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1 INTRODUCTION

As �nancial trading systems have become more sophisticated, there has been increased
awareness of the dangers of very large losses. This awareness has been heightened by a
number of highly publicised catastrophic incidents |

� Barings. In February 1995, the Singapore subsidiary of this long-established British

bank lost about $1.3 billion because of the illegal activity of a single trader, Nick Leeson.

As a result the bank collapsed, and was subsequently sold for one pound.

� Orange County. Bob Citron, the Treasurer of Orange County, had invested much
of the county's assets in a series of derivative instruments tied to interest rates. In 1994,
interest rates rose, and Orange County went bankrupt, losing $1.7 billion.

� Daiwa Bank. A single trader, Toshihide Iguchi, lost $1.1 billion of the bank's money
over a period of 11 years, the losses only coming to light when Iguchi confessed to his
managers in July 1995.

� Long Term Capital Management. In the most spectacular example to date, this
highly-regarded hedge fund nearly collaped in September 1998. LTCM was trading a
complex mixture of derivatives which, according to some estimates, gave it an exposure to
market risk as high as $200 billion. Things started to go wrong after the collapse of the
Russian economy in the summer of 1998, and to avoid a total collapse of the company, 15
major banks contributed to a $3.75 billion rescue package.

These and other examples have increased awareness of the need to quantify probabil-

ities of large losses, and for risk management systems to control such events. The most
widely used tool is Value at Risk (henceforth, VaR). Originally started as an internal man-

agement tool by a number of banks, it gained a higher pro�le in 1994 when J.P. Morgan
published its RiskMetrics system 2. Subsequent books aimed at �nancial academics and

traders (Jorion 1996, Dowd 1998) explained the statistical basis behind VaR. Despite the

complexity of �nancial data management that these systems need, the statistical principles
behind them are quite simple.

1 Address for correspondence: Department of Statistics, University of North Carolina,

Chapel Hill, N.C. 27599-3260, U.S.A. Email address: rls@email.unc.edu. Work carried
out primarily during a visit to the Isaac Newton Institute of Cambridge University, July{

December 1998, supported in part by a Visiting Fellowship of the EPSRC, grant number
GR K99015, by a grant from the Tsunami Initiative, and by NSF grant DMS-9705166.

2 http://www.riskmetrics.com/rm/index.html
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According to the most usual de�nition, we have to �x a time horizon T and a failure
probability �. A common value for T is ten trading days, while � is often set to be .05 or

.01. The VaR is then de�ned to be the largest number x such that the probability of a loss
as large as x over the time horizon T is no more than �. Since it is widely accepted that,

conditionally on the current volatility �, the daily log returns (Yt = 100 log(Xt=Xt�1)
where Xt is the price on day t) are independent normally distributed with standard devi-

ation �, the VaR becomes a routine calculation of normal probabilities. When the joint
behaviour of a large number of assets is considered, as is needed to calculate the VaR of a

portfolio, it is usual to adopt a multivariate normal distribution, though much work goes
into the computation of the variances and covariances required. For instance, it is common
to use some variant of either principal components analysis or factor analysis to reduce

the dimensionality of the statistical estimation problem.

What has been outlined is the simplest approach to VaR estimation. There are at least

three competing approaches, none of them so reliant on distributional assumptions. The
historical data approach uses historical market movements to determine loss probabilities
in a statistically nonparametric way. The disadvantage of this is that historical data may

not adequately represent current market conditions, or may not be available in suÆcient
quantity to allow reliable risk calculations to be made. The stress testing approach puts
much less emphasis on the assessment of small probabilities, instead relying on computing
losses under various scenarios of unlikely but plausible market conditions. Finally there
is the approach discussed in the present paper, using Extreme Value Theory (EVT) to
characterise the lower tail behaviour of the distribution of returns without tying the analysis

down to a single parametric family �tted to the whole distribution.

The use of EVT in �nancial market calculations is a fairly recent innovation, but there
is a much longer history of its use in the insurance industry. The excellent recent book
by Embrechts et al. (1997) surveys the mathematical theory of EVT and discusses its
applications to both �nancial and insurance risk management. In Section 2 of the current
paper, I outline some of the statistical techniques used in EVT and illustrate them with a
recent example of insurance data. However, I also highlight some aspects of �nancial data
| speci�cally, the presence of variable volatility | that makes direct application of such

methods to �nancial data inappropriate.

In subsequent sections, I outline some current areas of theoretical development that

have strong potential for applicability in the insurance and �nancial industries |

� Bayesian methods (Section 3) as a device for taking account of model uncertainty
in extreme risk calculations,

� Multivariate EVT (Section 4) as an alternative approach to risk assessment in high-

dimensional systems,

� A random changepoint model (Section 5) as one approach to long-term stochastic
volatility.
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The overall message of the paper is that EVT contains rich possibilities for application
to �nance and insurance risk management, but that these areas of application also pose

many new challenges to the methodology.

2 OUTLINE OF EXTREME VALUE THEORY

The mathematical foundation of EVT is the class of extreme value limit laws, �rst

derived heuristically by Fisher and Tippett (1928) and later from a rigorous standpoint
by Gnedenko (1943). Suppose X1; X2; :::; are independent random variables with common
distribution function F (x) = PrfX � xg and let Mn = maxfX1; :::; Xng. For suitable

normalising constants an > 0 and bn, we seek a limit law G satisfying

Pr

�
Mn � bn

an
� x

�
= Fn(anx+ bn)! G(x) (2:1)

for every x. The key result of Fisher-Tippett and Gnedenko is that there are only three
fundamental types of extreme value limit laws 3. These are

Type I : �(x) = exp(�e�x); �1 < x <1;

Type II : ��(x) =

�
0; x � 0,
exp(�x��); x > 0,

Type III : 	�(x) =

�
expf�(�x)�); x � 0,
1; x > 0.

In Types II and III, � is a positive parameter. The three types may also be combined
into a single generalised extreme value distribution, �rst proposed by von Mises (1936), of
form

G(x) = exp

(
�

�
1 + �

x� �

 

�
�1=�

+

)
; (2:2)

where y+ = max(y; 0), � > 0 and � and � are arbitrary real parameters. The case � > 0
corresponds to Type II with � = 1=�, � < 0 to Type III with � = �1=�, and the limit
� ! 0 to Type I.

Classical EVT is sometimes applied directly, for example by �tting one of the extreme
value limit laws to the annual maxima of a series, and much historical work was devoted to
this approach (Gumbel 1958). From a modern viewpoint, however, the classical approach
is too narrow to be applied to a wide range of problems.

3 Two probability distributions G1 and G2 are said to be of the same type if they may

be related by a location-scale transformation, G1(y) = G2(Ay + B) for some A > 0 and
B. Thus, in saying that there are only three types, we mean that any extreme value limit

law may be reduced to one of the three given forms by a location-scale transformation.
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An alternative approach is based on exceedances over thresholds (Smith 1989, Davison
and Smith 1990, Leadbetter 1991). According to this approach, we �x some high threshold

u and look at all exceedances of u. The distribution of excess values is given by

Fu(y) = PrfX � u+ y j X > ug =
F (u+ y)� F (u)

1� F (u)
; y > 0: (2:3)

By analogy with classical EVT, there is a theory about the asymptotic form of Fu(y),
�rst given by Pickands (1975). According to this, if the underlying distribution function

F is such that a classical extreme value distribution (2.1) exists, then there are constants
cu > 0 such that as u! !F

4

Fu(cuz)! H(z); (2:4)

where

H(z) =

8<
: 1�

�
1 + �z

�

�
�1=�

+
; � 6= 0,

1� e�z=�; � = 0,

(2:5)

where � > 0 and �1 < � < 1. This is known as the generalised Pareto distribution

(GPD). There is a close analogy between (2.5) and (2.2), because � is the same and there
are also mathematical relations among �,  and � (Davison and Smith 1990).

The threshold approach is most usually applied by �tting the GPD to the observed
excesses over the threshold. One advantage of this method over the annual maximum
approach is that since each exceedance is associated with a speci�c event, it is possible
to make the parameters � and � depend on covariates. This has been done, for instance,
in assessing the probability of a high-level exceedance in the tropospheric ozone record
as a function of meteorology (Smith and Shively 1995). Other aspects of the method

are the selection of a suitable threshold, and treatment of time series dependence. In
environmental applications, the latter aspect is often dealt with by the simple procedure

of restricting attention to peaks within clusters of high exceedances (Davison and Smith
1990), though as we shall see, such a simple-minded approach does not appear to work for
handling stochastic volatility in �nancial time series.

There are other approaches to extreme value modelling, based on variants of the
theoretical results already discussed. One approach extends the annual maximum approach

to the joint distribution of the k largest or smallest order statistics in each year | this
was �rst developed statistically by Smith (1986) and Tawn (1988), though the underlying
probability theory is much older (see, for example, Section 2.3 of Leadbetter et al. 1983).
This method is not used much, but we shall see an example of it in Section 3.

A more substantial variant is to take the point-process viewpoint of high-level ex-
ceedances, which again has been very well developed as a probabilistic technique (e.g. the

4 !F = supfx : F (x) < 1g, the right-hand endpoint of the distribution, usually but not
necessarily assumed to be +1.
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books by Leadbetter et al. (1983) and Resnick (1987) both use it, though from quite di�er-
ent viewpoints) and was developed as a statistical technique by Smith (1989). According

to this viewpoint, the exceedance times and excess values of a high threshold are viewed
as a two-dimensional point process (Fig. 1). If the process is stationary and satis�es a

condition that there are asymptotically no clusters among the high-level exceedances, then
its limiting form is non-homogeneous Poisson and the intensity measure of a set A of the

form (t1; t2)� (y;1) (see Fig. 1) may be expressed in the form

�(A) = (t2 � t1) �

�
1 + �

y � �

 

�
�1=�

+

: (2:6)

Here, the interpretation of the parameters �,  and � is exactly the same as in (2.2) |
indeed, if the time scale in (2.6) is measured in years then the corresponding version of
(2.2) is precisely the probability that a set A = (t1; t1 + 1)� (y;1) is empty, or in other
words, that the annual maximum is � y. However, one can also derive the GPD as a
consequence of (2.6) and hence tie this view of the theory with the peaks over threshold
analysis.

A more general form of the model allows for time-dependent behaviour by replacing the
�xed parameters �;  ; � with functions �t;  t; �t where t denotes time. In particular, we
consider models of this form in Section 5, and equation (5.1) gives the generalisation of (2.6)
in this case. In this way, dependence on covariates or other time-dependent phenomena
may be incorporated into the model.

•

• •

•

•

•

•

 

 

A

y

u

t_1 t_20 T

Fig. 1. Illustration of high-level exceedances represented as a two-dimensional point
process.
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A number of diagnostic techniques have been devised to test whether these assump-
tions are satis�ed in practice. Among these are the mean excess plot (Davison and Smith,

1990), which is a plot of the mean of all excess values over a threshold u against u itself.
This is based on the following identity: if Y is a random variable with distribution function

(2.5), provided � < 1, then for u > 0,

EfY � u j Y > ug =
� + �u

1� �
:

Thus, a sample plot of mean excess against threshold should be approximately a straight

line with slope �=(1� �). This is a useful tool in selecting the threshold.

In practice, the plot can be hard to interpret because for large u there are few ex-
ceedances and hence very high variability in the mean, but its real purpose is to detect
signi�cant shifts in slope at lower thresholds. As an example, Fig. 2(a) shows the negative

log daily returns for Standard and Poors index (S&P 500), 1947{1987. The values are
negated because our interest in this discussion is in the possibility of very large losses, so
the values of interest appear as large positive values in the plot. In particular, the spike
at the right hand end of the plot is the October 19, 1987 value. A mean excess plot (Fig.
2(b)) shows an apparent \kink" near y = 3:8, so it would seem unwise to include values
below that threshold. (In fact this discussion is too simple because we have not taken
variable volatility into account, but we return to that point later.)
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Fig. 2. Negative daily returns from the S&P 500 (a), and a Mean Excess Plot based on

these data (b).

In contrast, Fig. 3(a) shows 15 years of insurance claims data from a well-known
multinational company (Smith and Goodman 2000), and the corresponding mean excess
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plot in Fig. 3(b). In this case the series is dominated by two very large claims in the
middle of the plot, which together account for 35% of all claims in the series, but in spite

of this apparent evidence of outliers, the mean excess plot is surprisingly stable. Repeated
�tting of the model (2.6), to a variety of thresholds (Table 1), shows comparatively little

variation in the parameters �,  and �, which is another indication that the model is a
good �t.
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Fig. 3. Scatterplot of large insurance claims against time (a), and a Mean Excess Plot
based on these data (b).

Threshold Num. of � log �

exceedances
0.5 393 26.5 3.30 1.00
2.5 132 26.3 3.22 0.91
5 73 26.8 3.25 0.89
10 42 27.2 3.22 0.84
15 31 22.3 2.79 1.44
20 17 22.7 3.13 1.10
25 13 20.5 3.39 0.93

Table 1. Parameter estimates for the insurance claims data based on a variety of thresh-
olds.

Other diagnostics may be derived from the �tted point process. For example, under
the model (2.6), the one-dimensional point process of exceedance times of a �xed threshold
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u is a nonhomogeneous Poisson with parameter � = f1+�(u��)= g�1=�. As noted already
following (2.6), in general we may permit the parameters �;  ; � to be functions of time

and in that case the constant � is replaced by a time-dependent intensity �t. For this
model, with constant � as a special case, if the observations begin at time T0 and the

successive exceedance times are at T1; T2; :::; the variables

Zk =

Z Tk

Tk�1

�tdt; k � 1; (2:7)

should be independent exponentially distributed random variables with mean 1. This may
be tested graphically, for example, via a QQ 5 plot of observed order statistics versus their

expected values under the independent exponential assumption.

We can also test the marginal distribution of excesses in similar fashion. In this case
the appropriate test statistic is

Wk =
1

�Tk
log

�
1 + �Tk

�
YTk � u

 Tk + �Tk(u� �Tk)

��
; (2:8)

YTk being the observed value of the process at time Tk and the notation indicating that the
parameters �,  and � are all dependent on time in the most general form of the model.
Once again, if the assumed model is correct then the fWkg are independent exponentially
distributed random variables with mean 1, and this may be tested in various ways, for
example, through a QQ plot of the order statistics. The plots based on the Z and W

statistics were �rst suggested by Smith and Shively (1995).

As an example, Fig. 4 shows the Z and W plots for the insurance data of Fig. 3, in
the case that the extreme values parameters �;  ; � are assumed constants independent
of time. In this case, both plots look quite close to a straight line of unit slope, indicating
an acceptable �t to the model. As a standard for later comparison, we calculate the R2

for regression (1 �
P
(yi � xi)

2=
P
(yi � �y)2 where (xi; yi) are the coordinates of the i'th

point in the plot). The R2 values in this example are .992 for the Z plot and .980 for the
W plot.

Fig. 5, based on the S&P index data, is more problematic. The W plot (R2 = :971)

is a good �t except for the very largest value, which is of course the October 19, 1987
market crash, so this is easily understood if not so easily explained. However, the Z plot
(R2 = :747) is completely wrong, and no obvious variant on the methodology (such as

changing the threshold, transforming the response variable, or adding simple time trends
to the model) will do anything to correct this. The explanation is that variation in volatility
results in substantial variation in the mean time between exceedances over the threshold,
and no simple modi�cation of the model can account for this.

5 quantile-quantile
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Fig. 4. Z-plot and W -plot for the insurance data, all exceedances over threshold 5.
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Fig. 5. Z-plot and W -plot for the S&P 500, all exceedances over threshold 2.
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3 BAYESIAN STATISTICS FOR RISK ASSESSMENT

So far, our statistical viewpoint has implicitly been classical frequentist, including
maximum likelihood estimation for the parameters of the extreme value model. In this
section, I argue that there may be substantial advantages of application and interpretation

by taking a Bayesian approach to the analysis. The approach taken is not speci�cally
tied to the subjective viewpoint of probability theory, since there may also be substantial

advantages to the proposed approach from a frequentist viewpoint, though the evidence
on the latter point is still unclear at the present time.

To illustrate the ideas, I take an example from a quite di�erent �eld to the ones

discussed so far. Fig. 6(a) shows the �ve best performances by di�erent athletes in
the women's 3000 metre track race for each year from 1972 to 1992, together with the

remarkable new world record established in 1993 by the Chinese athlete Wang Junxia.
Many questions have been raised about Wang's performance, including the possibility that

it may have been assisted by drugs, though no direct evidence of that was ever found. The
present discussion is based on analysis by Robinson and Tawn (1995) and Smith (1997a).
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Fig. 6. (a) Plot of best �ve performances by di�erent athletes in each year from 1972{1992,
together with Wang Junxia's performance from 1993. (b) Plot of predictive conditional

probability distribution given all data up to 1992.

The natural extreme value model for this problem is a Type III or Weibull distribution,

which implies a �nite lower bound � on the distribution of running times. The basic model
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for the distribution function of an annual maximum is (2.2). This is applied to running
times multiplied by {1, so as to convert minima into maxima. When � < 0, the distribution

function (2.2) has a �nite upper bound (for which G(x) = 1) at x = ��  =�. Thus when
this is applied to {1 times the running times, there is a �nite minimum running time at

� = �� +  =�. We therefore concentrate on estimation of this parameter, �nding the
maximum likelihood estimate and likelihood-based con�dence intervals for �, based on

the data up to 1992. If Wang's actual performance lay outside this con�dence interval,
that could be interpreted as evidence that something untoward had taken place. As noted

briey in Section 2, the actual estimate was based on the k best performances in each year,
where in this analysis, k = 5.

In one analysis, Smith (1997a) analysed the data from 1980, ignoring the trend in

the early part of the series, and obtained a 95% con�dence interval for � of (481.9, 502.4)
(seconds). Wang's actual record was 486.1, so while this lies towards the lower end of the

con�dence interval, the analysis does not de�nitively establish that there was anything
wrong. Earlier, Robinson and Tawn (1995) gave a number of alternative analyses based
on various interpretations of the trend in Fig. 6(a), but all led to the same conclusion,
that Wang's record lay within a 95% con�dence interval for �.

However, Smith (1997a) went on to argue that obtaining a con�dence interval for �
was solving the wrong problem. Consider the situation as it appeared at the end of 1992.
A natural question to ask is: what is the probability distribution of the best performance
that will be observed in 1993? This is a question about the predictive distribution of an
as yet unobserved random variable. As a partial protection against the obvious selection

bias associated with the choice of year, the paper proposed that the predictive probability
be calculated conditionally on the event that a new world record be set.

There is no known frequentist solution to this problem that adequately takes account
of the fact that the model parameters are unknown 6, but a Bayesian solution is straight-

forward. If the required conditional predictive distribution is denoted G(y; �), this being
the probability that the best performance in 1993 will be smaller than y, given that it is

better than the existing record, as a function of model parameters �, then the Bayesian
solution is based on the estimate

~G(y) =

Z
G(y; �)�(� j X)d�; (3:1)

6 A na��ve solution is to substitute a point estimator of the unknown parameters, such
as the maximum likelihood solution, into the predictive distribution: in the notation of

(3.1), ~G(y) = G(y; �̂) where �̂ is the MLE. In the present example, the MLE �̂ based on
the data up to 1992 is greater than the actual time run by Wang, so such an approach

would automatically lead to the value 0 for the predictive probability. However we can
see this this approach is too simplistic, because as has already been pointed out, a 95%
con�dence interval for � includes Wang's record.
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�(� j X) denoting the posterior density of the parameters � given past data X. Writing
� = (�; �; �) and x in place of �y, G(y; �) is given by (2.2). As already noted, the

transformation from x to �y was made to convert minima into maxima.

Using a vague prior for � and a Monte Carlo integration to evaluate (3.1), a predictive
probability of .00047 (since slightly revised to .0006) was attached to the actual record

run by Wang. The complete curve of ~G(y) is shown in Fig. 6(b). This calculation seems
de�nitively to establish that her performance was inconsistent with previous performances

in the event. It does not, of course, provide any direct evidence of drug abuse.

The relevance of this example to risk assessment in �nance and insurance is threefold:

1. There is a clear distinction between inference about unknown parameters and

predictive distributions about future variables. Many risk applications, including VaR itself,
revolve around questions of the form \What is the probability that I will lose a certain
amount of money over a certain period of time?" These are questions about prediction,
not inference.

2. In evaluating predictive distributions, account must be taken of the fact that model
parameters are unknown.

3. Bayesian methods provide an operational solution to the problem of calculating
predictive distributions in the presence of unknown parameters. There are pure frequen-
tist solutions based on asymptotic theory (for example, Barndor�-Nielsen and Cox (1996)),
and it remains an open question just how well Bayesian solutions to these kinds of prob-
lems perform from a frequentist point of view, but the evidence currently available is
encouraging, provided proper account is taken of the loss function in a decision-theoretic

formulation of the problem (Smith 1997b, 1999).

As an example of the possible application of these ideas to risk assessment problems,
suppose we want to calculate the predictive distribution of the largest loss over a future one-

year time period, based on the data in Figure 3 and assuming a constant distribution. Fig.
7 shows a plot of the Bayes posterior median (solid curve) of the probability of exceeding

a given level y, for each of a series of y values represented on the vertical axis. In this
plot we represent the probability of exceedance as 1=N , and the value of N is represented
on the horizontal axis. Also shown on the plot are 50% and 95% posterior probability
intervals for the probability of exceedance, de�ned by the dashed lines and the dotted lines

respectively. In the more detailed analysis of this data set, Smith and Goodman (2000)
have provided a number of alternative analyses taking account of alternative features of
the data. In particular, the data included a \type of claim" indicator, and when this is

taken into account, the predictive distribution changes substantially, but that lies beyond
the scope of the present discussion.
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Fig. 7. Median posterior loss curve with 50% and 95% probability bounds for insurance
data, one-year losses, based on all exceedances over threshold 5.

4 MULTIVARIATE EXTREMES

So far, our discussion has been entirely about extreme value theory for a single variable.
However, it is more usual for VaR calculations to be made about a portfolio of assets rather
than a single asset. In this context, a portfolio is simply a linear combination of individual
asset prices. If the composition of the portfolio is held �xed, then it may be possible to
assess the risk using univariate EVT, by simply treating the portfolio price as the variable
of interest. However, the real rationale for doing this is often to help design the portfolio

| for example, one may want to do this to maximise the expected return subject to some
constraint on the VaR of the portfolio. To solve a problem of this nature, in which the
weights on the di�erent assets have to be determined, it is essential to consider the joint
distribution of the asset prices. Conventional VaR theory is based on an assumption of
multivariate normality for the joint distribution of log returns, but it is highly questionable
whether such an assumption is appropriate for the calculation of extreme tail probabilities.

One approach to this problem is through multivariate EVT. Limiting relations such
as (2.1) and (2.4) may be generalised to vector-valued processes, and for any p � 1, lead

to a class of p-dimensional multivariate extreme value distributions (MVEVDs) and their
threshold equivalents. There are numerous mathematically equivalent representations of

MVEVDs, but one convenient form, due to Pickands (1981), is as follows. We may without
loss of generality assume that all the marginal distributions have been transformed to the
\unit Fr�echet" distribution function e�1=x; 0 < x < 1; the joint distribution function of

13



x = (x1; :::; xp) is then of the form

G(x) = exp

(
�

Z
Sp

max
1�j�p

�
wj

xj

�
dH(w)

)
; (4:1)

where Sp = f(w1; :::; wp) : w1 � 0; :::; wp � 0;
P
wj = 1g is the unit simplex in p

dimensions and H is some non-negative measure on Sp satisfyingZ
Sp

wjdH(w) = 1; j = 1; :::; p: (4:2)

Resnick (1987) is an excellent source of information about MVEVDs. The diÆculty for

statistical applications is that when p > 1, the class of MVEVDs does not reduce to a
�nite-dimensional parametric family, so there is potential explosion in the class of models

to be considered. Most approaches to date have focussed either on simple parametric
subfamilies, or on semiparametric approaches combining univariate EVT for the marginal
distributions with nonparametric estimation of the measure H. Some example papers
representing both approaches are Coles and Tawn (1991, 1994), Smith (1994) and de Haan
and Ronde (1998). Recently, it has even been suggested that multivariate EVT may not
be a rich enough theory to encompass all the kinds of behaviour one would like to be able

to handle, and alternative measures of tail dependence have been developed. The main
proponents of this approach so far have been Ledford and Tawn (1996, 1997, 1998); the
last paper, in particular, contains an application to foreign exchange rates.

As I see it, the main diÆculty with the application of this approach to VaR is in
how to extend the methodology from the joint extremes of a small number of processes to
the very large number of assets in a typical portfolio. Most of the papers just cited are
for p = 2; some have considered extensions to p = 3; 4; 5; :::; but the model complexity
increases greatly with p and there seems to be no hope of applying multivariate EVT

directly to large portfolios in which p may be of the order of hundreds.

Recently, Smith and Weissman (1999) have proposed some alternative representa-

tions of extreme value processes aimed at characterising the joint distribution of extremes
in multivariate time series of the form fXij ; i = 1; 2; :::; 1 � j � pg. As in the preceding

discussion, there is no loss of generality in assuming that unit Fr�echet marginal distri-
butions apply in the tail, because we may use univariate EVT to estimate the marginal

tail distributions and then apply a probability integral transformation to each component.
Smith and Weissman then de�ned a class of multivariate maxima of moving maxima (M4

processes for short) by the equation

Xij = max
`�1

max
�1<k<1

a`kjZ`;i�k: (4:3)

where fZ`;ig are a two-dimensional array of independent unit Fr�echet random variables
and the constants fa`kjg satisfy

a`kj � 0;
X
`

X
k

a`kj = 1 for all j = 1; :::; p: (4:4)
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The main focus of the paper by Smith and Weissman is to argue that under fairly
general conditions, extremal properties of a wide class of multivariate time series may be

calculated by approximating the process by one ofM4 form. The fundamental ideas behind
representations of this form are due to Deheuvels (1978, 1983), and they can be regarded

as an alternative approach to those based on the representation (4.1).

In principle, (4.3) is simpler to handle than (4.1). Moreover it is a more general
result, dealing directly with the case of multivariate time series and not just of independent

multivariate observations. Another feature which makes (4.3) more directly interpretable
for �nancial time series is that it represents the process in terms of an independent series

of \shocks" { in essence, large values among the fZ`;ig (the shocks) determine the pattern
of extremes among the fXijg and this has an obvious interpretation for the �nancial

markets. On the other hand, estimating a three-dimensional array of unknown constants
is a challenging problem in itself, and it is likely that some restrictions to speci�c classes

will be necessary before this is feasible. Another diÆculty with models of this form is that
they su�er from degeneracies | the joint density of a set of random variables de�ned by
(4.3) is typically singular with respect to Lebesgue measure and this causes problems for

maximum likelihood techniques. However, this diÆculty can be avoided by adding some
additional noise to the observations and research is continuing into ways in which this
might be done.

5 A CHANGEPOINT MODEL FOR STOCHASTIC VOLATILITY

We have seen that the standard extreme value methods do not appear to apply to
the S&P 500 data. The explanation is non-constant volatility: it is apparent from simple
inspection of the data in Fig. 2(a) that the variance of the series is much bigger in some
years than in others, and consequently there is substantial variation in the rate in which
any high threshold is exceeded. This problem is near-universal in �nancial time series:
every other example which I have tried has exhibited problems similar to those with the
Z-plot in Fig. 5.

There is by now a rich literature of models for �nancial time series taking into account
changes in volatility. These divide broadly into two categories: models of the GARCH
family, in which the variance of the process at time t, usually denoted �t, is expressed
deterministically as a function of past values �s; s < t, and of the observations themselves;
and models in which the volatility is treated as a stochastic process estimated by some form
of state space model analysis. An excellent review of developments in both approaches is
the paper by Shephard (1996).

It therefore seems worthwhile to develop extensions of the extreme value statistical
methodology to take into account variable volatility. So far, very few attempts have been

made to do this. McNeil and Frey (1998) have taken an approach built around the standard
GARCH model, but in which the innovations, instead of being normally distributed as in
the usual GARCH approach, are allowed to be long-tailed and estimated by methods
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similar to those presented earlier in this paper, but taking account of the variation in �t
estimated for the GARCH process. In another recent paper, Tsay (1999) has used methods

similar to those of the present paper, but allowing the extreme value parameters to depend
on daily interest rates.

The aim of the present section is to suggest an alternative approach which is not

tied to GARCH or to any particular model of volatility, but which simply assumes that
the extreme value parameters change from one period to another according to a random

changepoints process. Only an outline will be presented here; a fuller description is being
prepared for publication elsewhere.

To describe the basic model, we �rst generalise (2.6) to

�(A) =

Z t2

t1

�
1 + �t

x� �t

 t

�
�1=�t

+

dt (5:1)

in which the notation explicitly reects that the parameters �,  and � are time-dependent.

The model is of hierarchical Bayesian structure, and is de�ned as follows. We assume
that the process is observed over a time period [0; T �].

Level I. At the top level of the hierarchy, we de�ne hyperparameters m�; s
2
�; m ; s

2
 ;

m�; s
2
� with a prior distribution (to be speci�ed later).

Level II. Conditionally on the parameters of level I, let the number of changepoints
K have a Poisson distribution with mean �T �. Conditionally on K, let the individual
changepoints C1; :::; CK be independent uniform on [0; T �], and then ordered so that 0 <
C1 < ::: < CK < T �. (An equivalent description is that the random changepoints form
a realisation of a homogeneous Poisson process with intensity �.) For convenience we
also write C0 = 0; CK+1 = T �. Also, let �(1); :::; �(K+1) be independently drawn from
the N(m�; s

2
�) distribution, log 

(1); :::; log (K+1) independently drawn from N(m ; s
2
 ),

�(1); :::; �(K+1) independently drawn from N(m�; s
2
�).

Level III. Conditionally on the parameters in Level II, suppose that for each k between
1 and K + 1, the exceedance times and values over a threshold u on the time interval
Ck�1 < t � Ck are de�ned by the Poisson process with cumulative intensity given by

(5.1), in which �t = �(k);  t =  (k); �t = �(k).

For the prior distributions at level I, we assume that (m�; s
2
�) are of \gamma-

normal" type: let �� be drawn from the gamma distribution with density proportional

to ���1� exp(����); 0 < �� <1, and then de�ne s2� = 1=��, m� � N(�; 1
���

). This model

may be summarised by the notation (m�; s
2
�) � GN(�; �; �; �). Similarly, we assume

the pairs (m ; s
2
 ), (m�; s

2
�) are independently drawn from the same distribution. We �x

� = � = � = 0:001 and � = 0 to represent a proper but very di�use prior distribution.
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The treatment of the prior parameter � is somewhat problematic in this set-up. It
might be thought desirable to put a vague hyperprior on �, but this is not possible because

an improper prior leads to an improper posterior (and, in the practical implementation
of the algorithm, the number of changepoints grows to 1). Instead, therefore, I have

speci�ed a value for �. In di�erent runs, the values � = 20; 25 and 30 have all been tried,
with some di�erences in the posterior distribution of the number of changepoints (Fig.

8(a) below) but fortunately these were not too great.

The actual algorithm uses the reversible jump Markov chain Monte Carlo sampler in
manner very similar to that of Green (1995): indeed, my whole approach was very much
motivated by Green's treatment of a famous data set concerned with coal mining disasters.

However, in the present paper I omit all details of the algorithm, which essentially consists
of iteratively updating all the parameters of the models using a reversible jump sampler

to take care of the fact that the number of changepoints, and hence the dimension of the
model to be estimated, are a priori unknown.

Fig. 8 shows the outcome of one run of this analysis, based on a total of 100,000
iterations of the reversible jump sampler with every 100'th iteration recorded and used
to construct the plots. Thus, for example, the histogram in Fig. 8(a) is based on 1,000
sampled values of the number of changepoints. The posterior distribution of the number of

changepoints has (in this run) a mean of 23.9 and a standard deviation of 2.5. Figs. 8(b)
and 8(c) show the Z and W plots computed from the posterior means in the changepoint
model; in this case, R2 = :992 for the Z plot and .981 for the W plot. There is still some
concern about the very largest values in the W plot but otherwise the �t in the model
seems much better than in the earlier discussion of Fig. 5.

Fig. 9(a) shows the posterior mean estimate of the crossing rate of the threshold 2,

as it varies across time. This shows very clearly the e�ects of stochastic volatility, with
periods when there is a high probability of crossing the threshold such as around 1971,
during 1973-1974 or the early 1980s, interspersed with periods when the probability of
crossing the threshold is much lower, such as the late 1970s or mid 1980s. Fig. 9(b) shows
a similar plot for the posterior mean of the �t parameter as t ranges over the data set.
Many, though not all, of the rises and falls in this plot match the rises and falls in the

threshold crossing rate.

Finally, we consider the consequences of the changepoint model for the estimated
extreme value parameters. Table 2 shows the estimated posterior parameters and standard

errors for (a) December 1987, (b) January 1978 (chosen to represent a quiet period), (c)

an overall average over all days of the series (this was calculated by sampling from the
total Monte Carlo output) and (d) based on the maximum likelihood estimates for a single

homogeneous model �tted to the whole series, as in Section 2. Perhaps the most interesting
parameter here is �, which represents the overall shape of the tail. For December 1987,

the posterior mean is �̂ = :21, representing a fairly long-tailed case (but not excessively so
| values of � in the range .5 to 1 often occur in insurance applications, including

17



20 25 30 35

0.0

0.05

0.10

0.15

 (a)

 No of Changepoints 

P
ro

ba
bi

lit
y

••••••••••••••••••••••••••••••••••••••••••••••••••
•••••••••••••••••••••••••••••••••••••••
•••••••••••••••••••••••••••••••
•••••••••••••••••••
••••••••••••••••••••••••••
•••••••••••••••••••
•••••••••••••••
••••••••••••••••
•••••••••••
••••••••••••
••••••••••

••••••••
••
•••
•••
•••

••
••

• • •
•

(b)

Expected values for z 

O
bs

er
ve

d 
va

lu
es

 

0 1 2 3 4 5 6

0

1

2

3

4

5

•••••••••••••••••••••••••••••••••••••••••••••••••••••
••••••••••••••••••••••••••••••••••••••••••••••••••••••••

••••••••••••••••••••••••••••••••••••••••••••
•••••••••••••••••••••••••••••
•••••••••••••••••••••••••••••••

•••••••••••••••
•••••••••••••••

•••••••••••••
••••••••••

••••••
••••

•••
••

•

•

•
•

(c)

Expected values for w 

O
bs

er
ve

d 
va

lu
es

 

0 1 2 3 4 5 6

0

2

4

6

Fig. 8. Results of changepoint modelling for S&P 500 data. (a) Posterior distribution
for number of changepoints. (b) Z plot. (c) W plot. Based on threshold 2, prior mean
number of changepoints � = 25.
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the one mentioned earlier in this paper). For January 1978, the posterior mean is {
.02, insigni�cantly di�erent from 0, which is an exponential tail (in other words, short-

tailed). The overall average over the whole series is {.05, which seems to reect that the
typical behaviour is short-tailed with mainly the high-volatility periods being long-tailed.

However, the maximum likelihood estimates based on a homogeneous model imply �̂ = :22
with a standard error of .06. This seems completely misleading, implying that long-tailed

behaviour is a feature of the whole series rather than just of short high-volatility periods
of it. The interpretation, I believe, is that the e�ect of mixing over inhomogenous periods

has inated the apparent value of � and has made the distribution seem more long-tailed
that it really is most of the time. A similar phenomenon has also been observed for the
insurance data of Section 2 (Smith and Goodman 2000), though in that case the mixing

was over di�erent types of insurance claim rather than inhomogeneous periods of time.

Time � log �

December 1987 5.12 0.24 0.21
(.97) (.44) (.18)

January 1978 3.03 {0.61 {0.02
(1.04) (.43) (.27)

Averaged over time 3.27 {0.51 {0.05
(1.16) (.56) (.32)

Homogeneous model 3.56 {0.09 0.22
(.10) (.09) (.06)

Table 2. Bayes posterior means of model parameters (posterior standard deviations in
parentheses) for speci�c time periods. Row 1: December 1987. Row 2: January 1978. Row
3: Averaged over all time periods in the data. Row 4: Maximum likelihood estimates and
standard errors based on a single homogeneous model �tted to the whole series.

6 CONCLUSIONS

The interaction between extreme value theory and the assessment of �nancial risk
poses many exciting possibilities. Many of these seem to require new techniques. In

this paper I have presented three areas in which new methodology seems to be required.
Bayesian statistics is a valuable tool for the assessment of predictive distributions which is
very often the real question of interest, rather than inference for unknown parameters. The
possibility of applying VaR analysis to large portfolios implies the need for multivariate

extreme value techniques in high dimensions, in contrast with most of the multivariate
extreme value theory developed to date which has concentrated on low-dimensional prob-
lems. Finally, the last section proposed one way of dealing with the stochastic volatility

problem, via a changepoint model for the extreme value parameters. However this in itself
is a tentative approach; there is ample scope for exploration of alternative approaches for

combining extreme value theory and stochastic volatility.
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