approximately constant across all sta-
tions. Two possibilities are (1) a square root transformation
and (2) a logarithmic transformation. It would be possible to
consider more general families of transformations, such as
the Box-Cox transformation y ! (yl � 1)/l, but we shall
confine ourselves here to the square root and logarithmic
transforms.
[13] Figure 2 plots the variance for each station against

the mean for each station, using the original PM2.5 data
(Figure 2a), the square root of PM2.5 (Figure 2b), and the
natural logarithm of PM2.5 (Figure 2c). It is obvious that
Figure 2a shows an increase of variance with the mean. The
other two plots, Figures 2b and 2c, both show approximate
constancy of variances, with the exception of two stations
that have much larger variances than the remainder. These
two stations are more prominent outliers in Figure 2c than in
Figure 2b, and this gives some reason to prefer Figure 2b,
i.e., the square root transform.
[14] As noted originally by Box and Cox [1964], if differ-

ent data transformations are to be compared in terms of
standard statistical criteria such as residual sums of squares,
it is necessary first to rescale the data. In the case of the square
root and logarithmic transformations, this means replacing yi
with either C1

ffiffiffiffi
yi

p
or C2log yi, where C1 = 2

ffiffiffi
_y

p
or C2 = _y,

Figure 1. Map of 74 monitors.

STS 11 - 2 SMITH ET AL.: MODELING OF PM2.5 DATA WITH MISSING VALUES

Figure 4.1: Monitor locations in the data set.
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spatial trend. From the models with J = 10, 20, 30, 40, 50, the model with J = 20

was chosen according to the information criteria as compromise between AIC and BIC

(Akaike 1973, Schwarz 1978). Finally, the last component of the generalized additive

model was the set of indicators of the land use, the four dummies corresponding to the

agricultural, commercial, forest, and industrial vicinity of the monitor, with the base

category of the residential land use. Those variables are highly jointly significant.

Smith et al. (2003) then proceeded to the analysis of temporal and spatial correla-

tions. Due to averaging of the observations over a week period, the temporal correla-

tions were found to be insignificant.

The spatial distance between two sites was defined as the geodesic distance, or the

length of great-circle arc (the shortest route between the two points on the sphere).

The spatial correlations were found to be non-stationary as evidenced by the increasing

values of h into bins and computing one value by taking
the sample average of all (hs1t � hs2t)

2 values for which
js1 � s2j lies within a given bin. Although there are many
variants on this basic algorithm [Cressie, 1993], we stick to
this procedure here.
[26] In measuring the distance between two monitoring

stations with latitudes q1 and q2 and with longitudes f1

and f2 (converted to radians) we use the formula

Distance ¼ 12732:40 arcsin Bð Þ kmð Þ;

where

4B2 ¼ cos q1 cosf1� cos q2 cosf2ð Þ2þ cos q1 sinf1� cos q2 sinf2ð Þ2

þ sin q1 � sin q2ð Þ2:

This is the geodesic distance between two locations, treating
the Earth’s surface as that of a sphere. For plotting vario-
grams, distances were grouped into bins of width 25 km.
[27] Figure 5a shows eight variograms computed from

regression residuals hst: an overall variogram in which all
the data are combined and separate variograms for each of
the three states and each of four ‘‘seasons’’ defined by

weeks 0–11, 12–23, 24–35, and 36–49. Some features
apparent from visual inspection of these plots include:
(1) there appear to be significant differences between states
and between seasons, with the variogram for Georgia in
particular standing out as sitting above the other variograms
(i.e., intersite variances are larger in Georgia than the other
two states); (2) the variograms do not appear to be of the
traditional ‘‘nugget-range-sill’’ form [Cressie, 1993]; there
is indeed evidence of a nugget effect (i.e., a nonzero limit in
the variogram as the distance between two stations tends to
0), but there is no evidence that the variogram levels off to a
finite ‘‘sill’’ at any particular range; (3) another option is to
standardize the data prior to calculating the variogram by
normalizing the residuals at each site so that the sample
standard deviation is 1. This is done for the variograms in
Figure 5b. Although there is some indication that this helps
(e.g., the variogram for Georgia no longer stands out as
different from all the others), the general characteristics
remain the same; that is, there still appear to be significant
differences among the eight variograms plotted, and they do
not show a clear-cut sill and range.
[28] For the present analysis, although there is evidence

that the data exhibit nonconstant variances and possibly

Figure 5. Variogram plots for residuals after fitting the time trend, spatial trend, and type effects. All
data are combined, and there are separate plots by state and by season: (a) without standardizing
variances and (b) after standardizing the sample variance of residuals at each station to be 1.

STS 11 - 6 SMITH ET AL.: MODELING OF PM2.5 DATA WITH MISSING VALUES

Figure 4.2: Empirical variograms for residuals after fitting the time trend, spatial trend,
and type effects. All data are combined, and there are separate plots by state and by
season: (a) without standardizing variances and (b) after standardizing the sample
variance of residuals at each station to be 1. Fig. 5 of Smith et. al. (2003).
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variogram that does not flat off at any finite sill (Fig. 4.2; c.f. Fig. 2.1). No substantial

differences were found across the variograms for different states (NC, SC, GA) or across

different time periods (length of 12 weeks). Thus in the maximum likelihood estimation,

a non-stationary variogram for an intrinsically stationary process was chosen:

γ(h) =

{
0, h = 0

α
(
θ1 + hθ2

)
, h > 0

(4.1)

It shows the nugget effect θ1, the overall variance scaling constant α and the shape

parameter 0 < θ2 < 2.

4.4 Estimation

Overall, the resulting generalized additive model looks like

yit = gt(t) + gs(si) + xuse
i βuse + εit ≡ xitβ + εit (4.2)

where gt(·) and gs(·) are the temporal and spatial trends, that are in turn can be

represented as a sum of basis function with some coefficients. The generalized additive

model parameters can be stacked into β, and all of the design (splines and land use)

variables can be stacked into x. If the additional assumption that the errors εit follow

a suitable multivariate normal distribution is made, then the model can be estimated

by maximum likelihood or equivalent procedures (exact EM algorithm).

An additional complication arises since the spatial process εit was found to be non-

stationary. As was mentioned in Section 2.1.3, the linear combinations that have finite

variances are the contrasts. Smith et al. (2003) subtracted the weekly average

ȳ·t =
1

nt

∑
i∈It

yit (4.3)

where It is the set of observations made at time t, |It| = nt. That way, the time trend

was essentially taken out of the model, as the quantity subtracted corresponds to the

individual week effect.

Even with the presence of missing data, the likelihood for the vector of observations

yt taken at time t can be written down as
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l(θ|yt) = (2π)−nt/2|Σt(θ)|×

exp
[
−1

2
(yt − xtβt)Σt(θ)

−1(yt − x′tβt)
]

(4.4)

where the subindex t indicates that observations from different sites are available at

different points in time, so the dimensions nt of the measured PM2.5 concentration yt,

the explanatory variables xt, the vector of coefficients βt, and the covariance matrix

Σt(θ) are changing from one week to another, according to the number of available sites

nt. The overall likelihood can be obtained as a product of likelihoods of the form (4.4)

once independence over time is assumed (and eventually tested).

The direct likelihood maximization thus involves identifying T matrices Σt(θ), ex-

tracting them from the “master” matrix Σ(θ), inverting them and computing their

determinants. The latter two stages can be combined by the means of Cholesky de-

composition. Computing many determinants and the inverse matrices is likely to be

time consuming, as either of them is an O(k3) operation, where k is the dimension

of the matrix, so other alternatives might be sought. One such alternative is the EM

algorithm (see Section 2.3, as well as Dempster et al. (1977), Little & Rubin (2002)

and McLachlan & Krishnan (1997)).

Apparently, only the response variable is missing, which is the measurement of the

PM2.5 concentrations, µg/m3. All the design variables are observed perfectly. In using

the EM algorithm, we implicitly assume that the data are missing at random. This

assumption would be violated if an observation is not registered when the observed

value is too high or too low, which may be the case if the measurements were outside

the measurement range of a monitor.

For the version of the algorithm we used, the maximization step was split into two

steps each maximizing the likelihood over a partition of the parameter space. This is

known as the expectation-conditional maximization, or ECM, algorithm. It possesses

the generic convergence properties of the EM-algorithm, too. At the first stage, the

log likelihood was maximized over the covariance matrix parameters subspace (θ1, θ2,

α of (4.1)) with fixed values of the additive model parameters β. Then at the second

stage of the M step, a GLS regression model was estimated with the current covariance

matrix estimate thus optimizing over the regression parameters subspace.

As in many implementations of the E-step where a sufficient statistic can be found,

we computed the expectation of the
∑

t ete
′
t where et is the vector of the complete-
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data residuals, conditional on the observed values of the variables involved, and on the

current parameter values. In particular, at the h-th iteration, the E-step predicted the

fitted values for the GLS regression, and calculated the current step EM predictions of

the Y ’s and the residuals.

ỸEM fit =

{
Yobs, Y is non-missing

x′β̂
(h)
GLS, Y is missing

(4.5)

Then the residuals ẽit = ỸEM fit − x′β̂(h)
GLS were extracted, and their approximate con-

ditional expectation was computed:

Ẽeitejt =

{
ẽitẽjt, Yit, Yjt are both non-missing

σij(θ), at least one of Yit, Yjt is missing
(4.6)

where σij(θ) is the i, j-th entry of the spatial covariance matrix Σ(θ) evaluated at the

current values of the parameters.

This is an approximate version of the EM algorithm. In computing the conditional

expectations of the missing data, we only use the GAM parameters, and ignore the

variance parameters. In computing the second moments of the missing data, we only

use the variance parameter estimates, but not the available data. As discussed in

Chapters 1 and 3, the exact implementation of the EM algorithm would require kriging

to use all of the available information, and thus we would have to go back to inverting

many matrices Σt(θ) losing all potential computational efficiency gains.

The process iterated until convergence: the approximate conditional expectation of

the sufficient statistic ee′ is calculated, where the current estimates of the covariances

are used when the residuals (or Y ’s) are missing; the maximization over the variance

parameter subspace is performed; GLS regression is run, and so on. The estimation

procedure was coded in Stata software (Stata Corp. 2001, Kolenikov 2001) and in

Fortran.

The starting values of the parameters for the algorithm are the available case OLS

regression results for the regression part of the parameter vector, and some “reasonable”

guesses for the covariance part.

4.5 Results

Smith et al. (2003) performed the estimation based on both the approximate EM al-
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Table 4.1: Comparison of the approximate EM and ML estimates.

Method θ1 θ2 α
MLE

Point estimate 2.06 0.92 0.061
Standard error 0.35 0.097 0.0017

EM
Point estimate 2.13 0.92 0.049
Standard error 0.29 0.083 0.0012
Corrected s.e. 0.35 0.098 0.0019

gorithm and full likelihood maximization. The comparison of the results is given in

Table 4.1.The nugget and shape parameters are estimated quite well by the approxi-

mate EM algorithm, while the variance parameter is underestimated. This is in rough

correspondence with the results in Chapter 3 that showed biases in parameter estimates

by the (uncorrected) approximate EM algorithm.

The EM algorithm per se does not give the standard errors, but as far as the

parameters of the trend and of the variance subspace are independent in the normal

model, the estimates that were coming from maximization of Q(·|·) in the M-step of the

approximate EM algorithm should give some idea of the sampling variability. Somewhat

better standard errors are obtained from the following argument. The information

contained in the full data can be thought of as

Icomplete = Iobserved + Imissing (4.7)

If the matrices are proportional to each other (which would be true if the missing data

process is MCAR, and is used here only an assumption to derive a working approxima-

tion), then

(1− ν)Icomplete = Iobserved (4.8)

Hence, the information is overestimated by a factor of 1− ν = 0.721, and the standard

errors should be multiplied by 1/
√

0.721 to correct for the missing information. Those

are reported in the last line of Table 4.1 and show surprisingly good correspondence to

the errors obtained from the maximum likelihood.

After the parameters of the complete model (4.2) were estimated, Smith et al. (2003)

proceed to kriging of the spatial field for different points in time, and for the average

over the year.
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As is readily seen, the universal kriging formula (2.9) is equivalent to the following:

ŷ0 = xT0 β̂ + τTΣ−1e (4.9)

where ŷ0 is the best linear prediction at the point characterized by the regressors x0; β̂

is the GLS estimate of the regression coefficient of the process Y = Xβ+ν, Cov ν = Σ,

so that xT0 β̂ is the linear fit, or the trend term, from the model; τ is the vector of cross-

covariances between the observed values of the field Y and the unobserved y0 given by

the spatial model; and e is the residuals of the process from the fitted linear regression:

e = Y −Xβ̂.

The universal kriging prediction fully incorporates the available information on the

parameters estimates. We only used the first term of (4.9) in the prediction of the

missing data in the E-step because otherwise we would end up with different size

matrix inversion operations that we tried to avoid by using the approximate version of

the EM-algorithm.

To implement kriging following the ML (or EM) estimation, the estimates β̂, Σ̂ ob-

tained at the last iteration can be used. It should be justly mentioned that the predicted

variances in this case will understate the true variability as long as the parameters of

the variogram are treated as fixed rather than as estimated.

As far as the only time-varying part of the model is the time trend, the estimated

fields at different points in time differ by the overall shift, plus residual fluctuations. We

added back the week effects (4.3) once the spatial prediction by kriging was obtained.

Also, the choice of a single land use variable had to be made for the GAM part of (4.2),

and Smith et al. (2003) used residential areas since this is where people tend to spend

most of their time thus receiving the major part of their PM2.5 exposure. It should be

noted that only sites with commercial land use had higher average estimated levels of

PM2.5. The resulting maps are shown on Fig. 4.3

4.6 Conclusions

The paper Smith et al. (2003) has proposed and exemplified the use of likelihood based

methods in the presence of missing data in the generalized additive model framework,

with trends accounting for (most of the) variation in space and time, as well as across

the sites in different area types. The estimation of the parameters is done through a

version of the EM-algorithm to correct for missing data in the longitudinal data sets.
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The procedure helped to use a large fraction of data even though the monitoring sta-

tions reported the data infrequently. The spatial field was found to be non-stationary.

Kriging identified the problematic areas of Charlotte and Atlanta, and also demon-

strated the effects of hurricane Floyd that swept through South-Eastern United States

in September 1999.

The substantive results imply that the three analyzed states (Carolinas and Georgia)

are in danger of violating the federal standard on PM2.5, except for the coastal areas, and

Appalachians. This suggests the anthropogenic origins of the PM2.5. (This statement

might be attenuated by the fact that the monitors might have been located in the

“problematic” areas that are known to have polluted air, so that the design of the

monitoring network is biased toward higher PM2.5 concentrations.)

Figure 6. Plots of the predicted surface for PM2.5. (a) Predicted surface for week 33. (b) Estimated
prediction standard error for week 33. (c) Predicted surface for average of weeks 1–49. (d) Estimated
prediction standard error for average of weeks 1–49.

Figure 7. Plot of the estimated probability that any given location is in violation of the proposed
standard for long-term mean PM2.5. The symbols A, C, and R mark the cities of Atlanta, Charlotte, and
Raleigh, respectively.

SMITH ET AL.: MODELING OF PM2.5 DATA WITH MISSING VALUES

STS 11 - 10

Figure 4.3: Plots of the predicted surface for PM2.5 (Fig. 6 of Smith et. al. (2003).
(a) Predicted surface for week 33. (b) Estimated prediction standard error for week
33. (c) Predicted surface for average of weeks 1-49. (d) Estimated prediction standard
error for average of weeks 1-49.
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Chapter 5

Dissociated processes

In this chapter, we shall consider dissociated processes where spatially correlated mea-

surement are taken at multiple points in time, and observations are assumed to be

independent over time. The derivations are carried out in the most general form using

matrix formulations, and a number of matrix formalisms are necessary. Section 5.1

introduces incidence matrices that describe the patterns of observed and missing data.

Section 5.2 deals with the MLE estimation. Section 5.3 introduces the approximate EM

algorithm formulas and deals with the biases in the estimating equations. Corrections

restoring unbiasedness of the estimating equations are proposed in Sections 5.3.5–5.3.7.

The following two sections deal with the derivatives and variances of the estimating

equations, and the next two sections use those as inputs to establish consistency (Sec-

tion 5.6) and asymptotic normality of the estimates (Section 5.7). The derivatives and

variances then become the components of the information sandwich estimator of the

asymptotic covariance matrix of the estimates. Section 5.9 summarizes the results.

Several Appendices are also used in the derivations of this chapter. Appendix A

introduces matrix calculus, defines matrix differentials and provides differentials of the

most important matrix functions. These results are used in deriving the estimating

equations of the approximate EM algorithm and in establishing their asymptotic prop-

erties. Appendix B gives main results on Kronecker products. Appendix C deals with

the expected values of matrix functions in the presence of missing data, or, in other

words, when some rows and corresponding columns of matrices are missing. Appen-

dix D deals with the general results on convergence of the estimates implied by a set of

estimating equations, and is used to demonstrate consistency and asymptotic normality

of the estimates.



60

5.1 Incidence matrices

Suppose the complete data Y c
1 , . . . , Y

c
N are i.i.d. N(µ,Σ) where both µ and Σ may

depend on some parameters and/or covariates. Two interpretations we might want to

keep in mind are that (i) for each i = 1, . . . , N , the Y c
i is the set of measurements

coming from environmental monitors, with Σ describing their spatial correlation, or

that (ii) the Y c
i ’s are the measurement of indicators in a social science data set for a

specific individual linked through a latent variable or a factor model. The observed data

are Y o
1 , . . . , Y

o
N where for each i, Y o

i is a subvector of Y c
i . Let us assume for simplicity

that the data are MCAR (see Section 2.2):

IPr[Yik is missing|Y,X, θ] = ν (5.1)

independently from other missing data. The MCAR assumption may or may not be

justifiable in different settings. In the environmental statistics setting, this assumption

will be violated if the monitors fail to record certain values of the pollutant concentra-

tions (excessively high or excessively low, for instance), or if monitors in a certain area

tend to report or not to report the data together. In the social science examples, the

MCAR assumption is likely to be violated for sensitive questions. If a respondent is

ashamed of their too low income, or is protective about their high income, then such a

person may choose not to report their income.

Define the incidence matrices Pi and Mi (present in instance i and missing in that

instance) as following. If there are di,o observed sites and di,m missing ones, so that

d = di,m + di,o = dimY , the matrix Pi is of dimensions di,o × d, and consists of rows

ek = (0, . . . , 0, 1, 0, . . . , 0) of length d with 1 in k-th position, where k runs through the

indices of available cases. That way,

Y o
i = PiY

c
i ∼ N(Piµ, PiΣP

T
i ) (5.2)

where the entries of Y o
i are arranged in the same order as those of Y c

i , with the missing

values taken out.

Likewise, the matrix Mi is a di,m × d with unit rows corresponding to the missing

cases, and

Y m
i = MiY

c
i ∼ N(Miµ,MiΣM

T
i ) (5.3)
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The complete data vector can be reconstructed as

Y c
i = P T

i Y
o
i +MT

i Y
m
i (5.4)

It may be noted that PiP
T
i = Idi,o

and MiM
T
i = Idi,m

. Matrices Di = P T
i Pi and

Ei = MT
i Mi are idempotent matrices of size d and ranks di,o and di,m, respectively,

with ones on the diagonal and zeroes off-diagonal. If no data are missing, Pi = Id, and

Mi is not defined.

The likelihood of the complete data for i-th observation is then

l ci = −d
2

ln 2π − 1

2
ln |Σ(θ)| − 1

2
tr
[
Σ−1(Y c

i − µ)(Y c
i − µ)T

]
(5.5)

and the likelihood of the observed portion is

li = −di,o
2

ln 2π − 1

2
ln |PiΣ(θ)P T

i | −
1

2
tr
[
(PiΣP

T
i )−1(Y o

i − Piµ)(Y o
i − Piµ)T

]
(5.6)

The likelihood of all observations, under the assumption of independence over i, is

l(θ, Y o) = −1

2
ln 2π

N∑
i=1

di,o −
1

2

N∑
i=1

ln |PiΣ(θ)P T
i | −

− 1

2

N∑
i=1

tr
[
(PiΣP

T
i )−1(Y o

i − Piµ)(Y o
i − Piµ)T

]
(5.7)

Suppose we could rearrange the entries of Y c
i so that the missing entries come first:

Y c
i = (Y m

i , Y
o
i ), with dimensions d = di,m + di,o, respectively. If that were the missing

data pattern, the matrices Pi and Mi would be blocks of the identity matrix:

Id =

(
Mi

Pi

)
(5.8)

With the vector µ split into µmi , µoi and the covariance matrix and its inverse blocked

accordingly,

Σ =

(
Σi,mm Σi,mo

Σi,om Σi,oo

)
, Σ−1 =

(
Σmm
i Σmo

i

Σom
i Σoo

i

)
, (5.9)

the contribution to the likelihood of the full data vector in i-th observation is

l ci = −d
2

ln 2π − 1

2
ln |Σ(θ)| − 1

2
tr
[
Σ−1(Y c

i − µ)(Y c
i − µ)T

]
(5.10)
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and the likelihood of the observed part is

li = −do
2

ln 2π − 1

2
ln |Σi,oo(θ)| −

1

2
tr
[
Σ−1
i,oo(Y

o
i − µoi )(Y o

i − µoi )T
]

(5.11)

For the exact EM algorithm (equivalent to the maximum likelihood, by the general

EM theory), one would need to compute the expected values of the sufficient statistics

of the missing data. In the normal case, sufficient statistics are the first two moments

of the data. Computing the required conditional expectations of the missing data given

the observed data and parameters is exactly the kriging problem: treating the model

parameters as fixed, find means, variances and covariances at unobserved locations.

For the approximate EM algorithm that uses marginal expected values in place of

conditional ones, if Yik is missing, then the conditional approximate expected values

are

ẼY 2
ik = µ2

k + σkk, ẼYikYil = µkµl + σkl (5.12)

Then the approximate conditional expectation in the approximate likelihood is

Ẽ
[
(Y c

i − µ)(Y c
i − µ)T

]
=

(
Σi,mm Σi,mo

Σi,om (Y o
i − µoi )(Y o

i − µoi )T

)
(5.13)

and further

Σ−1Ẽ
[
(Y c

i − µ)(Y c
i − µ)T

]
=

(
Σmm
i Σmo

i

Σom
i Σoo

i

)(
Σi,mm Σi,mo

Σi,om (Y o
i − µoi )(Y o

i − µoi )T

)
=

=

(
Σmm
i Σmo

i

Σom
i Σoo

i

)(
Σi,mm Σi,mo

Σi,om (Y o
i − Piµ)(Y o

i − Piµ)T

)
=

=

(
Idi,m

Ui

UT
i Σom

i Σi,mo + Σoo
i (Y o

i − Piµ)(Y o
i − Piµ)T

)
=

=

(
Idi,m

Ui

UT
i Idi,o

− Σoo
i Σi,oo + Σoo

i (Y o
i − Piµ)(Y o

i − Piµ)T

)
=

=

(
Idi,m

Ui

UT
i Idi,o

+ Σoo
i Ri

)
(5.14)

since

Σom
i Σi,mo + Σoo

i Σi,oo = Idi,o
(5.15)
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by the block inverse formulae (3.25);

Ri = (Y o
i − Piµ)(Y o

i − Piµ)T − Σi,oo (5.16)

is the matrix residual;

Ui = Σmm
i Σi,mo + Σi,mo(Y

o
i − Piµ)(Y o

i − Piµ)T

is a matrix that can be safely disregarded, as long as the likelihood depends on the

trace of (5.14) through

tr
{

Σ−1Ẽ
[
(Y c

i − µ)(Y c
i − µ)T

]}
= d+ tr

{
Σoo
i

[
(Y o

i − Piµ)(Y o
i − Piµ)T −Σi,oo

]}
(5.17)

Thus, the approximate likelihood for the i-th observation from the approximate

EM-algorithm is

l̃i = −d
2
(ln 2π + 1)− 1

2
ln |Σ(θ)| − 1

2
tr
{

Σoo
i

[
(Y o

i − Piµ)(Y o
i − Piµ)T − Σi,oo

]}
(5.18)

The full matrix Σ(θ) need to be inverted only once, and if spectral methods (or Cholesky

decomposition) are used, then the determinant can also be obtained as the product of

eigenvalues (or diagonal entries of the Cholesky decomposition matrices).

Other computational considerations should be kept in mind for the matrices Pi

and Mi. Storing the matrices “as is” is a very memory inefficient solution, as they

are very sparse, and are of very well defined structure. A more efficient storage and

handling solution might be to store vectors of indices k from the definition of those

matrices on page 60, and have user-defined subroutines for multiplication operations.

The multiplications of the form PA or AP T for an arbitrary matrix A are submatrix

extraction operations, and multiplications P TA or AP are insertion of rows and columns

of zeroes.

In a general case of an arbitrary pattern of missing data with no rearrangement of

observations (and hence rows/columns of Σ), the approximate likelihood is given by a

generalization of (5.18):

l̃i = −d
2

ln 2πe− 1

2
ln |Σ(θ)| − 1

2
tr
{
PiΣ

−1P T
i Ri

}
(5.19)
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where now the matrix residual is

Ri = (Y o
i − Piµ)(Y o

i − Piµ)T − PiΣP T
i (5.20)

and for all observations, assuming independence over i,

l̃(θ, Y o) = −dN
2

ln 2πe− N

2
ln |Σ(θ)|−

−1

2

N∑
i=1

tr
{
PiΣ

−1P T
i

[
(Y o

i − Piµ)(Y o
i − Piµ)T − PiΣP T

i

]}
(5.21)

5.2 Estimating equations: maximum likelihood

Let us rewrite the observed data likelihood (5.7), allowing µ to change from location to

location according to a regression µi = Xiβ where Xi is d×p matrix of design variables

corresponding to the site i, and β are regression coefficients. The likelihood of the

observed data, under the assumption of independence over i, is

l(θ, Y o) = −1

2
ln 2π

N∑
i=1

di,o −
1

2

N∑
i=1

ln |PiΣ(θ)P T
i | −

− 1

2

N∑
i=1

tr
[
(PiΣP

T
i )−1(Y o

i − PiXiβ)(Y o
i − PiXiβ)T

]
(5.22)

5.2.1 The differential of the log likelihood

Let us derive the estimating equations for the coefficient estimates by using matrix

calculus. The differential notation (d) and the main matrix calculus results that are

necessary in those derivations are introduced in Appendix A.

Lemma 5.1.

d l(θ, Y o) = −
N∑
i=1

tr
{

(PiΣP
T
i )−1Pi

[
{d Σ}P T

i (PiΣP
T
i )−1Ri − 2Xi{dβ}(Y o

i − PiXiβ)T
]}

(5.23)

Proof. We shall take the differentials of the terms in the likelihood sequentially.
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d

N∑
i=1

ln |PiΣP T
i | =

N∑
i=1

d ln |PiΣP T
i | =

N∑
i=1

tr
{[
PiΣP

T
i

]−1
d
[
PiΣP

T
i

]}
, (5.24)

d

N∑
i=1

tr
[
(PiΣP

T
i )−1(Y o

i − PiXiβ)(Y o
i − PiXiβ)T

]
=

=
N∑
i=1

tr d
[
(PiΣP

T
i )−1(Y o

i − PiXiβ)(Y o
i − PiXiβ)T

]
=

=
N∑
i=1

tr
[
d
{
(PiΣP

T
i )−1

}
(Y o

i − PiXiβ)(Y o
i − PiXiβ)T+

+(PiΣP
T
i )−1

{
d(Y o

i − PiXiβ)
}
(Y o

i − PiXiβ)T+

+(PiΣP
T
i )−1(Y o

i − PiXiβ)
{
d(Y o

i − PiXiβ)T
}]

=

=
N∑
i=1

tr
[
−(PiΣP

T
i )−1Pi{d Σ}P T

i (PiΣP
T
i )−1(Y o

i − PiXiβ)(Y o
i − PiXiβ)T−

−2(PiΣP
T
i )−1PiXi{d β}(Y o

i − PiXiβ)T
]

(5.25)

Hence, combining (5.24) and (5.25),

−2 d l(θ, Y
o) =

N∑
i=1

tr
[
(PiΣP

T
i )−1Pi{d Σ}P T

i

]
+

+
N∑
i=1

tr
[
−(PiΣP

T
i )−1Pi{d Σ}P T

i (PiΣP
T
i )−1(Y o

i − PiXiβ)(Y o
i − PiXiβ)T−

−2(PiΣP
T
i )−1PiXi{d β}(Y o

i − PiXiβ)T
]

=
N∑
i=1

tr
{

(PiΣP
T
i )−1Pi

[
{d Σ}P T

i ×

×
[
Idi,o
− (PiΣP

T
i )−1(Y o

i − PiXiβ)(Y o
i − PiXiβ)T

]
− 2Xi{d β}(Y o

i − PiXiβ)T
]}

=

= −
N∑
i=1

tr
{

(PiΣP
T
i )−1Pi

[
{d Σ}P T

i (PiΣP
T
i )−1Ri − 2Xi{dβ}(Y o

i − PiXiβ)T
]}

(5.26)

where we had to redefine the matrix residual Ri once again:

Ri = (Y o
i − PiXiβ)(Y o

i − PiXiβ)T − PiΣP T
i (5.27)
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5.2.2 d Σ for geostatistical models

In general, d Σ is a matrix that has a quite involved structure. Let the covariance

structure of the spatial process be described by a typical sill and nugget structure (see

Sec. 2.1.3):

Cov[Zk, Zl] =

{
α(1 + κ), k = l

αρ(ϕ, k, l), k 6= l
(5.28)

where α is the overall variance parameter, so that

Σ(α, κ, ϕ) = αC(κ, ϕ), (5.29)

κ is the nugget effect, and (possibly a vector) ϕ describes the spatial correlation, then

d Σ(θ) = dαC(κ, ϕ) + α dκ Id +
∑
j

αCj(ϕ) dϕj (5.30)

where Cj(ϕ) is the matrix with zero on diagonal, and k, l-th off-diagonal entry equal

to ∂ρ(ϕ,k,l)
∂ϕj

. The matrix differential d reduces to combination of scalar differentials d

multiplying fixed matrices.

Let us give some examples.

For the exponential-power variogram,

γ[Z(sk), Z(sl)] = α(κ+ 1− e−(tkl/R)p

) (5.31)

where

tkl = ‖Z(sk)− Z(sl)‖ > 0 (5.32)

is the distance between sites k and l. The two components of vector ϕ are the range R

and the shape p parameters. The spatial correlation is then

ρ(ϕ, k, l) = e−|t/R|
p

, t = ‖Z(sk)− Z(sl)‖ > 0 (5.33)

and the derivatives are

∂ρ

∂R
=

ptpkl
Rp+1

e−(tkl/R)p

, (5.34)

∂ρ

∂p
= −

(tkl
R

)p
e−(tkl/R)sp

ln
tkl
R

(5.35)
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so that the two matrices C1, C2 consists of off-diagonal entries given by (5.34) and

(5.35), respectively:

c1,kl =
ptpkl
Rp+1

e−(tkl/R)p

, k 6= l, (5.36)

c2,kl =
(tkl
R

)p
e−(tkl/R)p

ln
tkl
R
, k 6= l, (5.37)

c1,kk = c2,kk = 0 (5.38)

For the spherical variogram,

γ[Z(sk), Z(sl)] = α

(
κ+

[
3

2

tkl
R
− 1

2

(
tkl
R

)3
])

, 0 < t = ‖Z(sk)−Z(sl)‖ < R (5.39)

the spatial correlation is

ρ(ϕ, k, l) =

[
1− 3

2

tkl
R

+
1

2

(
tkl
R

)3
]
1I
{
0 < tkl < R

}
(5.40)

and the derivative is given by

dρ

dR
=
( 3tkl

2R2
− 3t3kl

2R4

)
1I
{
0 < tkl < R

}
, (5.41)

For non-stationary process, like those defined by the power law

γ[Z(sk), Z(sl)] = α(κ+ tλ) (5.42)

the function ρ cannot be interpreted as spatial correlation. Non-stationary variograms

have to be analyzed using generalized covariances, i.e., covariances of the linear combi-

nations such as contrasts, rather than the original observations; or through the use of

restricted maximum likelihood, or REML (Zimmerman 1989).
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5.2.3 Estimating equations

Using (5.23), we can derive the estimating equations for the MLE:

∂l(θ, Y o)

∂βj
= −

N∑
i=1

tr
[
(PiΣP

T
i )−1(Y o

i − PiXiβ)XT
ijP

T
i

]
, (5.43)

∂l(θ, Y o)

∂α
=

1

2

N∑
i=1

tr
[
(PiΣP

T
i )−1PiC(κ, ϕ)P T

i (PiΣP
T
i )−1Ri

]
, (5.44)

∂l(θ, Y o)

∂κ
=

1

2

N∑
i=1

tr
[
(PiΣP

T
i )−1PiαP

T
i (PiΣP

T
i )−1Ri

]
, (5.45)

∂l(θ, Y o)

∂ϕj
=

1

2

N∑
i=1

tr
[
(PiΣP

T
i )−1PiαCj(ϕ)P T

i (PiΣP
T
i )−1Ri

]
(5.46)

Equation (5.43) gives GLS estimators for βj:

0 =
N∑
i=1

tr
[
(PiΣP

T
i )−1(Y o

i − PiXiβ)XT
ijP

T
i

]
=

=
N∑
i=1

tr
[
XT
ijP

T
i (PiΣP

T
i )−1(Y o

i − PiXiβ)
]

=

=
N∑
i=1

XT
ijP

T
i (PiΣP

T
i )−1(Y o

i − PiXiβ),

0 =
N∑
i=1

XT
i P

T
i (PiΣP

T
i )−1(Y o

i − PiXiβ),

β̂ =
[ N∑
i=1

XT
i P

T
i (PiΣP

T
i )−1PiXi

]−1
N∑
i=1

XT
i P

T
i (PiΣP

T
i )−1Y o

i (5.47)

Note that the cross-derivatives of the likelihood with respect to trend parameters β

and spatial covariance parameters α, κ, ϕ have zero expected values. E.g.,

∂2l(θ, Y o)

∂βj∂α
=

∂

∂α

∂l(θ, Y o)

∂βj
= − ∂

∂α

N∑
i=1

tr
[
(PiΣP

T
i )−1(Y o

i − PiXiβ)XT
ijP

T
i

]
=

= −
N∑
i=1

tr
[
(PiΣP

T
i )−1PiC(κ, ϕ)P T

i (PiΣP
T
i )−1PiXij(Y

o
i − PiXiβ)T

]
,
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EY

[∂2l(θ, Y o)

∂βj∂α

]
=

= −
N∑
i=1

tr
{
(PiΣP

T
i )−1PiC(κ, ϕ)P T

i (PiΣP
T
i )−1PiXij EY [Y o

i − PiXiβ]T
}

= 0 (5.48)

since EY (Y o
i −PiXiβ) = 0, and all other terms are constant matrices. (EY is a notation

for the expectation over distribution of Y ; the total expectation is to be combined with

the expectation over the structure of the missing data which will be denoted by Es.) All

other cross-derivatives have similar structure with the regression residual multiplying

a term that only depends on the structure of the missing data. Hence, the information

matrix entries between β and any of the spatial covariance parameters are zero. The

information matrix is block-diagonal, and the parameter estimates of β are independent

of the estimates of (jointly) α, κ and ϕ. This is a quite general result of independence

of the mean and variance parameters of the normal distribution that has also been

derived in the geostatistical context by Cressie (1993) and Smith (2003).

The asymptotic variances can be found by taking the expectations of the outer

product of the estimating equations (5.43)–(5.44), or by taking the expected value of

the Hessian matrix, i.e., derivatives of the above equations. By the general MLE theory,

the two approaches are equivalent. Smith (2003, pp. 250–251) derives the asymptotic

variance-covariance matrix for the case of complete data.

5.3 Estimating equations:

approximate EM algorithm

5.3.1 The differential of the approximate likelihood

As was shown in (5.21), the approximate conditional expectations taken at the E-step

of the EM algorithm imply a particular pseudo-likelihood to be maximized. Let us

derive the differential and the estimating equations for that pseudo-likelihood in the

way similar to one taken in the previous section.
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Lemma 5.2.

d l̃(θ, Y o) =
1

2

N∑
i=1

{
− tr

[
Σ−1{d Σ}

]
+ tr

(
PiΣ

−1{d Σ}Σ−1P T
i Ri + PiΣ

−1P T
i ×

×
[
2PiXi{d β}(Y o

i − PiXiβ)T + Pi{d Σ}P T
i

])}
(5.49)

Proof.

d ln |Σ(θ)| = tr
[
Σ−1

d Σ
]
, (5.50)

d tr
{ N∑
i=1

PiΣ
−1P T

i

[
(Y o

i − PiXiβ)(Y o
i − PiXiβ)T − PiΣP T

i

]}
=

=
N∑
i=1

tr
(
Pi{d[Σ−1]}P T

i Ri + PiΣ
−1P T

i

[
−PiXi{d β}(Y o

i − PiXiβ)T+

+(Y o
i − PiXiβ)(−PiXi d β)T − Pi{d Σ}P T

i

])
=

=
N∑
i=1

tr
(
−PiΣ−1{d Σ}Σ−1P T

i Ri − PiΣ−1P T
i ×

×
[
2PiXi{d β}(Y o

i − PiXiβ)T + Pi{d Σ}P T
i

])
(5.51)

Combining (5.50) and (5.51), the result follows.

5.3.2 Regression parameter estimates for the approximate EM

The differential (5.49) implies an unbiased estimating equations for β:

∂ l̃(θ, Y o)

∂βj
=

N∑
i=1

tr
(
XT
ijP

T
i PiΣ

−1P T
i (Y o

i − PiXiβ)
)

=

=
N∑
i=1

XT
ijP

T
i PiΣ

−1P T
i (Y o

i − PiXiβ), (5.52)

β̃ =
(∑

i

XT
i DiΣ

−1DiXi

)−1(∑
i

XT
i DiΣ

−1P T
i Y

o
i

)
(5.53)

where the matrix under the trace in the first line is a scalar, and Di = P T
i Pi as defined

on page 61. The resulting estimate is a version of weighted least squares estimate with a

weighting matrix PiΣ
−1P T

i . The estimate is less efficient than the GLS estimate (5.47)
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with the appropriate weighting matrix
(
PiΣP

T
i

)−1
, but it is unbiased and consistent.

The argument in the end of the previous section about independence of the para-

meter estimates directly translates here, as well: the cross derivatives of the regression

slopes and covariance parameters have zero expectations. But, unlike the MLE case,

the asymptotic covariance matrix has the information sandwich form (see Appendix D),

so to establish the zero cross-covariances, we would need to have other components of

the sandwich estimator. They are derived later in the chapter.

The asymptotic variance for β̃ from (5.53) can be derived by either taking its vari-

ance explicitly, or by using the general sandwich formula (D.26). Computing the vari-

ance directly from (5.53), one obtains

V[β̃] = V
[(∑

i

XT
i DiΣ

−1DiXi

)−1(∑
i

XT
i DiΣ

−1P T
i Y

o
i

)]
=

=
(∑

i

XT
i DiΣ

−1DiXi

)−1(∑
i

XT
i DiΣ

−1DiΣDiΣ
−1DiX

T
i

)(∑
i

XT
i DiΣ

−1DiXi

)−1

(5.54)

where the terms related to V[θ̃] are of smaller order, and thus are ignored.

5.3.3 Estimating equations for spatial covariance parameters

Invoking (5.30), one can now obtain the estimating equations for the spatial covariance

parameter subspace.

∂ l̃(θ, Y o)

∂α
=

1

2

N∑
i=1

[
− tr

[
Σ−1C(κ, ϕ)

]
+

+ tr
(
PiΣ

−1C(κ, ϕ)Σ−1P T
i Ri + PiΣ

−1P T
i PiC(κ, ϕ)P T

i

)]
, (5.55)

∂ l̃(θ, Y o)

∂κ
=

1

2
α

N∑
i=1

[
− tr Σ−1 + tr

(
PiΣ

−1Σ−1P T
i Ri + PiΣ

−1P T
i

)]
, (5.56)

∂ l̃(θ, Y o)

∂ϕj
=

1

2
α

N∑
i=1

[
− tr

[
Σ−1Cj(ϕ)

]
+

+ tr
(
PiΣ

−1Cj(ϕ)Σ−1P T
i Ri + PiΣ

−1P T
i PiCj(ϕ)P T

i

)]
, (5.57)

All those equations are biased: even though EY R=0, the expected value of the RHS
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is not generally equal to zero.

5.3.4 Bias in the estimating equations

Equation (5.49) involves two residuals: the covariance space matrix residual Ri and the

regression space residual (Y o
i −PiXiβ) with zero expectations, but unlike the maximum

likelihood estimating equation, it also has extra terms

B(Σ, d Σ) =
N∑
i=1

[
tr(PiΣ

−1P T
i Pi{d Σ}P T

i )− tr(Σ−1{d Σ})
]

(5.58)

that generally would lead to bias in estimating equations.

If B(·) could be integrated out as a penalty term, the approximate EM algorithm

would give consistent estimates of the parameters of interest. While the second term,

by its origin, is d ln |Σ|, there does not seem to be a general expression for the first

term.

Certain heuristic argument can be built for the contribution of B(·) for large N and

data missing completely at random, so that the rows of Pi, i = 1, . . . , N represent (an

ordered version of) a random sample without replacement of rows of Id. By virtue of

results in Appendix C,

Es tr(PiΣ
−1P T

i Pi{d Σ}P T
i ) = (1− ν) tr

{
Σ−1

[
(1− ν) d Σ + ν diag d Σ

]}
(5.59)

where the expectation Es is taken over the patterns of missing data, or observed samples

si from the set of all monitors. If the missing data process is MCAR, then for N →∞,

by the law of large numbers,

1

N

N∑
i=1

tr(PiΣ
−1P T

i Pi{d Σ}P T
i )

p−→ (1− ν) tr
{
Σ−1

[
(1− ν) d Σ + ν diag d Σ

]}
(5.60)

where the probability limit is again taken over repeated sampling of sites, assuming

samples are independent for different i’s (which is a part of MCAR assumption).
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5.3.5 Correction for κ

Let us first derive the correction for the nugget effect. By (C.4),

1

N

∂ l̃(θ, Y o)

∂κ
=

1

N

α

2

N∑
i=1

[
− tr Σ−1 + tr

(
PiΣ

−1Σ−1P T
i Ri + PiΣ

−1P T
i

)] p−→

p−→ α

2

[
− tr Σ−1 + (1− ν) tr Σ−1

]
(5.61)

where the limit involving the matrix residuals Ri is zero by the LLN under appropriate

regularity conditions, and the limits of other terms are taken with respect to the MCAR

missing data mechanism. The first term in the last expression needs to be attenuated

by 1− ν to make the whole expression equal to zero. As long as this is the differential

of ln |Σ(θ)|, then the correction to the estimating procedure that needs to be made is

the following:

In the approximate ECM, the function that needs to be maximized with

respect to κ should be

l̃κ(θ, Y
o) = −N(1− ν)

2
ln |Σ(θ)| − 1

2

N∑
i=1

tr
{
PiΣ

−1P T
i Ri

}
(5.62)

5.3.6 Correction for the spatial correlation parameters

As shown in (5.30), the contributions of parameters ϕ responsible for spatial correla-

tions, such as the shape and the range of variogram, to d Σ have zero elements on the

diagonal, and the relevant result from Appendix C is (C.6):

1

N

∂ l̃(θ, Y o)

∂ϕj
=

1

N

1

2
α

N∑
i=1

[
− tr

[
Σ−1Cj(ϕ)

]
+

+ tr
(
PiΣ

−1Cj(ϕ)Σ−1P T
i Ri + PiΣ

−1P T
i PiCj(ϕ)P T

i

)] p−→
p−→ α

2

{
− tr

[
Σ−1Cj(ϕ)

]
+ (1− ν)2 tr

[
Σ−1Cj(ϕ)

]}
(5.63)

where again the limit involving the matrix residuals Ri is zero by the LLN, and the

limits of other terms are taken with respect to the MCAR missing data mechanism.

The first term in the last expression needs to be attenuated by (1 − ν)2 to make the

whole expression equal to zero. As long as this is the differential of ln |Σ(θ)|, then the

correction to the estimating procedure that needs to be made is the following:
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In the approximate ECM, the function that needs to be maximized with

respect to ϕ should be

l̃ϕ(θ, Y
o) = −N(1− ν)2

2
ln |Σ(θ)| − 1

2

N∑
i=1

tr
{
PiΣ

−1P T
i Ri

}
(5.64)

5.3.7 Correction for α

Unlike the previous two sets of parameters, the estimating equation for the overall

scale parameter α involves both diagonal and off-diagonal terms as contributions to

d Σ. Hence,

1

N

∂ l̃(θ, Y o)

∂α
=

1

N

1

2

N∑
i=1

[
− tr

[
Σ−1C(κ, ϕ)

]
+

+ tr
(
PiΣ

−1C(κ, ϕ)Σ−1P T
i Ri + PiΣ

−1P T
i PiC(κ, ϕ)P T

i

)] p−→
p−→ 1

2

[
− tr

[
Σ−1C(κ, ϕ)

]
+ (1− ν) tr

{
Σ−1

[
(1− ν)C(κ, ϕ) + ν diagC(κ, ϕ)

]}]
=

=
1

2

[
−α−1d+ (1− ν)2α−1d+ (1− ν)ν(1 + κ) tr

{
α−1C(κ, ϕ)−1

}]
(5.65)

using the definition (5.29). The first term, which is the derivative of ln |Σ(θ)|, needs

to be attenuated by (1 − ν)2. The last term does not seem to fit anything in the

quasi-likelihood, but can be integrated back over α to give

P (α, κ, ϕ) = (1− ν)ν(1 + κ) tr
[
C(κ, ϕ)−1

]
lnα (5.66)

Thus the correction for α is given by:

In the approximate ECM, the function that needs to be maximized with

respect to α should be

l̃ϕ(θ, Y
o) = −N(1− ν)2

2
ln |Σ(θ)| − 1

2
P (α, κ, ϕ)− 1

2

N∑
i=1

tr
{
PiΣ

−1P T
i Ri

}
(5.67)

5.3.8 Summary of corrections

Equation (5.60) implies different corrections for different parameters. For the estimat-

ing equations of the nugget effect κ, the contribution to d Σ is αI dκ, with zeroes off
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diagonal, and the term tr Σ−1 d Σ in (5.58) needs to be attenuated by 1 − ν. For the

estimating equations of the spatial correlations, the contribution to d Σ has zero di-

agonal, and the RHS becomes (1− ν)2 tr
[
Σ−1α

∑
j Cj(ϕ)dϕj

]
, and thus the suggested

correction would be to multiply tr Σ−1 d Σ by (1−ν)2. For the estimating equations for

α, the correction involves both multiplying by (1 − ν)2, and adding an extra penalty

term. Note again that an important assumption that we had to make to derive those

corrections was the one of the data missing completely at random (MCAR), which also

implies independence over i. This may be too strong in reality.

Thus, the overall structure of the approximate EM algorithm will be the following:

1. Start with some initial values (available OLS estimates for regression parame-

ters; some reasonable guesses for the spatial covariance, e.g., the OLS regression

mean squared error for α, 0.1 for κ, median distance between sites for the range

parameter, etc.)

2. The E-step: compute Ẽ[(Y−Xβ)(Y−Xβ)|Y o, X, β, α, κ, ϕ] (involves the observed

data and the marginal predictions σij(α, κ, ϕ) for the missing data)

3. The conditional maximization step 1: update the estimate of κ maximizing (5.62)

w.r.t. κ

4. The conditional maximization step 2: update the estimate of ϕ maximizing (5.64)

w.r.t. ϕ

5. The conditional maximization step 3: update the estimate of α maximizing (5.67)

w.r.t. α

6. The conditional maximization step 4: perform WLS regression (5.53)

7. Repeat steps 2–6 until convergence, properly defined

The above procedure results in the following set of estimating equations, rescaled

by 1/N for convenience.
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ψβ,N(Y,X, β, θ) =
1

N

N∑
i=1

ψβ(Yi, Xi, β, θ),

ψβ(Yi, Xi, β, θ) =XT
i P

T
i PiΣ

−1P T
i (Y o

i − PiXiβ), (5.68)

ψκ,N(Y,X, β, θ) =
1

N

N∑
i=1

ψκ(Yi, Xi, β, θ),

ψκ(Yi, Xi, β, θ) =
α

2

[
−(1− ν) tr Σ−1 + tr

(
PiΣ

−1Σ−1P T
i Ri + PiΣ

−1P T
i

)]
, (5.69)

ψϕj ,N(Y,X, β, θ) =
1

N

N∑
i=1

ψϕj
(Yi, Xi, β, θ),

ψϕj
(Yi, Xi, β, θ) =

α

2

[
−(1− ν)2 tr

[
Σ−1Cj(ϕ)

]
+

+ tr
(
PiΣ

−1Cj(ϕ)Σ−1P T
i Ri + PiΣ

−1P T
i PiCj(ϕ)P T

i

)]
, (5.70)

ψα,N(Y,X, β, θ) =
1

N

N∑
i=1

ψα(Yi, Xi, β, θ),

ψα(Yi, Xi, β, θ) =
1

2
α−1
[
−(1− ν)2d− (1− ν)ν(1 + κ) tr

[
C(κ, ϕ)−1

]
+

+ tr
(
PiΣ

−1P T
i Ri + PiΣ

−1P T
i PiΣP

T
i

)]
(5.71)

5.4 Derivatives of the estimating equations

Let us establish the basic statistical properties of the estimating equations (5.68)–

(5.71). For both consistency and asymptotic normality, the first order derivatives of

those equations will be needed.

Derivatives of ψβ

The derivatives of the estimating equations for β are as follows.

dψβ(Yi, Xi, β, θ) = d
[
XT
i P

T
i PiΣ

−1P T
i (Y o

i − PiXiβ)
]

=

= XT
i P

T
i PiΣ

−1{d Σ}Σ−1P T
i (Y o

i − PiXiβ)−XT
i P

T
i PiΣ

−1P T
i PiXi{dβ} (5.72)
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Hence,

∂

∂β
ψβ,N(Y,X, β, θ) =

1

N

N∑
i=1

∂

∂β
ψβ(Yi, Xi, β, θ) =

= − 1

N

N∑
i=1

XT
i P

T
i PiΣ

−1P T
i PiXi, (5.73)

∂

∂κ
ψβ,N(Y,X, β, θ) =

1

N

N∑
i=1

∂

∂κ
ψβ(Yi, Xi, β, θ) =

=
1

N

N∑
i=1

XT
i P

T
i PiΣ

−1Σ−1P T
i (Y o

i − PiXiβ), (5.74)

∂

∂ϕj
ψβ,N(Y,X, β, θ) =

1

N

N∑
i=1

∂

∂ϕj
ψβ(Yi, Xi, β, θ) =

=
1

N

N∑
i=1

XT
i P

T
i PiΣ

−1Cj(κ, ϕ)Σ−1P T
i (Y o

i − PiXiβ) (5.75)

∂

∂β
ψβ,N(Y,X, β, θ) =

1

N

N∑
i=1

∂

∂β
ψβ(Yi, Xi, β, θ) =

=
1

N

N∑
i=1

α−1XT
i P

T
i PiΣ

−1P T
i (Y o

i − PiXiβ) (5.76)

The expectations of the equations (5.74)–(5.76) with respect to the distribution Y

are all 0 due to zero expectation of the residual terms Y o
i − PiXiβ (under normality,

or, more generally, under symmetry of Y around its mean):

EY

[ ∂
∂κ
ψβ,N(Y,X, β, θ)

]
= EY

[ ∂

∂ϕj
ψβ,N(Y,X, β, θ)

]
=

= EY

[ ∂
∂α

ψβ,N(Y,X, β, θ)
]

= 0 (5.77)

Derivatives of ψκ

For the derivatives of the estimating equations for the covariance parameters, we would

need the following differential:

dRi = d
[
(Y o

i − PiXiβ)(Y o
i − PiXiβ)T − PiΣP T

i

]
=

= −2(Y o
i − PiXiβ)dβTXT

i P
T
i − Pi{d Σ}P T

i (5.78)
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Then the differential of the estimating equation for the nugget effect can be obtained

as follows:

dψκ(Yi, Xi, β, θ) = d
α

2

[
−(1− ν) tr Σ−1 + tr

(
PiΣ

−1Σ−1P T
i Ri + PiΣ

−1P T
i

)]
=

=
dα

2

[
−(1− ν) tr Σ−1 + tr

(
PiΣ

−1Σ−1P T
i Ri + PiΣ

−1P T
i

)]
+

+
α

2

[
(1− ν) tr

[
Σ−1{d Σ}Σ−1

]
+ tr

(
−Pi[Σ−1{d Σ}Σ−2 + Σ−2{d Σ}Σ−1]P T

i Ri−

−PiΣ−2P T
i [2(Y o

i − PiXiβ)dβTXT
i P

T
i + Pi{d Σ}P T

i ]− PiΣ−1{d Σ}Σ−1P T
i

)]
(5.79)

Then,

∂

∂βj
ψκ,N(Y,X, β, θ) =

1

N

N∑
i=1

∂

∂βj
ψκ(Yi, Xi, β, θ) =

= − 1

N

N∑
i=1

α tr
[
XT
ijP

T
i PiΣ

−2P T
i (Y o

i − PiXiβ)
]

(5.80)

EY

[ ∂

∂βT
ψκ,N(Y,X, β, θ)

]
= − 1

N

N∑
i=1

α tr
{
XT
ijP

T
i PiΣ

−2P T
i EY [Y o

i − PiXiβ]
}

= 0,

(5.81)

∂

∂κ
ψκ,N(Y,X, β, θ) =

1

N

N∑
i=1

∂

∂κ
ψκ(Yi, Xi, β, θ) =

=
1

N

α

2

N∑
i=1

[
(1− ν) tr Σ−2 + tr

(
−2PiΣ

−3P T
i Ri − 2PiΣ

−2P T
i

)]
, (5.82)

EY

[ ∂
∂κ
ψκ,N(Y,X, β, θ)

]
=

1

N

α

2

N∑
i=1

[
(1− ν) tr Σ−2 − 2 trPiΣ

−2P T
i

]
,

Es EY

[ ∂
∂κ
ψκ,N(Y,X, β, θ)

]
=

=
α

2

[
(1− ν) tr Σ−2 − 2(1− ν) tr Σ−2

]
= −α(1− ν)

2
tr Σ−2 (5.83)

where in the last expression, we first have taken the expectation (EY ) with respect to

the distribution of Y , and then with respect to the missing data mechanism (Es) which

is assumed to be independent of the Y ’s. The results from Appendix C were used,

where the last trace was represented as tr
[
PiΣ

−2P T
i PiIdP

T
i

]
.
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The cross-derivatives with other spatial covariance parameters are:

∂

∂ϕj
ψκ,N(Y,X, β, θ) =

α

2N

N∑
i=1

[
(1− ν) tr

[
Σ−1Cj(ϕ)Σ−1

]
+

+ tr
(
−Pi[Σ−1Cj(ϕ)Σ−2 + Σ−2Cj(ϕ)Σ−1]P T

i Ri−

−PiΣ−2P T
i PiCj(ϕ)P T

i − PiΣ−1Cj(ϕ)Σ−1P T
i

)]
,

EY

[ ∂

∂ϕj
ψκ,N(Y,X, β, θ)

]
=

α

2N

N∑
i=1

[
(1− ν) tr

[
Σ−1Cj(ϕ)Σ−1

]
−

− tr
(
PiΣ

−2P T
i PiCj(ϕ)P T

i + PiΣ
−1Cj(ϕ)Σ−1P T

i

)]
,

Es EY

[ ∂

∂ϕj
ψκ,N(Y,X, β, θ)

]
= −α

2
(1− ν)2 tr

(
Σ−2Cj(ϕ)

)
, (5.84)

∂

∂α
ψκ,N(Y,X, β, θ) = − 1

2N

N∑
i=1

tr
[
PiΣ

−2P T
i (Ri + αPiC(κ, ϕ)P T

i )
]
,

EY

[ ∂
∂α

ψκ,N(Y,X, β, θ)
]

= − 1

2N

N∑
i=1

α tr(PiΣ
−2P T

i PiC(κ, ϕ)P T
i ),

Es EY

[ ∂
∂α

ψκ,N(Y,X, β, θ)
]

= −1− ν
2

tr
[
(1− ν)Σ−1 + αν(1 + κ)Σ−2

]
(5.85)

Derivatives of ψϕ

Let us now work out the estimating equations (5.70) for the correlation parameters ϕ.

dψϕj
(Yi, Xi, β, θ) = d

α

2

[
−(1− ν)2 tr

(
Σ−1Cj(ϕ)

)
+

+ tr
(
PiΣ

−1Cj(ϕ)Σ−1P T
i Ri + PiΣ

−1P T
i PiCj(ϕ)P T

i

)]
=

=
dα

2

[
−(1− ν)2 tr

(
Σ−1Cj(ϕ)

)
+ tr

(
PiΣ

−1Cj(ϕ)Σ−1P T
i Ri + PiΣ

−1P T
i PiCj(ϕ)P T

i

)]
+

+
α

2

[
(1− ν)2 tr

(
Σ−1{d Σ}Σ−1Cj(ϕ)− Σ−1

dCj(ϕ)
)
+

+ tr
(
−PiΣ−1{d Σ}Σ−1Cj(ϕ)Σ−1P T

i Ri + PiΣ
−1{dCj(ϕ)}Σ−1P T

i Ri−

−PiΣ−1Cj(ϕ)Σ−1{d Σ}Σ−1P T
i Ri + PiΣ

−1Cj(ϕ)Σ−1P T
i dRi−

−PiΣ−1{d Σ}Σ−1P T
i PiCj(ϕ)P T

i + PiΣ
−1P T

i Pi{dCj(ϕ)}P T
i

)]
=
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=
dα

2

[
−(1− ν)2 tr

(
Σ−1Cj(ϕ)

)
+ tr

(
PiΣ

−1Cj(ϕ)Σ−1P T
i Ri + PiΣ

−1P T
i PiCj(ϕ)P T

i

)]
+

+
α

2

[
(1− ν)2 tr

(
Σ−1{d Σ}Σ−1Cj(ϕ)− Σ−1

dCj(ϕ)
)
+

+ tr
(
−PiΣ−1{d Σ}Σ−1Cj(ϕ)Σ−1P T

i Ri + PiΣ
−1{dCj(ϕ)}Σ−1P T

i Ri−

−PiΣ−1Cj(ϕ)Σ−1{d Σ}Σ−1P T
i Ri−

−PiΣ−1Cj(ϕ)Σ−1P T
i

[
2(Y o

i − PiXiβ)dβTXT
i P

T
i + Pi{d Σ}P T

i

]
−

−PiΣ−1{d Σ}Σ−1P T
i PiCj(ϕ)P T

i + PiΣ
−1P T

i Pi{dCj(ϕ)}P T
i

)]
, (5.86)

∂

∂βj
ψϕj ,N(Y,X, β, θ) = − α

N

N∑
i=1

tr
[
XT
ijP

T
i Σ−1Cj(ϕ)Σ−1P T

i (Y o
i − PiXiβ)

]
,

EY

[ ∂

∂βT
ψϕj ,N(Y,X, β, θ)

]
= 0 (5.87)

∂

∂κ
ψϕj ,N(Y,X, β, θ) =

α

2N

N∑
i=1

[
(1− ν)2 tr

(
Σ−2Cj(ϕ)

)
+

+ tr
(
−PiΣ−2Cj(ϕ)Σ−1P T

i Ri − PiΣ−1Cj(ϕ)Σ−2P T
i Ri−

−PiΣ−1Cj(ϕ)Σ−1P T
i − PiΣ−2P T

i PiCj(ϕ)P T
i

)]
,

EY

[ ∂
∂κ
ψϕj ,N(Y,X, β, θ)

]
=

α

2N

N∑
i=1

[
(1− ν)2 tr

(
Σ−2Cj(ϕ)

)
−

− tr
(
PiΣ

−1Cj(ϕ)Σ−1P T
i + PiΣ

−2P T
i PiCj(ϕ)P T

i

)]
,

Es EY

[ ∂
∂κ
ψϕj ,N(Y,X, β, θ)

]
= −α(1− ν)

2
tr
(
Σ−1Cj(ϕ)Σ−1

)
(5.88)

∂

∂ϕk
ψϕj ,N(Y,X, β, θ) =

α

2N

N∑
i=1

[
(1− ν)2 tr

(
Σ−1Ck(ϕ)Σ−1Cj(ϕ)− Σ−1Cjk(ϕ)

)
+

+ tr
(
−PiΣ−1Ck(ϕ)Σ−1Cj(ϕ)Σ−1P T

i Ri + PiΣ
−1Cjk(ϕ)Σ−1P T

i Ri−

−PiΣ−1Cj(ϕ)Σ−1Ck(ϕ)Σ−1P T
i Ri − PiΣ−1Cj(ϕ)Σ−1P T

i PiCk(ϕ)P T
i −

−PiΣ−1Ck(ϕ)Σ−1P T
i PiCj(ϕ)P T

i + PiΣ
−1P T

i PiCjk(ϕ)P T
i

)]
,

EY

[ ∂

∂ϕk
ψϕj ,N(Y,X, β, θ)

]
=

α

2N

N∑
i=1

[
(1− ν)2 tr

(
Σ−1Ck(ϕ)Σ−1Cj(ϕ)−

−Σ−1Cjk(ϕ)
)

+ tr
(
−PiΣ−1Cj(ϕ)Σ−1P T

i PiCk(ϕ)P T
i −

−PiΣ−1Ck(ϕ)Σ−1P T
i PiCj(ϕ)P T

i + PiΣ
−1P T

i PiCjk(ϕ)P T
i

)]
, (5.89)

Es EY

[ ∂

∂ϕk
ψϕj ,N(Y,X, β, θ)

]
= −α(1− ν)2

2
tr
(
Σ−1Cj(ϕ)Σ−1Ck(ϕ)

)
(5.90)
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where Cjk(ϕ) are components of dCj(·) related to dϕk:

dCj(ϕ) =
∑
k

Cjk(ϕ)dϕk (5.91)

Just like Cj(·) matrices, Cjk(·) matrices have zeroes on diagonal, so the result from

(C.6) applies to them. The expectations of cross-derivatives are equal,

Es EY

[ ∂

∂ϕk
ψϕj ,N(Y,X, β, θ)

]
= Es EY

[ ∂

∂ϕj
ψϕk,N(Y,X, β, θ)

]
(5.92)

by the equality of the mixed partial derivatives. (Recall that the correlation parameters

require the same style corrections, and thus the same function is being maximized over

them.)

Finally,

∂

∂α
ψϕj ,N(Y,X, β, θ) = − 1

2N

N∑
i=1

tr
[
PiΣ

−1Cj(ϕ)Σ−1P T
i (Ri + PiΣP

T
i )
]
, (5.93)

EY

[ ∂
∂α

ψϕj ,N(Y,X, β, θ)
]

= − 1

2N

N∑
i=1

tr
[
PiΣ

−1Cj(ϕ)Σ−1P T
i PiΣP

T
i

]
, (5.94)

Es EY

[ ∂
∂α

ψϕj ,N(Y,X, β, θ)
]

= −1− ν
2

tr
[
Σ−1Cj(ϕ)Σ−1((1− ν)Σ + ν(1 + κ)I)

]
=

= −1− ν
2

tr
[
Σ−1Cj(ϕ)

(
(1− ν)I + ν(1 + κ)Σ−1

)]
(5.95)

Derivatives of ψα

The last set of derivatives are those of the estimating equation (5.71) for α.

dψα(Yi, Xi, β, θ) = −1

2
α−2 dα

[
−(1− ν)2d− (1− ν)ν(1 + κ) tr

(
C(κ, ϕ)−1

)
+

+ tr
(
PiΣ

−1P T
i Ri + PiΣ

−1P T
i PiΣP

T
i

)]
+

+
1

2

[
−(1− ν)ν tr

(
dκΣ−1 − (1 + κ)αΣ−1{dC(κ, ϕ)}Σ−1

)
+

+α−1 tr
(
−PiΣ−1{d Σ}Σ−1(Ri + PiΣP

T
i )− 2PiΣ

−1P T
i (Y o

i − PiXiβ)dβTXT
i P

T
i

)]
,

(5.96)
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∂

∂βj
ψα,N(Y,X, β, θ) = − 1

2αN

N∑
i=1

tr
[
XT
ijP

T
i PiΣ

−1P T
i (Y o

i − PiXiβ)
]
, (5.97)

EY

[ ∂

∂βT
ψα,N(Y,X, β, θ)

]
= 0 (5.98)

∂

∂κ
ψα,N(Y,X, β, θ) =

=
1

2N

N∑
i=1

[
−(1− ν)ν tr

{
Σ−1

(
I − (1 + κ)αΣ−1

)}
− tr

{
PiΣ

−2P T
i (Ri + PiΣP

T
i )
}]
,

(5.99)

EY

[ ∂
∂κ
ψα,N(Y,X, β, θ)

]
=

=
1

2N

N∑
i=1

[
−(1− ν)ν tr

{
Σ−1

(
I − (1 + κ)αΣ−1

)}
− tr

{
PiΣ

−2P T
i PiΣP

T
i

}]
, (5.100)

Es EY

[ ∂
∂κ
ψα,N(Y,X, β, θ)

]
= −1

2
(1− ν) tr Σ−1 (5.101)

∂

∂ϕj
ψα,N(Y,X, β, θ) =

1

2N

N∑
i=1

[
(1− ν)ν(1 + κ)α tr

(
Σ−1Cj(ϕ)Σ−1

)
−

− tr
(
PiΣ

−1Cj(ϕ)Σ−1P T
i Ri + PiΣ

−1Cj(ϕ)Σ−1P T
i PiΣP

T
i

)]
, (5.102)

EY

[ ∂

∂ϕj
ψα,N(Y,X, β, θ)

]
=

=
1

2N

N∑
i=1

[
(1− ν)ν(1 + κ)α tr

(
Σ−1Cj(ϕ)Σ−1

)
−

− tr
(
PiΣ

−1Cj(ϕ)Σ−1P T
i PiΣP

T
i

)]
, (5.103)

Es EY

[ ∂

∂ϕj
ψα,N(Y,X, β, θ)

]
= −1

2
(1− ν)2 tr

[
Σ−1Cj(ϕ)Σ−1

]
(5.104)

∂

∂α
ψα,N(Y,X, β, θ) =

1

2N
α−2

N∑
i=1

[
−(1− ν)2d− (1− ν)ν(1 + κ) tr

(
C(κ, ϕ)−1

)]
,

(5.105)

EY Es

[ ∂
∂α

ψα,N(Y,X, β, θ)
]

= −1− ν
2α2

[
(1− ν)d+ ν(1 + κ) tr

(
C(κ, ϕ)−1

)]
(5.106)
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The derivatives matrix A

The results in Section 5.4 jointly define matrix A of derivatives that will be useful

in establishing consistency and asymptotic normality of the estimates, as discussed in

Appendix D:

A =

(
Aββ 0

0 Aθθ

)
, (5.107)

Aββ = −Es

N∑
i=1

XT
i P

T
i PiΣ

−1P T
i PiXi,

(Aββ)jk = −Es

N∑
i=1

XT
ijP

T
i PiΣ

−1P T
i PiXik =

= −
N∑
i=1

Es tr
[
PiXikX

T
ijP

T
i PiΣ

−1P T
i

]
=

= −(1− ν) tr
{
XkX

T
j

[(
(1− ν)Σ−1 + ν diag Σ−1

)
⊗ IN

]}
=

= −(1− ν)XT
j

[(
(1− ν)Σ−1 + ν diag Σ−1

)
⊗ IN

]
Xk,

Aββ = −(1− ν)XT
[(

(1− ν)Σ−1 + ν diag Σ−1
)
⊗ IN

]
X (5.108)

Generally, expectations with respect to the missing data mechanism involving the

regressors Xi are going to be awkward, as long as the regressors can vary between

occasions i, unless the design is nicely balanced. Alternatively, as long as the entries

of the design matrix X are observed in practice, one can use observed matrices Xi and

compute

Âββ = − 1

N

N∑
i=1

XT
i P

T
i PiΣ

−1P T
i PiXi,

Further,

Aθθ = −1− ν
2



3α tr Σ−2 α(1− ν) tr
(
Σ−2Cj(ϕ)

)
. . .

α tr
(
Σ−1C1(ϕ)Σ−1

)
α(1− ν) tr

(
Σ−1C1(ϕ)Σ−1C1(ϕ)

)
. . .

...
...

. . .

α tr
(
Σ−1Cq(ϕ)Σ−1

)
α(1− ν) tr

(
Σ−1C1(ϕ)Σ−1Cq(ϕ)

)
. . .

tr Σ−1 (1− ν) tr
[
Σ−1C1(κ, ϕ)

]
. . .
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. . . tr((1− ν)Σ−1 + αν(1 + κ)Σ−2) tr Σ−1

. . . 2 tr
{
Σ−1C1(ϕ)

[
(1− ν)I + ν(1 + κ)Σ−1

]}
(1− ν) tr

[
Σ−1C1(ϕ)

]
. . .

...
...

. . . 2 tr
{
Σ−1Cq(ϕ)

[
(1− ν)I + ν(1 + κ)Σ−1

]}
(1− ν)

{
tr Σ−1Cq(ϕ)

}
. . . 1

α

[
(1− ν)d+ ν(1 + κ) tr

(
C(κ, ϕ)−1

)]
α−2
[
(1− ν)d+ ν(1 + κ) tr

(
C(κ, ϕ)−1

)]


(5.109)

where the entries are ordered corresponding to entries of β, κ, ϕ = (ϕ1, . . . , ϕq) and α.

5.5 The variances of estimating equations

The variance-covariance matrix of the estimating equations,

B = E Ψ(Y,X, β, θ)Ψ(Y,X, β, θ)T (5.110)

will be useful in establishing that the estimating equations are asymptotically normal,

which will then be used in showing asymptotic normality of the estimates. Another

simple implication of normality will be that Ψn(Y,X, β, θ) ∼ Op(N
−1/2) which will be

used in establishing consistency of the estimates.

The upper left block of this matrix is comprised of the expectations of the outer

product ψβ(Y,X, β, θ)ψβ(Y,X, β, θ)
T :

EY

[
ψβ(Y,X, β, θ)ψβ,N(Y,X, β, θ)T

]
=

= EY
1

N2

N∑
i=1

ψβ(Yi, Xi, β, θ)ψβ(Yi, Xi, β, θ)
T =

=
1

N2

N∑
i=1

EY

[
XT
i P

T
i PiΣ

−1P T
i (Y o

i − PiXiβ)
][
XT
i P

T
i PiΣ

−1P T
i (Y o

i − PiXiβ)
]T

=

=
1

N2

N∑
i=1

EY X
T
i P

T
i PiΣ

−1P T
i EY

[
(Y o

i − PiXiβ)(Y o
i − PiXiβ)T

]
PiΣ

−1P T
i PiXi =

=
1

N2

N∑
i=1

XT
i P

T
i PiΣ

−1P T
i PiΣP

T
i PiΣ

−1P T
i PiXi (5.111)



85

Bββ = Es EY

[
ψβ,N(Y,X, β, θ)ψβ,N(Y,X, β, θ)T

]
is going to be a fourth order poly-

nomial in ν, as in computing the expectation with respect to the missing data, four

probabilities of 1−ν would have to be multiplied and added up with different elements

of the matrices Σ, Σ−1 and XXT .

The blocks Bβκ, Bβϕ and Bβα are based on the expected values of the products

of the estimating equation for β, (5.68) with (5.69), (5.70) and (5.71). They will all

contain terms Yi−PiXiβ and (Yi−PiXiβ)Ri which all have expectation of zero under

the assumption of normality (or, more broadly, symmetry of the error distribution,

including cross-symmetries of terms involving different sites: EY (Y −Xβ)(Y −Xβ)T ⊗
(Y −Xβ) = 0).

The expectations of the outer products of the estimating equations for the covariance

parameters will contain products of traces, and identity (B.7) will be handy. We would

also need the fourth moments of the data. Define

Rc
i = (Y c

i −Xiβ)(Y c
i −Xiβ)T − Σ, (5.112)

so that

Ri = PiR
c
IP

T
i (5.113)

Then

EY r
c
i jkr

c
i lm =

[
(ycij − xijβ)(ycik − xikβ)− σjk

][
(ycil − xilβ)(ycim − ximβ)− σlm

]
=

= EY

[
(ycij − xijβ)(ycik − xikβ)− σjk

]
(ycil − xilβ)(ycim − ximβ) =

= EY

[
(ycij − xijβ)(ycik − xikβ)(ycil − xilβ)(ycim − ximβ)

]
− σjkσlm ≡ µjklm − σjkσlm,

EY R
c
i ⊗Rc

i ≡ K (5.114)

where the subindices j, k, l, m correspond to individual sites, and µjklm is the fourth

order central moment. This is a generic entry of K, the matrix of the fourth order

central moments.

Now, let us derive the products/variances of estimating equations for the covariance

space. They all will be finite, with the only condition that |Σ| 6= 0. This condition,

however, is guaranteed to hold by the parametric choice of Σ; see Section 2.1.
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Variance of ψκ(·)

Lemma 5.3. Vψκ is finite.

Proof.

ψκ(yi,Xi, β, θ)
2 =

=
α

2

[
−(1− ν) tr Σ−1 + tr

(
PiΣ

−2P T
i Ri + PiΣ

−1P T
i

)]
×

×α
2

[
−(1− ν) tr Σ−1 + tr

(
PiΣ

−2P T
i Ri + PiΣ

−1P T
i

)]
=

=
α2

4

[
(1− ν)2(tr Σ−1)2 − 2(1− ν) tr Σ−1 · trPiΣ−1P T

i +

+(trPiΣ
−1P T

i )2 + (tr[PiΣ
−2P T

i Ri])
2 + terms, involving Ri only once

]
(5.115)

Using Lemma C.5, the expectations with respect to the missing data mechanism are:

Es trPiΣ
−1P T

i = (1− ν) tr Σ−1,

Es(trPiΣ
−1P T

i )2 =
[
(1− ν) tr Σ−1

]2
+ (1− ν)2∆(ν; Σ−1, I,Σ−1, I)

Es

[
tr(PiR

c
iP

T
i PiΣ

−2P T
i )
]2

=

= (1− ν)2
{[

tr(Rc
i [(1− ν)Σ−2 + ν diag Σ−2])

]2
+ ∆(ν;Rc

i ,Σ
−2, Rc

i ,Σ
−2)
}
, (5.116)

Es ψκ(yi,Xi, β, θ)
2 = (1− ν)2

{[
tr(Rc

i [(1− ν)Σ−2 + ν diag Σ−2])
]2

+ ∆(ν; Σ−1, I,Σ−1, I)+

+∆(ν;Rc
i ,Σ

−2, Rc
i ,Σ

−2)
}

+ terms, involving Ri only once (5.117)

Now, when expectation with respect to the distribution of Y is taken, the latter terms

disappear, as well as the terms involving cross-products of Rc
i and Rc

j. Hence, involving

(B.7) for the product of traces,

EY Es ψκ(yi,Xi, β, θ)
2 =

= (1− ν)2
[
tr
[
K ·

{
[(1− ν)Σ−2 + ν diag Σ−2]⊗ [(1− ν)Σ−2 + ν diag Σ−2]

}]
+

+∆(ν; Σ−1, I,Σ−1, I) + EY ∆(ν;R,Σ−2, R,Σ−2)
]

(5.118)

The last term depends on the (entries of the) fourth moment matrix K defined in

(5.114), and is spelled out in (C.14).
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Variance of ψϕ(·)

Lemma 5.4. Vψϕ(·) is finite.

Proof.

ψϕj
(Yi,Xi, β, θ)ψϕk

(Yi,Xi, β, θ) =

=
α2

4

[
−(1− ν)2 tr

(
Σ−1Cj(ϕ)

)
+ tr

(
PiΣ

−1Cj(ϕ)Σ−1P T
i Ri + PiΣ

−1P T
i PiCj(ϕ)P T

i

)]
×

×
[
−(1− ν)2 tr

(
Σ−1Ck(ϕ)

)
+ tr

(
PiΣ

−1Ck(ϕ)Σ−1P T
i Ri + PiΣ

−1P T
i PiCk(ϕ)P T

i

)]
=

=
α2

4

[
(1− ν)4 tr

(
Σ−1Cj(ϕ)

)
· tr
(
Σ−1Ck(ϕ)

)
− (1− ν)2 tr

[
Σ−1Cj(ϕ)

]
· tr
[
PiΣ

−1P T
i PiCk(ϕ)P T

i

]
− (1− ν)2 tr

[
PiΣ

−1P T
i PiCj(ϕ)P T

i

]
· tr
[
Σ−1Ck(ϕ)

]
+ tr

[
PiΣ

−1P T
i PiCj(ϕ)P T

i

]
· tr
[
PiΣ

−1P T
i PiCk(ϕ)P T

i

]
+ tr

[
PiΣ

−1Cj(ϕ)Σ−1P T
i Ri

]
· tr
[
PiΣ

−1Ck(ϕ)Σ−1P T
i Ri

]
+ terms, involving Ri only once

]
(5.119)

The expectation of the first four terms with respect to the missing data mechanism

gives together (1− ν)2∆(ν; Σ−1, Cj(ϕ),Σ−1, Ck(ϕ)). After denoting

Fj = (1− ν)
[
(1− ν)Σ−1Cj(ϕ)Σ−1 + ν diag(Σ−1Cj(ϕ)Σ−1)

]
, (5.120)

the expectation of the fifth term is:

Es

[
tr(PiΣ

−1Cj(ϕ)Σ−1P T
i Ri) · tr(PiΣ−1Ck(ϕ)Σ−1P T

i Ri)
]

=

= (1− ν)2 tr
[
(Fj ⊗ Fk)(Ri ⊗Ri)

]
+ (1− ν)2∆(ν; Σ−1Cj(ϕ)Σ−1, Rc

i ,Σ
−1Ck(ϕ)Σ−1, Rc

i )

(5.121)

The expectation of the last term of (5.119) w.r.t. distribution of Y is zero. Thus,

EY Es

[
ψϕj

(Yi,Xi, β, θ)ψϕk
(Yi,Xi, β, θ)

T
]

=

= (1− ν)2∆(ν; Σ−1, Cj(ϕ),Σ−1, Ck(ϕ)) + (1− ν)2 tr
[
(Fj ⊗ Fk)K

]
+

+(1− ν)2 EY ∆(ν; Σ−1Cj(ϕ)Σ−1, Rc
i ,Σ

−1Ck(ϕ)Σ−1, Rc
i ) (5.122)

The generic form of the last term is given in (C.14), and the whole expression is

going to be finite provided Σ is invertible.
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Variance of ψα(·)

The final piece of the variance matrix we are interested in is the variance of ψα(·).

Lemma 5.5. Vψα(·) is finite.

Proof.

ψα(Yi, Xi, β, θ)
2 =

1

4
α−2
[
−(1− ν)2d− (1− ν)ν(1 + κ) tr

(
C(κ, ϕ)−1

)
+

+ tr
(
PiΣ

−1P T
i Ri + PiΣ

−1P T
i PiΣP

T
i

)]2
=

=
1

4α2

{
(1− ν)4d2 + (1− ν)2ν2(1 + κ)2

[
tr
(
C(κ, ϕ)−1

)]2
+

+ 2(1− ν)3dν(1 + κ) tr
(
C(κ, ϕ)−1

)
+
[
tr(PiΣ

−1P T
i PiR

c
iP

T
i )
]2−

− 2
[
(1− ν)2d+ (1− ν)ν(1 + κ) tr

(
C(κ, ϕ)−1

)]
tr(PiΣ

−1P T
i PiΣP

T
i )+

+
[
tr(PiΣ

−1P T
i PiΣP

T
i )
]2

+ terms, involving Ri only once
}

(5.123)

The expectations with respect to the missing data mechanism of the terms involving

Pi are:

Es

[
tr(PiΣ

−1P T
i PiR

c
iP

T
i )
]2

= Es tr
[
(PiΣ

−1P T
i ⊗ PiΣ−1P T

i )(PiR
c
iP

T
i ⊗ PiRc

iP
T
i )
]

=

= (1− ν)2

[
tr
{[

(1− ν)Σ−1 + ν diag Σ−1
]
⊗
[
(1− ν)Σ−1 + ν diag Σ−1

]}
(Rc

i ⊗Rc
i )+

+∆(ν; Σ−1, Rc
i ,Σ

−1, Rc
i )

]
, (5.124)

Es

[
tr(PiΣ

−1P T
i PiΣP

T
i )
]2

= E2
s

[
tr(PiΣ

−1P T
i PiΣP

T
i )
]
+ (1− ν)2∆(ν; Σ−1,Σ,Σ−1,Σ) =

= (1− ν)2
{
tr
[
Σ−1

(
(1− ν)Σ + ν(1 + κ)Id

)]}2
+ (1− ν)2∆(ν; Σ−1,Σ,Σ−1,Σ),

(5.125)

Es tr(PiΣ
−1P T

i PiΣP
T
i ) = (1− ν)

{[
tr Σ−1

(
(1− ν)Σ + ν(1 + κ)Id

)]}
(5.126)

The expected value with respect to the distribution of Y of the last term of (5.123)

is zero, and of (5.124), is

EY Es

[
tr(PiΣ

−1P T
i Ri)

]2
= (1− ν)2

[
tr
{[

(1− ν)Σ−1 + ν diag Σ−1
]
⊗

⊗
[
(1− ν)Σ−1 + ν diag Σ−1

]}
K + EY ∆(ν; Σ−1, Rc

i ,Σ
−1, Rc

i )

]
, (5.127)
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where the last term is dealt with in (C.14). Thus the total result is

EY Esψα(Yi, Xi, β, θ)
2 =

=
(1− ν)2

4α2

[
tr
{[

(1− ν)Σ−1 + ν diag Σ−1
]
⊗
[
(1− ν)Σ−1 + ν diag Σ−1

]}
K+

+ EY ∆(ν; Σ−1, Rc
i ,Σ

−1, Rc
i ) + ∆(ν; Σ−1,Σ,Σ−1,Σ)

]
(5.128)

Covariances of estimating equations

The cross-products ψκ(·)ψϕ(·), ψκ(·)ψα(·), ψϕ(·)ψα(·) and their expectations can also be

tediously derived. By Cauchy-Schwarz inequality, they will be bounded by the product

of the standard errors of individual components. For the matter of the theoretical

proofs, it suffices that they are finite.

5.5.1 An empirical estimate

In the empirical applications of the method, it will be more natural and easier to

compute individual contributions ψj(yi,xi, β, θ) and compute the empirical covariance

matrix

B̂ =
1

N

N∑
i=1

Ψ(yi,xi, β, θ)Ψ(yi,xi, β, θ)
T (5.129)

to be used in the sandwich variance estimation (see Section D.3 of Appendix D). This

procedure will also be more beneficial in that ensures robustness against violations of

assumptions of normality used throughout in derivation of the variances of estimating

equations.
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5.6 Consistency of θ̃

In the earlier sections, we have obtained the derivatives of the estimating equations

(5.68)–(5.71). Let us see if they satisfy the regularity conditions outlined in Appendix D

for consistency of the estimates, in particular, conditions of Huber (1967).

The estimating equations have the form

1

N

N∑
i=1

ψ(Xi, θ)

and by construction they satisfy (D.20) with exact equality (sans the computational

accuracy).

Both the estimating equations and their derivatives are continuous functions of θ

provided |Σ| 6= 0 which is guaranteed by the choice of negative definite variograms (see

Section 2.1.3). Hence Huber’s (1967) condition (B-1) is satisfied.

The existence of continuous derivatives also ensures conditions (B-2) and (B-2′) (aka

(D.21) and (D.22)): for close enough θ and θ′,

1

2
λmin[−A]‖θ′ − θ‖ ≤ ‖Ψ(x, θ′)−Ψ(x, θ)‖ ≤ 2λmax[−A]‖θ′ − θ‖ (5.130)

where A is the matrix of derivatives given in (5.107), and λmin[−A] and λmax[−A] are

the smallest and the largest eigenvalues of the corresponding matrix. Here, A depends

on the parameter values, and can be taken say at 1
2
(θ + θ′). It should be verified that

the matrix A is negative definite. It is the case for the regression block of it, as is

obvious from (5.108) or (5.109), but the case is not clear for Aθθ part in (5.109). The

condition (B-3) is satisfied by the choice of corrections in Section 5.3.8 that ensure that

the population parameters solve λ(θ) = 0. The condition (B-4) is satisfied with

b(θ) = M1
1

N

N∑
i=1

‖XiΣ
−1Xiβ‖+M2α tr Σ−1 +M3

∑
j

| tr(Σ−1Cj(ϕ))|+M4α
−1 (5.131)

for appropriately chosen M1,M2,M3,M4. Note that one also needs to have α separated

from zero.

Alternatively, conditions (D.34)–(D.35) of Appendix D.4 are easily established: the

first one holds by CLT (provided variances of the estimating equations are finite, which

has already been demonstrated), and the second one, by the LLN, as explained in that



91

appendix. Both of those conditions follow from the fact that the estimating equations

and their derivatives are sample averages, as mentioned earlier. Also, (D.37) holds by

CLT, and thus the estimates can be shown to be asymptotically normal.

5.7 Asymptotic normality of θ̃

If the missing data mechanism is treated as a random component, then estimating

equations (5.68)–(5.71) represent the sums of independent random variables. The in-

dependence in the distribution of Y is assumed throughout by the “dissociatedness”

assumption, and independence of the missing data process, by MCAR. As was shown

in Section 5.5, the variances of individual terms are finite, and thus the standard CLT

is applicable (see e.g. Theorem 27.1 of Billingsley (1995) or Theorem 8.2 of Borovkov,

Borovkov & Borovkova (1999)).

Alternatively, the missing data patterns can be treated as fixed, and the triangular

array versions of the CLT should be used to show asymptotic normality of the estimating

equations. The estimating equations for β (5.68) are marginally normal, as they only

involve yi as random variables. The estimating equations for the covariance space

parameters, (5.69), (5.70), (5.71), involve the matrix residuals Ri and their traces. The

individual entries of those matrices will have marginal χ2, or gamma, distributions,

scaled appropriately, with all moments being finite. The traces of the matrices involving

Ri will be distributed as a mixture of gammas, and thus will also have finite moments.

Thus Lyapunov’s condition (Theorem 27.3 of Billingsley (1995); Section 8.4 of Borovkov

et al. (1999)) will be satisfied, and the estimating equations will be asymptotically

normal.

Upon having established normality of the estimating equations, one can proceed to

establishing normality of the estimates themselves. As established above in Section 5.6,

the estimating equations do satisfy the regularity conditions outlined in Appendix D.4.

Corollary 2 of that appendix establishes asymptotic normality of the estimates, and

applies here as well.

Alternatively, one can check the regularity conditions in Huber (1967). Condition

(N-1) follows from continuity of Ψ(·). Condition (N-2) is satisfied by the choice of the

corrections that guarantee that the population parameters θ0 solve Eψ(θ0) = 0. Con-

dition (N-4), finiteness of the variances, was established in Section 5.5. The condition

(N-3) will also follow from the fact that Ψ(·) have continuous derivatives, although this

would require a longer explanation.
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Let λmin (θ0) and λmax (θ0) be the smallest and largest eigenvalues of the derivative

matrix −A(θ0) = −DΨ(θ0), and let µmax be the largest eigenvalue of the variance

matrix B = V[Ψ(x, θ0)] (see section 5.5). As discussed on p. 5.6, there does not seem

to be an easy general way of showing it is positive definite. Assuming it is, the following

distances characterize the bounds near θ0:

∃d1 : ∀ d ≤ d1 : ‖E Ψ(x, θ0)‖ ≥
1

2
λmin (θ0)‖θ − θ0‖ (5.132)

∃d2 : ∀ θ, τ ∈ B(θ0, d2) (in the neighborhood of θ0) (5.133)

E
[
‖Ψ(x, θ)−Ψ(x, τ)‖

]
≤ 2λmax (θ0)‖θ − τ‖ (5.134)

∃d3 : ∀ θ, τ ∈ B(θ0, d3) (in the neighborhood of θ0) (5.135)

E
[
‖Ψ(x, θ)−Ψ(x, τ)‖2

]
≤ µmax ‖θ − τ‖ (5.136)

Then choosing d0 = min(d1, d2, d3) guarantees (N-3).

Thus the estimating equations for the approximate EM algorithm given in Sec-

tion 5.3 give asymptotically normal estimates:

√
N(θ̃ − θ0)

d−→ N(0, A−1BAT
−1

) (5.137)

with A derived in Section 5.4, and B, in Section 5.5.

5.8 Numerical illustration

This section is based on a small Monte Carlo study comparing the performance of the

exact maximum likelihood and the approximate EM with corrections. An underlying

process was a Gaussian spatial field on a unit square [0, 1]2 with a linear spatial trend

and an exponential variogram of the spatially correlated regression error:

zit = βxxi + βyyi + β0 + εit, (5.138)

V[εit − εjs] = δtsα
[
δij(1 + κ) + (1− δij) exp(−dij/R)

]
(5.139)

where dij is the Euclidean distance between sites i and j, and the parameters of the

process are given in Table 5.1. 40 locations were randomly selected on that unit square;

see Fig. 5.1. 50 independent draws from the field were taken to represent the time

dimension of the dissociated process. 10% of the generated responses z were set to

missing. 100 Monte Carlo samples were drawn. The population values were used as
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Table 5.1: The simulation results.

βx βy β0 κ α R
Population 2 -1 0 0.2 1 0.5
Maximum likelihood
Mean 1.9900 -0.9886 0.0084 0.2035 0.9874 0.4916
S.d. 0.1253 0.1290 0.1171 0.0784 0.0878 0.0709
Approximate EM with corrections
Mean 1.9885 -0.9905 0.0081 0.1979 0.9957 0.4930
S.d. 0.1298 0.1353 0.1203 0.0879 0.0955 0.0751
Rel. MSE 0.932 0.911 0.949 0.795 0.862 0.897

starting values of the iterative maximization.

The variogram of the process is shown on Fig. 5.2 for one of the sample realizations.

For this particular sample, the sampling fluctuations suggest the estimate of the nugget

to be above its theoretical value, and the range is also moved up to allow the MLE

curve to pass through the data cloud. (As the simulation results showed, the estimates

of the nugget and range are highly correlated, in general.)

The summary statistics are given in Table 5.1. An alternative graphic representa-

tion of the distributions is given in Fig. 5.3, with the solid lines representing the kernel

density estimates of the distribution of MLEs, and dashed lines, those of the approx-

imate EM with corrections. The vertical lines represent the population values of the

corresponding parameters.

The distributions of the parameter estimates are concentrated around the popu-

lation values, with the latter in the 95% confidence intervals for the means of the

simulated distributions. The distributions of the regression parameter estimates are

close to normal; the distributions of the covariance estimates, especially the range and

the scale, are somewhat skewed. The mean squared errors of the ML estimates and

those from the approximate EM with corrections are compared in the last row of Ta-

ble 5.1. The efficiency losses do not exceed 9% for the regression subvector, and are

between 10 and 20% for the spatial covariance parameter estimates.

Table 5.2 addresses correlations between parameter estimates. For each of the esti-

mation methods, the first row shows the highest (in absolute value) correlations among

and between subsets of parameter estimates, and the second row, the lowest correla-

tions. Higher correlations found in part (a) of the Table tend to lead to deteriorated

convergence; more iterations will be required, especially for the linear convergent EM.
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Figure 5.1: Locations of the simulated sites.
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variogram and the MLE.
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Figure 5.3: Simulated distributions of the estimates.
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Table 5.2: Correlations of the parameter estimates.

(a) Between parameter estimates, within an estimation method.

Across β̂’s Across θ̂’s Between β̂ and θ̂
Maximum likelihood (condition number = 76)

high
low

Corr[β̂0, β̂x] = −0.63∗∗

Corr[β̂x, β̂y] = 0.13

Corr[κ̂, α̂] = −0.77∗∗

Corr[α̂, R̂] = −0.16

Corr[β̂0, κ̂] = −0.17∗

Corr[β̂x, κ̂] = 0.01
Approximate EM with corrections (condition number = 73)

high
low

Corr[β̂0, β̂x] = −0.61∗∗

Corr[β̂x, β̂y] = 0.11

Corr[κ̂, α̂] = −0.80∗∗

Corr[α̂, R̂] = −0.22∗
Corr[β̂0, κ̂] = −0.18∗

Corr[β̂x, κ̂] = −0.01
∗∗, significant at 1%; ∗, significant at 10%

(b) Between MLE and approximate EM with corrections estimates.

βx βy β0 κ α R
0.974 0.952 0.960 0.858 0.902 0.934

The estimates and their standard errors are on about the same scale of a unity, so the

higher condition numbers of the covariance matrices are due to correlations between

parameter estimates.

The simulation results demonstrate that only one out of nine cross-correlations be-

tween the regression and covariance subspace parameter estimates have p-values below

10%; none of those cross-correlations is significant after Bonferroni correction (10%/9

= 1.11%). Thus the theoretical argument that the regression and covariance parameter

estimates are asymptotically uncorrelated finds support in these simulation results.

Also, part (b) of Table 5.2 shows that the approximate EM with corrections es-

timates are following the MLEs quite closely. It might have been expected that with

small proportions of missing data the estimates of the approximate EM with corrections

would be close to MLEs, as long as they are based on similar estimating equations with

corrections proportional to the missing data rate ν.

5.9 Discussion

This chapter has reviewed the proposed modification of the EM algorithm with appli-

cation to the dissociated spatio-temporal models. The estimating equations, and thus

estimates themselves, resulting from the approximate EM are biased and inconsistent,
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except for the regression or trend coefficients. The corrections can be derived that

restore consistency of the estimates. Those corrections have different forms for differ-

ent (groups of) parameters. The resulting estimates are shown to be consistent and

asymptotically normal. The asymptotic variances can be computed, either analytically

(as was done here assuming normality), or empirically using the empirical estimate of

the estimating equations covariance matrix.

A numerical demonstration with a small Monte Carlo study provides limited support

of reasonable performance of the suggested estimator. The efficiency losses did not

exceed 20%, and the estimates were found to be close to the MLEs.

The derivations in the chapter can also be used for other types of mixed models,

as well as for structural equations with latent variables. In the latter applications,

however, the corrections will be way more numerous, as each parameter would need

to have its own correction. The estimation algorithms, and especially the secondary

derivations such as variances and derivatives of the estimating equations, will become

quite cumbersome.

The results of this chapter hinge on a number of assumptions. One of them is

normality of the response, or measured quantity. From the perspective of M -estimation

used throughout the chapter, this is just a starting point to derive the fitting function

and estimating equations1. Other fitting functions may have been used as well, but

the attractive feature of the normal likelihood (or quasi-likelihood) is that the spatial

correlations can be built into the variogram specification and the observation variance-

covariance matrix that may not have direct analogues with other forms such as least

absolute deviations.

Another implication of the assumed normality is availability of sufficient statistic

which makes the EM algorithm somewhat easier to implement. Other members of

exponential family can be tried for similar approaches, although the required non-

linear transformations may lead to additional terms in biases of the estimates that

would have to be compensated for.

Another important assumption used in the derivations is the structural form of the

covariance function. The author is not aware of any general tests of the “goodness of

spatial fit” of general applicability. Comparison of different variogram specifications

in empirical research is usually performed through information criteria, as different

models are rarely nested. The derivations in this chapter are general enough to allow

1 Normality can also be used to analytically derive the variance of the estimating equations, but, as
mentioned above, an empirical estimate is likely to perform better under a wider variety of instances.
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for quite arbitrary stationary variogram; on the other hand, as long as the model is

misspecified, and there is no single likelihood evaluated and output as a result of the

estimation procedure, the information criteria will not be applicable.

Finally, an important assumption being made is that of the data missing completely

at random (MCAR). One of the components of this assumption is that the missing data

occasions occur independently, and it is used, at least implicitly, in applying the asymp-

totic arguments (CLT and LLN) in deriving the corrections. If the adjacent monitoring

stations are experiencing similar problems (such as understaffing in a certain part of

the country, or inclement weather preventing from taking accurate measurements, etc.),

then the missing data patterns will have some degree of spatial correlation.

Another component of MCAR assumption is that of constant probability of being

missing that does not depend on any other covariates. This assumption is used to derive

reasonably simple likelihoods, as well as corrections to the estimating equations through

the lemmas of Appendix C. It will be even harder to justify given an observation that

reporting rates, and thus the proportions of missing data, may differ by an order of

magnitude across different monitoring sites. If the assumption of independence of the

missing data at different locations can still be maintained, then the effect of varying

missing data rates will be primarily on the analytical results of Appendix C, where

each location will have to be assigned its own rate νs. The results of the Appendix will

immediately become intractable, although approximations to them using some efficient

missing data rates may still be possible.



Chapter 6

Future work

The research conducted within this dissertation, and in the last chapter, specifically,

can be extended and further developed in a number of ways.

6.1 Separable processes

A spatio-temporal process is called separable if the correlations in time and in space

can be separated from one another. If ∀i, t Zit = µ, then the separability property can

be written down as

Cov[Zit, Zjs] = αCs(i, j)Ct(t, s) (6.1)

where Cs(i, j) is the spatial correlation function between locations i and j, and Ct(t, s)

is the temporal correlation function between times t and s. Those correlation functions

can include the nugget effect as j → i or s → t. The covariance structure of such

process has Kronecker structure, so inverses and differentials are easily available, as

shown in Appendix B. In particular, computing an inverse of NT × NT covariance

matrix only takes O(N3) + O(T 3) operations rather than O(N3T 3) operations for a

same size matrix of an arbitrary structure; a gain of about six orders of magnitude for

N ≈ 100, T ≈ 100, as in Chapter 4.

If some data are missing, however, the covariance matrix loses its convenient compu-

tational structure, and thus the computational costs will soar to O(ν3N3T 3) per matrix

inversion (and each iteration of the numerical maximization algorithm may require sev-

eral such iterations). It is then really worth studying alternative estimation procedures,

and an extension of the approximate EM algorithm of Chapter 5 is a possible alterna-

tive getting us back to very efficient matrix algebra. Indeed, using an unconditional

expectation E[(yit−µit)(yjs−µjs)] = αCs(i, j)Ct(t, s) as an approximation at the E-step
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of the EM algorithm is a very simple rule. However, as was shown in Chapter 5, the

estimates in general are going to be biased. Corrections to the estimating equations in

the spirit of Chapter 5 will still be possible, but due to an increasing complexity of the

problem, they will be more tedious.

In this setting, however, the data will no longer be independent over time, so in

deriving the asymptotic properties of the estimates, stronger results on arrays of random

variables would need to be used. In such derivations, a mixing property of the process

must be satisfied for the estimates to be asymptotically normal1.

By the formal symmetry of the separable process and corresponding Kronecker

product structure with respect to the time and space interchange, similar mixing con-

ditions would have to be satisfied for the spatial process for consistent estimation of the

temporal correlations. This requirement seems to be ruling out non-stationary spatial

processes, and only lends itself to the increasing domain asymptotics of geostatistics2.

Also, additional results on sampling from Kronecker products of matrices extending

the results of Appendix C will be necessary. In essence, Lemma C.4 aims at establishing

the trace of a Kronecker product, and in that respect will serve as the basic tool, just

as Lemma C.1 has been one for the results in Chapter 5.

If all such results can be established, then the corrections to restore unbiasedness

of the estimating equations, and hence consistency of the estimates, can be derived.

The asymptotic properties of the resulting estimates can then be established by using

appropriate versions of CLT for random fields. It should be expected that the trend

parameters can be estimated unbiasedly through a version of weighted least squares,

while the estimates of the covariance space parameters, i.e., spatial and temporal cor-

relations, will have to be obtained through a numeric minimization procedure, where

the objective function will be a combination of the quasi-likelihood implied by the

approximate EM algorithm, and the penalty terms restoring consistency.

1 In the time series context, α-mixing is the following concept. Let

α(k) ≡ sup{| IPr{At ∩Bt+k} − IPr{At} IPr{Bt+k}| : At ∈ F t
−∞, Bt+k ∈ F+∞

t+k } (6.2)

be the mixing coefficient of the time series Yk, where Fb
a is the σ-algebra generated by a process Yk,

a ≤ k < b. If α(k) → 0 as k → ∞, the time series Yk is said to be α-mixing. The mixing property
means that correlations between “parts” of the process decay sufficiently quickly as one moves from
one “part” of the space on which the process is defined to another. See Doukhan (1994).

2 See discussion of increasing domain vs. infill asymptotics in Cressie (1993).
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6.2 Unbiased estimating equations

Even in the simpler case of dissociated processes, because of the difficulties with deriv-

ing an appropriate correction to the likelihood required to estimate the spatial covari-

ance parameters consistently, an entirely different approach can be taken to obtaining

estimating equations that would be unbiased.

Consider the following function of the data that can be called matrix weighted least

squares (MWLS):

Q(θ, β;Y ) =
1

2

N∑
i=1

trWiRiWiR
T
i (6.3)

where the matrix residual Ri was defined in (5.27), and fixed symmetric weight matrix

Wi is left undefined at the moment. Note that

trRRT =
d∑
j=1

d∑
k=1

r2
jk = ‖R‖22,

trWRWRT = ‖WR‖22, (6.4)

due to the symmetry of the covariance residual matrix R.

The estimating equations can be derived from the differential of Q:

dQ =
1

2

N∑
i=1

tr(Wi{dRi}WiR
T
i +WiRiWi{dRi}T ) =

=
N∑
i=1

tr(WiRiWi{dRi}T ) =
N∑
i=1

tr
(
Wi{dRi}WiR

T
i

)
=

=
N∑
i=1

tr
(
Wi

[
2(Y o

i − PiXiβ){− d β}TXTP T
i − Pi{d Σ}P T

i

]
WiRi

)
(6.5)

The estimating equations for β are vector polynomials of third order:

0 =
N∑
i=1

XT
i P

T
i Wi

[
(Y o

i − PiXiβ)(Y o
i − PiXiβ)T − PiΣ(θ)P T

i

]
Wi(Y

o
i − PiXiβ) (6.6)

Explicit solutions would be difficult to derive, but it is easy to establish that the equa-

tions are unbiased if the distribution of Y is symmetric (or at least has zero third
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moment). Weighted least squares estimates, e.g., of the form

β̂ =
(∑

i

XT
i WiXi

)−1(∑
i

XT
i WiYi

)
(6.7)

may be more advantageous, although they require a separate set of routines outside

the framework of minimizing (6.3).

The estimating equations for θ are found from the second term of (6.5):

0 =
N∑
i=1

tr
[
WiPi{d Σ}P T

i WiRi

]
(6.8)

The comparison of (6.8) with the ML estimating equations (5.23) shows that ef-

ficient estimates asymptotically equivalent to the MLE are obtained by setting Wi =

(PiΣ(θ)P T
i )−1. Those estimates are of course infeasible as they involve unknown θ. The

practical alternatives might be:

1. use Wi = (PiΣ(θ̃)Pi)
−1 for some estimate θ̃ obtained previously, either from an

external source, or at the previous iteration of the optimization algorithm. This

would imply higher computational costs, as an inversion of T potentially different

matrices will be required. Note however that as long as the weight matrices

are treated as fixed, they will only have to be inverted only once, and then the

iterative algorithm can proceed by using the stored Wi’s.

2. use Wi = I without much concern for efficiency. This choice of the weighting

matrix may be suitable to obtain the initial consistent estimates of the model

parameters.

3. use Wi = PiΣ(θ)−1P T
i in the hope that it will be “close” to the efficient choice.

Indeed, if Σ is a diagonal matrix, then this choice is identical to the efficient choice,

and it is quite possible that for a spatial field with quickly decaying correlations

this choice will also be practical.

Some combinations of the weighting strategies may be in place, e.g. in a two-stage

procedure: to start with an identity weighting matrix, obtain initial consistent estimates

θ(1), and then plug them in with a more refined weighting matrix of the form 1 or 3.

The estimators of this kind have been proposed in econometrics, where the esti-

mation procedure is known as the generalized method of moments (GMM) (Hansen
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1982, Mátyás 1999, Hall 2005), and quantitative sociology (structural equation mod-

els), where they are known as the asymptotically distribution free (ADF) method

(Browne 1984). Generally, they give consistent estimates, and their asymptotic proper-

ties follow from the general theory ofM -estimates outlined briefly in Appendix D. Their

asymptotic distribution is normal, the variance is given by the information sandwich

formula, and consistent standard errors are feasible. As mentioned above, the optimal

choice of the weighting matrix is possible, and then the estimates are asymptotically

efficient. If maximum likelihood estimates for the same model are available, then the

optimal GMM/ADF estimates are asymptotically equivalent to the MLE estimates.

An additional feature of the GMM models is that they allow to test for overidentifying

restrictions, thus providing a goodness of fit test for the spatial covariance models.



104



105

Appendix A

Useful matrix calculus results

Matrix calculus is concerned with the infinitesimal properties of matrix functions. The

basic book on the subject is Magnus & Neudecker (1999). They introduce the differ-

ential notation (d), show its properties, and argue quite convincingly (Chapter 9) why

this notation is superior to more obvious notation such as ∂U/∂V for matrices U and

V .

Let F : S → IRm×p be a matrix function defined on S ⊂ IRn×q. Let matrix C ∈ intS,

and let U ∈ IRn×q be such that ‖U‖ < r (i.e., U ∈ B(0, r), an open ball of radius r

centered at zero)1, so that C + U ∈ B(C, r) ∈ S. If there exists a real matrix A of size

mp× nq that depends on C, but not on U , such that

vec[F (C + U)] = vec[F (C)] + A(C) vec[U ] + vec[RC(U)] ∀U ∈ B(C, r) (A.2)

and

lim
U→0

RC(U)

‖U‖
= 0 (A.3)

then F is said to be differentiable at C, and m× p matrix dF (C;U) given by

vec[dF (C;U)] = A(C) vec[U ] (A.4)

is the first differential of F at C with an increment U , and mp × nq matrix A(C) is

the (first) derivative of F at C.

1The norm of the matrix is taken to be the natural (spectral) norm

‖X‖ = (trXTX)1/2 (A.1)
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In this notation, the differentials of matrix functions U , V are:

d(U + V ) = dU + dV, (A.5)

d(αU) = α dU, (A.6)

dU
T = (dU)T , (A.7)

d vec[U ] = vec[dU ], (A.8)

d(UV ) = (dU)V + U(dV ), (A.9)

d(AUB) = A(dU)B for constant matrices A,B, (A.10)

d trU = tr dU, (A.11)

d(U ⊗ V ) = (dU)⊗ V + U ⊗ (dV ) (A.12)

where U ⊗ V is Kronecker product (see Appendix B).

If additionally U is a non-degenerate square matrix, |U | 6= 0, then

d |U | = |U | tr[U−1
dU ], (A.13)

d ln |U | = tr[U−1
dU ], (A.14)

dU
−1 = −U−1(dU)U−1. (A.15)

Mild regularity conditions (i.e., differentiability and invertibility in a neighborhood

of U) that ensure existence of the differential are required for (A.13)–(A.15).
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Appendix B

Kronecker products

Let A and B be two matrices of dimensionsm×n and p×q, respectively. The Kronecker

product of two matrices is a matrix of dimension mp× nq defined as

A⊗B =


a11B a12B . . . a1nB

...
...

. . .
...

an1B an2B . . . amnB

 (B.1)

The justification for the term “product” comes from the distributive property of

Kronecker product:

A⊗B ⊗ C = (A⊗B)⊗ C = A⊗ (B ⊗ C), (B.2)

(A+B)⊗ (C +D) = A⊗ C + A⊗D +B ⊗ C +B ⊗D, (B.3)

(A⊗B)(C ⊗D) = (AC)⊗ (BD) (B.4)

whenever the terms in the above expressions are properly defined.

Other useful properties of Kronecker product:

(A⊗B)T = AT ⊗BT , (B.5)

tr(A⊗B) = (trA)(trB), (B.6)

tr(AB) tr(CD) = tr(AB ⊗ CD) = tr
[
(A⊗ C)(B ⊗D)

]
, (B.7)

(A⊗B)−1 = A−1 ⊗B−1, (B.8)

A is m×m,B is p× p⇒ |A⊗B| = |A|p|B|m, (B.9)

A =

(
A11 A12

A21 A22

)
⇒ A⊗B = A =

(
A11 ⊗B A12 ⊗B
A21 ⊗B A22 ⊗B

)
(B.10)

aT ⊗ b = abT = b⊗ aT for vectors a, b (B.11)

whenever the appropriate matrices are defined properly.
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Appendix C

Quadratic forms with missing data

Several results in Chapters 5 hinge on the expressions of the form tr[PAP TPBP T ]

for some matrices A and B of size d, and the incidence matrices P of dimensions

do × d (see definition on page 60). Let us study the properties of this expression,

in particular, its expectation over the missing data process. The matrices A and B

would be related to the covariance matrices or the outer products of the observed

data vectors. Thus the missing data mechanism works on those matrices by deleting

matching rows and columns of the matrices. This is the setting of Hájek’s binomial

sampling scheme (Hájek 1960, Pathak 1988) where a finite population of size N is

sampled at a predetermined rate p, with the number of individuals sampled being itself

a random variable with distribution Bin(N, p). We shall denote the expectation over

this sampling scheme as Es.

Lemma C.1. If A and B are d× d-matrices, and P is an incidence matrix consisting

of (an ordered) binomial random sample without replacement of rows of Id, then

Es tr(PAP TPBP T ) = (1− ν) tr
{
A[(1− ν)B + ν diagB]

}
(C.1)

Proof. Note first that PAP T is a random (with respect to the missing data process)

minor of A, and PBP T is a random minor of B. Then

tr(PAP TPBP T ) =
∑
k∈si

∑
j∈si

ajkbjk (C.2)

where si is the sample of indices (sites) available in i-th observation. The probability

of sampling a given site is 1− ν, and each j, k combination is sampled/observed with

probability (1−ν)2 by the independence assumption as a part of MCAR. The diagonal

elements are sampled at the rate 1− ν, and the off-diagonal ones, at the rate (1− ν)2.

Hence the expected value of (C.2) with respect to the missing data, or the process of
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sampling the rows of Id (random indices j, k ∈ si), is

ES tr(PAP TPBP T ) = ES

∑
k∈si

∑
j∈si

ajkbjk =

=(1− ν)
d∑

k=1

ajjbjj + (1− ν)2
∑

1≤j 6=k≤d

ajkbjk =

=(1− ν)2

d∑
k=1

d∑
j=1

ajkbjk + ν(1− ν)
d∑

k=1

akkbkk =

=(1− ν)2 tr(AB) + ν(1− ν) tr(A�B) =

=(1− ν) tr
{
A[(1− ν)B + ν diagB]

}
= (1− ν) tr

{
A[B − ν(B − diagB)]

}
(C.3)

where the expectation Es is taken over all possible samples si, � denotes Hadamard

product (the entry-by-entry product of two matrices), and diagB = B � I is the

diagonal part of the matrix (not a vector of the diagonal elements, but a matrix with

the same diagonal as B, and zero off-diagonal elements).

Corollary C.2. If B is a diagonal matrix, then

Es tr(PAP TPBP T ) = (1− ν) trAB (C.4)

In particular, setting B = I, one obtains

Es tr(PAP T ) = Es tr(PAP TPIP T ) = (1− ν) trA (C.5)

Alternatively, by substituting diagB = 0, one obtains

Corollary C.3. If B has zeros on the diagonal, then

Es tr(PAP TPBP T ) = (1− ν)2 trAB (C.6)

The derivations in Section 5.5 require computation of expectations of a cross-

product involving different points in time (different incidence matrices Pi and Pj)

Es tr(PiAP
T
i PiBP

T
i ) tr(PjCP

T
j PjDP

T
j ) which will be dealt with in the following lemma.

Lemma C.4. If A, B, C, D are d× d matrices, and Pi and Pj are random incidence

matrices, then
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Es tr(PiAP
T
i PiBP

T
i ) tr(PjCP

T
j PjDP

T
j ) =

= Es tr(PiAP
T
i PiBP

T
i ) Es tr(PjCP

T
j PjDP

T
j ) + δij(1− ν)2∆(ν;A,B,C,D), (C.7)

∆(ν;A,B,C,D) =

=
ν

1− ν
2∑

j

ajjbjjcjjdjj + ν(2− ν)
(∑
j 6=k

ajkbjkcjkdjk +
∑
j 6=k

ajkbjkckjdkj

)
+

+ (1− ν)2ν
(∑
j 6=m

ajjbjjcjmdjm +
∑
j 6=l

ajjbjjcljdlj +
∑
j 6=k

ajkbjkcjjdjj+

+
∑
j 6=k

ajkbjkckkdkk

)
+ (1− ν)3ν

( ∑
j 6=k 6=m

ajkbjkcjmdjm +
∑
j 6=k 6=l

ajkbjkcljdlj+

+
∑

j 6=k 6=m

ajkbjkckmdkm +
∑
j 6=k 6=l

ajkbjkclkdlk

)
(C.8)

where δij is Kronecker’s delta.

Proof. For different points in time, the locations sampled are independent, and so are

stochastic matrices Pi and Pj. Thus the expectation in LHS of (C.7) is a product of

two expectations of the form given by (C.3). For the same points in time, the product

of traces becomes

tr(PiAP
T
i PiBP

T
i ) tr(PiCP

T
i PiDP

T
i ) =

∑
k∈si

∑
j∈si

∑
l∈si

∑
m∈si

ajkbjkclmdlm (C.9)

The generic term of this expression is sampled at a rate (1 − ν)4. However, some of

the terms in this expression will be sampled at a rate higher than others. When two

indices coincide, the rate becomes (1− ν)3; when three indices coincide, it is (1− ν)2;

and when all four indices coincide (the diagonals of all four matrices), the rate is 1− ν.
The breakdown of the rates and indices is given in Table C.1.

Let us compare (C.9) to a “regular” situation when the two traces are independent.

There will be some extra terms in that expression due to the differences in sampling

rates, as the assumption of independence understates how often a particular combina-

tion may appear in the expectation. See columns 2 and 4 of Table C.1. Then
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Table C.1: Sampling probabilities for Lemma C.4.

Relation Correct Regular Prob under
of indices Prob case independence

j = k = l = m 1− ν (1− ν)2

j = k 6= l = m (1− ν)2 * (1− ν)2

j = l 6= k = m (1− ν)2 (1− ν)4

j = m 6= k = l (1− ν)2 (1− ν)4

j = k = l 6= m (1− ν)2 (1− ν)3

j = k = m 6= l (1− ν)2 (1− ν)3

j = l = m 6= k (1− ν)2 (1− ν)3

k = l = m 6= j (1− ν)2 (1− ν)3

j = k 6= l, 6= m, l 6= m (1− ν)3 * (1− ν)3

j = l 6= k, 6= m, k 6= m (1− ν)3 (1− ν)4

j = m 6= k, 6= l, k 6= l (1− ν)3 (1− ν)4

k = l 6= j, 6= m, j 6= m (1− ν)3 (1− ν)4

k = m 6= j, 6= l, j 6= l (1− ν)3 (1− ν)4

l = m 6= j, 6= k, k 6= j (1− ν)3 * (1− ν)3

j 6= k 6= l 6= m (1− ν)4 * (1− ν)4

Es[tr(PiAP
T
i PiBP

T
i ) tr(PiCP

T
i PiDP

T
i )]−

− Es[tr(PiAP
T
i PiBP

T
i )] Es[tr(PiCP

T
i PiDP

T
i )] =

= (1− ν)ν
∑
j

ajjbjjcjjdjj + (1− ν)2ν(2− ν)
(∑
j 6=k

ajkbjkcjkdjk +
∑
j 6=k

ajkbjkckjdkj

)
+

+ (1− ν)2ν
(∑
j 6=m

ajjbjjcjmdjm +
∑
j 6=l

ajjbjjcljdlj +
∑
j 6=k

ajkbjkcjjdjj+

+
∑
j 6=k

ajkbjkckkdkk

)
+ (1− ν)3ν

( ∑
j 6=k 6=m

ajkbjkcjmdjm +
∑
j 6=k 6=l

ajkbjkcljdlj+

+
∑

j 6=k 6=m

ajkbjkckmdkm +
∑
j 6=k 6=l

ajkbjkclkdlk

)
≡ (1− ν)2∆(ν;A,B,C,D) (C.10)

This excess part can be interpreted as extra variance due to random sampling of sites

under MCAR process; it has the same stochastic structure as V[y] = E[y2]− (E[y])2 for

a numeric random variable y. The normalization (1− ν)2 is taken to make the results

easier to conform with other terms in the expectations in Section 5.5.
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From now on, matrices A, B, C and D will be assumed symmetric, as will be our

case with the covariance matrices and their derivatives. Then equation (C.10) can be

simplified:

∆(ν;A,B,C,D) =
ν

1− ν
∑
j

ajjbjjcjjdjj + 2ν
[
(2− ν)

∑
j 6=k

ajkbjkcjkdjk+

+
∑
j 6=m

ajjbjjcjmdjm +
∑
j 6=k

ajkbjkcjjdjj+

+(1− ν)
∑

j 6=k 6=m

ajkbjkcjmdjm + (1− ν)
∑
j 6=k 6=l

ajkbjkclkdlk

]
(C.11)

Appropriately, if there is no missing data (ν = 0), then ∆(0; ·) = 0, so there are no

variance components associated with the missing data stochastic component.

Some special cases will be of interest.

• If say D is a diagonal matrix, then

∆(ν;A,B,C,D) =
ν

1− ν

[∑
j

ajjbjjcjjdjj + 2(1− ν)
∑
j 6=k

ajkbjkcjjdjj

]
(C.12)

• If A = C = AT and B = D = BT , then

∆(ν;A,B,A,B) =
ν

1− ν
∑
j

a2
jjb

2
jj + 2ν

[
(2− ν)

∑
j 6=k

a2
jkb

2
jk+

+2
∑
j 6=m

ajjbjjajmbjm + 2(1− ν)
∑

j 6=k 6=m

ajkbjkajmbjm

]
(C.13)

In Section 5.5, we shall be dealing with the expressions of the form ∆(ν;A,Rc
i , B,R

c
i )

and their expectations, where A and B are symmetric matrices, and Rc
i is the matrix

residual (5.112).

Lemma C.5. If A and B are symmetric matrices, and cjk is the (j, k)-th entry of the
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matrix of spatial correlations C(θ),

EY ∆(ν;A,Rc
i , B,R

c
i ) =

ν

1− ν
∑
j

4ajjbjjα
2(1 + κ)2+

+2ν
{

(2− ν)
∑
j 6=k

ajkbjkα
2
(
c2jk + (1 + κ)2

)
+
∑
j 6=k

2(ajjbjk + ajkbjj)cjkα
2(1 + κ)+

+(1− ν)
∑
j 6=k

ajk
∑

j 6=l,k 6=l

(bjl + blk)α
2
[
cjkcjl + (1 + κ)ckl

]}
(C.14)

Proof. Note first that

∆(ν;A,Rc
i , B,R

c
i ) =

ν

1− ν
∑
j

ajjr
c
jjbjjr

c
jj + 2ν

[
(2− ν)

∑
j 6=k

ajkr
c
jkbjkr

c
jk+

+
∑
j 6=m

ajjr
c
jjbjmr

c
jm +

∑
j 6=k

ajkr
c
jkbjjr

c
jj+

+(1− ν)
∑

j 6=k 6=m

ajkr
c
jkbjmr

c
jm + (1− ν)

∑
j 6=k 6=l

ajkr
c
jkblkr

c
lk

]
, (C.15)

EY ∆(ν;A,Rc
i , B,R

c
i ) =

ν

1− ν
∑
j

4ajjbjjα
2(1 + κ)2 + 2ν

[
(2− ν)

∑
j 6=k

ajkbjk(µjkjk − α2c2jk)+

+
∑
j 6=m

ajjbjm(µjjjm − α2(1 + κ)cjm) +
∑
j 6=k

ajkbjj(µjkjj − α2(1 + κ)cjk)+

+(1− ν)
∑

j 6=k 6=m

ajkbjm(µjkjm − α2cjmcjk) + (1− ν)
∑
j 6=k 6=l

ajkblk(µjklk − α2cjkclk)
]
,

(C.16)

where cjk is (j, k) entry of the matrix of spatial correlations C(ϕ), see (5.29), and

µijkl is the (centered) fourth moment of data, see (5.114). Note also that αcjk =

α(1 + κ)− γ(‖sj − sk‖) where γ(·) is the semivariogram of the spatial field.

Consider further a decomposition of the random field at location sk to a part asso-

ciated with the value at location sj, and an idiosyncratic part:

yk − µk = ρjk(yj − µj) + uk|j, Euk|jyj = 0, (C.17)

where ρjk is the correlation between two observations,

ρjk = cjk/(1 + κ) (C.18)
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Then

µjjjk = E(yj − µj)3(yk − µk) = E ρjk(yj − µj)4 = 3cjkα
2(1 + κ), (C.19)

µjjkk = E(yj − µj)2(yk − µk)2 = E ρ2
jk(yj − µj)4 + E(yj − µj)2u2

k|j =

= 3c2jkα
2 + α2(1 + κ)2(1− ρ2

jk) = α2
(
2c2jk + (1 + κ)2

)
(C.20)

and any permutation of the subindices gives the same answer. Further, if the location

sm is next considered with

ym − µm = ρjm(yj − µj) + γkm|juk|j + vm|kj (C.21)

where vm|kj is the part of ym uncorrelated with either yj and yk, then

γkm|j =
ρkm − ρjkρjm

1− ρ2
jk

, (C.22)

µjjkm = E(yj − µj)2(yk − µk)(ym − µm) =

= E ρkjρmj(yj − µj)4 + E γkm|j(yj − µj)2u2
k|j =

= α2(1 + κ)2
[
3ρjkρjm + ρkm − ρjkρjm

]
= α2(1 + κ)2

[
2ρjkρjm + ρkm

]
=

= α2
[
2cjkcjm + (1 + κ)ckm

]
(C.23)

Grouping the results together, and using appropriate symmetry arguments (the value

of µjklm is insensitive to the permutation of indices, ajk = akj, bjk = bkj), one obtains

(C.14).

In Section 5.5, it will be necessary that ∆(·) is finite. It is however clear that

|∆(ν;A,B,C,D)| ≤ ν

1− ν
∑
i,j=1,d

|aij|
∑
i,j=1,d

|bij|
∑
i,j=1,d

|cij|
∑
i,j=1,d

|dij| (C.24)

Likewise, as each entry of the fourth order moment matrix K is bounded by EY [(yi −
µi)

4] = α2(1 + κ)2, EY ∆(ν;A,Rc
i , B,R

c
i ) will also be finite.
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Appendix D

Consistency and asymptotic

normality of M-estimates

This appendix summarizes some results on asymptotic behavior of the estimates defined

by a set of estimating equations.

D.1 Notation

The results in this Appendix apply to an i.i.d. sample:

X1, . . . , Xn ∼ i.i.d. F (x, η), η ∈ Rk, x ∈ Rm (D.1)

and functionals of the distribution

Eψj(x, θ) = 0, j = 1, . . . , p (D.2)

where the expectation may mean the expectation either with respect to the theoretical

distribution

Eη g(x) =

∫
g(x)dF (x) (D.3)

or with respect to the sampling distribution

En g(x) =
1

n

n∑
i=1

g(Xi) (D.4)

The equations define a p-dimensional parameter of a statistical model: θ ∈ Θ ⊂ IRp.

An estimator θ̂ is obtained as a solution to

En ψj(x, θn) = 0 (D.5)

(or an approximate solution if the exact solution is not feasible).
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The population solution will be denoted θ0:

Eη ψj(x, θ0) = 0 (D.6)

D.2 Consistency conditions

The consistency property can be viewed in global or local sense. Most consistency

conditions are local, i.e., about the estimators that converge stochastically to a neigh-

borhood of the “true parameter” θ0. The global consistency would require the zero

point of ψj(·) to be well separated, i.e., there are no other points θα (including infinity)

s.t. lim
θ→θα

Eη ψj(θ, x) = 0.

van der Vaart (1998)

van der Vaart (1998) gives a description of dual estimating problem of either maximizing

a criterion

Mn(x, θ) =
1

n

∑
i

m(Xi, θ) vs. M(θ) = Eηm(x, θ) (D.7)

or solving a system of estimating equations (D.2). He also introduces a concept of near

maximization:

Mn(θ̂n) ≥ sup
θ
Mn(θ)− op(1) (D.8)

and notes that solving for a zero of a set of estimating equations is related to maximizing

the (GMM-type) criterion

−‖En ψj(θ, x)‖ → max
θ

(D.9)

Theorem 5.9: Let Ψn be random vector-valued functions, Ψ be a fixed vector-

valued function of θ s.t. θ0 is the solution of

Ψ(θ0) = 0 (D.10)

If

sup
θ∈Θ
‖Ψn(θ)−Ψ(θ)‖ p−→ 0, (D.11)

and for every ε > 0

inf
θ:‖θ−θ0‖≥ε

‖Ψ(θ)‖ > 0 (D.12)
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Then

∀ sequence θ̂n : Ψn(θ̂n) = op(1)⇒ θ̂n
p−→ θ0 (D.13)

van der Vaart (1998) discusses some sufficient conditions for Theorem 5.9.

Θ is compact,Ψ ∈ C(Θ), θ0 is a unique max⇒ (D.12), (D.14)

∀x ∈ IRm ψj(θ, x) ∈ C(Θ, x) and

∃ integrable g(x) : ∀ θ ∈ Θ |ψj(θ, x)| ≤ g(x)⇒

⇒ En ψj(x, θ) are Glivenko-Cantelli⇒ (D.11) (D.15)

His next result is to show how the conditions can be relaxed.

Lemma 5.10: Let Θ ⊂ IR, Ψn be random functions, and Ψ, a fixed function, of θ.

∀ θ Ψn(θ)
p−→ Ψ(θ) (D.16)

∀ω ∈ Ω Ψn(θ) ∈ C(Θ), (D.17)

∀ω ∈ Ω ∃! θ̂n : Ψn(θ̂n) = 0 or Ψn(·) is non-decreasing with Ψn(θ̂n) = op(1), (D.18)

∃ θ0 : ∀ ε > 0 Ψ(θ0 − ε) < 0 < Ψ(θ0 + ε) (D.19)

Then

θ̂n
p−→ θ0

van der Vaart (1998) finalizes discussion of consistency conditions with Wald’s con-

sistency proof that involves upper-semicontinuity and boundedness from above of the

objective function M(x, θ), and finiteness of the objective function at the maximum θ0.

Huber (1967)

Huber (1967) is a classic paper that establishes consistency and normality of the M -

estimates, and introduces the sandwich formula for the asymptotic variance of M -

estimates (see next section).

The following are the conditions under which Huber (1967) establishes consistency.

The set of plausible parameter values Θ is assumed to be locally compact with a

countable base, 〈X-,U, P 〉 is the probability space. He considers the behavior of the
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sequence of estimators θn : X- n → Θ s.t.

1

n

n∑
i=1

Ψ(Xi, θn)→ 0 (D.20)

either a.s. or in probability.

(B-1) ∀ θ, Ψ(x, θ) is U-measurable, and Ψ(x, θ) is separable1

(B-2) The function Ψ is a.s. continuous in θ:

lim
θ′→θ
‖Ψ(x, θ′)−Ψ(x, θ)‖ = 0 a.s. (D.21)

(B-2′) As the neighborhood U(θ) shrinks to {θ},

E
(
sup
θ′∈U
‖Ψ(x, θ′)−Ψ(x, θ)‖

)
→ 0 (D.22)

(B-3) λ(θ) = E Ψ(x, θ) exists ∀ θ ∈ Θ; ∃! θ0 : λ(θ0) = 0

(B-4) ∃ b0, b(θ) ∈ C(Θ) : b(θ) ≥ b0 > 0:

sup
θ

‖Ψ(x, θ)‖
b(θ)

is integrable

lim inf
θ→∞

‖λ(θ)‖
b(θ)

≥ 1,

E
[
lim sup
θ→∞

‖Ψ(x, θ)− λ(θ)‖
b(θ)

]
< 1

Lemma 2 of Huber (1967): (B-1), (B-4) and (D.20) =⇒ there is a compact set C ⊂
Θ: any sequence θn a.s. ultimately stays in C (i.e., IPr{∃n0 : ∀n > n0, θn ∈ C} = 1).

Theorem 2 of Huber (1967): (B-1), (B-2′), (B-3); θn satisfies (D.20) and conclusion

of Lemma 2 of Huber (1967) =⇒ θn → θ0 a.s. and in probability.

1 ∃ a null set N ⊂ X- : P (N) = 0, countable Θ′ ⊂ Θ s.t. for every open set U ⊂ Θ and for every
closed interval A, the sets {x|ψj(x, θ) ∈ A,∀ θ ∈ U} and {x|ψj(x, θ) ∈ A,∀ θ ∈ U ∩ Θ′} differ by at
most a subset of N .
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D.3 Asymptotic normality

The question of asymptotic distribution of the estimates coming from a set of estimat-

ing equations is the next one to address once consistency of the estimators has been

established. Versions of the central limit theorem are usually applicable that demon-

strate asymptotic normality of the estimators. As with the proofs of consistency, the

major part of showing the asymptotic normality in each particular situation is to verify

the regularity conditions.

van der Vaart (1998)

van der Vaart (1998) gives the following heuristic argument which is a generic proof of

the asymptotic normality based on a Taylor series expansion around θ0:

0 = En Ψ(θ̂n, X) = En Ψ(θ0, X) + EnDΨ(θ0, X)(θ̂n − θ0)+

+
1

2

[
Ip ⊗ (θ̂n − θ0)

]T [
EnD

2Ψ(θ̃n, X)
]
(θ̂n − θ0) (D.23)

for some θ̃n between θ0 and θ̂n, where DΨ(·) is the matrix of derivatives of Ψ(·) with

respect to θ, and D2Ψ(·) is a stacked matrix of second order derivatives of Ψ(·):

D2Ψ(θ,X) =


D2ψ1(θ,X)

...

D2ψp(θ,X)

 , D2ψj(θ,X) =


∂2ψ1

∂θ1∂θ1

∂ψ1

∂θ1∂θ2
. . . ∂ψ1

∂θ1∂θp

...
...

. . .
...

∂2ψ1

∂θp∂θ1

∂ψ1

∂θp∂θ2
. . . ∂ψ1

∂θp∂θp

 (D.24)

Then

√
n(θ̂n − θ0) =

= −
(
EnDΨ(θ0, X) +

1

2

[
Ip ⊗ (θ̂n − θ0)

T
][

EnD
2Ψ(θ̃n, X)

])−1√
nEn Ψ(θ0, X) (D.25)

The last term is asymptotically normal, as it is a sum of i.i.d. random vectors, provided

Eη Ψ(θ0, X)Ψ(θ0, X)T is finite, so the CLT holds for this sum. The first term of the

multiplying matrix is an average, and thus by the law of large numbers converges to

EηDΨ(θ0, X). The second term in the multiplying matrix is a product of oP (1) and

OP (1), and is negligible. The resulting matrix must be non-singular, or, in other words,

the estimates must be functionally independent. If all those conditions are satisfied,
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the whole expression is asymptotically normal:

√
n(θ̂n − θ0)

d−→ N
(
0, A−1B(AT )−1

)
,

A = EηDΨ(θ0, X), B = Eη Ψ(θ0, X)Ψ(θ0, X)T (D.26)

For the correctly specified maximum likelihood estimates, −A = B = I, the Fisher

information matrix.

van der Vaart (1998) further presents several theorems that dwell on different reg-

ularity conditions needed to prove asymptotic normality. The next one is the best

applicable to the general M -estimates.

Theorem 5.21. For each θ ∈ U ⊂ E, a Euclidean space, let x 7→ ψ(x, θ) be a

measurable vector-valued function s.t. ∀ θ1, θ2 in a neighborhood of θ0 and a measurable

function ψ̇ with E ψ̇2 <∞,

‖ψ(x, θ1)− ψ(x, θ2)‖ ≤ ψ̇(x)‖θ1 − θ2‖. (D.27)

Assume that E ‖ψ(x, θ0)‖2 <∞ and that the map θ 7→ Eψ(x, θ) is differentiable at θ0

with non-singular derivative matrix Vθ0 . If En[ψ(x, θ̂n)] = oP (n−1/2), and θ̂n
p−→ θ0,

then
√
n(θ̂n − θ0) = −V −1

θ0

1√
n

n∑
i=1

ψ(Xi, θ0) + oP (1) (D.28)

In particular, the sequence
√
n(θ̂n − θ0) is asymptotically normal with mean zero and

covariance matrix V −1
θ0

(
E[ψ(x, θ0)ψ(x, θ0)

T ]
)
V −1T
θ0

.

For continuously differentiable functions ψ(·), a natural candidate for the dominat-

ing function ψ̇ is supθ∈U(θ0) ∂ψ/∂θ taken over a neighborhood of θ0.

Huber (1967)

Upon discussing (ways to establish) consistency of an M -estimator, Huber (1967) con-

tinues to give the conditions under which the estimator will be asymptotically normal.

Those are the assumptions he uses:

Set up:

Θ ⊂ IRm, 〈X-,U, P 〉 is probability space, ψ : X-×Θ→ IRm

λ(θ) = E[ψ(x, θ)], u(x, θ, d) = sup
‖τ−θ‖≤d

‖ψ(x, τ)− ψ(x, θ)‖ (D.29)
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Near zero of an estimator Tn = Tn(x1, . . . , xn):

1√
n

n∑
i=1

ψ(xi, Tn)
p−→ 0 (D.30)

(N-1) ∀ θ ∈ Θ, ψ(x, θ) is U-measurable, and ψ(x, θ) is separable (see Assumption (A-1)

earlier)

(N-2) ∃ θ0 ∈ Θ : λ(θ0) = 0

(N-3) ∃ a > 0, b > 0, c > 0, d0 > 0:

1. ∀θ : ‖θ − θ0‖ ≤ d0 ⇒ ‖λ(θ)‖ ≥ a‖θ − θ0‖

2. ∀θ : ‖θ − θ0‖+ d ≤ d0, d ≥ 0⇒ Eu(x, θ, d) ≤ bd

3. ∀θ : ‖θ − θ0‖+ d ≤ d0, d ≥ 0⇒ E[u(x, θ, d)2] ≤ cd

(N-4) E[‖ψ(x, θ0)‖2] <∞

Here, ‖ · ‖ is any norm equivalent to Euclidean norm. He then shows the following

results:

Lemma 3: Assumptions (N-1), (N-2) and (N-3) imply that

sup
|τ−θ|≤d0

∥∥∥∑n
i=1

[
ψ(xi, τ)− ψ(xi, θ)− λ(τ) + λ(θ)

]∥∥∥
√
n+ n‖λ(τ)‖

p−→ 0 as n→∞ (D.31)

Theorem 3: Assume that (N-1) to (N-4) hold and that Tn satisfies (D.30). If

IPr{|Tn − θ0| ≤ d0} → 1, then

1√
n

n∑
i=1

ψ(x, θ0) +
√
nλ(Tn)

p−→ 0 (D.32)

Corollary: Under the conditions of Theorem 3 of Huber (1967), assume that λ has

a non-singular derivative A at θ0, so that ‖λ(θ)−λ(θ0)−A(θ−θ0)‖ = o(‖θ−θ0‖). Then
√
n(Tn − θ0) is asymptotically normal with mean 0 and covariance matrix A−1BAT

−1
,

where B = Cov[ψ(x, θ0)].

D.4 A proof of consistency

This subsection is based on Smith (2005).
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Suppose θ is a p-dimensional parameter and {ψn,j, j = 1, ..., p} are a family of p

estimating functions for sample size n, such that the estimator θ̂n is defined as the

solution of

ψn,j(θ̂n) = 0, j = 1, ..., p. (D.33)

We also write Ψn for the p-dimensional vector function whose individual coordinates

are ψn,j, j = 1, ..., p.

Let θ0 be the true value of θ and suppose there is an open neighborhood of θ0,

denoted N , and a constant β > 0 such that:

ψn,j(θ0) = op(n
−β), j = 1, ..., p, n→∞, (D.34)

hn,j,k(θ) =
∂ψn,j(θ)

∂θk
→ hj,k(θ), j, k = 1, ..., p, n→∞, (D.35)

where the convergence in (D.35) is in probability, uniformly over θ ∈ N .

We also assume that the matrix H = {hj,k} is negative definite in the sense that

uTHu < 0 whenever u 6= 0; note, however, that we do not assume H is symmetric. It’s

not clear whether this distinction is important, but the case of asymmetric H could

arise in cases where the equation Ψn(θ) = 0 does not arise from the minimization of

some function of θ.

The canonical example is when ψn,1, ..., ψn,p are 1
n

times the first-order derivatives

of the negative log likelihood; in that case, (D.34) holds for any β < 1
2
, and (D.35) with

H the Fisher information matrix. However, for a wide class of estimating equations

that are unbiased (in the sense that E{ψn,j(θ0)} = 0) we can expect (D.34) to hold for

β < 1
2

by the CLT, and (D.35) by the LLN.

Let α ∈ (0, β) and define Bn = {θ : ||θ − θ0|| ≤ n−α} where || · || is the L2 norm.

Then we claim:

Proposition 1. With probability tending to 1 as n → ∞, there exists a solution θ̂n

of the equations Ψn(θ̂n) = 0, such that θ̂n ∈ Bn.

Proof. The proof relies on Brouwer’s fixed point theorem: if B is a ball in p-space

and f : B → B is continuous, then f has a fixed point, i.e. there exists x ∈ B such

that f(x) = x.

The idea of the proof is to show there is a t > 0 such that, with probability tending

to 1 as n→∞, the function fn(θ) = θ − tΨn(θ) maps Bn to itself. If this is true then,
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by Brouwer’s fixed point theorem, there must then exist a θ̂n ∈ B (with probability

tending to 1) such that Ψn(θ̂n) = 0, proving the desired result.

We use the approximation Ψn(θ) ≈ Ψn(θ)−Ψn(θ0) ≈ H(θ− θ0), and we first prove

a preliminary result about the matrix H. Assume ‖u‖ = 1 and consider

‖(I + tH)u‖ − ‖u‖ = 2tuTHu+ t2uTHTHu. (D.36)

For any given u we have uTHu < 0, so there exists some positive t depending on u,

call it t(u), that minimizes the value of (D.36). But t(u) is a continuous function of u,

defined on the compact set ‖u‖ = 1, so the minimum of t(u) is also positive. It then

follows that for this choice of t, there exists δ < 1 such that ‖(I − tH)u‖ ≤ δ‖u‖ for all

u such that ‖u‖ = 1, and hence by scaling, for all u. Henceforth, this is the value of t

we use to define the function fn.

For a given θn such that ‖θn−θ0‖ < n−α, we write Ψn(θn) = Ψn(θ0)+Hn(θ
∗
n)(θn−θ0)

where Hn(θ) is the matrix with entries hn,j,k(θ) and θ∗n is some value of θ between θ0

and θn. Now write

fn(θn)− θ0 = θn − θ0 − tΨn(θn)

= (I − tH)(θn − θ0)− t(Hn(θ
∗
n)−H)(θn − θ0)− tΨn(θ0).

Let En be the event |t|‖Hn(θ
∗
n)−H‖ ≤ 1−δ

3
and let Fn be the event |tΨn(θ0| ≤ 1−δ

3
n−α.

Both En and Fn have probability tending to 1 as n→∞ and on En ∩ Fn,

|fn(θn)− θ0| ≤ ‖(I − tH)(θn − θ0)‖+ |t|‖(Hn(θ
∗
n)−H)(θn − θ0)‖+ |tΨn(θ0)|

≤ δn−α +
1− δ

3
n−α +

1− δ
3

n−α

=
2 + δ

3
n−α

< n−α.

Therefore, fn(θn) ∈ Bn, with probability tending to 1, which is what we were trying to

prove.

Corollary 1. With probability tending to 1, the solution θ̂n is unique. (In other

words, there is only one solution with the ball Bn. The result says nothing about the

possibility of multiple solutions outside Bn.)
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Proof. Let infu: ‖u‖=1(−uTHu) = η > 0. Let Gn be the following event:

inf
u: ‖u‖=1

inf
θ∈Bn

(−uTHn(θ)u) >
η

2

Because of (D.35), Pr{Gn} → 1. On Gn, if Hn(θ)u = 0 for any θ ∈ Bn, we must have

u = 0.

Suppose θ̂n ∈ Bn and θ̃n ∈ Bn are two solutions of Ψn(θ) = 0. Then 0 = Ψn(θ̂n)−
Ψn(θ̃n) = Hn(θ

∗
n)(θ̂n − θ̃n) for some θ∗n ∈ Bn. On Gn, this implies θ̂n − θ̃n = 0. The

result follows.

Corollary 2. Suppose we strengthen (D.34) to

√
nΨn(θ0)

d−→ N [0, J ] (D.37)

for some matrix J . Then

√
n(θ̂n − θ0)

d−→ N [0, H−1JH−T ]. (D.38)

Proof. The previous approximations imply that θ̂n − θ0 = −H−1Ψn(θ0)(1 + op(1)).

The result is immediate from this.
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