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ABSTRACT

ZHENGJUN ZHANG: Multivariate Extremes, Max-Stable Process Estimation

and Dynamic Financial Modeling.

( Under the direction of Professor Richard L. Smith )

Studies have shown time series data from finance, insurance and environment etc.

are fat tailed and clustered when extremal events occur. In order to characterize such

extremal processes, max-stable processes or min-stable processes have been proposed

since the 1980s and some probabilistic properties have been obtained, but the applica-

tions are very limited due to lack of efficient statistical estimation methods.

In this work, some probabilistic properties of the processes are proved and a series

of estimation procedures to estimate the underlying max-stable processes are proposed,

i.e. multivariate maxima of moving maxima processes. The first proposed method is

purely probabilistic. It is designed for the time series with only one signature pattern,

which can be regarded as a clustering pattern. It gives true parameter values if the

model is correct. The second proposed method is a two step estimating method. At the

first step, the method gives exact parameter values within each signature pattern, then

it estimates the proportions of different signature patterns in the process. Consistency

and asymptotic properties for the estimators are proved. The third proposed method

is a generalized version of the second one but is not tied with the data, i.e. the

data are not assumed to follow the model exactly. It is practically applicable. Three

variants of the third method are proposed. They are designed to provide more specific

estimators for special cases of the model, such as symmetric, monotone and asymmetric

data structure respectively. All the estimators have been proved to be consistent and

asymptotically normal.

To date, the exceedance over threshold approach which uses a generalized Pareto

distribution(GPD) has been advocated. Assuming the population distribution belongs

to the multivariate domains of attraction of multivariate extreme value distributions

we develop threshold methods to estimate the parameters of the underlying max-stable

process from the observed data. All previously developed six methods have their cor-

responding version under threshold methods.
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How to manage a portfolio efficiently, with the highest expected return for a given

level of risk, or equivalently, the least risk for a given level of expected return, is a

key to the success or failure of a financial system. As an application of max-stable

processes, financial time series data are standardized and transformed. The new time

series are modelled as max-stable processes. The VaR ( Value at Risk ), maximal

possible losses of portfolios under given confidence level, of portfolios are calculated

and portfolio optimizations under VaR constraints are then studied.
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Chapter 1

Introduction

1.1 General introduction

Extreme events or rare events have major impacts (bad or good) on the real world.

Imagine the major damage caused by a disaster hurricane or the impact of winning

three million dollars in the lottery. Such rare events are part of our life. We must face,

understand and study those phenomenon and problems caused by rare events. Indeed,

the study of extreme events has become very important and drawn major attention in

probability and statistical research.

The extreme type theorems play a central role of the study of extreme value theory.

In the literature, Fisher and Tippett (1928) were the first who discovered the extreme

type theorems and later these results were proved in complete generality by Gnedenko

(1943). Galambos (1987), Leadbetter, Lindgren and Rootzén (1983), and Resnick

(1987) are excellent reference books on the probabilistic aspect. Smith (1990) gives

a comprehensive account of statistical aspects, especially maximum likelihood meth-

ods in parameter estimation. A recent book by Embrechts, Klüppelberg, and Mikosch

(1997) gives an excellent viewpoint of modeling extremal events. The extreme type

theorems say that for a sequence of i.i.d. random variables with suitable normalizing

constants, the limiting distribution of maximum statistics, if it exists, follows one of

three types of extreme value distributions. In the multivariate context, the maximum

is taken componentwise and there is no specific parametric type of limiting distribu-

tion. However, there have been many attempts to characterize the possible limits, such

as de Haan and Resnick (1977), de Haan (1985) and Resnick’s (1987) point process

approach, and Pickands’s (1981) representation theorem for multivariate extreme value

distribution with unit Fréchet margins. Some efforts have been devoted to extending



the i.i.d classical results to dependent sequences under some conditions such as station-

ary, mixing conditions etc. For instance, Leadbetter, et al (1983) contains an abundant

account of the theory of extreme values for dependent sequences, both stationary and

non-stationary, as well as for stationary continuous time processes at a rigorous math-

ematical level. The extremal index, originated by Cartwright (1958), Newell (1964),

Loynes (1965), O’Brien (1974) and Leadbetter (1983), is a quantity which allows one

to associate the limiting distribution of a dependent sequence to the extreme value

distributions. In a multivariate analog, Nandagopalan (1990, 1994) introduced the

multivariate extreme index and derived some elementary properties.

In the statistical aspects, the focus is on extremal events modeling, parameter es-

timation and testing of hypotheses. There are many applications to real problems.

Among them, extreme value theory has been largely applied to environmental prob-

lems such as river flow, wind speed, sea level, temperature and rainfall, and insurance

and finance (cf. Smith 1990 and Embrechts, Klüppelberg, and Mikosch 1997). To

model extremal events in a univariate context, usually the generalized extreme value

distribution is adopted. To date, the exceedance over threshold approach which uses a

generalized Pareto distribution(GPD) (Pickands 1975, Davison and Smith 1990) and a

fixed number of extreme order statistics approach (Weissman 1978, Smith 1986, Tawn

1988, Robinson and Tawn 1995, Smith 1997) have been advocated.

Although there are well-developed approaches to model univariate extremal pro-

cesses, problems concerning the environment, finance and insurance etc. are multivari-

ate in character: for example, floods may occur at different sites along a coastline; the

failure of a portfolio management may be caused by a single extreme price movement or

multiple movements. Here multivariate extreme modeling is essential for risk manage-

ment and precision of modeling. What one needs is to choose or develop appropriate

multivariate extreme value distributions which can be used in modeling multivariate

extremal processes. As we mentioned earlier, multivariate extreme value distributions

have no specific parametric form. Fortunately several models have been developed

that are multivariate extreme value distributions. Among them, it is worth mention-

ing models such as Bivariate Logistic model by Marshall and Olkin (1983), Bivariate

Exponential model by Mardia (1970), Asymmetric Logistic model by Tawn (1990),

Negative Asymmetric Logistic model by Joe (1989), Dirichlet model by Coles and

Tawn (1991), Bilogistic model by Smith (1990), Nested Logistic model by McFadden

(1978) and Time Series Logistic model by Coles and Tawn (1991). These models are
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listed in Coles and Tawn (1991). Coles and Tawn (1994) also demonstrate how statis-

tical methods for multivariate extremes may be applied to a very practical problem of

data analysis.

In general, an multivariate distribution function characterizes the dependence struc-

ture within the random vector. It does not show the time dependent structure of the

vector time series. Since multivariate extreme value distributions are in fact max-stable

distributions ( Resnick 1987 ), and the extreme values of an multivariate stationary

process may be characterized in terms of a limiting max-stable process under quite

general conditions ( Smith and Weissman 1996 ), it is very natural to model extreme

processes by max-stable processes.

In this work, I mainly focus on proving probabilistic properties of a certain class

of max-stable processes and proposing a series of estimation procedures of estimating

the underlying max-stable process. The consistency and asymptotic properties of all

estimators are proved. Applications of max-stable process in finance will be addressed.

In the rest of this chapter we will give some background results. We will discuss

extreme value theory for multivariate random variables in section 1.2. Also in section

1.2 extreme value theory for univariate random variables will be briefly reviewed since

the marginal distributions of MEVD have to be univariate extreme value distributions.

And multivariate maxima of moving maxima processes will be discussed in section 1.3.

In chapter 2, we will study the properties of multivariate maxima of moving maxima

processes, extend probability properties, propose statistical estimation methods for the

parameters and prove consistency and asymptotics. Some examples will be given in

this chapter to demonstrate the processes and the statistical aspects.

In chapter 3, we will consider modeling multivariate maxima of moving maxima

processes by using the bivariate joint distribution of the sequence of dependent random

variables. We shall study estimation of parameters and consistent properties as well

as asymptotics. Examples will be illustrated.

In chapter 4, we will consider the parametric structure for multivariate maxima

of moving maxima processes. Estimation of parameters, consistency and asymptotic

properties will be addressed.

In chapter 5, we first review literature on the applications of extreme value theory

to finance and insurance. We will briefly review the definition of VaR and some typical

calculation methods. Then extreme value approaches will be discussed. Finally we

model multivariate extreme value distributions to multivariate financial time series

3



data and illustrate VaR calculation as well as portfolio optimizations. Comparison

among extreme value approaches and other approaches will be illustrated also.

1.2 Multivariate extreme value theory

1.2.1 Extreme value theory for univariate random variables

Suppose X1, X2, . . . , Xn are an i.i.d. sequence with distribution function F (x) and let

Mn = max(X1, X2, . . . , Xn). (1.1)

Then Mn has the distribution function

Pr{Mn ≤ x} = Pr{X1 ≤ x, · · · , Xn ≤ x} = F n(x). (1.2)

It is clear that the maximum of a sample simply tends to the right-hand endpoint of

the distribution almost surely, no matter whether it is finite or infinite. Let XF be the

right endpoint, since
∞∑
n=1

Pr{|Mn −XF | > ε} =
∞∑
n=1

Pr{Mn < XF − ε} =
∞∑
n=1

Pr{X1 < XF − ε}n

= Pr{X1<XF−ε}
1−Pr{X1<XF−ε}

<∞

and this shows Mn
a.s.−→ XF . What we are interested in is the form of limits

lim
n→∞

F n(anx+ bn) = lim
n→∞

Pr(
(Mn − bn)

an
≤ x) = H(x) (1.3)

for suitable normalizing constants an > 0, and bn.

If (1.3) holds, we say F (or X) belongs to the (maximum) domain of attraction of

H and write F ∈ MDA(H) (or X ∈ MDA(H)). H has one of the following three

parametric forms (which are generally called extreme value distributions)

Type I : H(x) = exp{− exp(−x)} (−∞ < x <∞)

Type II : H(x) =

{
0 if x ≤ 0,

exp(−x−α) if x > 0,

T ype III : H(x) =

{
exp(−(−x)α) if x < 0,

1 if x ≥ 0.

In II and III, α is any positive number. The three types are also often called the

Gumbel, Fréchet and Weibull types respectively.

The following theorems are very useful in finding theMDA(H) of F and the suitable

normalizing constants. The proofs of the theorems can be found in Leadbetter et al.

(1983), Resnick (1987), Galambos (1987), etc..

4



Theorem 1.1 Let 0 ≤ τ ≤ ∞ and suppose that for suitable normalizing constants

an > 0 and bn, un = un(x) =
x
an

+ bn such that

n(1− F (un))→ τ as n→∞ (1.4)

then

P (Mn ≤ un)→ e−τ as n→∞ (1.5)

Conversely, if (1.5) holds for some τ , 0 ≤ τ ≤ ∞, then (1.4) holds.

Theorem 1.2 Necessary and sufficient conditions for the distribution F belongs to the

MDA of

Type I:
∫∞
0
(1− F (u))du <∞,

lim
t↑XF

1− F (t+ xg(t))

1− F (t)
= e−x

for all real x, where

g(t) =

∫ XF

t
(1− F (u))du

1− F (u)

for t < XF .

Type II: XF =∞ and

lim
t→∞

1− F (tx)

1− F (t)
= x−α

α > 0, for each x > 0.

Type III: XF <∞ and

lim
h↓0

1− F (XF − xh)

1− F (XF − h)
= xα

α > 0, for each x > 0.

Some other theoretical results may be very useful for finding the MDA(H) of F and

finding the normalizing constants. Those results and examples whose distributions

belong to each of the three domains of attraction can be found in Leadbetter et al.

(1983), Resnick (1987), Galambos (1987), etc.. As a simple example, we consider now

the Pareto distribution

F (x) = 1− κx−α, α > 0, κ > 0, x ≥ κ1/α.

5



We have
1− F (tx)

1− F (t)
=

(tx)−α

t−α
= x−α

so F belongs to MDA of a Type II extreme value distribution. By setting

n(1− F (un)) = τ

we have

un = (κn/τ)1/α.

By putting τ = x−α for x ≥ 0, we have

P{(κn)−1/αMn ≤ x} → exp(−x−α)

so

an = (κn)−1/α, bn = 0.

The extreme value distributions are max-stable distributions. We say a non-degenerate

distribution H is max-stable, if Hn(anx+ bn) = H(x) holds for some constants an > 0,

and bn for each n = 2, 3, . . . . The next result (Theorem 1.4.1 in Leadbetter et al. 1983)

shows the relation.

Theorem 1.3 Every max-stable distribution is of extreme value type, i.e. equal to

H(ax + b) for some a > 0 and b; Conversely, each distribution of extreme value type

is max-stable.

The three types of extreme value distributions can be written into a generalized extreme

value (GEV) distribution form (which is very useful for statistical purposes)

H(x;µ, σ, ξ) = exp{−[1 + ξ(x− µ)

σ
]−1/ξ} (1.6)

where 1 + ξ(x − µ)/σ > 0, σ > 0 and µ, ξ arbitrary. The case ξ = 0 is interpreted as

the limit ξ → 0, that is

H(x;µ, σ, 0) = exp{− exp[−(x− µ)

σ
]} (1.7)

Type II and III correspond to ξ > 0 (ξ = 1
α
) and ξ < 0 (ξ = − 1

α
) respectively. Smith

(1990) has a detailed review of statistical treatments, applications and estimations, of

GEV.

6



Suppose now {Xi, i = 1, 2, . . . , } is a stationary sequence with a continuous marginal

distribution function F (x) and {X̂i, i = 1, 2, . . . , } is the so-called associated sequence

of i.i.d. random variables with the same marginal distribution function F . Mn stands

for the maximum as usual, defined by (1.1), while M̂n denotes the corresponding max-

imum of {X̂1, · · · , X̂n}. The limiting distribution of Mn can be related to the limiting

distribution of M̂n via a quantity θ defined below.

If for every τ > 0 there exists a sequence of thresholds {un} such that

Pr{M̂n ≤ un} → e−τ (1.8)

and under quite mild additional conditions,

Pr{Mn ≤ un} → e−θτ (1.9)

Then θ is called the extremal index of the sequence {Xn}. This concept originated in

papers by Cartwright (1958), Newell (1964), Loynes (1965), O’Brien (1974). Leadbetter

(1983) gave a formal definition.

The index θ can take any values in [0,1] and 1
θ
is interpreted as mean cluster size

of exceedance over some high threshold. When θ = 0, it corresponds to a strong

dependence (infinite cluster sizes) but not so strong that all the values can be the

same. While θ = 1 is a form of asymptotic independence of extremes, but it does not

mean that the original sequence is independent.

If (1.9) holds for some τ and corresponding {un}, then it holds for all τ ′ (equal

or not equal to τ) and its corresponding {u′n}. Estimators of the extremal index have

been proposed by Leadbetter, Weissman, de Haan, and Rootzén (1989), Nandagopalan

(1990), Hsing (1993). Smith and Weissman (1994) gave a review of estimating the

extreme index and proposed two estimating methods, i.e., blocks method and runs

method. Other references include chapter 8 in the book by Embrechts et al. (1997).

1.2.2 Limit laws of multivariate extremes

Suppose {Xi = (Xi1, · · · , XiD), i = 1, 2, ...} is a D-dimensional i.i.d. random process

with distribution F (x) = F (x1, . . . , xD) = Pr{Xid ≤ xd, d = 1, . . . , D} and marginal

distributions Fd(x) = Pr{Xid ≤ xd}, d = 1, . . . , D. Let Mn = (Mn1, · · · ,MnD) denote

the vector of pointwise maxima, where Mnd = max{Xid, 1 ≤ i ≤ n}. If there exist

7



normalizing constants an > 0,bn such that

Pr{Mn ≤ anx+ bn} = Pr{Mnd ≤ andxd + bnd, d = 1, . . . , D}
= F n(an1x1 + bn1, an2x2 + bn2, . . . , anDxD + bnD) (1.10)

= F n(anx+ bn)→ H(x)

as n → ∞ and for the limit distribution H being non-degenerate such that each

Hi, i = 1, . . . , D is non-degenerate and must be in the GEV family, then the distribution

H is called a D-dimensional multivariate extreme value distribution and F is said to

belong to the domain of attraction of H, which we write F ∈ D(H).

These distributions have received theoretical consideration in works by de Haan

and Resnick (1977), de Haan (1985), Pickands (1981), and Resnick (1987). In the

characterization of the multivariate extreme distribution, max-stable (or min-stable)

distributions play a central role. We say a distribution H(x) is max-stable if for every

t > 0 there exist functions α(t) > 0,β(t) such that

H t(x) = H(α(t)x+ β(t)) = H(α1(t)x1 + β1(t), . . . , αD(t)xD + βD(t)). (1.11)

The following theorem describes the equivalence between multivariate extreme value

distributions and max-stable distributions.

Theorem 1.4 The class of multivariate extreme value distributions is precisely the

class of max-stable distribution functions with non-degenerate marginals.

This is Proposition 5.9 in Resnick (1987). After slight modification of Pickands’ repre-

sentation of a min-stable multivariate exponential into a representation for a max-stable

multivariate Fréchet distribution, we have

Theorem 1.5 Suppose H(x) is a limit distribution satisfying (1.10), then

H(x) = exp{−
∫

SD

max
1≤i≤D

(
wi

xi
)dG(w)} (1.12)

where G is a positive finite measure on the unit simplex

SD = {(w1, . . . , wD) :
D∑

i=1

wi = 1, wi ≥ 0, i = 1, . . . , D}

and G satisfies ∫

SD

widG(w) = 1, i = 1, . . . , D (1.13)
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Note v(x) =
∫
SD

max
1≤i≤D

(wi

xi
)dG(w) is called the exponent measure by de Haan and

Resnick (1977). So to model a multivariate extreme value distribution function is in

fact to model the measure function G. De Haan (1985) gave a simple nonparamet-

ric procedure for modeling the measure function G. Coles and Tawn (1991) argued

that parametric models are preferable when one wants simultaneously to estimate the

exponent measure and the dependence structure.

In section 1.2.1, we looked at the limit distribution of a dependent sequence of

univariate random variables, and some of the results can be extended in the multivariate

context. Suppose now {Xi = (Xi1, · · · , XiD), i = 1, 2, ...} is a D-dimensional stationary

stochastic processes with distribution function F and marginals Fd. Also let {X̂i} be

the associated sequence of i.i.d. random vectors having the same distribution function

F . Mn and M̂n are both pointwise maxima of {Xi} and {X̂i} respectively. Suppose

lim
n→∞

Pr{Mn1 ≤ un1, . . . ,MnD ≤ unD} = H(τ )

lim
n→∞

Pr{M̂n1 ≤ un1, . . . , M̂nD ≤ unD} = Ĥ(τ )
(1.14)

both exist and are nonzero, then a quantity that Nandagopalan (1990, 1994) called

the multivariate extremal index can relate the extreme value properties of a stationary

process to those of i.i.d. sequence. The multivariate extremal index is defined by

H(τ ) = Ĥ(τ )θ(τ ) (1.15)

where θ(τ ) satisfies

(i) 0 ≤ θ(τ ) ≤ 1 for all τ ,

(ii) θ(0, . . . , 0, τd, 0, . . . , 0) = θd for τd > 0, where θd is the extremal index of the dth

component process.

(iii) θ(cτ ) = θ(τ ) for all c > 0(Theorem 1.1 of Nandagopalan 1994).

Smith and Weissman (1996) pointed out that these properties are not sufficient to

characterize the function θ(τ ). They also argued two reasons why one needs to obtain

a more precise characterization to cover a much broader range of processes and to

correspond to real stochastic processes, for instance, multivariate maxima of moving

maxima processes which we are going to address in this work. The first reason is that

“the number of examples for which the multivariate extreme index has been calculated

is currently very small (Nandagopalan 1994, Weissman 1994) and it is important to
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be able to extend this class to cover a much broader range of processes”. The second

reason is that “why we need a characterization is statistical: crude estimators of θ(τ)

are easy to construct, but would not correspond to multivariate extreme index of any

real stochastic process.”

1.2.3 Basic properties of multivariate extreme value distribu-
tions

In this subsection, we study some basic properties of multivariate extreme value distri-

bution functions. The following two lemmas are very general, not restricted to MEV,

they are theorems 5.1.1 and lemma 5.2.1 in Galambos (1987).

Lemma 1.6 Let F (x) be a D-dimensional distribution function with marginals Fd(x),

1 ≤ d ≤ D. Then, for all x1, x2, . . . , xD,

max(0,
D∑

d=1

Fd(xd)−D + 1) ≤ F (x1, x2, . . . , xD) ≤ min(F1(x1), F2(x2), . . . , FD(xD)).

Lemma 1.7 Let Fn(x) be a sequence of D-dimensional distribution functions, Fnd(xd)

be the dth univariate marginal of Fn(x). If Fn(x) converges weakly to a nondegenerate

continuous distribution function F (x), then, for each d with 1 ≤ d ≤ D, Fnd(xd)

converges weakly to dth marginal Fd(xd) of F (x).

The Copula, or dependence function, is a very useful concept in the investiga-

tion of limit distributions for normalized extremes. It is an multivariate distribution

with all marginals being uniform U(0, 1).

Definition 1.1 Let F (x) be a D-dimensional distribution function, with dth univariate

margin Fd. The copula associated with F , is a distribution function C : [0, 1]m → [0, 1]

that satisfies

F (x1, x2, . . . , xD) = C[F1(x1), F2(x2), . . . , FD(xD)].

Write CF = CF (y) = C(y) over the unit cube 0 ≤ yd ≤ 1, 1 ≤ d ≤ D.

Based on the function C(y), we now re-state theorems which relate the univariate

marginals and the multivariate or dependence structure of the limit distributions.
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Theorem 1.8 If (1.10) holds, then the dependence function CH of the limit H(x)

satisfies

Ck
H(y

1/k
1 , y

1/k
2 , . . . , y

1/k
D ) = CH(y1, y2, . . . , yD)

where k ≥ 1 is an arbitrary integer. (This is Theorem 5.2.1 of Galambos 1987).

Theorem 1.9 A D-dimensional distribution function H(x) is a limit of (1.10) if and

only if its univariate marginals are of the same type as one of three type distributions

and if its copula CH satisfies the condition of Theorem 1.8. (This is theorem 5.2.4 of

Galambos 1987).

Theorem 1.9 tells in principle that if we want to determine an and bn we just need

to determine the components from the marginal limit convergence forms. Let’s look at

a simple example to illustrate how Theorem 1.9 works.

Example 1.1 Let (X,Y ) have a bivariate exponential distribution function F (x, y).

If Mn−an

bn
converges weakly to a nondegenerate distribution function H(x, y), we can

choose

an = (log n, log n) and bn = (1, 1).

1.3 Subclasses of max-stable processes

Davis and Resnick (1989) studied what they called the max-autoregressive moving av-

erage (MARMA(p,q)) process of a stationary process {Xn} which satisfy the MARMA

recursion,

Xn = φ1Xn−1 ∨ · · · ∨ φpXn−p ∨ Zn ∨ θ1Zn−1 ∨ · · · ∨ θqZn−q

for all n where φi, θj ≥ 0, 1 ≤ i ≤ p, 1 ≤ j ≤ q and {Zn} is i.i.d. with common distribu-

tion function F (x) = exp{−σx−1}. For any given {φi}, {θj}, the corresponding process

is a max-stable process. They have argued “it is unlikely that another subclass of the

max-stable processes can be found which is as broad and tractable as the MARMA

class”. Some basic properties of the MARMA processes have been shown and the pre-

diction of a max-stable process has been studied relatively completely. However, much

less is known about estimation of MARMA process. For prediction, see also Davis and

Resnick (1993). A naive estimation procedure for φi, θj’s when the order q = 1 is given

in Davis and Resnick(1989).
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Deheuvels (1983) defined what he called the moving minimum(MM) corresponding

process as

Ti = min{δkZi−k,−∞ < k <∞},−∞ < i <∞,

where δk > 0, and {Zk} are i.i.d. exponential 1. The main theorem of Deheuvels (1983)

is exactly stated as the following theorem.

Theorem 1.10 If (T0, . . . , Tm) follows a joint multivariate extreme value distribution

for minima with exponentially E(1) distributed margins, then there existm+1 sequences

{aik(n), −∞ < k < ∞} depending on n = 1, 2, . . . , of positive numbers, such that,

if Ti(n) = min{aik(n)Z−k, −∞ < k < ∞}, i = 0, . . . ,m, then (T0(n), . . . , Tm(n))

converges in distribution to (T0, . . . , Tm) as n→∞.

The results of Deheuvels (1983) are very strong, but the model itself is still not easily

tractable for the estimation of parameters. Notice that the reciprocal of 1
Ti

gives the

moving maximum processes as

1

Ti
= max{ 1

δk
Z ′i−k, −∞ < k <∞}, −∞ < i <∞

where {Z ′k} are i.i.d unit Fréchet random variables. Smith and Weissman (1996) ex-

tended this definition to a more general framework which is more realistic and is called

multivariate maxima of moving maxima (henceforth M4) process. The definition is

Yid = max
l

max
k
al,k,dZl,i−k, d = 1, · · · , D, (1.16)

where {Zli, l ≥ 1,−∞ < i < ∞} are an array of independent unit Fréchet random

variables. The constants {al,k,d, l ≥ 1,−∞ < k < ∞, 1 ≤ d ≤ D} are nonnegative

constants satisfying
∞∑

l=1

∞∑

k=−∞

al,k,d = 1 for d = 1, . . . , D (1.17)

As we have seen thatM4 processes deal with D dimensional random processes whereas

MM processes deal with univariate processes (D = 1). Under the model (1.16),

Smith and Weissman (1996) have shown very attractive results. Some are parallel to

the results of Deheuvels (1983). Although MM processes are only specified over one

index there are possibilities to easily extend to over two indexes. The extension of

MM processes to M4 processes results in hopes to estimate model parameters easily.
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Following de Haan(1984), (1.16) defines max-stable processes because for any finite

number r and positive constants {yid} we have

Pr{Yid ≤ yid, 1 ≤ i ≤ r, 1 ≤ d ≤ D}
= Pr{Zl,i−k ≤ yid

al,k,d
for l ≥ 1,−∞ < k <∞, 1 ≤ i ≤ r, 1 ≤ d ≤ D}

= Pr{Zl,m ≤ min
1−m≤k≤r−m

min
1≤d≤D

ym+k,d

al,k,d
, l ≥ 1,−∞ < m <∞}

= exp[−
∑∞

l=1

∑∞
m=−∞ max

1−m≤k≤r−m
max
1≤d≤D

al,k,d
ym+k,d

]

(1.18)

This is (2.5) of Smith and Weissman (1996) and we have

Prn{Yid ≤ nyid, 1 ≤ i ≤ r, 1 ≤ d ≤ D} = Pr{Yid ≤ yid, 1 ≤ i ≤ r, 1 ≤ d ≤ D}

which tells that {Yi} are max-stable. They have argued that the extreme values of

a multivariate stationary process may be characterized in terms of a limiting max-

stable process under quite general conditions. They also showed that a very large class

of max-stable processes may be approximated by the M4 processes mainly because

those processes have the same multivariate extremal index (Theorem 2.3 in Smith and

Weissman 1996). The theorem and conditions appear below.

Now fix τ = {τ1, . . . , τD} with 0 ≤ τd < ∞, d = 1, . . . , D. Let {und, n ≥ 1} be a

sequence of thresholds such that n{1 − Fd(und)} → τd under the model assumption.

Since Zlk is unit Fréchet we can take und = n
τd
. Denote un = (un1, . . . , und) and

Bkj (un) the σ-field generated by the events {Xid ≤ und, j ≤ i ≤ k, 1 ≤ d ≤ D} for

1 ≤ j ≤ k ≤ n. Define

αnt = sup{|P (A ∩B)− P (A)P (B)| : A ∈ Bk1(un), B ∈ Bnk+t(un)} (1.19)

where the supremum is taken over 1 ≤ k ≤ n− t and two respective σ-fields. If there

exists a sequence {tn, n ≥ 1} such that

tn →∞, tn/n→ 0, αn,tn → 0 as n→∞ (1.20)

the mixing condition 4(un) is said to hold (Nandagopalan 1994, Smith and Weissman

1996). And further, there exists a sequence {kn, n ≥ 1} such that

kn →∞, kntn/n→ 0, knαn,tn → 0 as n→∞. (1.21)

Let rn = [n/kn] the integer part of n/kn. We now exactly state a lemma and a theorem

(Lemma 2.2 and their main theorem Theorem 2.3 of Smith and Weissman 1996).
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Lemma 1.11 Suppose (1.19)-(1.21) hold. Then

θ(τ ) = lim
n→∞

Pr{Yid ≤ und, 2 ≤ i ≤ rn, 1 ≤ d ≤ D|max
d

(
Y1d
und

) > 1}. (1.22)

Alternatively, if we assume

lim
r→∞

lim
n→∞

rn∑

i=r

D∑

d=1

Pr{Yid > und|max
d

(
Y1d
und

) > 1} = 0, (1.23)

then (1.22) is equivalent to

θ(τ ) = lim
r→∞

lim
n→∞

Pr{Yid ≤ und, 2 ≤ i ≤ r, 1 ≤ d ≤ D|max
d

(
Y1d
und

) > 1}. (1.24)

This lemma is basically a restatement of results of O’Brien, for example O’Brien (1987).

Theorem 1.12 Suppose 4(un) and (1.23) hold for {Yi}, so that the multivariate

extremal index θY(τ ) is given by (1.24). Suppose also the same assumptions hold for

{Xi} (with the same tn, kn sequences). So the multivariate extremal index θX(τ ) is

also given by (1.24) with Xid replacing Yid everywhere. Then θY(τ ) = θX(τ ).

The extremal index of the process defined by (1.16) is

θ(τ ) =

∑
lmaxkmaxd al,k,dτd∑
l

∑
kmaxd al,k,dτd

. (1.25)

Although theoretical results have been obtained, the estimation of parameters in both

MARMA(p,q) and M4 processes are not well developed and the applications of the

two processes are very limited. Recently Hall, Peng and Yao (2001) discussed moving

maximum models

Yi = sup{aj−iZi, −∞ < i <∞}

where the distribution of Zi is assumed either F (z|θ) = exp(−z−θ) or the generalized

Pareto distribution F (z|θ) = 1 − (1 + z)−θ. Then for a finite number of parameters,

they chose (θ, a(m)) to minimize

Dm(θ, a(m)) =
∫
(Ĝ(y)−

k∏
i=2−m

F [min{a−1j−iyj,
max(i, 1) ≤ j ≤ min(i+m, k)}|θ])2w(y)dy,

(1.26)

where the integral is over y = (y1, . . . , yk) ∈ Rk
+ and

Ĝ(y) = (n− k)−1
n−k∑

i=1

I
(Yi+j−1≤yj for 1≤j≤k)

, (1.27)

and w is a nonnegative weight function. We state their main theorem as follows.
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Theorem 1.13 Under conditions

• F has support on the positive half-line, and is in the domain of attraction of a

Type II extreme value distribution.

• each ai is nonnegative and, for some ε ∈ (0, r), 0 <
∑

i a
r−ε
i <∞.

then

sup
−∞<y1,...,yk<∞

|Pr(Y ∗1 ≤ y1, . . . , Y
∗
k ≤ yk|Y1, . . . , Yn)− Pr(Y1 ≤ y1, . . . , Yk ≤ yk)| → 0

(1.28)

where Y ∗j is defined by

Y ∗j = sup{âj−iZ∗i , −∞ < i <∞}

âj−i and θ̂ are solutions of (1.26) and Z∗i has distribution function F (.|θ̂). More-

over, if m ≥ C4(log n)
2 for C4 sufficiently large, the rate of convergence in (1.28) is

Op(n
−(1/2)+δ) for all δ > 0.

Our present work on the estimation ofM4 processes is somewhat parallel to Hall et

al. (2001)’s work. In contrast to the bootstrapped processes which Hall et al. (2001)

used to construct confidence intervals and prediction intervals, we directly construct

parameter estimators and prove their asymptotic properties. We will systematically

solve the estimation problems of M4 processes in this work.
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Chapter 2

Probabilistic Properties of
Multivariate Maxima of Moving
Maxima Processes and Basic
Estimation of Parameters

2.1 Introduction

In this chapter we consider the model specified in Smith and Weissman (1996), ex-

tend some properties and propose estimating procedures which determine max moving

range, signature patterns and estimation of parameters.

Let {Zlk, l ≥ 1,−∞ < k < ∞} be an array of independent unit Fréchet random

variables. Smith and Weissman (1996) studied the following process which they call

M4 process.

Yid = max
l

max
k

al,k,dZl,i−k, d = 1, · · · , D,

for nonnegative constants {al,k,d, l ≥ 1,−∞ < k <∞} satisfying
∑∞

l=1

∑∞
k=−∞ al,k,d =

1 for d = 1, · · · , D.

Since in practice we will not have infinitely many parameters, usually we have

l = 1, · · · , L and −K1 ≤ k ≤ K2 for some finite numbers L, K1 and K2. Here L

corresponds to the maximum number of moving patterns. And K1 and K2 characterize

the range of the sequence dependence. We will focus on the finite dimensional M4

process which we state as

Yid = max
1≤l≤L

max
−K1≤k≤K2

al,k,dZl,i−k, d = 1, · · · , D, (2.1)

where
∑L

l=1

∑K2
k=−K1

al,k,d = 1 for d = 1, · · · , D.



The model assumptions made here can be related to some real motivations in insur-

ance and finance as well as environmental engineering. For example, insurance claims

result from different factors (or patterns) and claims are usually made within a cer-

tain period. Stock market variation results from an internal or external big market

price movement and will last a certain period. As we mentioned in section 1.1, the

exceedance over threshold approaches have been advocated in modern extreme value

theory applications. The exceedances over a high threshold of the observed process are

modeled as the exceedances over threshold of anM4 process. We are not modeling the

whole process as M4.

Under model (2.1), it is easily to obtain the finite distribution of {Yid, 1 ≤ i ≤
r, 1 ≤ d ≤ D} as a consequence of (1.18). The distribution has the following form

Pr{Yid ≤ yid, 1 ≤ i ≤ r, 1 ≤ d ≤ D} = exp[−
L∑

l=1

r+K1∑

m=1−K2

max
1−m≤k≤r−m

max
1≤d≤D

al,k,d
ym+k,d

]

where al,k,d = 0 for k < −K1 or k > K2. The goal is to estimate all parameters

{al,k,d} under the constraints that all parameters are nonnegative and the summation

is equal to 1 for each d = 1, . . . , D. Due to the singularity that appears in the distri-

bution function, maximum likelihood method is not directly applicable because of the

singularities. One way to avoid this problem is to use a grouped likelihood approach,

which has been advocated in similar circumstances by Barnard (1965) and Kempthorne

(1966), and developed in detail by Giesbrecht and Kempthorne (1976) for the particu-

lar case of a three parameter log-normal distribution. But this is not so easy to apply

in a multivariate context, so we consider alternative approaches.

In this work, first we study the structure of model (2.1) and prove probabilistic

properties which can be used to construct estimating procedures. Second, we study

empirical distribution functions of the finite number of random variables. Guaranteed

by the strong law of large numbers or ergodicity, we are able to construct estimators of

all parameters and prove the consistency and asymptotics of the proposed estimators.

We will start from simple examples which help us to understand the model structure

and easily construct some basic estimating procedure which is based on the probabilistic

properties of theM4 process. The related results are illustrated in section 2.2. Then in

section 2.4 we study more general case and develop an estimating procedure which first

estimates the weights within the same pattern and then estimates the weights among

patterns.
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2.2 Extended properties

Under model (2.1), it is possible that a big value of Zlk (unobservable) dominates

all other values within a certain period of length K2 + K1 + 1 and there is a strong

dependence among the big values (this is part of motivation for the model (2.1)).

Actually this occurs infinitely many times of the whole process. It will be clear after

looking at some examples and some theoretical results later on.

Consider now a simplified model,

Yid = max
−K1≤k≤K2

akdZi−k, (2.2)

which is corresponding to L = 1 (single pattern).

Define

Ad
t = [a−K1dZt+K1 ≥ max

−K1≤k≤K2
k 6=−K1

akdZt−k,

a−K1+1,dZt+K1 ≥ max
−K1≤k≤K2
k 6=−K1+1

akdZt+1−k, (2.3)

...

aK2dZt+K1 ≥ max
−K1≤k≤K2

k 6=K2

akdZt+K1+K2−k]

We have Pr(Ad
t ) > 0, t ≥ 1. We now derive the explicit form of Pr(Ad

t ). Denote

Adz
t = [a−K1dz ≥ max

−K1≤k≤K2
k 6=−K1

akdZt−k,

a−K1+1,dz ≥ max
−K1≤k≤K2
k 6=−K1+1

akdZt+1−k, (2.4)

...

aK2dz ≥ max
−K1≤k≤K2

k 6=K2

akdZt+K1+K2−k]

Based on (2.3), we can draw the following diagram:

Zt−K2 · · · Zt−2 Zt−1 Zt Zt+1 · · · Zt+K1−1 Zt+K1 Zt+K1+1 Zt+K1+2 · · ·
aK2d · · · a2d a1d a0d a−1d · · · a−K1+1,d a−K1d

· · · a3d a2d a1d a0d · · · a−K1+2,d a−K1+1,d a−K1d
...

aK2d aK2−1,d aK2−2,d · · ·

18



then
Pr(Azd

t ) = Pr(Zt−K2 ≤
a−K1d

aK2d
z,

Zt−K2+1 ≤ min(
a−K1d

aK2−1,d
,
a−K1+1,d

aK2d
)z

· · ·
Zt+K1−1 ≤ min(

a−K1d

a−K1+2,d
,
a−K1+1,d

a−K1+2,d
, . . . ,

aK2−2,d
aK2d

)z

Zt+K1+1 ≤ min(
a−K1+1,d

a−K1d
,
a−K1+2,d

a−K1+1,d
, . . . ,

aK2d
aK2−1,d

)z

Zt+K1+2 ≤ min(
a−K1+2,d

a−K1d
,
a−K1+3,d

a−K1+1,d
, . . . ,

aK2d
aK2−2,d

)z

· · ·
Zt+2K1+K2−1 ≤ min(

aK2−1,d
a−K1d

,
aK2,d

a−K1+1,d
)z

Zt+2K1+K2 ≤
aK2d
a−K1d

z)

= exp[−1
z
{
K1+K2∑
j=1

(
j∧
i=1

a−K1+i−1,d

aK2−j+i,d
+

j∧
i=1

aK2−i+1,d

a−K1+j−i,d
)}]

= exp[−∆d

z
]

so

Pr(Ad
t ) =

∫ ∞

0

Pr(Azd
t )

1

z2
e−

1
z dz =

∫ ∞

0

1

z2
e−

1+∆d
z dz =

1

(1 + ∆d)2

thus

Pr(Ad
t ) =

1

[1 +
K1+K2∑
j=1

(
j∧
i=1

a−K1+i−1,d

aK2−j+i,d
+

j∧
i=1

aK2−i+1,d

a−K1+j−i,d
)]2
. (2.5)

For P (Ad
tA

d
t+m), it is clear P (A

d
tA

d
t+m) = (P (Ad

t ))
2 if m > K1 +K2. Suppose 1 ≤ m ≤

K1 +K2, then

from At we get

a−K1+m,dZt+K1 ≥ a−K1dZt+m+K1 , (2.6)

from Ad
t+m we get

a−K1dZt+m+K1 ≥ a−K1+m,dZt+K1 . (2.7)

So (2.6) and (2.7) imply a−K1+m,dZt+K1 = a−K1dZt+m+K1 , thus

P (Ad
tA

d
t+m) =

{
(P (Ad

t ))
2 if m > K1 +K2,

0 if 1 ≤ m ≤ K1 +K2.
(2.8)

We have the following lemma.

Lemma 2.1 Under the model (2.2), for each d we have

Pr(Ad
t , i.o.) = 1
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Proof. Let {t1, t2, · · · , } be subsequence of {t ≥ 1} such that ti+1− ti > K1+K2, i ≥ 1,

then {Ad
ti
} is an independent sequence of events. By the Borel-Cantelli lemma for

independent events we get

Pr(
∞⋂

i=1

∞⋃

n=i

Ad
tn) = 1

since P (Ad
ti
) > 0. But

∞⋂

t=1

∞⋃

n=t

Ad
n ⊇

∞⋂

i=1

∞⋃

n=i

Ad
tn ,

so

Pr(Ad
t , i.o.) = Pr(

∞⋂

t=1

∞⋃

n=t

Ad
n) = 1

and this completes the proof. 2

This theorem tells there are an infinite number of time periods within which the

process is driven by a single extreme jump. For example, a real-world interpretation

might be that a flood in a certain region and a certain time period is caused by a

specific hurricane. The strengths of different hurricanes are different and the costs are

different. Or we say they follow different patterns.

We have following theorems.

Corollary 2.2 Under the model (2.2), for each d we have

P (Ytd = a−K1dZt+K1 , Yt+1,d = a−K1+1,dZt+K1 , · · · , Yt+K2+K1,d = aK2dZt+K1 , i.o.) = 1

or

P (
Ytd

Ytd + Yt+1,d + · · ·+ Yt+K2+K1,d
= a−K1d, i.o.) = 1, (2.9)

and equivalently

P (
Yt+m,d

Ytd + Yt+1,d + · · ·+ Yt+K2+K1,d
= a−K1+m,d, i.o.) = 1 (2.10)

m = 0, · · · , K1 +K2

Proof. The condition defining the set Ad
t implies

Ytd = a−K1dZt+K1 , Yt+1,d = a−K1+1,dZt+K1 , · · · , Yt+K2+K1,d = aK2dZt+K1 ,

and hence by the theorem we have proved the corollary. 2
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Theorem 2.3 Under the model (2.2), if P (
Yt+m,d

Ytd+Yt+1,d+···+Yt+K2+K1,d
= cmd, i.o.) = 1

for m = 0, · · · , K1 +K2, then cmd = aK1+m,d and those {Ytd, · · · , Yt+K1+K2,d} form the

events Ad
t if

Yt+m,d

Ytd+Yt+1,d+···+Yt+K2+K1,d
= cmd.

Remark: The theorem says, for example when m = 0, there is only one constant

c0d = a−K1d such that (2.9) is true. And if
Yt+m,d

Ytd+Yt+1,d+···+Yt+K2+K1,d
= cmd is true for one

m, it is true for all m.

Proof. We only prove the case when m = 0. Define random variables

Ttd = sI(Ytd=at−s,dZs).

Notice that t−K2 ≤ s ≤ t+K1 and Ttd is uniquely defined for each t and hence for all t

because the Zts have an absolutely continuous distribution. The event Ad
t corresponds

to

Ttd = Tt+1,d = · · · = Tt+K1+K2,d = t+K1.

Suppose now we have that

Ytd
Ytd + Yt+1,d + · · ·+ Yt+K2+K1,d

= pd (2.11)

occurs infinitely many times for pd 6= a−K1d, then Ttd, Tt+1,d, · · · , Tt+K1+K2,d must follow

one of the following two cases.

(1) Ttd = Tt+1,d = · · · = Tt+K1+K2,d = t + K, where K 6= K1, K ∈ {−K2,−K2 +

1, · · · , K1 − 1}

(2) Ttd, Tt+1,d, · · · , Tt+K1+K2,d contain at least two different values.

For case 1, Ytd = a−KdZt+K , Yt+1,d = a1−K,dZt+K , · · · , Yt+K1+K2,d = aK1+K2−K,dZt+K =

0 since K1+K2−K > K2, and aK2+1,d = aK2+2,d = · · · = 0. This is a contradiction to

Ytd > 0 all t.

For case 2, this means the LHS of (2.11) is a function of at least two different Zt’s,

because if they are the same, the value must be equal to t+K1 which corresponds to

pd = a−K1d, otherwise it is the case (i). (2.11) can be written into

at−s1,dZs1
at−s1,dZs1 + at+1−s2,dZs2 + · · ·+ at+K1+K2−sK1+K2+1,dZsK1+K2+1

= pd (2.12)

where s1, s2, . . . , sK1+K2+1 depend on t. Since the range of t − s1, t + 1 − s2, . . . , t +

K1 + K2 − sK1+K2+1 is finite under the assumption of (2.2), there are fixed numbers
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h0, h1, . . . , hK1+K2 such that

ah0,dZs1
ah0,dZs1 + ah1,dZs2 + · · ·+ ahK1+K2,dZsK1+K2+1

= pd (2.13)

occurs infinitely many times. This implies

Pr(
ah0,dZs1

ah0,dZs1+ah1,dZs2+···+ahK1+K2,d
ZsK1+K2+1

=
ah0,dZs′1

ah0,dZs′1
+ah1,dZs′2

+···+ahK1+K2,d
Zs′

K1+K2+1

) > 0
(2.14)

for some s1, s2, . . . , sK1+K2+1 and s′1, s
′
2, . . . , s

′
K1+K2+1 such that

max(s1, s2, . . . , sK1+K2+1) < min(s′1, s
′
2, . . . , s

′
K1+K2+1).

But (2.14) is not possible since all Zt’s are continuous random variables and the quantity

of the LHS in the bracket in (2.14) is independent of the quantity of the RHS in the

bracket in (2.14). This shows that (2.11) can not be true.

Suppose now (2.11) occurs at t = t1 and t2, i.e.

Pr(
ah0,dZs1

ah0,dZs1+ah1,dZs2+···+ahK1+K2,d
ZsK1+K2+1

=
ah′0,d

Zs′1

ah′0,d
Zs′1

+ah′1,d
Zs′2

+···+ah′
K1+K2

,dZs′
K1+K2+1

= pd) > 0
(2.15)

then s1, s2, . . . , sK1+K2+1 and s′1, s
′
2, . . . , s

′
K1+K2+1 must have some common values,

otherwise (2.15) cannot be true. But (2.15) implies (2.13) occurs infinitely often, and

(2.13) implies (2.14) and so we have (2.11) cannot occur even twice.

Both cases have shown contradictions for pd 6= aK1 . So c0d = a−K1dand those

{Ytd, · · · , Yt+K1+K2,d} form events Ad
t , therefore the proof is completed. 2

The following theorem tells that the range cannot be over K2 +K1 + 1 numbers in

order to get infinitely many ratios which are equal to a constant.

Theorem 2.4 Under the model (2.2), for each d

P (
Ytd

Ytd + Yt+1,d + · · ·+ Yt+K2+K1+1,d

= cd, i.o.) = 0

for any constant cd.

Proof. Because Ytd and Yt+K1+K2+1,d cannot be written as functions of just one Zt,
Ytd

Ytd+Yt+1,d+···+Yt+K2+K1+1,d
is a function of at least two different Zt’s. The proof then

follows by the same arguments as in Theorem 2.3. 2
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Theorems 2.3 and 2.4 tell that in order to estimate the parameter a−K1+m, we only

need to observe two equal values of
Yt1+m,d

Yt1d+···+Yt1+K1+K2,d
,

Yt2+m,d

Yt2d+···+Yt2+K1+K2,d
at time t1 and

t2, where t2− t1 > K1 +K2. Naturally one wants to know how fast a sequence defined

by
Yt+m,d

Ytd+···+Yt+K1+K2,d
, t = 1, 2, ..., reaches the desired value a−K1+m,d. We use discrete

time Markov chain method to study this problem in section 2.5.

2.3 Examples of M4 processes

In order to have insight into what the theorems have shown, now we turn to give some

examples to demonstrate applications of the theorems.

2.3.1 Case L = 1

Example 2.1 Consider the model

Ytd = max(a1dZt−1, a0dZt), d = 1, . . . , D

Define

Ad
t = [a1dZt−1 ≤ a0dZt, a1dZt ≤ a0dZt+1]

We have P (Ad
t ) > 0, so by Theorem 2.3,

P (Ytd = a0dZt, Yt+1,d = a1dZt, i.o.) = 1

or

P (
Yt+1,d

Ytd
=
a1d
a0d

=
1− a0d
a0d

=
1

a0d
− 1, i.o.) = 1.

We seek all those ratios of
Yt+1,d
Ytd

such that the ratios are close to a constant. Or

equivalently consider

P (
Ytd

Ytd + Yt+1,d

= a0d, i.o) = 1

The ratios are bounded and in [0,1], we have a1d = 1 − a0d. In this way we can find

accurate estimates for parameters. Figure 2.1 plots the partial points from the original

sequence and points from (2.9). Those points falling onto a horizontal line (in the right

figure) correspond to those spikes with same shape (in the left figure). Those spikes

follow the same moving pattern. The intercept of the line to vertical axis gives the

value of a0d.
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Figure 2.1: Left figure is a time series plot of 150 observations of process Ytd =
max(a1dZt−1, a0dZt) for some d. Right figure is a time series plot of 3000 observations
of ratios Ytd

Ytd+Yt+1,d
. The value of a0d can be read from the right figure.

Example 2.2

Ytd = max(a1dZt−1, a0dZt, a−1dZt+1)

Define
Ad
t = [a−1dZt+1 ≥ max(a1dZt−1, a0dZt),

a0dZt+1 ≥ max(a1dZt, a−1dZt+2),
a1dZt+1 ≥ max(a0dZt+2, a−1dZt+3)]

we have P (Ad
t ) > 0, so by Theorem 2.3,

P (Ytd = a−1dZt+1, Yt+1,d = a0dZt+1, Yt+2,d = a1dZt+1, i.o.) = 1

or

P (
Ytd

Ytd + Yt+1,d + Yt+2,d

= a−1d, i.o.) = 1.

Equivalently,

P (
Yt+1,d

Ytd + Yt+1,d + Yt+2,d

= a0d, i.o.) = 1

and

P (
Yt+2,d

Ytd + Yt+1,d + Yt+2,d

= a1d, i.o.) = 1.

Figure 2.2 again shows the significant pattern of value a−1d.

Examples 2.1 and 2.1 have shown how to get the moving coefficients in each indi-

vidual process, but we are mainly interested in multivariate processes. In other words,
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Figure 2.2: Left figure is a time series plot of 150 observations of process Ytd =
max(a1dZt−1, a0dZt, a−1dZt+1) for some d. Right figure is a time series plot of 3000
observations of ratios Ytd

Ytd+Yt+1,d+Yt+2,d
. The value of a−1d can be read from the right

figure.

we need to know how to distinguish different processes. For example we have two

bivariate processes {
Yi1 =

1
2
max(Z1,i−1, Z1,i)

Yi2 =
1
3
max(Z1,i−1, Z1,i, Z1,i+1)

(2.16)

{
Yi1 =

1
2
max(Z1,i−1, Z1,i)

Yi2 =
1
3
max(Z1,i, Z1,i+1, Z1,i+2)

(2.17)

By plotting
Yi1

Yi1 + Yi+1,1

,
Yi+1,1

Yi1 + Yi+1,1

or
Yi2

Yi2 + Yi+1,2 + Yi+2,2

,
Yi+1,2

Yi2 + Yi+1,2 + Yi+2,2

,
Yi+2,2

Yi2 + Yi+1,2 + Yi+2,2

we can get all coefficients 1
2
and 1

3
, which can be read off from the pictures. But we

need to know which model, (2.16) or (2.17), is the true model. We now study this.

When
Yi1

Yi1 + Yi+1,1

=
1

2
,

Yi+1,1

Yi1 + Yi+1,1

=
1

2

were from Z1,i, then

Yi−1,2
Yi−1,2 + Yi,2 + Yi+1,2

=
1

3
,

Yi,2
Yi−1,2 + Yi,2 + Yi+1,2

=
1

3
,

Yi+1,2

Yi−1,2 + Yi,2 + Yi+1,2

=
1

3
(2.18)
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for model (2.16), but

Yi−2,2
Yi−2,2 + Yi−1,2 + Yi,2

=
1

3
,

Yi−1,2
Yi−2,2 + Yi−1,2 + Yi,2

=
1

3
,

Yi,2
Yi−2,2 + Yi−1,2 + Yi,2

=
1

3
(2.19)

for model (2.17). So if (2.18) is the case we conclude model (2.16), otherwise it’s model

(2.17). Some other comparison also can be done in order to distinguish the models.

2.3.2 Case L > 1

Now consider L > 1, where the model is (2.1). Define for each l

Ald
t = [al,−K1,dZl,t+K1 ≥ max

−K1≤k≤K2
k 6=−K1

al,k,dZl,t−k,

al,−K1+1,dZl,t+K1 ≥ max
−K1≤k≤K2
k 6=−K1+1

al,k,dZl,t+1−k, (2.20)

...

al,K2,dZl,t+K1 ≥ max
−K1≤k≤K2

k 6=K2

al,k,dZl,t+K1+K2−k].

Remark: we can define such event for all l simultaneously, but we don’t need here.

Notice P (Ald
t ) > 0, so by Theorem 2.3, for each m = 0, 1, · · · , K1 +K2, we have

P (
Yt+m,d

Ytd+Yt+1,d+···+Yt+K2+K1
,d
=

al,−K1+m,d

al,−K1,d
+al,−K1+1,d

+···+al,K2,d
, i.o.) = 1 (2.21)

We expect to have L signature patterns on the plot of
Yt+m,d

Ytd+Yt+1,d+···+Yt+K2+K1
,d
, and these

patterns give estimates of
al,−K1+m,d

al,−K1,d
+al,−K1+1,d

+···+al,K2,d
, 1 ≤ l ≤ L. Figure 2.3 shows three

different signature patterns (points fall onto 3 horizontal lines) which correspond to

L = 3. As we have already seen, the plots give accurate estimates of the ratios. When

L = 1, we can exactly get all the values of akd. But for L > 1 we cannot. Even

for L = 1, we have assumed that the model assumptions are exactly satisfied, not

something we would expect to use in practice. Also, the whole method presupposes

that the margins are transformed into unit Fréchet margin and this wouldn’t be exact

in practice, either. We need to develop estimation procedures to obtain estimates of

al,k,d in a more practical way. We study this in Chapter 3. In the next section we still

assume that the model assumptions are exactly satisfied but L is greater than 1.
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Figure 2.3: A demo of multiple signature patterns.

2.4 Estimation of weight parameters

In the previous section, (2.21) gives estimates of
al,−K1+m,d

al,−K1,d
+al,−K1+1,d

+···+al,K2,d
, not the

parameters themselves. We solve this problem in this section. Rewrite the model as

Yid = max
1≤l≤L

max
−K1≤k≤K2

al,k,dZl,i−k

= max
1≤l≤L

bld max
−K1≤k≤K2

cl,k,dZl,i−k (2.22)

where bld is the weight of l’s signature pattern and such that
∑

l bld = 1 and
∑

k cl,k,d = 1

for each l and d.

It is easy to show P (Y1d ≤ y1d) = e
− 1

y1d from (1.18). As mentioned in section

2.1 our goal is to approximate the distribution function and from the approximation

we obtain estimates of all parameters. Since the univariate distribution studied here

does not relate any parameters to the distribution function, we seek a jointly k-variate

distribution function approximation. Throughout this work we will consider k = 2

only because the cases of k > 2 can be generalized from the case k = 2. First we have,

P (Y1d ≤ y1d, Y2d ≤ y2d) = exp[−
L∑

l=1

bld

2+K1∑

m=1−K2

max(
cl,1−m,d
y1d

,
cl,2−m,d
y2d

)] (2.23)

where cl,K2+1,d = 0, cl,−K1−1,d = 0

Under the model (2.22) all cl,k,d can be estimated by looking into

P (
Yt+m,d

Ytd + Yt+1,d + · · ·+ Yt+K2+K1,d
= cl,−K1+m,d, i.o.) = 1 (2.24)
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and therefore we only need to estimate bld.

It is known that an empirical process approximates the random process from which

observations are obtained. Let A be any subset of R2
+ = (0,∞)× (0,∞) and define

Xid = IA(Yid, Yi+1,d).

Let µd be the mean of Xid, then

E(Xid) = P ((Yid, Yi+1,d) ∈ A) = µd

V ar(Xid) = E(X2
id)− (E(Xid))

2 = µd − µ2d

By appropriately choosing A, we can construct parameter estimators.

2.4.1 Estimation using independent observed values from a
dependent sequence

Now let A1d = (0, x1d)× (0, x′1d), · · · , AL−1,d = (0, xL−1,d)× (0, x′L−1,d) be different and

define

X̄Ajd
=

1

n

n∑

i=1

IAjd
(Y ′id, Y

′
i+1,d) (2.25)

where (Y ′id, Y
′
i+1,d) are i.i.d pairs taken from an M -dependent time series, which we

study in this work. Then SLLN implies

X̄Ajd

a.s.−→ P (Ajd) = P (Y1d ≤ xjd, Y2d ≤ x′jd). (2.26)

Now let

exp[−
L∑

l=1

b̂ld

2+K1∑

m=1−K2

max(
cl,1−m,d
xjd

,
cl,2−m
x′jd

)] = X̄Ajd
, j = 1, · · · , L− 1 (2.27)

then we can construct parameter estimators from solving D systems of linear equations





∑L
l=1 b̂ld

∑2+K1
m=1−K2

max(
cl,1−m,d

x1d
,
cl,2−m,d

x′1d
) = − log(X̄A1d)

...∑L
l=1 b̂ld

∑2+K1
m=1−K2

max(
cl,1−m,d

xL−1,d
,
cl,2−m,d

x′
L−1,d

) = − log(X̄AL−1,d
)

∑L
l=1 b̂ld = 1

(2.28)

We choose values of x1d, x
′
1d, · · · , xL−1,d, x′L−1,d such that this system of linear equations

has unique solution. Since now cl,k,d’s are known, we are able to choose values of
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x1d, x
′
1d, · · · , xL−1,d, x′L−1,d such that the determinant of the system of linear equations is

not zero. This may not be true for some special cases, for example when all coefficients

are identical we get
∑L

l=1 b̂ld = 1 for each equation of those L equations in (2.28).

We say two signature patterns, lth and l′th, are identical when the coefficients can

be written as

bld(cl,−K1,d, cl,−K1+1,d, · · · , cl,K2,d),

bl′d(cl,−K1,d, cl,−K1+1,d, · · · , cl,K2,d).

The identical patterns have the following property:

max(bld max
−K1≤k≤K2

cl,k,dZl,i−k, bl′d max
−K1≤k≤K2

cl′,k,dZl′,i−k)
d
= (bld + bl′d) max

−K1≤k≤K2
cl′,k,dZ

′
l,i−k

where Z ′l,i−k’s are unit Fréchet. We assume there are no identical patterns in models

considered in this section. The results may apply to some cases when there exist

identical patterns.

For a specific d, define

∆d =




2+K1∑
m=1−K2

max(
c1,1−m,d

x1d
,
c1,2−m,d

x′1d
) · · ·

2+K1∑
m=1−K2

max(
cL,1−m,d

x1d
,
cL,2−m,d

x′1d
)

...
. . .

...
2+K1∑

m=1−K2

max(
c1,1−m,d

xL−1,d
,
c1,2−m,d

x′
L−1,d

) · · ·
2+K1∑

m=1−K2

max(
cL,1−m,d

xL−1,d
,
cL,2−m,d

x′
L−1,d

)

1 · · · 1



.

i.e. |∆d| is the determinant of the system of linear equations. Assume now the L

determinants of the (L− 1)× (L− 1) matrices formed from the bottom L− 1 rows are

not all zero. For fixed x′1d, since cl,k,d are known and
∑2+K1

m=1−K2
cl,i−m,d = 1, i = 1, 2,

then there exist xmin,d and xmax,d such that when x1d < xmin,d or x1d > xmax,d, all

elements of first row in ∆d are 1
x1d

or 1
x′1d

respectively. And so when x1d < xmin,d or

x1d > xmax,d, |∆d| = 0. When x1d varies in [xmin,d, xmax,d], denote ∆d by ∆d(x1d), then

|∆d(x1d)| =
1

x1d

∑
cijd|∆d|1j +

1

x′1d

∑
ci′j′d|∆d|1j′ (2.29)

where |∆d|1j 6= 0, |∆d|1j′ 6= 0 are the (1, j) or (1, j ′) minors of ∆d. Both summations

are over all non-zero minors of the first row of ∆d and the corresponding
cijd
x1d

or
ci′j′d
x′1d

.

If |∆d(x1d)| = 0, by varying x1d in [xmin,d, xmax,d], at some point x, some 1
x1d
cijd|∆d|1j of

the summation 1
x1d

∑
cijd|∆d|1j change to 1

x′1d
ci′j′d|∆d|1j′ and add to 1

x′1d

∑
ci′j′d|∆d|1j′ ,

or vice versa, and this change results in |∆d(x)| 6= 0. Hence it cannot be true that
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|∆d| = 0 for all x1d. This argument can be applied to lower dimension matrices. On

the other hand, we can start from a 2 × 2 matrix and extend it to L × L matrix

such that the determinant is not zero as required. Therefore, there exist constants

x1d, x
′
1d, · · · , xL−1,d, x′L−1,d such that each system of linear equations (2.28) has a unique

solution.

So we get

b̂ld =
∑L−1

j=1 θljd log(X̄Ajd
) + constantld

a.s.−→
∑L−1

j=1 θljd log(Pr(Ajd)) + constantld = bld
(2.30)

for suitable constants θljd which are the elements of the inverse of ∆d . Let

µjd = E(IAjd
(Y ′1d, Y

′
2d)) = Pr(Ajd)

µijd = E(IAid
(Y ′1d, Y

′
2d)IAjd

(Y ′1d, Y
′
2d)) = E(IAidAjd

(Y ′1d, Y
′
2d)) = Pr(AidAjd)

then we have well-known asymptotic normality properties.

Proposition 2.5 If (Y ′id, Y
′
i+1,d) are i.i.d pairs, and X̄Ajd

is defined as in (2.25), then

(i)
√
n(X̄Ajd

− µjd)
d−→ N(0, µjd − µ2jd)

(ii)
√
n(log(X̄Ajd

)− log(µjd))
d−→ N(0,

µjd−µ
2
jd

µ2
jd

)

(iii)
√
n






X̄A1d
...

X̄AL−1,d


−



µ1
...

µL−1





 d−→ N(0,Σd),

where

{
σijd = µijd − µidµjd if i 6= j,

σijd = µid − µ2id if i = j.

The proofs are trivial and can be found in most theoretical statistical books, for example

Arnold (1990), Chen (1981). 2

Theorem 2.6 For each l,

√
n(̂bld − bld)

d−→ N(0, σ2ld)

where

σ2ld = (
θl1d
µ1d

, · · · , θl,L−1,d
µL−1,d

)Σd




θl1d
µ1d
...

θl,L−1,d
µL−1,d



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Proof. By the mean-value theorem,

√
n(̂bld − bld) =

√
n[
dh

dξ
]′






X̄A1d
...

X̄AL−1,d


−




µ1d
...

µL−1,d







where h(µd) =
∑L−1

j=1 θljd log(µjd), [
dh
dµd

]′ = ( θl1d
µ1d
, · · · , θl,L−1,d

µL−1,d
) and ξ′ is between (X̄A1d , · · · ,

X̄AL−1,d
) and (µ1d, · · · , µL−1,d). By the proposition and Slutsky theorem,

√
nh′(ξ)T






X̄A1d
...

X̄AL−1,d


−




µ1d
...

µL−1,d





 d−→ [ dh

dµd
]′Z, Z ∼ N(0,Σd)

∼ N(0, [ dh
dµd

]′Σ[ dh
dµd

])

and this completes the proof. 2

A generalization of the theorem to the joint distribution of b̂1d, ..., b̂Ld can be

obtained and the proof arguments are similar. We have

Theorem 2.7
√
n(b̂d − bd)

d−→ N(0,ΘdΣdΘ
′
d),

where

b̂d =




b̂1d
b̂2d
...

b̂Ld


 ,bd =




b1d
b2d
...
bLd


 ,Θd =




θ11d/µ1d θ12d/µ2d · · · θ1,L−1,d/µL−1,d
θ21d/µ1d θ22d/µ2d · · · θ2,L−1,d/µL−1,d

...
...

. . .
...

θL,1d/µ1d θL,2d/µ2d · · · θL,L−1,d/µL−1,d


 .

Note: ΘdΣdΘ
′
d is singular because

∑L
l=1 b̂ld = 1.

We still need to specify the asymptotic joint distribution of all bld. Now let

µijdd′ = E(IAid
(Y ′1d, Y

′
2d)IAjd′

(Y ′1d′ , Y
′
2d′)).

Σ = (Σdd′)

where each component of Σ is a covariance matrix. Σdd = Σd, Σdd′(ij) = µijdd′ −
µijdµijd′ . Then we have the following generalization.

Corollary 2.8
√
n(b̂− b)

d−→ N(0,ΘΣΘ′),

where

b̂ =




b̂1

b̂2
...

b̂D


 ,b =




b1

b2
...
bD


 ,Θ =




Θ1

Θ2

. . .

ΘD


 .
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2.4.2 Estimation using the whole dependent sequence

In subsection 2.4.1, we were using independent draws from the bivariate distribution of

(Ytd, Yt+1,d) for each d. Since the observed process is a dependent process, independent

draws do not contain all information from the data. The estimates may not be accurate.

If we use the entire observed process to estimate all parameters, the efficiency of the

estimators may be higher and of course it is a more realistic scenario for practical

applications.

Like previous subsection, we estimate parameters associated to dth series by the

observed values of that series. We now drop the sub-index d from Ytd, al,k,d, etc. We

write Yt, alk only.

We use the same notations ( without index d ) as in section 2.4.1, for Ajs and define

X̄Aj
=

1

n

n∑

i=1

IAj
(Yi, Yi+1)

which means we use the original observations which are an M -dependent sequence

(M = K1 +K2 + 1 here). In order to derive similar results as in section 2.4.1 without

loss of data information, we will apply ergodicity. We quote an ergodic theorem here,

whose proof can be found in Billingsley (1995).

Let (Ω,F , µ) be a complete probability space and T : Ω→ Ω be a one-to-one onto

map such that T and T−1 are both measurable: T−1F = TF = F . Assume further

that µ(T−1E) = µ(E) for all E ∈ F . A map T satisfying these conditions is called

a measure-preserving transformation (or m.p.t. for short). The F -set A is invariant

under T if T−1A = A; it is a nontrivial invariant set if 0 < µ(A) < 1. And T is

said ergodic if there are no nontrivial invariant sets in F . A measurable function f is

invariant if f(Tω) = f(ω) for all ω.

Theorem 2.9 The ergodic theorem Suppose that T is a m.p.t. on (Ω,F , µ) and

that f is measurable and integrable. Then

lim
n

1

n

n∑

k=1

f(T k−1ω) = f̂(ω)

with probability 1, where f̂ is invariant and integrable and E[f̂ ] = E[f ]. If T is ergodic,

then f̂ = E[f ] with probability 1.
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If f = IA and T is ergodic, we have

lim
n

1

n

n∑

k=1

IA(T
k−1ω) = P (A)

with probability 1.

By the mean-value ergodic theorem

X̄Aj

a.s.−→ E(IAj
(Yi, Yi+1)) = Pr(Aj)

where T is taken to be a Bernoulli shift. And again we apply the same method we had

in section 2.4.1, we get

b̂l =
∑L−1

j=1 θlj log(X̄Aj
) + constantl

a.s.−→ ∑L−1
j=1 θlj log(Pr(Aj)) + constantl = bl

In order to study asymptotic normality, we introduce the following proposition which is

Theorem 27.4 in Billingsley (1995). First we introduce the so-called α-mixing condition.

For a sequence Y1, Y2, ... of random variables, let αn be a number such that

| P (A ∩B)− P (A)P (B) |≤ αn

for A ∈ σ(Y1, ..., Yk), B ∈ σ(Yk+n, Yk+n+1, ...), and k ≥ 1, n ≥ 1. When αn → 0, the

sequence {Yn} is said to be α-mixing. This means that Yk and Yk+n are approximately

independent.

Proposition 2.10 Suppose that X1, X2, · · · , is stationary and α-mixing with αn =

O(n−5) and that E[Xn] = 0 and E[X12
n ] <∞. If Sn = X1 + · · ·+Xn, then

n−1Var[Sn]→ σ2 = E[X2
1 ] + 2

∞∑

k=1

E[X1X1+k],

where the series converges absolutely. If σ > 0, then Sn/σ
√
n

d→ N(0, 1).

Remark: The constants αn = O(n−5) and E[X12
n ] < ∞ are stronger than necessary

as stated in the remark followed Theorem 27.4 in Billingsley (1995) to avoid technical

complication in the proof.

Proposition 2.11 If σj > 0,
√
n(X̄Aj

− µj)
d−→ N(0, σ2j ),

where

σ2j = µj − µ2j + 2

K1+K2+1∑

k=1

(Pr(Y1 ≤ xj, Y2 ≤ x′j, Y1+k ≤ xj, Y2+k ≤ x′j)− µ2j)
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Proof. Let Xn = IAj
(Yn, Yn+1) − µj, then E[Xn] = 0 and E[X12

n ] < ∞ because Xn is

bounded. And the α-mixing condition is satisfied since Yn’s are M -dependent. So the

conditions of Proposition 2.10 are satisfied. Then the proof follows after calculating

the following values and applying Proposition 2.10.

X2
1 = IAj

(Y1, Y2)− 2µjIAj
(Y1, Y2) + µ2j

EX2
1 = µj − 2µ2j + µ2j = µj − µ2j

X1X1+k = (IAj
(Y1, Y2)− µj)(IAj

(Y1+k, Y2+k)− µj)
= IAj

(Y1, Y2)IAj
(Y1+k, Y2+k)− µjIAj

(Y1, Y2)− µjIAj
(Y1+k, Y2+k) + µ2j

and

E(X1X1+k) = Pr(Y1 ≤ xj, Y2 ≤ x′j, Y1+k ≤ xj, Y2+k ≤ x′j)− µ2j

2

Lemma 2.12
√
n






X̄A1
...

X̄AL−1


−



µ1
...

µL−1





 d−→ N(0,Σ +

∑K1+K2+1
k=1 {Wk +W ′

k})

where

σij = µij−µiµj, the matrixWk has entries w
ij
k = Pr(Y1 ≤ xi, Y2 ≤ x′i, Y1+k ≤ xj, Y2+k ≤

x′j)− µiµj, µii = µi.

Proof. Let

U1 = (IA1(Y1, Y2)− µ1, · · · , IAL−1
(Y1, Y2)− µL−1)

′,

U1+k = (IA1(Y1+k, Y2+k)− µ1, · · · , IAL−1
(Y1+k, Y2+k)− µL−1)

′,

and α = (α1, · · · , αL−1)′ 6= 0 be an arbitrary vector.

Let X1 = α′U1, X2 = α′U2, · · · , then E[Xn] = 0 and E[X12
n ] < ∞. And so Propo-

sition 2.10 can apply. We say expectation are applied on all elements if expectation

is applied on a random matrix. But E[X2
1 ] = α′E[U1U

′
1]α = α′Σα, E[X1X1+k] =

α′E[U1U
′
1+k]α = α′Wkα where

E[(IAi
(Y1, Y2)− µi)(IAj

(Y1, Y2)− µj)] = µij − µiµj

E[(IAi
(Y1, Y2)− µi)(IAj

(Y1+k, Y2+k)− µj)]
= Pr(Y1 ≤ xi, Y2 ≤ x′i, Y1+k ≤ xj, Y2+k ≤ x′j)− µiµj

So the proof is completed by applying the Cramér-Wold device (see below). 2
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Cramér-Wold device: (Cambanis and Leadbetter 1994) Let ξ = (ξ1, . . . , ξD), ξn =

(ξn1, . . . , ξnD), n = 1, 2, . . . , be random vectors. Then

ξn
d−→ ξ as n→∞

if and only if

α1ξn1 + · · ·+ αDξnD
d−→ α1ξ1 + · · ·+ αDξD as n→∞

for all α1, . . . , αD ∈ R.

Theorem 2.13 For each l,

√
n(̂bl − bl)

d−→ N(0, σ2l )

where

σ2l = (
dl1
µ1
, · · · , dl,L−1

µL−1
)(Σ +

K1+K2+1∑

k=1

{Wk +W ′
k})




dl1
µ1
...

dl,L−1
µL−1




Proof. This follows from lemma 2.12 using the same argument as in the proof of

Theorem 2.6. 2

A generalization of the theorem to the joint distribution of b̂1, ..., b̂L can be obtained

and the proof arguments are similar. We have

Theorem 2.14

√
n(b̂− b)

d−→ N(0,Θ(Σ +

K1+K2+1∑

k=1

{Wk +W ′
k})Θ′),

where b̂, b and Θ are defined as the same as in Theorem 2.7.

For all b̂ld, a similar result of Corollary 2.8 can be obtained.

2.5 Results from discrete time Markov chain the-

ory

In order to simplify the notation, we only consider the case of D = 1 and L = 1 in this

section. Now define

Xt = IAt
, t = 0,±1,±2, ...
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and suppose the sequence {Xt} starts at t = 0 with Xt−k = 0, k = 1, . . . , K1 +K2.

If Xt = 0, then

Pr(Xt+1 = 0|Xt = 0) = Pr(Ac
t+1|Ac

t) =
Pr(Ac

tA
c
t+1)

Pr(Ac
t)

= 1−Pr(At)−Pr(At+1)
1−Pr(At)

= 1−2Pr(At)
1−Pr(At)

= p

If Xt = 1, then

Pr(Xt+1 = 0|Xt = 1) = 1, Pr(Xt+2 = 0|Xt = 0) = 1, . . . ,
Pr(Xt+K1+K2+1 = 0|Xt+K1+K2 = 0) = 1.

If we consider all the 0’s before the sequence {Xt} reaches 1 are different, and similarly

for the 0’s after reaching 1, then we can construct a Markov chain which has the

following transition diagram. Where b1 corresponds to Ac
t , b2 corresponds to Ac

t+1,

p 

p p p p 

q 
q q q 

1 

1 1 1 

1 

b1 b2 b3 bK 

 a1 a2 aK−1 

 1 

Figure 2.4: Transition Diagram of the Constructed Markov Chain.

and similarly for b3, . . . , bK , K = K1 + K2 + 1. Once the chain reaches the state bK ,

it moves either to 1 or to b1. Because At+K1+K2+2 is independent of At, so we can

think the chain return to b1 and ‘restart’ again. Once the chain reaches the state 1, it

must move at least K1 + K2 + 1 steps to reach the state 1 again. Or after K1 + K2

steps, the chain ‘restart’ again. We have the following transition probability matrix of
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{b1, b2, . . . , bK , 1, a1, a2, . . . , aK−1}.

P =




0 p 0 · · · 0 q 0 0 · · · 0
0 0 p · · · 0 q 0 0 · · · 0
...

...
...

. . .
...

...
...

...
. . .

...
0 0 0 · · · p q 0 0 · · · 0
p 0 0 · · · 0 q 0 0 · · · 0
0 0 0 · · · 0 0 1 0 · · · 0
0 0 0 · · · 0 0 0 1 · · · 0
...

...
...

. . .
...

...
...

...
. . .

...
0 0 0 · · · 0 0 0 0 · · · 1
1 0 0 · · · 0 0 0 0 · · · 0




Define now a1 = 2, a2 = 3, . . . , aK−1 = K, b1 = K + 1, b2 = K + 2, . . . , bK = 2K + 1,

and

T = min{n : Xn = 1},

and

ui(n) = Pr{T ≤ n|X0 = i}, mi = E(T |X0 = i).

Then we have standard DTMC results:

ui(n) = Pi1 +
2K+1∑

j=2

Pijuj(n− 1), i ≥ 2, n ≥ 1,

ui(1) = 0, i ≥ 1,

mi = 1 +
2K+1∑

j=2

Pijmj, i = 2, . . . , 2K + 1.

The proofs of these results can be found from books such as Kulkarni (1995). We give

an example to show how fast we can get a desired value.

Example 2.3 Let

Yt = max{.1Zt−2, .2Zt−1, .4Zt, .2Zt+1, .1Zt+2}

then by (2.5) we can have

Pr(At) = .0331, p =
1− 2Pr(At)

1− Pr(At)
= .9658, q = .0342.

The value of .0342 approximately tells among 100 independent events, we can get 3

times of the desired value. But to get 100 independent events, we need to have 600

Ats. Since Ats are dependent, the number of 600 can be dramatically reduced. In fact

from mi = E(T |X0 = i), 29 is the mean number of needed Ats to get the desired value

once.
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2.6 Approximation of two M4 processes

The characterization of extreme observations of a stationary process in Smith and

Weissman (1996) are infinite order M4 processes. But in practice, it is unrealistic to

estimate infinite many parameters. It is natural to apply models with finite number of

parameters to real data if the candidate model well approximates the true model.

In this section, we will create conditions under which two processes are arbitrarily

close and the following two theorems show that.

Lemma 2.15 Suppose
∑

−∞<i<∞

αi = 1,
∑
|i|>K

αi = δ, X =
∨
|i|>K

αiZi and Y =
∨
|i|≤K

αiZi,

where {Zi} are i.i.d Fréchet. Let Zδ =
1

1−δ
Y , then

lim
δ→0

P [|Zδ −X ∨ Y | > ε] = 0.

Proof. It is easy to check that X, Y, X ∨ Y, Zδ have the distributions:

X ∼ e−
δ
x , Y ∼ e−

1−δ
y , X ∨ Y ∼ e−

1
x , Zδ ∼ e−

1
z ,

P (X > Y ) =
∞∫
0

P [X > y]1−δ
y2
e−

1−δ
y dy

=
∞∫
0

(1− e−
δ
y )1−δ

y2
e−

1−δ
y dy

= 1− (1− δ)
∞∫
0

1
y2
e−

1
y dy

= δ,

P [Zδ − Y > ε] = P [( 1
1−δ

− 1)Y > ε] = P [ δ
1−δ

Y > ε]

= P [Y > (1−δ)ε
δ

] = 1− e−
(1−δ)δ
(1−δ)ε = 1− e−

δ
ε .

Now

P [|Zδ −X ∨ Y | > ε] = P [Zδ −X ∨ Y > ε] + P [X ∨ Y − Zδ > ε]
= P [Zδ −X > ε, X > Y ] + P [Zδ − Y > ε, Y > X]

+P [X − Zδ > ε, X > Y ] + P [Y − Zδ > ε, Y > X]
≤ 2P [X > Y ] + P [Zδ − Y > ε] + 0

= 2δ + 1− e−
δ
ε

which proves the assertion. 2
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Now pick δn so that P [|Zδ −X ∨ Y | > ε] ≤ 2−n for δ ≤ δn; then

P [ lim
n→∞

Zδn 6= X ∨ Y ] = P [|Zδn −X ∨ Y | > ε, i.o.]

= P [
∞⋂
n=1

∞⋃
j=n

|Zδj −X ∨ Y | > ε]

= lim
n→∞

P [
∞⋃
j=n

|Zδj −X ∨ Y | > ε]

≤ lim
n→∞

∞∑
j=n

P [|Zδj −X ∨ Y | > ε]

≤ lim
n→∞

2−n+1 = 0

So Zδn
a.s.−→ X ∨ Y .

Apply this result to a process, we have Ziδn
a.s.−→ Xi ∨ Yi, each i, and

P [
∞⋂
i=1

lim
n→∞

Ziδn = Xi ∨ Yi] = 1− P [
∞⋃
i=1

lim
n→∞

Ziδn 6= Xi ∨ Yi]

≥ 1−
∞∑
i=1

P [ lim
n→∞

Ziδn 6= Xi ∨ Yi] = 1.

So

P [
∞⋃

i=1

∞⋂

m=1

∞⋃

n=m

|Ziδn −Xi ∨ Yi| > ε] = 0.

We now state the theorem which shows how a finite moving range model arbitrarily

closely approximates an infinite range moving process. The proof is just a generaliza-

tion of the arguments above.

Theorem 2.16 Suppose
∞∑
l=1

∞∑
k=−∞

al,k,d = 1,
∑

{lk}*K
al,k,d = δd > 0, where K is a finite

index set.

Yid = max
l

max
k
al,k,dZl,i−k, d = 1, · · · , D, (2.31)

Ỹiδd = max
{lk}jK

bl,k,dZl,i−k, d = 1, · · · , D, (2.32)

where
∑L

l=1

∑K2
k=−K1

bl,k,d = 1 for d = 1, · · · , D. And bl,k,d = 1
1−δd

al,k,d for {lk} j K,
then there exist {δmd}, δmd → 0 as m→∞, such that

P [
D⋃

d=1

∞⋃

i=−∞

∞⋂

n=1

∞⋃

m=n

|Ỹiδmd
− Yid| > ε] = 0.

Therefore we conclude {Ỹiδd} → {Yid} for all i and d with probability one.
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Chapter 3

Estimation Based on Bivariate
Distribution

3.1 Introduction

The methods developed in previous chapter are idealized methods because they assume

the model holds exactly. Also the M4 process is itself just an approximation to the

general max-stable process. The process may be max-stable without being exactlyM4.

In practice we may not be able to estimate the ratios accurately as stated in sections

2.4.1 and 2.4.2, especially when the data are with error. In this chapter, we will develop

methods which can be applied to estimate al,k,d directly. In the previous chapter, the

bivariate distribution functions were used to estimate the weight parameters. Here our

intention is to determine when the bivariate distribution functions determine all the

aid’s, and then to construct estimators. Define A1d, A2d, · · · , AL×(K1+K2+1)−1,d similarly

as we did in the previous chapter and then solve a system of nonlinear equations





∑L
l=1

∑2+K1
m=1−K2

max(
âl,1−m,d

x1d
,
âl,2−m,d

x′1d
) = − log(X̄A1d)∑L

l=1

∑2+K1
m=1−K2

max(
âl,1−m,d

x2d
,
âl,2−m,d

x′2d
) = − log(X̄A2d)

...∑L
l=1

∑2+K1
m=1−K2

max(
âl,1−m,d

xL×(K1+K2+1),d
,

âl,2−m,d

x′
L×(K1+K2+1),d

) = − log(X̄AL×(K1+K2+1),d
)

Under some conditions, this will give unique solutions which converge to true parameter

values for each d, i.e. the bivariate distribution function determines the whole process.

We will introduce such conditions and prove some theoretical results. Like Chapter 2,

we drop the index d when we deal with a single process or we treat multiple processes

separately.



3.2 Modeling time dependence

In this section we mainly focus on the time dependence of each single process and we

will not use the index d in sub-sections 3.2.1 and 3.2.2.

3.2.1 Preliminary estimation

First we let L = 1 and study the structure of bivariate distribution function

P (Y1 ≤ y1, Y2 ≤ y2) = exp[−
2+K1∑

m=1−K2

max(
a1−m
y1

,
a2−m
y2

)] (3.1)

where aK2+1 = 0, a−K1−1 = 0. Now define

q(x) = a−K1 +

K2−1∑

j=−K1

max(xaj, aj+1) + xaK2 , (3.2)

then P (Y1 ≤ 1, Y2 ≤ x) = exp[−q(x)/x].
Define

M(x) = {j : aj+1

aj
> x} (3.3)

where we include −K1−1 ∈M(x), K2 ∈ M̄(x) complement ofM(x) for all x ∈ (0,∞).

Note that M(x) ↑ as x ↓. Then

q(x) = x
∑

j∈M̄(x)

aj +
∑

j∈M(x)

aj+1, (3.4)

and q′(x) =
∑

j∈M̄(x) aj everywhere except when x is one of
a−K1+1

a−K1
,
a−K1+2

a−K1+1
, · · · , aK2

aK2−1
.

A typical q(x) picture is shown in Figure 3.1.

As x → 0, q(x) → ∑K2
−K1

aj = 1. For x sufficiently large, q(x) = a−K1 + x
∑
aj =

a−K1 + x. So if r1 < r2 < · · · < rp denote the p ≤ K1 +K2 distinct values of
aj+1
aj

, we

can deduce from q(x),

(i) a−K1 ,

(ii) the values of r1, r2, · · · , rp,

(iii) all sums of the form
∑

j∈A(i) aj and
∑

j∈A(i) aj+1 where A(i) = {j :
aj+1
aj

= ri}.
This is true because

∑
j∈A(i) aj is just the change in q′(x) at x = ri, while

∑
j∈A(i) aj+1 = ri

∑
j∈A(i) aj.
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Figure 3.1: A demo of q(x) and its slope q′(x) and ratio change points.

In particular, when all the ratios
aj+1
aj

are distinct we can deduce all the ri’s and the

values of aj and aj+1 = riaj corresponding to each ri. However, the model may still be

non-identifiable if there are non-trivial permutations of the aj’s that preserve the ri’s.

Proposition 3.1 If all
(
K1+K2+1

2

)
ratios

aj
aj′

are distinct, the model is uniquely identi-

fied by q(x).

The reason why Proposition 3.1 is true is that in this case, any permutation of the aj’s

must create a new set of values of r1, · · · , rK1+K2 .
Remark 1: This justifies statements like “for almost all (w.r.t Lebesgue measure)

choices of coefficients a−K1 , · · · , aK2 , the model is identifiable from q(x)”.

Remark 2: The uniqueness means the values of the vector

(aK1 , a−K1+1, . . . , aK2)

are uniquely determined. The reason is because we can not simply distinguish the

following two processes without further analysis.

Yi = max(.2Zi−1, .3Zi, .5Zi+1),

Y ′i = max(.2Zi, .3Zi+1, .5Zi+2).
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But it should be no ambiguity that we treat them as one model since they have the

same joint distribution functions within each sequence.

Since we use the bivariate distribution to construct estimators of parameters, from

the previous arguments, if the condition of Proposition 3.1 is false then we may not

be able to identify the model. But we may be able to identify the model via some

higher-order joint distribution. We now construct an artificial example to demonstrate

this idea.

Example 3.1 This is a counterexample to show a process that is not identifiable via the

bivariate joint distribution, but can be identifiable from the trivariate joint distribution.

Let (a0, · · · , a4) = 1
6
(1, 1, 2, 1, 1) and (b0, · · · , b4) = 1

6
(1, 2, 1, 1, 1). We consider the two

processes generated by the sequences a0, · · · , a4 and b0, · · · , b4. Then p = 3, r1 =
1
2
, r2 =

1, r3 = 2 for both configurations, so q(x) is the same and displayed in Figure 3.1 with

q′(x) =





1
6

0 < x < 1
2
,

1
2

1
2
< x < 1,

5
6

1 < x < 2,

1 2 < x

i.e. we can’t distinguish the ai’s from the bi’s on the basis of q(x). However, consider

the formula

log(Pr(Y1 ≤ y1, Y2 ≤ y2, Y3 ≤ y3)) = a4
y1

+max(a3
y1
, a4
y2
) + max(a2

y1
, a3
y2
, a4
y3
)

+max(a1
y1
, a2
y2
, a3
y3
) + max(a0

y1
, a1
y2
, a2
y3
)

+max(a0
y2
, a1
y3
) + a0

y3

and let y1 = 1, y2 = y3 = c where c > 2.

With a = 1
6
(1, 1, 2, 1, 1):

− logP =
1

6
[1 + 1 + 2 + 1 + 1 +

1

c
+

1

c
] = 1 +

1

3c
,

With a = 1
6
(1, 2, 1, 1, 1):

− logP =
1

6
[1 + 1 + 1 + 2 + 1 +

2

c
+

1

c
] = 1 +

1

2c
,

So the two values of Pr(Y1 ≤ y1, Y2 ≤ y2, Y3 ≤ y3) are distinct in this case.

In other words, the two possible models for a are distinguishable from their trivariate

distributions, but not bivariate. However this is a specific example where we need

trivariate distribution function, in most cases bivariate distributions are enough.
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Now we turn to Case L > 1, we have

P (Y1 ≤ y1, Y2 ≤ y2) = exp[−
L∑

l=1

2+K1∑

m=1−K2

max(
al,1−m
y1

,
al,2−m
y2

)] (3.5)

where al,K2+1 = 0, al,−K1−1 = 0. And

q(x) =
L∑

l=1

[al,−K1 +

K2−1∑

j=−K1

max(xalj, al,j+1) + xal,K2 ]. (3.6)

And similarly, q(x) is a piecewise linear function and its change points are those adja-

cent ratios of the coefficients. We have

Proposition 3.2 If all
(
L×(K1+K2+1)

2

)
ratios

alj
alj′

are distinct, the model is uniquely

identified by q(x).

Proof. . Since all the ratios are different and are points at which q(x) changes slopes or

q′(x) has jumps. So based on the jump points of q(x), the ratios of
al,j+1
alj

are uniquely

determined. Let’s now rewrite (3.6) as

q(x) =
L∑

l=1

bl[cl,−K1 +

K2−1∑

j=−K1

max(xclj, al,j+1) + xcl,K2 ] (3.7)

where
∑
j

clj = 1 for each l and all clj are uniquely determine by the ratios. We also

write q(x) as

q(x) =
L∑

l=1

xbl

2+K1∑

m=1−K2

max(cl,1−m,
cl,2−m
x

)]. (3.8)

Suppose now q(x) has a different representation, say

q(x) =
L∑

l=1

xb′l

2+K1∑

m=1−K2

max(cl,1−m,
cl,2−m
x

)] (3.9)

then

L∑

l=1

(bl − b′l)

2+K1∑

m=1−K2

max(cl,1−m,
cl,2−m
x

)] = 0 (3.10)

for all x.
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Suppose we have chosen x1, x2, . . . , xL−1 and formed the matrix

∆d =




2+K1∑
m=1−K2

max(c1,1−m,d,
c1,2−m,d

x1
) · · ·

2+K1∑
m=1−K2

max(cL,1−m,d,
cL,2−m,d

x2
)

...
. . .

...
2+K1∑

m=1−K2

max(c1,1−m,d,
c1,2−m,d

x3
) · · ·

2+K1∑
m=1−K2

max(cL,1−m,d,
cL,2−m,d

xL−1
)

1 · · · 1




and



2+K1∑
m=1−K2

max(c1,1−m,d,
c1,2−m,d

x1
) · · ·

2+K1∑
m=1−K2

max(cL,1−m,d,
cL,2−m,d

x2
)

...
. . .

...
2+K1∑

m=1−K2

max(c1,1−m,d,
c1,2−m,d

x3
) · · ·

2+K1∑
m=1−K2

max(cL,1−m,d,
cL,2−m,d

xL−1
)

1 · · · 1







b1 − b′1
...
...

bL − b′L


 = 0

we can follow the lines after (2.28) and show |∆d| 6= 0, then conclude bl = b′l, all l. So

q(x) uniquely determine all al,j. 2

3.2.2 Asymptotics for the case of D = 1

Now we define

L∑

l=1

[ al,K2 +max(al,K2−1,
al,K2
x

) + max(al,K2−2,
al,K2−1
x

)

+ max(al,K2−3,
al,K2−2
x

) + · · ·+max(al,−K1 ,
al,−K1+1

x
) +

al,−K1
x

] = b(x)(3.11)

so we have q(x) = xb(x). Let Y1, Y2, · · · , Yn be observed values and

b̂(x) = − log(
1

n

n∑

i=1

I(Yi≤1,Yi+1≤x)), (3.12)

then q̂(x) = xb̂(x).

Theorem 3.3 For each x, we have

√
n(̂b(x)− b(x))

d−→ N(0, σ2)

where σ2 =
µx−µ2x+2

∑K1+K2+1
k=1 (Pr(Y1≤1,Y2≤x,Y1+k≤1,Y2+k≤x)−µ

2
x)

µ2x
, µx = Pr(Y1 ≤ 1, Y2 ≤ x).

Proof. Directly apply Proposition 2.5 and 2.10. 2
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Corollary 3.4 For each x, we have
√
n(q̂(x)− q(x))

d−→ N(0, x2σ2)

Now suppose the functions b(x), q(x), b̂(x), q̂(x) are evaluated at x = x1, x2, · · · , xm,
then we have the following theorem.

Theorem 3.5

√
n(b̂− b)

d−→ N(0,Θ(Σ +

K1+K2+1∑

k=1

{Wk +W ′
k})Θ′),

where

b̂ =




b̂(x1)

b̂(x2)
...

b̂(xm)


 ,b =




b(x1)
b(x2)
...

b(xm)


 ,Θ =




1
µ1

0 · · · 0

0 1
µ2

· · · 0
...

...
. . .

...
0 0 · · · 1

µm


 .

where

µi = Pr(Y1 ≤ 1, Y2 ≤ xi), µij = Pr(Y1 ≤ 1, Y2 ≤ min(xi, xj)), σij = µij − µiµj,

wij
k = Pr(Y1 ≤ 1, Y2 ≤ xi, Y1+k ≤ 1, Y2+k ≤ xj)− µiµj, µii = µi.

Proof. This follows from Lemma 2.12, Proposition 2.5 and the same arguments in the

proof of Theorem 2.7. 2

Theorem 3.5 indicates that when the sample size n is sufficiently large, b̂− b is an

asymptotically normally distributed random vector. If the points xis are used to get

estimates of ais, we have the following theorems.

Theorem 3.6 If all the ratios of parameters in the model (2.22) are different, then

(3.11) uniquely determine all alk.

Proof. We only prove the case when L = 1 and all the ratios are different. Similar

proof for L > 1 can be done. Now suppose we have different bi such that

bK2 + max(bK2−1,
bK2
x
) + max(bK2−2,

bK2−1
x

)

+ max(bK2−3,
bK2−2
x

) + · · ·+max(b−K1 ,
b−K1+1

x
) +

b−K1

x
= b(x)

(3.13)

and suppose {ai} are the true values in (3.11). Define

ri =
aK2−i
aK2−i−1

, r′i =
bK2−i
bK2−i−1

, i = 0, 1, . . . , K1 +K2 + 1.

Let {r∗i } be a permutation of {ri} such that

0 = r∗0 < r∗1 < r∗2 < · · · < r∗K1+K2+1 =∞
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then when x, y are varying within (r∗i , r
∗
i+1),

b(y)− b(x) =
a−K1
y

− a−K1
x

+
∑

ak+1
ak

>r∗i

(
ak
y
− ak

x
) (3.14)

since max(ak,
ak+1
x

) is ak when ak+1
ak

< x, and ak+1
x

otherwise.

When x is in (r∗i , r
∗
i+1) and y is in (r∗i+1, r

∗
i+2), then

b(y)− b(x) =
a−K1
y

− a−K1
x

+ ak −
ak
x

+
∑

ak+1
ak

>r∗i+1

(
ak
y
− ak

x
) (3.15)

for some k since max(ak,
ak+1
x

) = ak implies max(ak,
ak+1
y

) = ak and there exists a k

such that max(ak,
ak+1
x

) = ak
x

and max(ak,
ak+1
y

) = ak.

Let {r′∗i} be a permutation of {r′i} such that

0 = r′∗0 < r′1∗ < r′2∗ < · · · < r′∗K1+K2+1 =∞

and without loss of generality we assume r′∗0 < r∗0, then let x < r∗0, r
′
∗0 < y < r∗0,

then (3.14) and (3.15) give different b(y)− b(x), and hence we must have r′∗0 = r∗0 and

therefore r′∗i = r∗i , i.e. r
′
i = ri, all i.

Within (0, r∗0), we have

b(x) = aK2 +
1

x
= bK2 +

1

x

Within (r∗K1+K2 ,∞), we have

b(x) = 1 +
a−K1
x

= 1 +
b−K1
x

which gives a−K1 = b−K1 , aK2 = bK2 .

Within(r∗K1+K2−1, r
∗
K1+K2

), we have

b(y)− b(x) =
a−K1

y
− a−K1

x
+

∑
ak+1
ak

>r∗K1+K2−1

(ak
y
− ak

x
)

=
b−K1

y
− b−K1

x
+

∑
bk+1
bk

>r∗K1+K2−1

( bk
y
− bk

x
)

which gives ai = bj for i 6= −K1, j 6= −K1, inductively, we have ai = bj = a′i, but by

Proposition 3.1, we have all ai = bi. So the proof is completed. 2

Remark: the conditions of Proposition 3.1 are stronger than necessary and can be

weakened.
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Now let Y1, Y2, · · · , Yn be observed values and

b̂(x) = − log(
1

n

n∑

i=1

I(Yi≤1,Yi+1≤x))

which we expect to get (K1 +K2) r̂i such that (3.14) and (3.15) are true when b(x) is

replaced by b̂(x) and ai are replaced by âi.

By the ergodic theorem, b̂(x)
a.s.−→ b(x) as n → ∞. Now suppose the model is

identifiable from x1, . . . , xm, where these values are different from the ratios of true

parameters as stated in Corollary 3.1, and define b = (b(x1), . . . , b(xm))
′, and b̂ =

(̂b(x1), . . . , b̂(xm))
′, then b̂

a.s.−→ b. Suppose the probability space is (Ω,F , P ), then
there exists an A ∈ F such that Pr(A) = 1 and for each ω ∈ A, b̂ω → b.

Notice that a permutation of l and l′ will not change the value of b(x) in (3.11).

This can be easily seen in the following example.

Example 3.2 The following two processes

Yi = max



0.05Z1,i−1, 0.1Z1,i, 0.03Z1,i+1

0.15Z2,i−1, 0.2Z2,i, 0.02Z2,i+1

0.16Z3,i−1, 0.17Z3,i, 0.12Z3,i+1




Y ′i = max



0.16Z1,i−1, 0.17Z1,i, 0.12Z1,i+1

0.05Z2,i−1, 0.1Z2,i, 0.03Z2,i+1

0.15Z3,i−1, 0.2Z3,i, 0.02Z3,i+1




have the same joint distributions.

Unless we specifically say l and l′ are not permutable, otherwise we allow those l’s

in (3.11) are permutable.

Suppose the solutions of





L∑
l=1

[âl,K2 + max(âl,K2−1,
âl,K2
x1

) + max(âl,K2−2,
âl,K2−1

x1
)

+ max(âl,K2−3,
âl,K2−2

x1
) + · · ·+max(âl,−K1 ,

âl,−K1+1

x1
) +

âl,−K1

x1
] = b̂ω(x1)

· · · · · ·
L∑
l=1

[âl,K2 + max(âl,K2−1,
âl,K2
xm

) + max(âl,K2−2,
âl,K2−1
xm

)

+ max(âl,K2−3,
âl,K2−2
xm

) + · · ·+max(âl,−K1 ,
âl,−K1+1

xm
) +

âl,−K1

xm
] = b̂ω(xm)

(3.16)
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are âω. This is equivalent to Cnωâω = b̂ω in matrix notations where Cnω is uniquely

determined by âω. The elements of Cnω are either 1, 1
xi

or 1+ 1
xi
. And the solutions of





L∑
l=1

[al,K2 + max(al,K2−1,
al,K2
x1

) + max(al,K2−2,
al,K2−1

x1
)

+ max(al,K2−3,
al,K2−2

x1
) + · · ·+max(al,−K1 ,

al,−K1+1

x1
) +

al,−K1

x1
] = b(x1)

· · · · · ·
L∑
l=1

[al,K2 + max(al,K2−1,
al,K2
xm

) + max(al,K2−2,
al,K2−1
xm

)

+ max(al,K2−3,
al,K2−2
xm

) + · · ·+max(al,−K1 ,
al,−K1+1

xm
) +

al,−K1

xm
] = b(xm)

(3.17)

are a. And similarly this is equivalent to Ca = b. Since b̂ω → b̂, which implies

the estimated ratios converge to the true ratios, then âω → â as n → ∞ by The-

orem 3.6 and the assumption that the model is identifiable from x1, . . . , xm. But

max(âl,K2−i,
âl,K2−i+1

xk
) converges to max(al,K2−i,

al,K2−i+1

xk
) for each i and k. In other

words, xk remains in intervals (
âl,K2−i+1

âl,K2−i
,

âl,K2−j+1

âl,K2−j
) for some i and j when n is suffi-

ciently large. So Cnω → C as n→∞. And so we have proved the following theorem.

Theorem 3.7 Suppose the model is identifiable from x1, . . . , xm, where these values

are different from the ratios of true parameters, then the solutions of (3.16) converge

to the solutions of (3.17) almost surely. i.e. â
a.s.−→ a and Cn

a.s.−→ C.

Since the elements of both Cn and C are either 1, 1
xi

or 1 + 1
xi
, then for sufficiently

large n, we have Cn = C. Bearing this in mind, we have the following multivariate

central limit theorem.

Theorem 3.8 Suppose the model is identifiable from x1, . . . , xm, where these values

are different from the ratios of true parameters, then

√
n(â− a)

d−→ N(0, BΘ(Σ +

K1+K2+1∑

k=1

{Wk +W ′
k})Θ′B′)

where B = (C ′C)−1C ′, Θ, Σ and Wk are defined the same as in Proposition 2.5,

Theorem 2.7 and Lemma 2.12.

Proof. Since (C ′nCn)
−1C ′n

a.s.−→ (C ′C)−1C ′ so

√
n(â− a) =

√
n((C ′nCn)

−1C ′nb̂− (C ′C)−1C ′b)

=
√
n(C ′nCn)

−1C ′n(b̂− b) +
√
n((C ′nCn)

−1C ′n − (C ′C)−1C ′)b
d→ N(0, BΘ(Σ +

∑K1+K2+1
k=1 {Wk +W ′

k})Θ′B′).

and hence this proves the theorem. 2
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3.2.3 Asymptotics for a special case of L = 1 and D > 1

For all âl,k,d, a similar asymptotic joint normal distribution result of Corollary 2.8 can

be obtained if the permutability of index l in each d are not an issue. But this is not the

case in general, so we will not give the asymptotic joint distribution here based on the

estimates obtained one component at a time since we didn’t simultaneously estimate

âl,k,d. We illustrate a special case here under which we can identify all parameters

based on estimating each single process and putting all estimates together. We will

discuss why this special case can not be generalized in section 3.3. Also in section 3.3

a method which can simultaneously estimate all parameters for the cases of L > 1 and

D > 1 is proposed.

We now consider the model

Yid = max
−K1≤k≤K2

ak,dZi−k, d = 1, . . . , D (3.18)

where
∑
k

ak,d = 1, ak,d ≥ 0 for each d.

By Proposition 3.1,

[aK2,d + max(aK2−1,d,
aK2,d
x

) + max(aK2−2,d,
aK2−1,d
x

) (3.19)

+ max(aK2−3,d,
aK2−2,d
x

) + · · ·+max(a−K1,d,
a−K1+1,d

x
) +

a−K1,d
x

] = bd(x)

uniquely determines ak,d for each d when the values of bd(x) are given. But we just

can not simply put all values obtained from (3.19) and form (3.18) because for some

d, (3.19) may give different vector values of

(a−K1,d, a−K1+1,d, . . . , aK2,d),

for example when K1 +K2 + 1 = 4 we may get something like

(0, .2, .3, .5) or (.2, .3, .5, 0).

But their functions in (3.18)are different and will result in a different multivariate joint

distribution.

The following proposition shows that under certain conditions we can simply put

the solutions of (3.19) for each d together and then those solutions uniquely determine

the true model (3.18).
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Proposition 3.9 Suppose a−K1,d > 0, aK2,d > 0 for all d, and all ratios
aj+1,d
ajd

are

distinct for each d, then

[aK2,d + max(aK2−1,d,
aK2,d
x

) + max(aK2−2,d,
aK2−1,d
x

) (3.20)

+ max(aK2−3,d,
aK2−2,d
x

) + · · ·+max(a−K1,d,
a−K1+1,d

x
) +

a−K1,d
x

] = bd(x)

d = 1, . . . , D

uniquely determine the matrix


a−K1,1, a−K1+1,1, . . . , aK2,1

...
...

. . .
...

a−K1,D, a−K1+1,D, . . . , aK2,D


 (3.21)

Furthermore, there exist points

x1d, x2d, . . . , xmd, d = 1, . . . , D

such that

[aK2,d + max(aK2−1,d,
aK2,d
xjd

) + max(aK2−2,d,
aK2−1,d
xjd

) (3.22)

+ max(aK2−3,d,
aK2−2,d
xjd

) + · · ·+max(a−K1,d,
a−K1+1,d

xjd
) +

a−K1,d
xjd

] = bd(xjd)

d = 1, . . . , D

uniquely determine the matrix in (3.21).

The proof of this proposition is obvious by noticing that a−K1,d > 0, aK2,d > 0 for all

d.

Now let Ajd = (0, 1)× (0, xjd), for j = 1, . . . ,m, d = 1, . . . , D and define

X̄Ajd
=

1

n

n∑

i=1

IAjd
(Yid, Yi+1,d), (3.23)

µjd = E{IAjd
(Yid, Yi+1,d)} = P (Y1d ≤ 1, Y2d ≤ xjd), (3.24)

µjdj′d′ = E{IAjd
(Yid, Yi+1,d)IAj′d′

(Yid′ , Yi+1,d′)}
= P (Y1d ≤ 1, Y2d ≤ xjd, Y1d′ ≤ 1, Y2d′ ≤ xj′d′),

(3.25)

Lemma 3.10
√
n







X̄A11
...

X̄Am1

X̄A12
...

X̄AmD



−




µ11
...

µm1

µ12
...

µmD







d−→ N(0,Σ +
∑K1+K2+1

k=1 {Wk +W ′
k})

where
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Σ has entries σrs = µjdj′d′−µjdµj′d′, the matrix Wk has entries wrs
k = P (Y1d ≤ 1, Y2d ≤

xjd, Y1+k,d′ ≤ 1, Y2+k,d′ ≤ xj′d′)− µjdµj′d′ for d = [ r−1
m

], j = r− (d− 1)×m, d′ = [ s−1
m

],

j′ = s− (d− 1)×m.

Proof. This can be done exactly as the proof of Lemma 2.12.

We now state the asymptotic joint distribution of all âk,d in the following theorem.

Theorem 3.11 Suppose the model is identifiable from x1d, . . . , xmd for each d, where

these values are different from the ratios of true parameters, then under the conditions

in Proposition 3.9

√
n(â− a)

d−→ N(0, BΘ(Σ +

K1+K2+1∑

k=1

{Wk +W ′
k})Θ′B′)

where Cd is the matrix formed from (3.22) when dth model is considered. Θ = diag{ 1
µ11
,

. . . , 1
µm1

, . . . , 1
µmD

}, C = diag{C1, C2, . . . , CD}, B = (C ′C)−1C ′.

3.2.4 Simulation examples

In this section we perform simulation studies. The first model illustrates a simulated

M4 process with two signature patterns where each pattern has order of 2 and the

second model adds Gaussian noise into the first model.

Example 3.3 We perform two simulation experiments with the following two pro-

cesses.

Yi = max(.1Z1,i−1, .4Z1,i, .35Z2,i−1, .15Z2,i) (3.26)

and

Yi = max(.1Z1,i−1, .4Z1,i, .35Z2,i−1, .15Z2,i) +Ni (3.27)

where Ni ∼ N(0, .01) are i.i.d.

We plot the ratios Yi
Yi+Yi+1

for both models. Plots in Figure 3.2 look almost exactly the

same. However, when a portion of the plot is magnified, as in Figure 3.3, we can see

the difference.

We now apply estimating methods developed in previous sections and list all results

in the following tables.

The estimated values are based on a sample of size 10000. The standard devi-

ations are obtained by evaluating the formula in Theorem 3.8 with the true values
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Figure 3.2: The left plot is the ratios of Yi
Yi+Yi+1

at the threshold level 10 under the

model (3.26). The right plot is the ratios of Yi
Yi+Yi+1

at the threshold level 10 under the

model (3.27).
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Figure 3.3: The left plot is the ratios around .3 with distance .01 at the threshold level
10 under the model (3.26). The right plot is the ratios .3 with distance .01 at the
threshold level 10 under the model (3.27).

Parameter a1,−1 a1,0 a2,−1 a2,0
True value .1 .4 .35 .15

Estimated value .1226 .3678 .3747 .1398
Standard Deviation. .0145 .0469 .0513 .0181

Table 3.1: Simulation results for model (3.26). x =(0.3214, 0.6282, 1.0275, 1.3778,
1.6789, 2.4043, 3.5540, 4.5417).
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Parameter a1,−1 a1,0 a2,−1 a2,0
True value .1 .4 .35 .15

Estimated value .1169 .3599 .3804 .1477
Standard Deviation. .0138 .0462 .0502 .0197

Table 3.2: Simulation results for model (3.26). x =(0.3214, 0.8279, 1.5283, 2.9791,
4.5417).

Parameter a1,−1 a1,0 a2,−1 a2,0
True value .1 .4 .35 .15

Estimated value .1203 .3541 .3919 .1341
Standard Deviation. .0144 .0466 .0509 .0180

Table 3.3: Simulation results for model (3.27). x =(0.3214, 0.6283, 1.0277, 1.3782,
1.6799, 2.4054, 3.5546, 4.5422).

Parameter a1,−1 a1,0 a2,−1 a2,0
True value .1 .4 .35 .15

Estimated value .1172 .3605 .3805 .1461
Standard Deviation. .0138 .0461 .0501 .0197

Table 3.4: Simulation results for model (3.27). x =(0.3215, 0.8277, 1.5279, 2.9773,
4.5384).
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Parameter a1,−1 a1,0 a2,−1 a2,0
True value .1 .4 .35 .15

Estimated value 0.1401 0.3801 0.3561 0.1353
Standard Deviation. 0.0419 0.0684 0.0697 0.0493

Table 3.5: Simulation results for model (3.26)

Parameter a1,−1 a1,0 a2,−1 a2,0
True value .1 .4 .35 .15

Estimated value .1404 .3791 .3572 .1351
Standard Deviation. .0421 .0668 .0668 .0492

Table 3.6: Simulation results for model (3.27)

approximated by the empirical values. These simulation experiments show that the

effectiveness of the estimating procedures proposed.

The estimated values in Tables 3.5 and 3.6 are mean values of estimates based on

100 replications of sample size 10000. The standard deviations are sample standard

deviations.

3.3 Modeling temporal and inter-serial dependence

As we mentioned in section 3.2.3 we can’t just estimate the coefficient one compo-

nent at a time and then put them all together to derive the full model for the joint

distribution of the multivariate processes, even if each single component process only

has one signature pattern. Example 3.2, in section 3.2.2, showed that two different

processes have the same distribution functions. The reason is because the coefficients

in the second process are permutations of the coefficients of the first process. The

permutations are on index l. Proposition 3.2 actually tells that all the values of al,k

are uniquely determined by b(x) when the permutation of index l is allowed. But this

is not the case when we have multivariate processes. We use the following artificial

bivariate processes to illustrate why this is not the case.
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Suppose we have the bivariate processes




Yi1 = max



0.05Z1,i−1, 0.10Z1,i, 0.03Z1,i+1

0.12Z2,i−1, 0.16Z2,i, 0.09Z2,i+1

0.16Z3,i−1, 0.17Z3,i, 0.12Z3,i+1




Yi2 = max



0.10Z1,i−1, 0.13Z1,i, 0.17Z1,i+1

0.07Z2,i−1, 0.04Z2,i, 0.03Z2,i+1

0.11Z3,i−1, 0.12Z3,i, 0.23Z3,i+1




(3.28)

Suppose we have the observed values {Yi1, Yi2} and get estimates based on the methods

developed for single component process.

A possible representation or estimation of process {Yi1} could be

Y ′i1 = max



0.16Z1,i−1, 0.17Z1,i, 0.12Z1,i+1

0.05Z2,i−1, 0.10Z2,i, 0.03Z2,i+1

0.12Z3,i−1, 0.16Z3,i, 0.09Z3,i+1


 (3.29)

and a possible representation or estimation of process {Yi2} could be

Y ′i2 = max



0.10Z1,i−1, 0.13Z1,i, 0.17Z1,i+1

0.11Z2,i−1, 0.12Z2,i, 0.23Z2,i+1

0.07Z3,i−1, 0.04Z3,i, 0.03Z3,i+1


 (3.30)

Note: we used the exact coefficients of original processes in these two representations,

in real situation this may not be the case. What we do here is just for illustration.

Now if we put the two estimated processes together, we have




Y ′i1 = max



0.16Z1,i−1, 0.17Z1,i, 0.12Z1,i+1

0.05Z2,i−1, 0.10Z2,i, 0.03Z2,i+1

0.12Z3,i−1, 0.16Z3,i, 0.09Z3,i+1




Y ′i2 = max



0.10Z1,i−1, 0.13Z1,i, 0.17Z1,i+1

0.11Z2,i−1, 0.12Z2,i, 0.23Z2,i+1

0.07Z3,i−1, 0.04Z3,i, 0.03Z3,i+1




(3.31)

It is obvious {Yi1} and {Y ′i1} have the same joint distributions, {Yi2} and {Y ′i2} have

the same distributions, but {(Yi1, Yi2)} and {(Y ′i1, Y ′i2)} don’t have the same joint

distributions. This can be seen from Figure 3.4.

3.3.1 Inter-serial dependence

We now consider modeling spatial dependence of multivariate time series. We use a

similar structure as we used for modeling time dependence, see section 3.2. What we
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Figure 3.4: A demo of two different bivariate processes. The blue curve are drawn from
the original process. The red curve are drawn from the permuted process. qddp(x) =
−x log(P (Y11 ≤ 1, Y12 ≤ x)).

do in this section is to estimate parameters based on the joint distribution of a pair of

random sequence {(Yid, Yid′)}, where d 6= d′, 1 ≤ d, d′ ≤ D.

It is easy to derive that

Pr{Y1d ≤ y1d, Y1d′ ≤ y1d′} = exp[−
L∑

l=1

1+K1∑

m=1−K2

max(
al,1−m,d
y1,d

,
al,1−m,d′

y1,d′
)]

and simply we have

Pr{Y1d ≤ 1, Y1d′ ≤ x} = exp[−
L∑

l=1

1+K1∑

m=1−K2

max(al,1−m,d,
al,1−m,d′

x
)].

Define

bdd′(x) =
L∑

l=1

1+K1∑

m=1−K2

max(al,1−m,d,
al,1−m,d′

x
), (3.32)

qdd′(x) = xbdd′(x),

b̂dd′(x) = − log(
1

n

n∑

i=1

I(Yid≤1, Yid≤x)),

q̂dd′(x) = xb̂dd′(x),

then it’s obvious that as n→∞

b̂dd′(x)
a.s.−→ bdd′(x), q̂dd′(x)

a.s.−→ qdd′(x).
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Like section 3.2, we assume now all ratios
al,k,d′

al,k,d
are distinct for all l and k. Then bdd′(x)

or qdd′(x) can uniquely determine all ratios
al,k,d′

al,k,d
since these ratios are the jump points

of piecewise linear function of qdd′(x), but bdd′(x) or qdd′(x) can not uniquely determine

all al,k,d and al,k,d′ since bdd′(x) doesn’t distinguish the index k and the index l.

3.3.2 Temporal and inter-serial dependence

We now combine (3.11) and (3.32) together as a system of nonlinear equations.





bd(x) =
∑L

l=1[al,K2,d +max(al,K2−1,d,
al,K2,d

x
) + max(al,K2−2,d,

al,K2−1,d
x

)
+max(al,K2−3,d,

al,K2−2,d
x

) + · · ·+max(al,−K1,d,
al,−K1+1,d

x
) +

al,−K1,d

x
]

bd′(x) =
∑L

l=1[al,K2,d′ +max(al,K2−1,d′ ,
al,K2,d′

x
) + max(al,K2−2,d′ ,

al,K2−1,d′

x
)

+max(al,K2−3,d′ ,
al,K2−2,d′

x
) + · · ·+max(al,−K1,d′ ,

al,−K1+1,d
′

x
) +

al,−K1,d
′

x
]

bdd′(x) =
L∑
l=1

1+K1∑
m=1−K2

max(al,1−m,d,
al,1−m,d′

x
)

(3.33)

then we will show (3.33) uniquely determine all parameters al,k,d, al,k,d′ .

Proposition 3.12 Suppose all ratios
al,j,d
al,j′,d

for all l and j 6= j ′ are distinct, all ratios
al,j,d′

al,j′,d′
for all l and j 6= j ′ are distinct, and all ratios

al,k,d
al,k,d′

for all l and k are distinct,

then (3.33) uniquely determine all values of al,k,d and al,k,d′.

Furthermore, there exist points x1, x2, . . . , xm, m ≤ 3L(K1 +K2 + 2), such that

bd(xi) and bdd′(xi), i = 1, . . . ,m

uniquely determine all values of al,k,d and al,k,d′.

Proof. By Proposition 3.2, bd(x) and bd′(x) uniquely determine all values of parameters

al,k,d and al,k,d′ respectively. So we can get

(al,−K1,d, al,−K1+1,d, . . . , al,K2,d), l = 1, . . . , L

and

(al′,−K1,d′ , al′,−K1+1,d′ , . . . , al′,K2,d′), l
′ = 1, . . . , L.

Since all ratios
al,k,d
al,k,d′

are distinct, any permutation of index l in al,k,d′ will result in

different ratios which will be different from the jump points of qdd′(x), so the jump

points of qdd′(x) uniquely determine

(
al,−K1,d
al,−K1,d′

,
al,−K1+1,d

al,−K1+1,d′
, · · · , al,K2,d

al,K2,d′
)
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for some l and l′. So (3.33) eventually uniquely determine all the true values of all

parameters al,k,d and al,k,d′ .

The reason why x1, x2, . . . , xm uniquely determine all values of al,k,d and al,k,d′ is

because qd(x), qd′(x) and qdd′(x) are piecewise linear functions which can be uniquely

determined by finite number of points as long as there are at least two points between

any two jump points. 2

Proposition 3.13 Suppose all ratios
al,j,d
al,j′,d

for all l and j 6= j ′ are distinct for each

d = 1, . . . , D and
al,k,1
al′,k,d′

for all l, l′ and k are distinct for each d′ = 2, . . . , D, then





bd(x) =
∑L

l=1[al,K2,d +max(al,K2−1,d,
al,K2,d

x
) + max(al,K2−2,d,

al,K2−1,d
x

)
+max(al,K2−3,d,

al,K2−2,d
x

) + · · ·+max(al,−K1,d,
al,−K1+1,d

x
) +

al,−K1,d

x
],

d = 1, . . . , D

b1d′(x) =
L∑
l=1

1+K1∑
m=1−K2

max(al,1−m,1,
al,1−m,d′

x
), d′ = 2, . . . , D,

uniquely determine all values of al,k,d, d = 1, . . . , D, l = 1, . . . , L, −K1 ≤ k ≤ K2.

Furthermore, there exist points x1, x2, . . . , xm, m ≤ (2D − 1)(K1 +K2 + 1) + 2D,

such that

bd(xi) and b1d′(xi), i = 1, . . . ,m, d = 1, . . . , D, d′ = 2, . . . , D

uniquely determine all values of al,k,d.

Proof. . This can be done by following the arguments in Proposition 3.12. 2

3.3.3 The estimators and asymptotics

Now for suitable choice of

x1d, x2d, . . . , xmd, d = 1, . . . , D,

x′1d′ , x
′
2d′ , . . . , x

′
m′d′ , d

′ = 2, . . . , D,

define

Ud(xjd) =
1

n

n∑

i=1

I(Yid≤1, Yi+1,d≤xjd), j = 1, . . . ,m, d = 1, . . . , D,

b̂d(xjd) = − log(Ud(xjd)), j = 1, . . . ,m, d = 1, . . . , D,

U1d′(x
′
jd′) =

1

n

n∑

i=1

I(Yi1≤1, Yid′≤x′jd′), j = 1, . . . ,m′, d′ = 2, . . . , D,
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b̂1d′(x
′
jd′) = − log(U1d′(x

′
jd′)), j = 1, . . . ,m, d′ = 2, . . . , D,

U =




U1(x11)
U1(x21)

...
U1(xm1)
U2(x12)

...
UD(xmD)
U12(x

′
12)

U12(x
′
22)

...
U12(x

′
m′2)

U13(x
′
13)

...
U1D(x

′
m′D)




, b̂ =




b̂1(x11)

b̂1(x21)
...

b̂1(xm1)

b̂2(x12)
...

b̂D(xmD)

b̂12(x
′
12)

b̂12(x
′
22)

...

b̂12(x
′
m′2)

b̂13(x
′
13)

...

b̂1D(x
′
m′D)




.

Let
µdjd = E(Ud(xjd)) = Pr(Y1d ≤ 1, Y2d ≤ xjd),

d = 1, . . . , D, j = 1, . . . ,m.

µ1d′jd′ = E(U1d′(x
′
j′d′)) = Pr(Y11 ≤ 1, Y1d′ ≤ x′j′d′),

d′ = 2, . . . , D, j ′ = 1, . . . ,m′.

µdjd, d′j′d′ = E[(I(Y1d≤1,Y2d≤xjd) − µdjd)(I(Y1d′≤1,Y2d′≤xj′d′ ) − µd′j′d′)]

= Pr(Y1d ≤ 1, Y2d ≤ xjd, Y1d′ ≤ 1, Y2d′ ≤ xj′d′)− µdjdµd′j′d′ ,
d, d′ = 1, . . . , D, j, j ′ = 1, . . . ,m.

µdjd, 1d′j′d′ = E[(I(Y1d≤1,Y2d≤xjd) − µdjd)(I(Y11≤1,Y1d′≤x′j′d′ ) − µ1d′j′d′)]

= Pr(Y1d ≤ 1, Y2d ≤ xjd, Y11 ≤ 1, Y1d′ ≤ x′j′d′)− µdjdµ1d′j′d′ ,
d = 1, . . . , D, j = 1, . . . ,m,
d′ = 2, . . . , D, j ′ = 1, . . . ,m′.

µ1d′j′d′, djd = E[(I(Y11≤1,Y1d′≤x′j′d′ ) − µ1d′j′d′)(I(Y1d≤1,Y2d≤xjd) − µdjd)]

= Pr(Y1d ≤ 1, Y2d ≤ xjd, Y11 ≤ 1, Y1d′ ≤ x′j′d′)− µdjdµ1d′j′d′

= µdjd, 1d′j′d′ ,
d = 1, . . . , D, j = 1, . . . ,m,
d′ = 2, . . . , D, j ′ = 1, . . . ,m′.

µ1djd, 1d′j′d′ = E[(I(Y11≤1,Y1d≤x′jd) − µ1djd)(I(Y11≤1,Y1d′≤x′j′d′ ) − µ1d′j′d′)]

= Pr(Y11 ≤ 1, Y1d ≤ x′jd, Y11 ≤ 1, Y1d′ ≤ x′j′d′)− µ1djdµ1d′j′d′ ,
d = 2, . . . , D, j = 1, . . . ,m′,
d′ = 2, . . . , D, j ′ = 1, . . . ,m′.
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w
(k)
djd, d′j′d′ = E[(I(Y1d≤1,Y2d≤xjd) − µdjd)(I(Y1+k,d′≤1,Y2+k,d′≤xj′d′ )

− µd′j′d′)]

= Pr(Y1d ≤ 1, Y2d ≤ xjd, Y1+k,d′ ≤ 1, Y2+k,d′ ≤ xj′d′)− µdjdµd′j′d′ ,
d, d′ = 1, . . . , D, j, j ′ = 1, . . . ,m.

w
(k)
djd, 1d′j′d′ = E[(I(Y1d≤1,Y2d≤xjd) − µdjd)(I(Y1+k,1≤1,Y1+k,d′≤x

′
j′d′

) − µ1d′j′d′)]

= Pr(Y1d ≤ 1, Y2d ≤ xjd, Y1+k,1 ≤ 1, Y1+k,d′ ≤ x′j′d′)− µdjdµ1d′j′d′ ,
d = 1, . . . , D, j = 1, . . . ,m,
d′ = 2, . . . , D, j ′ = 1, . . . ,m′.

w
(k)
1d′j′d′, djd = E[(I(Y1,1≤1,Y1,d′≤x′j′d′ ) − µ1d′j′d′)(I(Y1+k,d≤1,Y2+k,d≤xjd) − µdjd)]

= Pr(Y1,1 ≤ 1, Y1,d′ ≤ x′j′d′ , Y1+k,d ≤ 1, Y2+k,d ≤ xjd)− µdjdµ1d′j′d′ ,
d = 1, . . . , D, j = 1, . . . ,m,
d′ = 2, . . . , D, j ′ = 1, . . . ,m′.

w
(k)
1djd, 1d′j′d′ = E[(I(Y11≤1,Y1d≤x′jd) − µ1djd)(I(Y1+k,1≤1,Y1+k,d′≤x

′
j′d′

) − µ1d′j′d′)]

= Pr(Y11 ≤ 1, Y1d ≤ x′jd, Y1+k,1 ≤ 1, Y1+k,d′ ≤ x′j′d′)− µ1djdµ1d′j′d′ ,
d = 2, . . . , D, j = 1, . . . ,m′,
d′ = 2, . . . , D, j ′ = 1, . . . ,m′.

µ =




µ111
µ121
...

µ1m1

µ212
...

µDmD
µ1212
µ1222
...

µ12m′2

µ1313
...

µ1Dm′D




=




µ1
µ2
...
µm
µm+1
...

µD×m
µD×m+1

µD×m+2
...

µD×m+m′

µD×m+m′+1
...

µD×m+(D−1)m′




, b =




b1(x11)
b1(x21)

...
b1(xm1)
b2(x12)

...
bD(xmD)
b12(x

′
12)

b12(x
′
22)

...
b12(x

′
m′2)

b13(x
′
13)

...
b1D(x

′
m′D)




.

We have the following relations

{
µdjd → µr, d = [ r−1

m
] + 1, j = r − (d− 1)×m if r ≤ D ×m,

µ1d′jd′ → µr, d
′ = [ r−D×m−1

m′ ] + 2, j = r −D ×m− (d− 2)×m′ if r > D ×m, .
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We now use the similar relations between the indexes of µdjd and the indexes of µr

define the following variables.

σrs =





µdjd,d′j′d′ if , r ≤ D ×m, s ≤ D ×m

µdjd,1d′j′d′ if , r ≤ D ×m, s > D ×m

µ1djd,d′j′d′ if , r > D ×m, s ≤ D ×m

µ1djd,1d′j′d′ if , r > D ×m, s > D ×m.

wrs
k =





w
(k)
djd,d′j′d′ if , r ≤ D ×m, s ≤ D ×m

w
(k)
djd,1d′j′d′ if , r ≤ D ×m, s > D ×m

w
(k)
1djd,d′j′d′ if , r > D ×m, s ≤ D ×m

w
(k)
1djd,1d′j′d′ if , r > D ×m, s > D ×m.

and

Σ = (σrs), Wk = (wrs
k ), Θ = (diag{µ})−1.

We now put everything above together. Then we obtain the following lemma. Its proof

is just simply following the lines used in lemma 2.12.

Lemma 3.14 For the choices of xjd, xj′d′ and the definitions of each variables above,

we have
√
n(U− µ)

d−→ N(0,Σ +

K1+K2+1∑

k=1

{Wk +W ′
k})

√
n(b̂− b)

d−→ N(0,Θ(Σ +

K1+K2+1∑

k=1

{Wk +W ′
k})Θ′).

Now consider the system of non-linear equations




bd(xjd) =
∑L

l=1[al,K2,d +max(al,K2−1,d,
al,K2,d
xjd

) + max(al,K2−2,d,
al,K2−1,d

xjd
)

+max(al,K2−3,d,
al,K2−2,d

xjd
) + · · ·+max(al,−K1,d,

al,−K1+1,d

xjd
) +

al,−K1,d

xjd
]

j = 1, . . . ,m, d = 1, . . . , D

b1d′(x
′
j′d′) =

L∑
l=1

1+K1∑
m=1−K2

max(al,1−m,d,
al,1−m,d′

x′
j′d′

)

j′ = 1, . . . ,m′, d′ = 2, . . . , D

(3.34)

and denote the left hand side of (3.34) as b. Since (3.34)uniquely determine the values

of all parameters al,k,d, (3.34)has the matrix representation

b = Ca (3.35)

or equivalently

(C ′C)−1C ′b = a. (3.36)

62



We now obtain our estimators by solving the system of non-linear equations




b̂d(xjd) =
∑L

l=1[âl,K2,d +max(âl,K2−1,d,
âl,K2,d
xjd

) + max(âl,K2−2,d,
âl,K2−1,d

xjd
)

+max(âl,K2−3,d,
âl,K2−2,d

xjd
) + · · ·+max(âl,−K1,d,

âl,−K1+1,d

xjd
) +

âl,−K1,d

xjd
]

j = 1, . . . ,m, d = 1, . . . , D

b1d′(x
′
j′d′) =

L∑
l=1

1+K1∑
m=1−K2

max(âl,1−m,d,
âl,1−m,d′

x′
j′d′

)

j′ = 1, . . . ,m′, d′ = 2, . . . , D

(3.37)

As n sufficiently large (3.37) can be written as the following matrix representation

(C ′C)−1C ′b̂ = â. (3.38)

Summarize all arguments above we have obtained the following theorem

Theorem 3.15 If all ratios
al,j,d
al,j′,d

for all l and j 6= j ′ are distinct for each d = 1, . . . , D

and
al,k,1
al′,k,d′

for all l, l′ and k are distinct for each d′ = 2, . . . , D, of the multivariate

processes {Yid}, then there exist

x1d, x2d, . . . , xmd, d = 1, . . . , D,

x′1d′ , x
′
2d′ , . . . , x

′
m′d′ , d

′ = 2, . . . , D,

such that the estimators â satisfies

√
n(â− a)

d−→ N(0, BΘ(Σ +

K1+K2+1∑

k=1

{Wk +W ′
k})Θ′B′)

where B = (C ′C)−1C ′.

3.3.4 Simulation examples

We continue the simulation examples used in section 3.2.4 and consider now the bi-

variate processes




Yi1 = max

[
0.10Z1,i−1, 0.40Z1,i

0.35Z2,i−1, 0.15Z2,i

]

Yi2 = max

[
0.35Z1,i−1, 0.15Z1,i

0.10Z2,i−1, 0.40Z2,i

] (3.39)

We first generate data by simulating these bivariate processes, then based on the sim-

ulated data re-estimate all coefficients simultaneously and compute their asymptotic
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Parameter a1,−1,1 a1,0,1 a2,−1,1 a2,0,1 a1,−1,2 a1,0,2 a2,−1,2 a2,0,2
True value .1 .4 .35 .15 .35 .15 .1 .4

Estimated value .1169 .3804 .3599 .1477 .3693 .1303 .1508 .3493
Standard Deviation. .0123 .0427 .0491 .0128 .0345 .0204 .0226 .0369

Table 3.7: Simulation results for model

covariance matrix. Notice that the coefficients in the second process are the permuted

coefficients in the first process. The purpose here is to apply estimators developed in

section 3.3.3 and compare the asymptotic standard deviations obtained by Theorem

3.15 with those obtained in section 3.2.4. Table 3.7 is obtained using simulated data

with a sample size of 10000. If we compare Table 3.2 with Table 3.7, we find the

standard deviations in Table 3.7 are smaller than those in Table 3.2. We think this

is because the model in section 3.3.3 uses more data and data information than other

models use.

3.4 Weighted least squares estimation

In this section, we assume the model is identifiable from the bivariate distributions.

Proposition 3.2 has given sufficient conditions for this.

From (3.4) and finite number of {x1, x2, · · · , xK1+K2 , xK1+K2+1} such that

x1 < r1 < x2 < r2 < · · · < xK1+K2 < rK1+K2 < xK1+K2+1,

then the model is identified by q(x1), q(x2), . . . , q(xK1+K2+1). And we have

Corollary 3.16 Suppose the model is identifiable w.r.t. bivariate joint distribution.

Let r0 = 0, x0 = 0, {x1, x2, · · · , xm} are m points such that x1 < r1, xm > rK1+K2, and

min(xi+1 − xi, i = 0, · · · ,m) < min(ri+1 − ri, i = 0, · · · , K1 +K2)

then the model is identified by q(x1), q(x2), . . . , q(xm).

Under the assumptions in Proposition 3.1, solving aj’s iteratively is equivalent to an

optimizing problem

min∑
aj=1

aj>0

m∑

i=1

(xi
∑

j∈M̄(xi)

aj +
∑

j∈M(xi)

aj+1 − q(xi))
2 (3.40)
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which gives least squares solutions.

In practice, what we observed is q̂(xi), or an estimation of q(xi), for each i. Based

on Corollary 3.4, for sufficiently large n,

q̂(xi) = q(xi) + εi, i = 1, · · · ,m (3.41)

where εi are normally distributed and correlated with variance-covariance matrix V , a

generalization of Corollary 3.4. So the weighted least squares estimates are optimum

solutions of

min∑
aj=1

aj>0

(q̂− q)′V −1(q̂− q). (3.42)

where q = (q(x1), · · · , q(xm))′, q̂ = (q̂(x1), · · · , q̂(xm))′.
Suppose now â is a solution of (3.42), if we restrict the parameter space to a

neighborhood of â, written δ(â), then each q(xi) is a linear combination of aj’s and so

there exists a matrix C which depends on â but can be exactly determined such that

min∑
aj=1

aj>0,a∈δ(â)

(q̂− Ca)′V −1(q̂− Ca) (3.43)

has a solution of â = (C ′V −1C)−1C ′V −1q̂ = Bb̂, whereB = (C ′V −1C)−1C ′V −1diag{x1,
· · · , xm}, q(x) = xb(x). And then we have a corollary,

Corollary 3.17

√
n(â− a)

d−→ N(0, BΘ(Σ +

K1+K2+1∑

k=1

{Wk +W ′
k})Θ′B′)

Proof. By the same arguments as in the Theorem 3.8. 2

3.5 Threshold Methods

In the real world, a time series may not follow the assumed statistical model. But in our

applications the tail probability of large observations is the main concern, for example,

what is the probability of a big price movement of next day given today’s information

on the stock market. There has been an extensive development of threshold methods

in extreme value statistical research. In this section, we develop a unified procedure for
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modeling within-cluster behavior at extreme levels by usingM4 processes to model the

temporal dependence of exceedances. We assume those values above certain threshold

value u are actually observed and follow the tail distribution of unit Fréchet. Those

values below the threshold u are not observed or treated as zero. Our development

is focusing on univariate time series data, but without any difficulty it can be easily

extended to multivariate time series data with multiple thresholds.

{
Pr(Yi < u+ x, Yi+1 < u) = e−

∑L
l=1

∑2+K1
m=1−K2

max(
al,1−m
u+x

,
al,2−m

u
)

Pr(Yi < u, Yi+1 < u+ x) = e−
∑L

l=1

∑2+K1
m=1−K2

max(
al,1−m

u
,
al,2−m
u+x

)

Let A1(x) = (0, u)× (0, u+ x), A2(x) = (0, u+ x)× (0, u), and define

X̄Aj(x) =
1

n

n∑

i=1

IAj(x)(Yi, Yi+1), j = 1, 2.

then for a fixed u, as n→∞,

X̄A1(x)
a.s.−→ Pr(Yi < u, Yi+1 < u+ x) = p1(x),

X̄A2(x)
a.s.−→ Pr(Yi < u+ x, Yi+1 < u) = p2(x).

We have




∑L
l=1

∑2+K1
m=1−K2

max(
al,1−m

u+x1
,
al,2−m

u
) = − log(p1(x1))∑L

l=1

∑2+K1
m=1−K2

max(
al,1−m

u
,
al,2−m

u+x1
) = − log(p2(x1))

...∑L
l=1

∑2+K1
m=1−K2

max(
al,1−m

u+xm
,
al,2−m

u
) = − log(p1(xm))∑L

l=1

∑2+K1
m=1−K2

max(
al,1−m

u
,
al,2−m

u+xm
) = − log(p2(xm))

(3.44)

or equivalently





∑L
l=1

∑2+K1
m=1−K2

max(al,1−m,
al,2−m

u/(u+x1)
) = − log(p1(x1))

u+x1∑L
l=1

∑2+K1
m=1−K2

max(al,1−m,
al,2−m

(u+x1)/u
) = − log(p2(x1))

u
...∑L

l=1

∑2+K1
m=1−K2

max(al,1−m,
al,2−m

u/(u+xm)
) = − log(p1(xm))

u+xm∑L
l=1

∑2+K1
m=1−K2

max(al,1−m,
al,2−m

(u+xm)/u
) = log(p2(xm))

u

(3.45)

The left hand side is similar to (3.17) and hence according to Theorem 3.6 and assuming

unit Fréchet margin for those observed values at extreme level, P (Yi+1 < u+x, Yi < u)

and P (Yi+1 < u, Yi < u+ x) uniquely determine all the parameters since we can take

logarithm transformation to get (3.11), so the model is identified from (3.44) or (3.45).
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Lemma 3.18 Let

ζn = (X̄A1(x1), X̄A2(x1), . . . , X̄A1(xm), X̄A2(xm))

and

µ = (p1(x1), p2(x1), . . . , p1(xm), p2(xm))

then
√
n(ζn − µ)

d−→ N(0,Σ +

K1+K2+1∑

k=1

{Wk +W ′
k})

where the elements of Σ have the forms

E[(IAi(xs)(Y1, Y2)− pi(xs))(IAj(xt)(Y1, Y2)− pj(xt))]
= EIAi(xs)∩Aj(xt)(Y1, Y2)− pi(xs)pj(xt)
= pij(s, t)− pi(xs)pj(xt)

with i, j = 1, 2; s, t = 1, 2, . . . ,m, and the elements of Wk have the forms

E[(IAi(xs)(Y1, Y2)− pi(xs))(IAj(xt)(Y1+k, Y2+k)− pj(xt))]
= EIAi(xs)(Y1, Y2)IAj(xt)(Y1+k, Y2+k)− pi(xs)pj(xt)
= pkij(s, t)− pi(xs)pj(xt)

with i, j = 1, 2; s, t = 1, 2, . . . ,m.

By setting




∑L
l=1

∑2+K1
m=1−K2

max(
âl,1−m

u+x1
,
âl,2−m

u
) = − log(X̄A1(x1))∑L

l=1

∑2+K1
m=1−K2

max(
âl,1−m

u
,
âl,2−m

u+x1
) = − log(X̄A2(x1))

...∑L
l=1

∑2+K1
m=1−K2

max(
âl,1−m

u+xm
,
âl,2−m

u
) = − log(X̄A1(xm))∑L

l=1

∑2+K1
m=1−K2

max(
âl,1−m

u
,
âl,2−m

u+xm
) = − log(X̄A2(xm))

(3.46)

we get

Theorem 3.19 Suppose the model is identified from x1, x2, . . . , xm, where these values

satisfy that u
u+xi

or u+xi
u

are different from the ratios of true parameter, then

√
n(â− a)

d−→ N(0, BΘ(Σ +

K1+K2+1∑

k=1

{Wk +W ′
k}))Θ′B′)

for B = (C ′C)−1C,Σ and Wk are defined the same as in Lemma 3.18 and Θ is defined

by

Θ = diag(
1

p1(x1)
,

1

p2(x1)
, . . . ,

1

p1(xm)
,

1

p2(xm)
)

67



3.6 Multivariate domains of attraction and non unit

Fréchet margins

So far the models studied assumed the data follow theM4 process exactly. Some natu-

ral relaxations of the assumption would be that the distribution of underlying random

variables belongs to the domain of attraction of a multivariate extreme value distribu-

tion and the marginal distribution of Z’s is non unit Fréchet. In the univariate case,

from these assumptions, efficient estimating methods based on threshold exceedances

and generalized Pareto distribution have been developed. We now develop a similar

estimating procedure in the multivariate context. First, we rephrase Theorem 5.4.3 of

Galambos (1987) into Lemma 3.20 under the assumption the marginal distribution of

bivariate extreme value distribution is unit Fréchet.

Lemma 3.20 Let x = (x1, x2), F be the population distribution and

F n(anx+ bn)→ H(x) (3.47)

where H(x) has Fréchet marginals H2,ξj(xj), j = 1, 2. Let F has the same univariate

marginals F1 and F2 which are eventually strictly increasing, then F belongs to the

bivariate domains of attraction of H if and only if

1− F (ux1, ux2)

1− F1(u)
→ − logH(x) (3.48)

as u→∞.

We now use this lemma to construct estimators for all parameters al,k,d. Assume that

F belongs to the bivariate domains of attraction of H which has the distribution

H(x) = exp[−
L∑

l=1

2+K1∑

m=1−K2

max(
al,1−m
x1

,
al,2−m
x2

)] (3.49)

Substitute F (ux1, ux2) and F1(u) by
1
n

n∑
i=1

I(Yi≤ux1, Yi+1≤ux2) and
1
n

n∑
i=1

I(Yi≤u) respec-

tively, then

Pr
{

lim
n→∞

1− 1
n

n∑
i=1

I(Yi≤ux1, Yi+1≤ux2)

1− 1
n

n∑
i=1

I(Yi≤u)

= − logH(x)
}
= 1 (3.50)

for all u.
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From (3.50) we can construct estimation methods for parameters alk’s. Let x1 = 1,

then − logH(x) = b(x2) which was defined in (3.11), i.e.

Pr
{

lim
n→∞

1− 1
n

n∑
i=1

I(Yi≤u, Yi+1≤ux)

1− 1
n

n∑
i=1

I(Yi≤u)

= b(x)
}
= 1. (3.51)

for all u.

For any fixed u, let Au(x) = (0, u)× (0, ux) and

X̄Au(x) =
1

n

n∑

i=1

IAu(x)(Yi, Yi+1)

then

X̄Au(x)
a.s.−→ P (Y1 ≤ u, Y2 ≤ ux) = pu(x)

Lemma 3.21 Let

ζun = (X̄Au(∞), X̄Au(x1), . . . , X̄Au(xm))

and

µu = (pu(∞), pu(x1), . . . , (pu(xm))

then
√
n(ζun − µu)

d−→ N(0,Σu +

K1+K2+1∑

k=1

{Wuk +W ′
uk})

where the elements of Σu have the forms

E[(IAu(xs)(Y1, Y2)− pu(xs))(IAu(xt)(Y1, Y2)− pu(xt))]
= EIAu(xs)∩Au(xt)(Y1, Y2)− pu(xs)pu(xt)
= pu(xs ∧ xt)− pu(xs)pu(xt)

with s, t = 1, 2, . . . ,m, and the elements of Wuk have the forms

E[(IAu(xs)(Y1, Y2)− pu(xs))(IAu(xt)(Y1+k, Y2+k)− pu(xt))]
= EIAu(xs)(Y1, Y2)IAu(xt)(Y1+k, Y2+k)− pu(xs)pu(xt)
= puk(s, t)− pu(xs)pu(xt)

with s, t = 1, 2, . . . ,m.

Let

bu(xi) =
1− pu(xi)

1− pu(∞)
, i = 1, . . . ,m
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then the Jacobian matrix of transforming pu(xi) into bu(xi) has the form:

J =




1−pu(x1)
(1−pu(∞))2

− 1
1−pu(∞)

0 · · · 0
1−pu(x2)

(1−pu(∞))2
0 − 1

1−pu(∞)
· · · 0

...
...

...
. . .

...
1−pu(xm)
(1−pu(∞))2

0 0 · · · − 1
1−pu(∞)




(3.52)

so we have

Lemma 3.22 Let

bun = (

1− 1
n

n∑
i=1

I(Yi≤u, Yi+1≤ux1)

1− 1
n

n∑
i=1

I(Yi≤u)

, . . . ,

1− 1
n

n∑
i=1

I(Yi≤u, Yi+1≤uxm)

1− 1
n

n∑
i=1

I(Yi≤u)

)′

bu = (bu(x1), . . . , bu(xm))
′

then
√
n(bun − bu)

d−→ N(0, J(Σu +

K1+K2+1∑

k=1

{Wuk +W ′
uk})J ′)

Let

b̂u(x) =

1− 1
n

n∑
i=1

I(Yi≤u, Yi+1≤ux)

1− 1
n

n∑
i=1

I(Yi≤u)

.

Suppose the solutions of




L∑
l=1

[âl,K2 + max(âl,K2−1,
âl,K2
x1

) + max(âl,K2−2,
âl,K2−1

x1
)

+ max(âl,K2−3,
âl,K2−2

x1
) + · · ·+max(âl,−K1 ,

âl,−K1+1

x1
) +

âl,−K1

x1
] = b̂u(x1)

· · · · · ·
L∑
l=1

[âl,K2 + max(âl,K2−1,
âl,K2
xm

) + max(âl,K2−2,
âl,K2−1
xm

)

+ max(âl,K2−3,
âl,K2−2
xm

) + · · ·+max(âl,−K1 ,
âl,−K1+1

xm
) +

âl,−K1

xm
] = b̂u(xm)

(3.53)

are âu. This is equivalent to Ĉunâu = b̂u in matrix notations where Cun is uniquely

determined by âu. And the solutions of




L∑
l=1

[aul,K2 + max(aul,K2−1,
aul,K2
x1

) + max(aul,K2−2,
aul,K2−1

x1
)

+ max(aul,K2−3,
aul,K2−2

x1
) + · · ·+max(aul,−K1 ,

aul,−K1+1

x1
) +

aul,−K1

x1
] = bu(x1)

· · · · · ·
L∑
l=1

[aul,K2 + max(aul,K2−1,
aul,K2
xm

) + max(aul,K2−2,
aul,K2−1
xm

)

+ max(aul,K2−3,
aul,K2−2
xm

) + · · ·+max(aul,−K1 ,
aul,−K1+1

xm
) +

aul,−K1

xm
] = bu(xm)

(3.54)
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are au. And similarly this is equivalent to Cuau = bu.

And the solutions of




L∑
l=1

[al,K2 + max(al,K2−1,
al,K2
x1

) + max(al,K2−2,
al,K2−1

x1
)

+ max(al,K2−3,
al,K2−2

x1
) + · · ·+max(al,−K1 ,

al,−K1+1

x1
) +

al,−K1

x1
] = b(x1)

· · · · · ·
L∑
l=1

[al,K2 + max(al,K2−1,
al,K2
xm

) + max(al,K2−2,
al,K2−1
xm

)

+ max(al,K2−3,
al,K2−2
xm

) + · · ·+max(al,−K1 ,
al,−K1+1

xm
) +

al,−K1

xm
] = b(xm)

(3.55)

are a. And similarly this is equivalent to Ca = b.

The following theorem can be obtained.

Theorem 3.23 Suppose the model is identified from x1, x2, . . . , xm, where these values

are different from the ratios of true parameter, then

√
n(âu − au)

d−→ N(0, BuJ(Σu +

K1+K2+1∑

k=1

{Wuk +W ′
uk})J ′B′u)

for Bu = (C ′uCu)
−1C ′u, J,Σu and Wuk are defined the same as in Lemma 3.21, 3.22,

(3.52).

We now study the limiting distribution of
√
n(âu − a).

By Lemma 3.22, for each u and any vector α, we have

Xun =
√
n
α′(̂bun − bu)

σαu

d−→ N(0, 1) as n→∞

where σαu =
√
α′J(Σu +

∑K1+K2+1
k=1 {Wuk +W ′

uk})J ′α. Denote the distribution func-

tion of Xun by Fun(y), and standard normal distribution function Φ(y), then

Fun(y)→ Φ(y), −∞ < y <∞, as n→∞

Since Φ(y) is continuous, so

lim
n

sup
y
|Fun(y)− Φ(y)| = 0,

for each u.

Now suppose u(n) is a sequence of numbers chosen to satisfy the condition

√
n max

1≤i≤m
|bu(n)(xi)− b(xi)| → 0, as n→∞.
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These u(n) satisfy

lim
n

sup
y
|Fu(n),n(y)− Φ(y)| = 0

which implies

Xu(n),n =
√
n
α′(̂bu(n),n − bu(n))

σαu(n)

d−→ N(0, 1),

so
√
n(bu(n),n − bu(n))

d−→ N(0,Σ)

where Σ = lim
u
J(Σu +

∑K1+K2+1
k=1 {Wuk +W ′

uk})J ′.
From the condition

√
n max

1≤i≤m
|bu(n)(xi)−b(xi)| → 0, as n→∞, we know the ratios

of parameters from bu(n)(xi) converge to the ratios of parameters from b(xi) since ratios

are jump points. So the matrix Cu(n) formed from (3.54) and the matrix formed from

(3.55) are identical for sufficiently large n because all elements of Cu(n) are also either

1, 1
xi

or 1 + 1
xi
, and this gives

√
n(au(n) − a)→ 0.

Let B = (C ′C)−1C ′, then

√
n(âu(n) − au(n))

d−→ N(0, BΣB′),

and
√
n(âu(n) − a) =

√
n(âu(n) − au(n)) +

√
n(au(n) − a)

d−→ N(0, BΣB′).

We form these results into the following corollary.

Corollary 3.24 Suppose the model is identified from x1, x2, . . . , xm, where these values

are different from the ratios of true parameter, and under the condition

√
n max

1≤i≤m
|bu(n)(xi)− b(xi)| → 0, as n→∞,

we have
√
n(âu(n) − a)

d−→ N(0, BΣB′).
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Chapter 4

Modeling Extreme Processes with
Parametric Structures

In chapters 2 and 3, we studied probabilistic properties of M4 processes, proposed

estimation methods, proved consistency and asymptotic normality of the estimators.

All the methods are not restricted to the number of parameters. But in numerical

computation aspect, the more parameters, the less precision of the estimates. It’s not

just a numerical stability issue, of course. The statistical precision of the estimates will

be poor if the number of parameters is too large. So in this chapter, we will consider

several parametric structures which could be imposed on the parameters. For instance

we consider al,k,d being symmetric about k = 0 for each l and d and some other specific

possibilities. In section 4.1, we shall study a symmetric parameter structure model.

In section 4.2, we shall study an asymmetric geometry parameter structure model. In

section 4.3, a monotone parameter structure model will be discussed. The following

fact will be used many times in this chapter. It should be no ambiguity when it is used

without mentioning it.

Fact: If two lines

f(x) = ax+ b and g(x) = cx+ d

on the plane satisfy

f(x1) = g(x1) and f(x2) = g(x2)

for two different points x1 and x2, then

a = c, and b = d.



4.1 Symmetric geometric parameter structure model

In this section we study a particular form of symmetric geometric parameter structure

model, i.e., we assume

al,k,d = bldλ
|k|
ld , k = −K1, . . . , K2, d = 1, . . . , D (4.1)

for each l, where the unknown parameters are bld and λld. We first consider the case

L = 1 and then the case L > 1 in the following subsections.

4.1.1 Case L = 1

When L = 1, for simplicity we assume K1 = K2, then we have

akd = bdλ
|k|
d , k = −K, . . . ,K, d = 1, . . . , D (4.2)

Since
∑K

k=−K akd = bd
∑K

k=−K λ
|k|
d = 1, bd =

1∑K
k=−K λ

|k|
d

. Let τ = (0, 0, . . . , τd, 0, . . . , 0),

then by (1.25) we have

θ(τ ) =
maxkmaxd akdτd∑

kmaxd akdτd
=

maxk bdλ
|k|
d τd∑

k bdλ
|k|
d τd

=
maxk λ

|k|
d∑

k λ
|k|
d

= θd

which immediately implies

θd = max
k
bdλ

|k|
d = max

k
akd. (4.3)

This tells that we can either from the estimation of maxk akd to get the estimation of

θd or vice versa. Especially, if λd < 1, then θd = bd; if λd > 1, then θd = bdλ
K
d .

Since ∑
k λ

|k|
d = 1 + 2λd(1 + λd + · · ·+ λK−1d )

= 2(1 + λd + λ2d + · · ·+ λKd )− 1

we have

1 + λd + λ2d + · · ·+ λKd =
1

2
(
1

bd
+ 1). (4.4)

Let f(t) = 1+ t+ · · ·+ tK , then f ′(t) = 1+ 2t+ · · ·+KtK−1 > 0, for t > 0. So f(t) is

strictly increasing and λd is uniquely determined by λd = f−1(1
2
( 1
bd

+ 1)). And so we

have a theorem.

Proposition 4.1 Under the parameter structure (4.2), we have

θd = max
k
akd, λd = f−1(

1

2
(
1

bd
+ 1)), d = 1, . . . , D.
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By the definition of q(x) in (3.2), when D = 1 we have

q(x) = bλKx+max(bλK−1x, bλK) + · · ·+max(bλx, bλ2) + max(bx, bλ)
+max(bλx, b) + max(bλ2x, bλ) + · · ·+max(bλKx, bλK−1) + bλK .

(4.5)

When x2 > max(λ, 1/λ),

q(x2) = x2 + bλK . (4.6)

When 1/λ < x1 < λ,

q(x1) = b(x1 + 1)(2λK + λK−1 + · · ·+ λ). (4.7)

When λ < x3 < 1/λ

q(x3) = b(x3 + 1)(λK + λK−1 + · · ·+ 1). (4.8)

When use q(x2) together q(x1) or q(x3), we can uniquely determine b and λ. Now let

x1 < x2 be two points, the goal is to find a point x2 such that x2 > max(λ, 1/λ). We

have the following two cases.

1. if q(x2)−q(x1)
x2−x1

= 1, then x2 > x1 > max(λ, 1/λ),

2. if q(x2)−q(x1)
x2−x1

< 1, calculate the intercept point (x3, q(x3)) of the line which goes

through (x1, q(x1)) and (x2, q(x2)) to the line y(x) = x. Let x1 = x2, x2 = x3

and repeat this process until we have the case 1.

Note: if x2 > max(λ, 1/λ), then 1
x2
< min(λ, 1/λ).

Suppose now x and q(x) are known, where x > max(λ, 1/λ), then we can get the

value for b from

bKf−1(
1

2
(
1

b
+ 1)) = (q(x)− x)K (4.9)

or equivalently

f−1(
1

2
(
1

b
+ 1)) = (

q(x)− x

b
)K

or
1

2b
+

1

2
= f((

q(x)− x

b
)K).

When q(x) is replaced by q̂(x) in (4.9), we get the estimate of b, i.e. b̂. Since q̂(x)
a.s.−→

q(x), by continuous mapping theorem, b̂
a.s.−→ b, and hence λ̂

a.s.−→ λ. Since q(x) =

bf−1(1
2
(1
b
+ 1)) + x, so we have

∂q
∂b

= f−K(1
2
(1
b
+ 1)) +

Kbf−(K+1)( 1
2
( 1
b
+1))

f ′( 1
2
( 1
b
+1)) 1

2b2

= f−K(1
2
(1
b
+ 1)) + 2Kb3

f−(K+1)( 1
2
( 1
b
+1))

f ′( 1
2
( 1
b
+1))
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so
∂b

∂q
=

f ′(1
2
(1
b
+ 1))

f ′(1
2
(1
b
+ 1))f−K(1

2
(1
b
+ 1)) + 2Kb3f−(K+1)(1

2
(1
b
+ 1))

= δ

This together with Corollary 3.4, We have proved the following theorem.

Theorem 4.2 Suppose x > max(λ, 1/λ), then

√
n(̂b− b)

d−→ N(0, x2σ2δ2)

where σ is defined as in the Theorem 3.3.

Since λ = f−1(1
2
(1
b
+ 1)), ∂λ

∂b
= 2b2

f ′( 1
2
( 1
b
+1))

= λ, we then have the following corollary.

Corollary 4.3 Suppose x > max(λ, 1/λ), then

√
n(λ̂− λ)

d−→ N(0, x2σ2δ2λ2)

In order to obtain asymptotic properties of (b̂, λ̂) we start from (4.6)-(4.8), the following

is a corollary of Theorem 3.5.

Corollary 4.4 Suppose min(λ, 1/λ) < x1 < max(λ, 1/λ), x2 > max(λ, 1/λ), then

√
n(q̂− q)

d−→ N(0,Θ(Σ +

K1+K2+1∑

k=1

{Wk +W ′
k})Θ′),

where

q̂ =

[
q̂(x1)
q̂(x2)

]
,q =

[
q(x1)
q(x2)

]
,Θ =

[x1
µ1

0

0 x2
µ2

]
.

and

µi = Pr(Y1 ≤ 1, Y2 ≤ xi), µ12 = Pr(Y1 ≤ 1, Y2 ≤ x1), σij = µij − µiµj,

wij
k = Pr(Y1 ≤ 1, Y2 ≤ xi, Y1+k ≤ 1, Y2+k ≤ xj)− µiµj, µii = µi.

Theorem 4.5 Suppose min(λ, 1/λ) < x1 < max(λ, 1/λ), x2 > max(λ, 1/λ), then

√
n
(
[
b̂

λ̂

]
−
[
b
λ

] ) d−→ N(0, J−1Θ(Σ +

K1+K2+1∑

k=1

{Wk +W ′
k})Θ′(J−1)′)

where

J =

{
J1, if 1/λ < x1 < λ

J2, if λ < x1 < 1/λ.

and

J1 =

[
(x1 + 1)(2λK + λK−1 + · · · + λ) b(x1 + 1)(2KλK−1 + (K − 1)λK−2 + · · · + 1)

λK KbλK−1

]

J2 =

[
(x1 + 1)(λK + λK−1 + · · · + λ2 + λ+ 1) b(x1 + 1)(KλK−1 + (K − 1)λK−2 + · · · + 2λ+ 1)

λK KbλK−1

]
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Proof. We prove the case when λ < x1 < 1/λ. Since

∂q(x1)

∂b
= (x1 + 1)(λK + λK−1 + · · ·+ λ2 + λ+ 1),

∂q(x1)

∂λ
= b(x1 + 1)(KλK−1 + (K − 1)λK−2 + · · ·+ 2λ+ 1),

∂q(x2)

∂b
= λK ,

∂q(x2)

∂λ
= KbλK−1.

So the Jacorbian matrix is

J =

[
∂q(x1)
∂b

∂q(x1)
∂λ

∂q(x2)
∂b

∂q(x2)
∂λ

]
= J2.

The determinant of J is |J2| = b(x1 + 1)(λ2K−2 + 2λ2K−3 + · · ·+ (K − 2)λK+1 + (K −
1)λK +KλK−1) > 0, so J−1 exists. And then by the mean value theorem and Slutsky

theorem the proof is completed. 2

4.1.2 Case L > 1

We consider D = 1 in this subsection. Define

ql(x) = blλ
K
l x+max(blλ

K−1
l x, blλ

K
l ) + · · ·+max(blλ

K
l x, blλ

K−1
l ) + blλ

K
l . (4.10)

then

q(x) = q1(x) + q2(x) + · · ·+ qL(x). (4.11)

Without loss of generality, we assume λ1 < λ2 < · · · < λL. Since q(x) is a piecewise lin-

ear function of x, the jumping points of q′(x) are 1/λ1, 1/λ2, . . . , 1/λL, λ1, λ2, . . . , λL.

We assume all these points are different.

Suppose now

q∗(x) = q∗1(x) + q∗2(x) + · · ·+ q∗L(x) (4.12)

where q(x) = q∗(x) all x and

q∗l (x) = b∗l λ
∗K
l x+max(b∗l λ

∗K−1
l x, b∗l λ

∗K
l )+ · · ·+max(b∗l λ

∗K
l x, b∗l λ

∗K−1
l )+ b∗l λ

∗K
l . (4.13)

Lemma 4.6 If q(x) = q∗(x) all x, then

(λ1, λ2, . . . , λL) = (λ∗1, λ
∗
2, . . . , λ

∗
L)

(b1, . . . , bL) = (b∗1, . . . , b
∗
L).
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Remark: Since both q(x) and q∗(x) are piecewise linear functions, we only need finite

number of points such that the two are equal at those points. The following proof

shows that.

Proof. q∗′(x) has the same jumping points as q′(x) has. Suppose

max(1/λ1, 1/λ2, . . . , 1/λL, λ1, λ2, . . . , λL) = λL,
max(1/λ∗1, 1/λ

∗
2, . . . , 1/λ

∗
L, λ

∗
1, λ

∗
2, . . . , λ

∗
L) = 1/λ∗1,

(4.14)

Which imply λL = 1/λ∗1. Let

f(λ) = λ+ λ2 + · · ·+ λK .

Let x > λL and y lies in the range between the second largest jumping point and λL.

Then by the formulas (4.6)–(4.8), we have

ql(x) = blx(2f(λl) + 1) + blλ
K
l

q(x) =
∑

blx(2f(λl) + 1) +
∑

blλ
K
l = x+

∑
blλ

K
l (4.15)

ql(y) = bl(y + 1)(λKL + f(λl))

q(y) =
L−1∑
l=1

bly(2f(λl) + 1) +
L−1∑
l=1

blλ
K
l + bL(y + 1)(λKL + f(λL))

= y +
L∑
l=1

blλ
K
l + bLy(λ

K
L − f(λL)− 1) + bLf(λL)

(4.16)

(4.15)-(4.16) gives

q(x)− q(y) = x− y + bLy(λ
K
L − f(λL)− 1)− bLf(λL) (4.17)

Now consider using λ∗’s and for x > 1/λ∗1 we get

q∗(x) = x+
∑

b∗l λ
∗K
l (4.18)

For λ∗1 < y < 1/λ∗1, we have

q∗1(y) = b∗1(y + 1)(f(λ∗1) + 1)

q∗(y) = b∗1(y + 1)(f(λ∗1) + 1) +
L∑
l=2

b∗l y(2f(λ
∗
l ) + 1) +

L∑
l=2

b∗l λ
∗K
l

= y − b∗1yf(λ
∗
1) +

L∑
l=2

b∗l λ
∗K
l + b∗1(f(λ

∗
1) + 1)

(4.19)
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(4.18)-(4.19) gives

q∗(x)− q∗(y) = x− y + b∗1yf(λ
∗
1)− b∗1(f(λ

∗
1) + 1− λ∗K1 ) (4.20)

q(x)− q(y) = q∗(x)− q∗(y) gives

bL(f(λL)− λKL + 1) = b∗1f(λ
∗
1) (4.21)

bLf(λL) = b∗1(f(λ
∗
1) + 1− λ∗K1 ) (4.22)

Now suppose both x and y are between the maximum and the second maximum values

of λ, 1/λ, then

q(x)− q(y) = x− y − bL(y − x)(f(λL)− λKL + 1)

q∗(x)− q∗(y) = x− y − b∗1(x− y)f(λ∗1)

which gives

bL(f(λL)− λKL + 1) = −b∗1f(λ∗1) (4.23)

(4.21) and (4.23) can not be true simultaneously. So λL = 1/λ∗1 can not be true, so

λ∗L = λL. And bL = b∗L is obvious.

Now Suppose

λl = λ∗l , bl = b∗l , l = k + 1, . . . , L

then

ql(x) = q∗l (x), l = k + 1, . . . , L

Suppose 1/λk < λk where λk is the L−k largest among 1/λ1, 1/λ2, . . . , 1/λL, λ1, λ2, . . . ,

λL and 1/λ∗k > λ∗k where 1/λ
∗
k is the L−k largest among 1/λ∗1, 1/λ

∗
2, . . . , 1/λ

∗
L, λ

∗
1, λ

∗
2, . . . ,

λ∗L. So λk = 1/λ∗k.

Suppose x > max(λl, 1/λl), l = 1, . . . , k then

q(x) =
k∑

l=1

blx(2f(λl) + 1) +
k∑

l=1

blλ
K
l +

L∑

l=k+1

ql(x)

For 1/λk < y < λk,

q(y) =
k−1∑
l=1

bly(2f(λl) + 1) +
k−1∑
l=1

blλ
K
l + bk(y + 1)(λKk + f(λk)) +

L∑
l=k+1

ql(y)

=
k∑
l=1

bly(2f(λl) + 1) +
k∑
l=1

blλ
K
l + bk(y + 1)(λKk + f(λk)) +

L∑
l=k+1

ql(y)

−bky(2f(λk) + 1)− bkλ
K
k
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q(x)− q(y) = (x− y)
k∑
l=1

bly(2f(λl) + 1)

+
L∑

l=k+1

(ql(x)− ql(y))− bk(y + 1)(λKk + f(λk))

+bky(2f(λk) + 1) + bkλ
K
k

Suppose x > max(λ∗l , 1/λ
∗
l ), l = 1, . . . , k then

q∗(x) =
k∑

l=1

b∗l x(2f(λ
∗
l ) + 1) +

k∑

l=1

b∗l λ
∗K
l +

L∑

l=k+1

q∗l (x)

For 1/λ∗k < y < λ∗k,

q∗(y) = b∗k(y + 1)(f(λ∗k) + 1) +
k−1∑
l=1

b∗l y(2f(λ
∗
l ) + 1) +

k−1∑
l=1

b∗l λ
∗K
l +

L∑
l=k+1

q∗l (y)

=
k∑
l=1

b∗l y(2f(λ
∗
l ) + 1) +

k∑
l=1

b∗l λ
∗K
l − b∗kyf(λ

∗
k) +

L∑
l=k+1

q∗l (y)

+b∗k(f(λ
∗
k) + 1− λ∗Kk )

q∗(x)− q∗(y) = (x− y)
k∑
l=1

b∗l y(2f(λ
∗
l ) + 1) +

L∑
l=k+1

(q∗l (x)− q∗l (y)) + b∗kyf(λ
∗
k)

+b∗k(f(λ
∗
k) + 1− λ∗Kk )

From q(x)− q(y) = q∗(x)− q∗(y) and
k∑
l=1

bl(2f(λl) + 1) =
k∑
l=1

b∗l (2f(λ
∗
l ) + 1), we get

bk(f(λk)− λKk + 1) = b∗kf(λ
∗
k) (4.24)

−bkf(λk) = b∗k(f(λ
∗
k)− λ∗Kk + 1) (4.25)

These two equations can not be true simultaneously. So λk = λ∗k, bk = b∗k. So by induc-

tion, we have all λl = λ∗l , bl = b∗l . Therefore q(x) uniquely determines all parameters.

2

Let q(x) evaluate at x1, x2, . . . , xm such that q(x1), q(x2), . . . , q(xm) uniquely deter-

mine all parameters. This can be done as long as there are at least two points between

every two adjacent jumping points.

Now suppose that q̂(x1), q̂(x2), . . . , q̂(xm) are estimates of q(x1), q(x2), . . . , q(xm),

then

(q̂(x1), q̂(x2), . . . , q̂(xm))
a.s.−→ (q(x1), q(x2), . . . , q(xm)) (4.26)

where q̂(x) defined by (3.12). By (4.26), we have the following theorem.
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Theorem 4.7 The solution of





L∑
l=1

(̂blλ̂
K
l x1 + max(̂blλ̂

K−1
l x1, b̂lλ̂

K
l ) + · · · + max(b̂lλ̂

K
l x1, b̂lλ̂

K−1
l ) + b̂lλ̂

K
l ) = q̂(x1)

L∑
l=1

(̂blλ̂
K
l x2 + max(̂blλ̂

K−1
l x2, b̂lλ̂

K
l ) + · · · + max(b̂lλ̂

K
l x2, b̂lλ̂

K−1
l ) + b̂lλ̂

K
l ) = q̂(x2)

· · · · · ·
L∑

l=1

(̂blλ̂
K
l xm + max(̂blλ̂

K−1
l xm, b̂lλ̂

K
l ) + · · · + max(b̂lλ̂

K
l xm, b̂lλ̂

K−1
l ) + b̂lλ̂

K
l ) = q̂(xm)

converges almost surely to the true parameter values.

The following is a corollary of Theorem 3.5.

Corollary 4.8

√
n(q̂− q)

d−→ N(0,Θ(Σ +

K1+K2+1∑

k=1

{Wk +W ′
k})Θ′),

where

q̂ =




q̂(x1)
q̂(x2)
...

q̂(xm)


 ,q =




q(x1)
q(x2)
...

q(xm)


 ,Θ =




x1
µ1

0 · · · 0

0 x2
µ2

· · · 0
...

...
. . .

...
0 0 · · · xm

µm


 .

where

µi = Pr(Y1 ≤ 1, Y2 ≤ xi), µij = Pr(Y1 ≤ 1, Y2 ≤ min(xi, xj)), σij = µij − µiµj,

wij
k = Pr(Y1 ≤ 1, Y2 ≤ xi, Y1+k ≤ 1, Y2+k ≤ xj)− µiµj, µii = µi.

As long as x is not a jumping point, and we view q(x) as a function of all bl and

λl, then q(x) has all continuous first order partial derivatives in a neighborhood of

b1, . . . , bL, λ1, . . . , λL. So we can construct the transformation Jacobian matrix J . And

we have the following theorem.

Theorem 4.9

√
n
(
[
b̂

λ̂

]
−
[
b
λ

] ) d−→ N(0, J−1Θ(Σ +

K1+K2+1∑

k=1

{Wk +W ′
k})Θ′(J−1)′)

where b = (b1, . . . , bL)
′, λ = (λ1, . . . , λL)

′, b̂ = (̂b1, . . . , b̂L)
′, λ̂ = (λ̂1, . . . , λ̂L)

′.
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4.2 Asymmetric geometric parameter structure model

In this section we study asymmetric geometric parameter structure model,

al,k,d = bldλ
(k)+
ld φ

(k)−
ld , k = −K1, . . . , K2 (4.27)

for each l. Here al0d = bld.

Note: the informal note by Smith and Weissman (1997) had a general form.

4.2.1 Case L = 1

When L = 1, the parameter structure becomes

akd = bdλ
(k)+
d φ

(k)−
d , k = −K1, . . . , K2, d = 1, . . . , D. (4.28)

By the definition of q(x) in (3.2) when D = 1 we have

q(x) = bλK2x+max(bλK2−1x, bλK2) + · · ·+max(bλx, bλ2) + max(bx, bλ)
+max(bφx, b) + max(bφ2x, bφ) + · · ·+max(bφK1x, bφK1−1) + bφK1 .

(4.29)

When x1 < 1/φ, x1 < λ,

q(x1) = bλK2x1 + 1. (4.30)

When 1/φ < x2 < λ,

q(x2) = b[λK2x2 + (λK2 + λK2−1 + · · ·+ λ) + x2(φ+ · · ·+ φK1) + φK1 ]. (4.31)

When λ < x2 < 1/φ,

q(x2) = b[x2(λ
K2 + λK2−1 + · · ·+ 1) + (1 + φ+ · · ·+ φK1)]. (4.32)

When x3 > λ, x3 > 1/φ,

q(x3) = x3 + bφK1 . (4.33)

Note: parameters either satisfy (4.30), (4.31), and (4.33) or (4.30), (4.32) and (4.33).

Consider now (4.30), (4.31), and (4.33). From (4.30) and (4.33), we have

λK2 =
q(x1)− 1

x1(q(x3)− x3)
φK1 .

Subtract 1 = b(λK2 + λK2−1 + · · ·+ 1 + φ+ · · ·+ φK1) from (4.31) and substitute λK2

with q(x1)−1
x1(q(x3)−x3)

φK1 , we have

q(x2)− 1

q(x3)− x3
φK1 =

x2(q(x1)− 1)

x1(q(x3)− x3)
φK1 + (x2 − 1)(φ+ · · ·+ φK1) + φK1 − 1
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or equivalently

x2(q(x1) − 1) − x1(q(x2) − 1) + x2x1(q(x3) − x3)

x1(q(x3) − x3)
φK1 + (x2 − 1)(φ+ · · · + φK1) − 1 = 0 (4.34)

There are multiple solutions for this equation. To overcome this problem, we need to

introduce additional points such that all parameters can be uniquely determined.

Suppose x′1 < x1 < min(1/φ, λ) < x′2 < x2 < max(1/φ, λ) < x′3 < x3, and

q(x′1), q(x1), q(x
′
2), q(x2), q(x

′
3), q(x3) are known, then we can have the following

three lines:

L1 : y =
q(x1)− q(x′1)

x1 − x′1
x+

x1q(x
′
1)− x′1q(x1)

x1 − x′1

L2 : y =
q(x2)− q(x′2)

x2 − x′2
x+

x2q(x
′
2)− x′2q(x2)

x2 − x′2

L3 : y =
q(x3)− q(x′3)

x3 − x′3
x+

x3q(x
′
3)− x′3q(x3)

x3 − x′3

The intercept points of L1 and L2, L2 and L3 determine the values of 1
φ
and λ. What

we need is to distinguish the values of φ and λ from the jumping points of q ′(x), i.e. the

intercept points. By solving the intercept points, we then get b, λ, φ each is a function

of (q(x′1), q(x1), q(x
′
2), q(x2), q(x

′
3), q(x3)) and hence can calculate the transformation

Jacobian matrix.

Now suppose q(x) satisfies (4.30), (4.31), and (4.33) while q∗(x) satisfies (4.30),

(4.32), and (4.33). Then φ∗ = 1/λ, λ∗ = 1/φ. And b∗φ∗K1 = bφK1 , b∗λ∗K2 = bλK2

imply (λφ)K2 = (λφ)K1 which implies K2 = K1. Thus if K2 6= K1, there are no such

q(x) and q∗(x). Assume K1 = K2 = K, then we have

b[λK2x+ (λK2 + λK2−1 + · · ·+ λ) + x(φ+ · · ·+ φK1) + φK1 ] =
b∗[x(λ∗K2 + λ∗K2−1 + · · ·+ λ∗ + 1) + (1 + φ∗ + · · ·+ φ∗K1)]

So

bλK2 + b(φ+ · · ·+ φK1) = b∗λ∗K2 + b∗(λ∗K2 + λ∗K2−1 + · · ·+ λ∗ + 1)

and

b(λK2 + λK2−1 + · · ·+ λ) + φK1 = b∗(1 + φ∗ + · · ·+ φ∗K1)

we have

b(φ+ · · ·+ φK1) = b∗(λ∗K2−1 + λ∗K2−1 + · · ·+ λ∗ + 1)

and

b(λK2 + λK2−1 + · · ·+ λ) = b∗(1 + φ∗ + · · ·+ φ∗K1−1)
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From these two equations we have

φ−φK1+1

1−φ

λ−λK1+1

1−λ

=

1−φ∗K2

1−φ∗

1−λ∗K1
1−λ∗

Substitute φ∗ = 1/λ, λ∗ = 1/φ in the above equation, we get

φ− φK

1− φK
=
λ− λK

1− λK

Let

f(x) =
x− xt

1− xt

then

f ′(x) =
(t− 1)xt − txt−1 + 1

(1− xt)2

By induction we can prove f ′(x) > 0 for t > 1, so f(x) is strictly increasing. Therefore

λ = φ. So if the model follows (4.30), (4.31) and (4.33), then the values of φ and λ will

not satisfy (4.30), (4.32) and (4.33), or vice versa.

Summarize all the arguments we have a theorem in this subsection.

Theorem 4.10 Under (4.28), when x′1 < x1 < min(1/φ, λ) < x′2 < x2 < max(1/φ, λ) <

x′3 < x3, and q(x
′
1), q(x1), q(x

′
2), q(x2), q(x

′
3), q(x3) are known, then (4.30)-(4.33)

uniquely determine all parameters.

We have the following corollary.

Corollary 4.11 When replace q(x′1), q(x1), q(x′2), q(x2), q(x′3), q(x3) in (4.30)-

(4.33) by q̂(x′1), q̂(x1), q̂(x
′
2), q̂(x2), q̂(x

′
3), q̂(x3) and denote the solutions by b̂, λ̂, φ̂,

then

(̂b, λ̂, φ̂)
a.s.−→ (b, λ, φ) (4.35)

as n→∞.

Proof. Since

(q̂(x′1), q̂(x1), q̂(x
′
2), q̂(x2), q̂(x

′
3), q̂(x3))

a.s.−→ (q(x′1), q(x1), q(x
′
2), q(x2), q(x

′
3), q(x3))

and the uniqueness of solutions of (4.30)-(4.33) by Theorem 4.10, (4.35) is true, and

so the proof is completed. 2

By following Corollary 4.8 and the arguments followed, the following theorem tells

the limit joint distribution of (b̂, λ̂, φ̂) after suitably normalized tends to a multivariate

normal distribution.
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Theorem 4.12 Suppose x′1 < x1 < min(1/φ, λ) < x′2 < x2 < max(1/φ, λ) < x′3 < x3,

then

√
n
(


b̂

λ̂

φ̂


−



b
λ
φ


) d−→ N(0, JΘ(Σ +

K1+K2+1∑

k=1

{Wk +W ′
k})Θ′J ′)

where Wk, Σ, Θ are defined in Corollary 4.8 with m = 6 and the elements of J are

J1j =
∂b

∂q(xj)
, J2j =

∂λ
∂q(xj)

, J1j =
∂φ

∂q(xj)
, j = 1, . . . , 6.

Proof. By the same arguments in Theorem 2.6 and 2.7. 2

4.2.2 Case L > 1

We consider D = 1 in this subsection. Define

ql(x) = blλ
K2

l x+ max(blλ
K2−1
l x, blλ

K2

l ) + · · · + max(blλlx, blλ
2
l ) + max(blx, blλl)

+max(blφlx, bl) + max(blφ
2
l x, blφl) + · · · + max(blφ

K1

l x, blφ
K1−1
l ) + blφ

K1

l .
(4.36)

then

q(x) = q1(x) + q2(x) + · · ·+ qL(x). (4.37)

Without loss of generality, we assume λ1 < λ2 < · · · < λL. Since q(x) is a piecewise lin-

ear function of x, the jumping points of q′(x) are 1/φ1, 1/φ2, . . . , 1/φL, λ1, λ2, . . . , λL.

We assume all these points are different.

Suppose now

q∗(x) = q∗1(x) + q∗2(x) + · · ·+ q∗L(x) (4.38)

where q(x) = q∗(x) all x and

q∗l (x) = b∗l λ
∗K2

l x+ max(b∗l λ
∗K2−1
l x, b∗l λ

∗K2

l ) + · · · + max(b∗l λ
∗
l x, b

∗
l λ

∗2
l ) + max(b∗l x, b

∗
l λ

∗
l )

+max(b∗l φ
∗
l x, b

∗
l ) + max(b∗l φ

∗2
l x, b∗l φ

∗
l ) + · · · + max(b∗l φ

∗K1

l x, b∗l φ
∗K1−1
l ) + b∗l φ

∗K1

l .
(4.39)

Then q∗′(x) has the same jumping points as q′(x) has. With out loss of generality we

can assume

max(1/φ1, 1/φ2, . . . , 1/φL, λ1, λ2, . . . , λL) = λL, (4.40)

or

max(1/φ1, 1/φ2, . . . , 1/φL, λ1, λ2, . . . , λL) = 1/φ1, (4.41)

since the order in index l does not matter in the M4 process. We need to show that

(4.37) and (4.38) agree with each other. We state this as the following lemma.
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Lemma 4.13 If q(x) = q∗(x) all x, then

(1/φ1, 1/φ2, . . . , 1/φL, λ1, λ2, . . . , λL) = (1/φ∗1, 1/φ∗2, . . . , 1/φ∗L, λ
∗
1, λ

∗
2, . . . , λ

∗
L)

(4.42)

is true for L = 2.

We leave the proof in the proofs section of this chapter. There are possibilities that

this lemma can be generalized to case L > 2. But we will restrict our discussion in

case L = 2 in this subsection.

Now let x′1 < x1 < x′2 < x2 < x′3 < x3 < x′4 < x4 < x′5 < x5 and there is one

jumping point that belongs to (x′i, xi+1), i = 1, 2, 3, 4. Let q̂(xi) be the estimation

of q(xi), and b̂ = (̂b1, b̂2)
′, λ̂ = (λ̂1, λ̂2)

′, φ̂ = (φ̂1, φ̂2)
′ be estimations of b =

(b1, b2)
′, λ = (λ1, λ2)

′, φ = (φ1, φ2)
′ respectively. Then the following theorem follows

immediately.

Theorem 4.14 (b̂′, λ̂
′
, φ̂

′
)

a.s.−→ (b′, λ′, φ′) as n→∞.

Suppose J is the transformation Jacobian matrix, then the following theorem follows

by the arguments before Theorem 4.9 and Theorem 4.14.

Theorem 4.15

√
n
(


b̂

λ̂

φ̂


−



b
λ

φ


) d−→ N(0, JΘ(Σ +

K1+K2+1∑

k=1

{Wk +W ′
k})Θ′J ′)

where Wk, Σ, Θ are defined in Corollary 4.8 with m = 10.

4.3 Monotone parameter structure model

In this section we study monotone parameter structure model, i.e.

alk = b−K1λ
k+K1
l , k = −K1, . . . , K2 (4.43)

for each l.

Note: this is a special asymmetric form.
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4.3.1 Case L = 1

We have

akd = bdλ
k+K1
d , k = −K1, . . . , K2, d = 1, . . . , D (4.44)

Since
∑K2

k=−K1
akd = bd

∑K2
k=−K1

λk+K1d = 1, bd =
1∑K2

k=−K1
λ
k+K1
d

.

Let τ = (0, 0, . . . , τd, 0, . . . , 0), then by (1.25) we have

θ(τ ) =
maxkmaxd akdτd∑

kmaxd akdτd
=

maxk bdλ
k+K1
d τd∑

k bdλ
k+K1
d τd

=
maxk λ

k+K1
d∑

k λ
k+K1
d

= θd

which immediately implies

θd = max
k
bdλ

k+K1
d = max

k
akd. (4.45)

This tells that we can either from the estimation of maxk akd to get the estimation of

θd or vice versa. Especially, if λd < 1, then θd = bd; if λd > 1, then θd = bdλ
K
d , where

K = K1 +K2 and hereafter.

we have

1 + λd + λ2d + · · ·+ λKd =
1

bd
. (4.46)

Let f(t) = 1+ t+ · · ·+ tK , then f ′(t) = 1+ 2t+ · · ·+KtK−1 > 0, for t > 0. So f(t) is

strictly increasing and λd is uniquely determined by λd = f−1( 1
bd
). And so we have a

corollary.

Corollary 4.16 Under the parameter structure (4.44), we have

θd = max
k
akd, λd = f−1(

1

bd
), d = 1, . . . , D.

By the definition of q(x) in (3.2) when D = 1 we have

q(x) = b+max(bx, bλ) + · · ·+max(bλK−1x, bλK) + bλKx. (4.47)

When x > λ,

q(x) = b+ bx+ bλx+ · · ·+ bλK−1x+ bλKx = b+ x. (4.48)

So b = q(x)− x and λ = f−1( 1
q(x)−x

). When q(x) is replaced by q̂(x), we then have

b̂ = q̂(x)− x, λ̂ = f−1(
1

q̂(x)− x
). (4.49)

Since q̂(x)
a.s.−→ q(x) and mapping f−1 ◦ h is continuous, where h(q) = 1

q−x
, so b̂

a.s.−→ b,

λ̂
a.s.−→ λ. We have the following corollary which immediately follows Corollary 3.4.
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Corollary 4.17 When x > λ, we have
√
n(̂b− b)

d−→ N(0, x2σ2).

Since b = 1−λ
1−λK+1

, so ∂b
∂λ

= −1+(K+1)λK−KλK+1

(1−λK+1)2
= δ. Then a corollary immediately

follows.

Corollary 4.18 When x > λ, we have
√
n(λ̂− λ)

d−→ N(0, x2σ2δ2).

In order to obtain asymptotic properties of (b̂, λ̂), we consider x1 < λ and x2 > λ. We

have

q(x1) = 1 + bλKx1, q(x2) = x2 + b. (4.50)

So
∂q(x1)

∂b
= λKx1,

∂q(x1)

∂λ
= bKλK−1x1,

∂q(x2)

∂b
= 1,

∂q(x2)

∂λ
= 0. (4.51)

So the transformation Jacobian matrix is

J =

(
λKx1 bKλK−1x1
1 0

)
(4.52)

We then have the following theorem.

Theorem 4.19 Suppose x1 < λ < x2, then

√
n
(
[
b̂

λ̂

]
−
[
b
λ

] ) d−→ N(0, J−1Θ(Σ +

K1+K2+1∑

k=1

{Wk +W ′
k})Θ′(J−1)′)

where Θ, Σ,Wk are defined as in Corollary 4.4.

4.3.2 Case L > 1

As usual we consider D = 1 only. Define

ql(x) = bl +max(blx, blλl) + · · ·+max(blλ
K−1
l x, blλ

K
l ) + blλ

K
l x. (4.53)

then

q(x) = q1(x) + q2(x) + · · ·+ qL(x).

Without loss of generality, we assume λ1 < λ2 < · · · < λL as change points. Let

f(b, λ) = b+ bλ+ · · ·+ bλK

where
L∑
l=1

f(bl, λl) = 1.
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When x > λl,

ql(x) = bl + f(bl, λl)x

When x < λl,

ql(x) = f(bl, λl) + blλ
K
l x

Lemma 4.20 If q(x) = q∗(x) all x, then

(λ1, λ2, . . . , λL) = (λ∗1, λ
∗
2, . . . , λ

∗
L)

(b1, . . . , bL) = (b∗1, . . . , b
∗
L)

Proof. Suppose now x1, x
′
1, x2, x

′
2, . . . , xL, x

′
L, xL+1 satisfy

x′1 < x1 < λ1 < x′2 < x2 < λ2 < · · · < x′L < xL < λL < xL+1

then

q(x′1) = 1 + x′1(b1λ
K
1 + b2λ

K
2 + · · ·+ bLλ

K
L )

q(x1) = 1 + x1(b1λ
K
1 + b2λ

K
2 + · · ·+ bLλ

K
L )

q(x2) =
L∑
l=2

f(bl, λl) + x2(b2λ
K
2 + · · ·+ bLλ

K
L ) + b1 + f(b1, λ1)x2

= 1− f(b1, λ1) + x2(b1λ
K
1 + b2λ

K
2 + · · ·+ bLλ

K
L )− x2b1λ

K
1 + b1 + f(b1, λ1)x2

Similarly

q∗(x′1) = 1 + x′1(b
∗
1λ

K
1 + b∗2λ

K
2 + · · ·+ b∗Lλ

K
L )

q∗(x1) = 1 + x1(b
∗
1λ

K
1 + b∗2λ

K
2 + · · ·+ b∗Lλ

K
L )

q∗(x2) =
L∑
l=2

f(b∗l , λl) + x2(b
∗
2λ

K
2 + · · ·+ b∗Lλ

K
L ) + b∗1 + f(b∗1, λ1)x2

= 1− f(b∗1, λ1) + x2(b
∗
1λ

K
1 + b∗2λ

K
2 + · · ·+ b∗Lλ

K
L )− x2b

∗
1λ

K
1 + b∗1 + f(b∗1, λ1)x2

From q(x1)− q(x′1) = q∗(x1)− q∗(x′1) we have

b1λ
K
1 + · · ·+ bLλ

K
L = b∗1λ

K
1 + · · ·+ b∗Lλ

K
L

From q(x2)− q(x1) = q∗(x2)− q∗(x1) we have

b1 + f(b1, λ1) = b∗1 + f(b∗1, λ1)

b1λ
K
1 − f(b1, λ1) = b∗1λ

K
1 − f(b∗1, λ1)

Which give b1 = b∗1.
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Suppose when l = k we have

b1 = b∗1, . . . , bk = b∗k.

Let λk < x < λk+1

q(x) =
k∑

l=1

(bl + f(bl, λl)x) +
L∑

l=k+1

(f(bl, λl) + blλ
K
l x)

q∗(x) =
k∑

l=1

(b∗l + f(b∗l , λl)x) +
L∑

l=k+1

(f(b∗l , λl) + b∗l λ
K
l x)

Which imply

bk+1λ
K
k+1 + · · ·+ bLλ

K
L

When λk+1 < x < λk+2

q(x) =
k∑

l=1

(bl + f(bl, λl)x) + bk+1 + f(bk+1, λk+1)x+
L∑

l=k+2

(f(bl, λl) + blλ
K
l x)

q∗(x) =
k∑

l=1

(b∗l + f(b∗l , λl)x) + b∗k+1 + f(b∗k+1, λk+1)x+
L∑

l=k+2

(f(b∗l , λl) + b∗l λ
K
l x)

Which imply

bk+1 +
L∑

l=k+2

f(bl, λl) = b∗k+1 +
L∑

l=k+2

f(b∗l , λl)

bk+1 − f(bk+1, λk+1) = b∗k+1 − f(b∗k+1, λk+1)

which imply

bk+1 = b∗k+1

so by induction all bl = b∗l . 2

Let q̂(xi) be the estimation of q(xi), and b̂ = (̂b1, . . . b̂L)
′, λ̂ = (λ̂1, . . . λ̂L)

′, φ̂ =

(φ̂1, . . . φ̂L)
′ be estimations of b = (b1, . . . bL)

′, λ = (λ1, . . . λL)
′, φ = (φ1, . . . φL)

′

respectively. Then the following theorem follows immediately.

Theorem 4.21 (b̂′, λ̂
′
, φ̂

′
)

a.s.−→ (b′, λ′, φ′) as n→∞.

The transformation Jacobian matrix J can be easily calculated. And a theorem then

follows.

90



Theorem 4.22

√
n
(


b̂

λ̂

φ̂


−



b
λ

φ


) d−→ N(0, JΘ(Σ +

K1+K2+1∑

k=1

{Wk +W ′
k})Θ′J ′)

where Wk, Σ, Θ is defined in Corollary 4.8 with m = L+ 1.

4.4 Proof of Lemma 4.13

Suppose we have x1, x2, x3, x4, x5 satisfy

x1 < j1 < x2 < j2 < x3 < j3 < x4 < j4 < x5 (4.54)

where j1, j2, j3, j4 are jumping points.

Since the order in index l does not matter, we assume that λ1 < λ2 if one of λ1

and λ2 is the biggest number among all jumping points and that 1/φ2 < 1/φ1 if one of

1/φ1 and 1/φ2 is the biggest number among all jumping points.

When λ2=max(λ1, λ2, 1/φ1, 1/φ2) we have the following six possible combinations:

Λ1 :
1
φ1
< λ1 <

1
φ2
< λ2

Λ2 :
1
φ2
< λ1 <

1
φ1
< λ2

Λ3 :
1
φ1
< 1

φ2
< λ1 < λ2

Λ4 :
1
φ2
< 1

φ1
< λ1 < λ2

Λ5 : λ1 <
1
φ1
< 1

φ2
< λ2

Λ6 : λ1 <
1
φ2
< 1

φ1
< λ2

When 1/φ1=max(λ1, λ2, 1/φ1, 1/φ2) we have the following six possible combinations:

Φ1 : λ1 < λ2 <
1
φ2
< 1

φ1

Φ2 : λ2 < λ1 <
1
φ2
< 1

φ1

Φ3 : λ1 <
1
φ2
< λ2 <

1
φ1

Φ4 : λ2 <
1
φ2
< λ1 <

1
φ1

Φ5 :
1
φ2
< λ1 < λ2 <

1
φ1

Φ6 :
1
φ2
< λ2 < λ1 <

1
φ1

The notation Λ∗1 in this section means

Λ∗1 :
1

φ∗1
< λ∗1 <

1

φ∗2
< λ∗2

and similarly for other notations if used.
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When Λ1 is satisfied, we have

x1 < 1/φ1 < x2 < λ1 < x3 < 1/φ2 < x4 < λ2 < x5

which gives

q1(x1) = b1λ
K2
1 x1 + 1

q1(x2) = b1[λ
K2
1 x2 + (λK21 + λK2−11 + · · ·+ λ1) + x2(φ1 + · · ·+ φK11 ) + φK11 ]

q1(x3) = x3 + b1φ
K1
1

q1(x4) = x4 + b1φ
K1
1

q1(x5) = x5 + b1φ
K1
1

q2(x1) = b2λ
K2
2 x1 + 1

q2(x2) = b2λ
K2
2 x2 + 1

q2(x3) = b2λ
K2
2 x3 + 1

q2(x4) = b2[λ
K2
2 x4 + (λK22 + λK2−12 + · · ·+ λ2) + x4(φ2 + · · ·+ φK12 ) + φK12 ]

q2(x5) = x5 + b2φ
K1
2

When Λ2 is satisfied, we have

x1 < 1/φ2 < x2 < λ1 < x3 < 1/φ1 < x4 < λ2 < x5

which gives

q1(x1) = b1λ
K2
1 x1 + 1

q1(x2) = b1λ
K2
1 x2 + 1

q1(x3) = b1[x3(λ
K2
1 + λK2−11 + · · ·+ 1) + (1 + φ1 + · · ·+ φK11 )]

q1(x4) = x4 + b1φ
K1
1

q1(x5) = x5 + b1φ
K1
1

q2(x1) = b2λ
K2
2 x1 + 1

q2(x2) = b2[λ
K2
2 x2 + (λK22 + λK2−12 + · · ·+ λ2) + x2(φ2 + · · ·+ φK12 ) + φK12 ]

q2(x3) = b2[λ
K2
2 x3 + (λK22 + λK2−12 + · · ·+ λ2) + x3(φ2 + · · ·+ φK12 ) + φK12 ]

q2(x4) = b2[λ
K2
2 x4 + (λK22 + λK2−12 + · · ·+ λ2) + x4(φ2 + · · ·+ φK12 ) + φK12 ]

q2(x5) = x5 + b2φ
K1
2

When Λ3 is satisfied, we have

x1 < 1/φ1 < x2 < 1/φ2 < x3 < λ1 < x4 < λ2 < x5
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which gives

q1(x1) = b1λ
K2
1 x1 + 1

q1(x2) = b1[λ
K2
1 x2 + (λK21 + λK2−11 + · · ·+ λ1) + x2(φ1 + · · ·+ φK11 ) + φK11 ]

q1(x3) = b1[λ
K2
1 x3 + (λK21 + λK2−11 + · · ·+ λ1) + x3(φ1 + · · ·+ φK11 ) + φK11 ]

q1(x4) = x4 + b1φ
K1
1

q1(x5) = x5 + b1φ
K1
1

q2(x1) = b2λ
K2
2 x1 + 1

q2(x2) = b2λ
K2
2 x2 + 1

q2(x3) = b2[λ
K2
2 x3 + (λK22 + λK2−12 + · · ·+ λ2) + x3(φ2 + · · ·+ φK12 ) + φK12 ]

q2(x4) = b2[λ
K2
2 x4 + (λK22 + λK2−12 + · · ·+ λ2) + x4(φ2 + · · ·+ φK12 ) + φK12 ]

q2(x5) = x5 + b2φ
K1
2

When Λ4 is satisfied, we have

x1 < 1/φ2 < x2 < 1/φ1 < x3 < λ1 < x4 < λ2 < x5

which gives

q1(x1) = b1λ
K2
1 x1 + 1

q1(x2) = b1λ
K2
1 x2 + 1

q1(x3) = b1[λ
K2
1 x3 + (λK21 + λK2−11 + · · ·+ λ1) + x3(φ1 + · · ·+ φK11 ) + φK11 ]

q1(x4) = x4 + b1φ
K1
1

q1(x5) = x5 + b1φ
K1
1

q2(x1) = b2λ
K2
2 x1 + 1

q2(x2) = b2[λ
K2
2 x2 + (λK22 + λK2−12 + · · ·+ λ2) + x2(φ2 + · · ·+ φK12 ) + φK12 ]

q2(x3) = b2[λ
K2
2 x3 + (λK22 + λK2−12 + · · ·+ λ2) + x3(φ2 + · · ·+ φK12 ) + φK12 ]

q2(x4) = b2[λ
K2
2 x4 + (λK22 + λK2−12 + · · ·+ λ2) + x4(φ2 + · · ·+ φK12 ) + φK12 ]

q2(x5) = x5 + b2φ
K1
2

When Λ5 is satisfied, we have

x1 < λ1 < x2 < 1/φ1 < x3 < 1/φ2 < x4 < λ2 < x5

which gives

q1(x1) = b1λ
K2
1 x1 + 1

q1(x2) = b1[x2(λ
K2
1 + λK2−11 + · · ·+ 1) + (1 + φ1 + · · ·+ φK11 )]

q1(x3) = x3 + b1φ
K1
1

q1(x4) = x4 + b1φ
K1
1

q1(x5) = x5 + b1φ
K1
1

q2(x1) = b2λ
K2
2 x1 + 1

q2(x2) = b2λ
K2
2 x2 + 1

q2(x3) = b2λ
K2
2 x3 + 1

q2(x4) = b2[λ
K2
2 x4 + (λK22 + λK2−12 + · · ·+ λ2) + x4(φ2 + · · ·+ φK12 ) + φK12 ]

q2(x5) = x5 + b2φ
K1
2
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When Λ6 is satisfied, we have

x1 < λ1 < x2 < 1/φ2 < x3 < 1/φ1 < x4 < λ2 < x5

which gives

q1(x1) = b1λ
K2
1 x1 + 1

q1(x2) = b1[x2(λ
K2
1 + λK2−11 + · · ·+ 1) + (1 + φ1 + · · ·+ φK11 )]

q1(x3) = b1[x3(λ
K2
1 + λK2−11 + · · ·+ 1) + (1 + φ1 + · · ·+ φK11 )]

q1(x4) = x4 + b1φ
K1
1

q1(x5) = x5 + b1φ
K1
1

q2(x1) = b2λ
K2
2 x1 + 1

q2(x2) = b2λ
K2
2 x2 + 1

q2(x3) = b2[λ
K2
2 x3 + (λK22 + λK2−12 + · · ·+ λ2) + x3(φ2 + · · ·+ φK12 ) + φK12 ]

q2(x4) = b2[λ
K2
2 x4 + (λK22 + λK2−12 + · · ·+ λ2) + x4(φ2 + · · ·+ φK12 ) + φK12 ]

q2(x5) = x5 + b2φ
K1
2

When Φ1 is satisfied, we have

x1 < λ1 < x2 < λ2 < x3 < 1/φ2 < x4 < 1/φ1 < x5

which gives

q1(x1) = b1λ
K2
1 x1 + 1

q1(x2) = b1[x2(λ
K2
1 + λK2−11 + · · ·+ 1) + (1 + φ1 + · · ·+ φK11 )]

q1(x3) = b1[x3(λ
K2
1 + λK2−11 + · · ·+ 1) + (1 + φ1 + · · ·+ φK11 )]

q1(x4) = b1[x4(λ
K2
1 + λK2−11 + · · ·+ 1) + (1 + φ1 + · · ·+ φK11 )]

q1(x5) = x5 + b1φ
K1
1

q2(x1) = b2λ
K2
2 x1 + 1

q2(x2) = b2λ
K2
2 x2 + 1

q2(x3) = b2[x3(λ
K2
2 + λK2−12 + · · ·+ 1) + (1 + φ2 + · · ·+ φK12 )]

q2(x4) = x4 + b2φ
K1
2

q2(x5) = x5 + b2φ
K1
2

When Φ2 is satisfied, we have

x1 < λ2 < x2 < λ1 < x3 < 1/φ2 < x4 < 1/φ1 < x5
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which gives

q1(x1) = b1λ
K2
1 x1 + 1

q1(x2) = b1λ
K2
1 x2 + 1

q1(x3) = b1[x3(λ
K2
1 + λK2−11 + · · ·+ 1) + (1 + φ1 + · · ·+ φK11 )]

q1(x4) = b1[x4(λ
K2
1 + λK2−11 + · · ·+ 1) + (1 + φ1 + · · ·+ φK11 )]

q1(x5) = x5 + b1φ
K1
1

q2(x1) = b2λ
K2
2 x1 + 1

q2(x2) = b2[x2(λ
K2
2 + λK2−12 + · · ·+ 1) + (1 + φ2 + · · ·+ φK12 )]

q2(x3) = b2[x3(λ
K2
2 + λK2−12 + · · ·+ 1) + (1 + φ2 + · · ·+ φK12 )]

q2(x4) = x4 + b2φ
K1
2

q2(x5) = x5 + b2φ
K1
2

When Φ3 is satisfied, we have

x1 < λ1 < x2 < 1/φ2 < x3 < λ2 < x4 < 1/φ1 < x5

which gives

q1(x1) = b1λ
K2
1 x1 + 1

q1(x2) = b1[x2(λ
K2
1 + λK2−11 + · · ·+ 1) + (1 + φ1 + · · ·+ φK11 )]

q1(x3) = b1[x3(λ
K2
1 + λK2−11 + · · ·+ 1) + (1 + φ1 + · · ·+ φK11 )]

q1(x4) = b1[x4(λ
K2
1 + λK2−11 + · · ·+ 1) + (1 + φ1 + · · ·+ φK11 )]

q1(x5) = x5 + b1φ
K1
1

q2(x1) = b2λ
K2
2 x1 + 1

q2(x2) = b2λ
K2
2 x2 + 1

q2(x3) = b2[λ
K2
2 x3 + (λK22 + λK2−12 + · · ·+ λ2) + x3(φ2 + · · ·+ φK12 ) + φK12 ]

q2(x4) = x4 + b2φ
K1
2

q2(x5) = x5 + b2φ
K1
2

When Φ4 is satisfied, we have

x1 < λ2 < x2 < 1/φ2 < x3 < λ1 < x4 < 1/φ1 < x5

which gives

q1(x1) = b1λ
K2
1 x1 + 1

q1(x2) = b1λ
K2
1 x2 + 1

q1(x3) = b1λ
K2
1 x3 + 1

q1(x4) = b1[x4(λ
K2
1 + λK2−11 + · · ·+ 1) + (1 + φ1 + · · ·+ φK11 )]

q1(x5) = x5 + b1φ
K1
1

q2(x1) = b2λ
K2
2 x1 + 1

q2(x2) = b2[x2(λ
K2
2 + λK2−12 + · · ·+ 1) + (1 + φ2 + · · ·+ φK12 )]

q2(x3) = x3 + b2φ
K1
2

q2(x4) = x4 + b2φ
K1
2

q2(x5) = x5 + b2φ
K1
2
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When Φ5 is satisfied, we have

x1 < 1/φ2 < x2 < λ1 < x3 < λ2 < x4 < 1/φ1 < x5

which gives

q1(x1) = b1λ
K2
1 x1 + 1

q1(x2) = b1λ
K2
1 x2 + 1

q1(x3) = b1[x3(λ
K2
1 + λK2−11 + · · ·+ 1) + (1 + φ1 + · · ·+ φK11 )]

q1(x4) = b1[x4(λ
K2
1 + λK2−11 + · · ·+ 1) + (1 + φ1 + · · ·+ φK11 )]

q1(x5) = x5 + b1φ
K1
1

q2(x1) = b2λ
K2
2 x1 + 1

q2(x2) = b2[λ
K2
2 x2 + (λK22 + λK2−12 + · · ·+ λ2) + x2(φ2 + · · ·+ φK12 ) + φK12 ]

q2(x3) = b2[λ
K2
2 x3 + (λK22 + λK2−12 + · · ·+ λ2) + x3(φ2 + · · ·+ φK12 ) + φK12 ]

q2(x4) = x4 + b2φ
K1
2

q2(x5) = x5 + b2φ
K1
2

When Φ6 is satisfied, we have

x1 < 1/φ2 < x2 < λ2 < x3 < λ1 < x4 < 1/φ1 < x5

which gives

q1(x1) = b1λ
K2
1 x1 + 1

q1(x2) = b1λ
K2
1 x2 + 1

q1(x3) = b1λ
K2
1 x3 + 1

q1(x4) = b1[x4(λ
K2
1 + λK2−11 + · · ·+ 1) + (1 + φ1 + · · ·+ φK11 )]

q1(x5) = x5 + b1φ
K1
1

q2(x1) = b2λ
K2
2 x1 + 1

q2(x2) = b2[λ
K2
2 x2 + (λK22 + λK2−12 + · · ·+ λ2) + x2(φ2 + · · ·+ φK12 ) + φK12 ]

q2(x3) = x3 + b2φ
K1
2

q2(x4) = x4 + b2φ
K1
2

q2(x5) = x5 + b2φ
K1
2

We need to show that if

q(x) = q∗(x)

for all x then

(1/φ1, 1/φ2, λ1, λ2, ) = (1/φ∗1, 1/φ
∗
2, λ

∗
1, λ

∗
2) (4.55)

where q(x) corresponds to (1/φ1, 1/φ2, λ1, λ2, ), while q
∗(x) corresponds to (1/φ∗1, 1/φ

∗
2,

λ∗1, λ
∗
2). In other words we need to show every combination from all combinations Λi

and Λ∗j , Λi and Φ∗j , Φi and Φ∗j results in a contradiction or an impossible result. The
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total combinations are C2
6 +6× 6+C2

6 = 15+ 36+ 15 = 66. We start from Λi and Λ∗j ,

then Φi and Φ∗j , and finally Λi and Φ∗j .

For all combinations we have

q(x1) = q∗(x1) ⇒ b1λ
K2
1 + b2λ

K2
2 = b∗1λ

∗K2
1 + b∗2λ

∗K2
2 , (4.56)

q(x5) = q∗(x5) ⇒ b1φ
K1
1 + b2φ

K1
2 = b∗1φ

∗K1
1 + b∗2φ

∗K1
2 . (4.57)

Case Λ1 and Λ∗2: From q(x3) = q∗(x3), we get

2∑

l=1

b∗l [λ
∗K2
l + (1 + φ∗l + · · ·+ φ∗K1l )] = b2λ

K2
2 + 1,

2∑

l=1

b∗l [φ
∗K1
l + (λ∗K2l + · · ·+ λ∗l + 1)] = b1φ

K1
1 + 1.

But this is not possible since the LHS is less than 1, while the RHS is greater than 1.

Case Λ1 and Λ∗3: Use the same arguments as in Case Λ1 and Λ∗2.

Case Λ1 and Λ∗4: Use the same arguments as in Case Λ1 and Λ∗2.

Case Λ1 and Λ∗5: From q(x2) = q∗(x2), we get

2∑

l=1

bl[(λ
∗K2
l + · · ·+ λ∗l ) + φ∗K1l ] = b∗1(1 + φ∗1 + · · ·+ φ∗K11 ) + 1

which is not possible for the same reason as in the Case Λ1 and Λ∗2.

Case Λ1 and Λ∗6: Use the same arguments as in Case Λ1 and Λ∗5.

Case Λ2 and Λ∗3: We have

φ2 = φ∗1, λ1 =
1

φ∗2
, φ1 =

1

λ∗1
, λ2 = λ∗2. (4.58)

From q(x2) = q∗(x2), we get

b2(φ2 + · · ·+ φK12 ) = b∗1(φ
∗
1 + · · ·+ φ∗K11 ) (4.59)

b2(λ
K2
2 + λK2−12 + · · ·+ λ2) + b2φ

K1
2 = b∗1(λ

∗K2
1 + λ∗K2−11 + · · ·+ λ∗1) + b∗1φ

∗K1
1 (4.60)

From (4.58) and (4.59) we get b2 = b∗1. And from (4.60) we get λ2 = λ∗1, which is a

contradiction to λ∗1 < λ∗2.

Case Λ2 and Λ∗4: We have

φ2 = φ∗2, λ1 =
1

φ∗1
, φ1 =

1

λ∗1
, λ2 = λ∗2.
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From q(x2) = q∗(x2), we get

b2(λ
K2
2 + λK2−12 + · · ·+ λ2) + b2φ

K1
2 = b∗2(λ

∗K2
2 + λ∗K2−12 + · · ·+ λ∗2) + b∗2φ

∗K1
2

which implies b2 = b∗2, and q2(x) = q∗2(x). So q1(x) = q∗1(x) which can be viewed as a

case of L = 1 which has been shown to have uniqueness and it required λ1 = φ1.

Case Λ2 and Λ∗5: We have

φ1 = φ∗2, λ1 =
1

φ∗1
, φ2 =

1

λ∗1
, λ2 = λ∗2.

From q(x2) = q∗(x2), we get

b2(φ2 + · · ·+ φK12 ) = b∗2(φ
∗
2 + · · ·+ φ∗K12 )

b2(λ
K2
2 + λK2−12 + · · ·+ λ2) + b2φ

K1
2 = b∗2(λ

∗K2
2 + λ∗K2−12 + · · ·+ λ∗2) + b∗2φ

∗K2
2

From q(x4) = q∗(x4), we get

b2λ
K2
2 + b2(φ2 + · · ·+ φK12 ) = b∗2λ

∗K2
2 + b∗2(φ

∗
2 + · · ·+ φ∗K12 )

So b2 = b∗2 and φ2 = φ∗2 = φ1, which is a contradiction to φ1 6= φ2.

Case Λ2 and Λ∗6: From q(x2) = q∗(x2), we get

b2(λ
K2
2 + λK2−12 + · · ·+ λ2) + b2φ

K1
2

= b∗1(1 + · · ·+ φ∗K11 ) + b∗2(λ
∗K2
2 + λ∗K2−12 + · · ·+ λ∗2) + b∗2φ

∗K1
2

(4.61)

From q(x3) = q∗(x3), we get

b1(1 + φ1 + · · ·+ φK1−11 ) + b2(λ
K2
2 + λK2−12 + · · ·+ λ2)

= b∗1(1 + φ∗1 + · · ·+ φ∗K1−11 ) + b∗2(λ
∗K2
2 + λ∗K2−12 + · · ·+ λ∗2)

(4.62)

By subtracting (4.62) from (4.61) we get

b∗1φ
∗K1
1 + b∗2φ

∗K1
2 = b2φ

K1
2 − b1(1 + φ1 + · · ·+ φK1−11 )

which is not possible because of (4.57).

Case Λ3 and Λ∗4: We have

φ1 = φ∗2, φ2 = φ∗1, λ1 = λ∗1, λ2 = λ∗2.

From q(x2) = q∗(x2), we get

b1(φ1 + · · ·+ φK11 ) = b∗2(φ
∗
2 + · · ·+ φ∗K12 )
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b1(λ
K2
1 + λK2−11 + · · ·+ λ1) + b1φ

K1
1 = b∗2(λ

∗K2
2 + λ∗K2−12 + · · ·+ λ∗2) + b2φ

∗K1
2

which imply λ1 = λ∗2 = λ2. But this is a contradiction to λ1 < λ2.

Case Λ3 and Λ∗5: From q(x3) = q∗(x3), then follow the same arguments in Λ1 and Λ∗2.

Case Λ3 and Λ∗6: We have

φ1 =
1

λ∗1
, φ2 = φ∗2, λ1 =

1

φ∗1
, λ2 = λ∗2. (4.63)

From q(x2) = q∗(x2), we get

b1(φ1 + · · ·+ φK11 ) = b∗1(λ
∗K2−1
1 + · · ·+ 1) (4.64)

b1(λ
K2
1 + λK2−11 + · · ·+ λ1) + b1φ

K1
1 = b∗1(1 + φ∗1 + · · ·+ φ∗K11 ) (4.65)

From q(x3) = q∗(x3), we get

b1(φ1 + · · ·+ φK11 ) + b2(φ2 + · · ·+ φK12 )

= b∗1(λ
∗K2−1
1 + · · ·+ 1) + b∗2(φ

∗
2 + · · ·+ φ∗K12 )

(4.66)

b1(λ
K2
1 + λK2−11 + · · ·+ λ1) + b2(λ

K2
2 + λK2−12 + · · ·+ λ2)

= b∗1(1 + φ∗1 + · · ·+ φ∗K1−11 ) + b∗2(λ
∗K2
2 + λ∗K2−12 + · · ·+ λ∗2)

(4.67)

(4.63), (4.64), (4.66) imply b2 = b∗2, so q2(x) = q∗2(x). Thus q1(x) = q∗1(x) which can be

viewed as Case L = 1.

Case Λ4 and Λ∗5: From q(x3) = q∗(x3), then follow the same arguments in Λ1 and Λ∗2.

Case Λ4 and Λ∗6: We have

φ1 = φ∗2, φ2 =
1

λ∗1
, λ1 =

1

φ∗1
, λ2 = λ∗2.

From q(x4) = q∗(x4), we get

b2(λ
K2
2 + λK2−12 + · · ·+ λ2) = b∗2(λ

∗K2
2 + λ∗K2−12 + · · ·+ λ∗2)

b2(φ
K2
2 + φK2−12 + · · ·+ φ2) = b∗2(φ

∗K2
2 + φ∗K2−12 + · · ·+ φ∗2)

which imply b2 = b∗2 and φ2 = φ∗2 = φ1, which is a contradiction to φ1 6= φ2.

Case Λ5 and Λ∗6: From q(x3) = q∗(x3), then follow the same arguments in Λ1 and Λ∗2.

Case Φ1 and Φ∗2: We have

λ1 = λ∗2, λ2 = λ∗1, φ1 = φ∗1, φ2 = φ∗2.
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From q(x2) = q∗(x2), we get

b1(λ
K2−1
1 + λK2−21 + · · ·+ 1) = b∗2(λ

∗K2−1
2 + λ∗K2−22 + · · ·+ 1)

b1(1 + φ1 + · · ·+ φK11 ) = b∗2(1 + φ∗2 + · · ·+ φ∗K12 )

which imply b1 = b∗2, φ1 = φ∗2 = φ2. But this is a contradiction to φ1 < φ2.

Case Φ1 and Φ∗3: We have

λ1 = λ∗1, λ2 = 1/φ∗2, φ1 = φ∗1, φ2 = 1/λ∗2.

From q(x2) = q∗(x2), we get

b1(λ
K2−1
1 + λK2−21 + · · ·+ 1) = b∗1(λ

∗K2−1
1 + λ∗K2−21 + · · ·+ 1)

b1(1 + φ1 + · · ·+ φK11 ) = b∗1(1 + φ∗1 + · · ·+ φ∗K11 )

which imply b1 = b∗1, λ1 = λ∗1 = λ2. But this is a contradiction to λ1 6= λ2.

Case Φ1 and Φ∗4: From q(x3) = q∗(x3), we get

b1(λ
K2
1 + λK2−11 + · · ·+ 1) + b2(λ

K2
2 + λK2−12 + · · ·+ 1) = b∗1λ

K2
1 + 1

which is an impossible result.

Case Φ1 and Φ∗5: We have

λ1 = 1/φ∗2, λ2 = λ∗1, φ1 = φ∗1, φ2 = 1/λ∗2. (4.68)

From q(x2) = q∗(x2), we get

b1(λ
K2−1
1 + λK2−21 + · · ·+ 1) = b∗2(φ

∗
2 + · · ·+ φ∗K12 ) (4.69)

b1(1 + φ1 + · · ·+ φK11 ) = b∗2(λ
∗K2
2 + λ∗K2−12 + · · ·+ λ∗2) + b∗2φ

∗K1
2 (4.70)

From q(x3) = q∗(x3), we get

b1(λ
K2−1
1 + λK2−21 + · · ·+ 1) + b2(λ

K2−1
2 + λK2−22 + · · ·+ 1)

= b∗1(λ
∗K2−1
1 + · · ·+ λ∗1) + b∗2(φ

∗
2 + · · ·+ φ∗K12 )

(4.71)

b1(1 + φ1 + · · ·+ φK11 ) + b2(1 + φ2 + · · ·+ φK12 )

= b∗1(1 + φ∗1 + · · ·+ φ∗K11 ) + b∗2(λ
∗K2
2 + λ∗K2−12 + · · ·+ λ∗2) + b∗2φ

∗K−1
2

(4.72)

From (4.69)-(4.72) we get b1 = b∗1 = b2. From q(x4) = q∗(x4), we get

b1(λ
K2
1 + λK2−11 + · · ·+ 1) = b∗1(λ

∗K2
1 + λ∗K2−11 + · · ·+ 1) (4.73)
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which gives λ1 = λ∗1 = λ2. But this is a contradiction to λ1 6= λ2.

Case Φ1 and Φ∗6: From q(x3) = q∗(x3), we get

b1(λ
K2−1
1 + · · ·+ 1) + b2(λ

K2−1
2 + · · ·+ 1) = b∗1λ

K2
1 + 1

which is not impossible for the same reason as in the Case Λ1 and Λ∗2.

Case Φ2 and Φ∗3: We have

λ1 = 1/φ∗2, λ2 = λ∗1, φ1 = φ∗1, φ2 = 1/λ∗2.

From q(x2) = q∗(x2), we get

b2(λ
K2−1
2 + λK2−22 + · · ·+ 1) = b∗1(λ

∗K2−1
1 + λ∗K2−21 + · · ·+ 1)

b2(1 + φ2 + · · ·+ φK12 ) = b∗1(1 + φ∗1 + · · ·+ φ∗K11 )

which give b2 = b∗1 and φ2 = φ∗1 = φ1, which is a contradiction to φ1 < φ2.

Case Φ2 and Φ∗4: From q(x3) = q∗(x3), then follow the same arguments in Case Φ1

and Φ∗4.

Case Φ2 and Φ∗5: We have

λ1 = λ∗1, λ2 = 1/φ∗2, φ1 = φ∗1, φ2 = 1/λ∗2.

From q(x4) = q∗(x4), we get

b1(λ
K2
1 + λK2−11 + · · ·+ 1) = b∗1(λ

∗K2
1 + λ∗K2−11 + · · ·+ 1)

which gives b1 = b∗1, so q1(x4) = q∗1(x4) and q2(x4) = q∗2(x4). This is a case of L = 1.

Case Φ2 and Φ∗6: From q(x3) = q∗(x3), then follow the same arguments in Case Φ1

and Φ∗6.

Case Φ3 and Φ∗4: From q(x3) = q∗(x3), then follow the same arguments in Case Φ1

and Φ∗4.

Case Φ3 and Φ∗5: We have

λ1 = 1/φ∗2, λ2 = λ∗2, φ1 = φ∗1, φ2 = 1/λ∗1.

From q(x4) = q∗(x4), we get

b1(λ
K2
1 + λK2−11 + · · ·+ 1) = b∗1(λ

∗K2
1 + λ∗K2−11 + · · ·+ 1)

b1(1 + φ1 + · · ·+ φK1−11 ) = b∗1(1 + φ∗1 + · · ·+ φ∗K1−11 )
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which give b1 = b∗1, λ1 = λ∗1, φ2 = φ∗2.

Case Φ3 and Φ∗6: From q(x3) = q∗(x3), we get

b1(λ
K2
1 + λK2−11 + · · ·+ 1) + b2λ

K2
2 + b2(φ2 + · · ·+ φK12 ) = b1λ

∗K2
1 + 1

which is not possible for the same reason as in the Case Λ1 and Λ∗2.

Case Φ4 and Φ∗5: From q(x3) = q∗(x3), we get

b1λ
K2
1 + 1 = b∗1(λ

∗K2
1 + λ∗K2−11 + · · ·+ 1) + b∗2λ

∗K2
2 + b2(φ

∗
2 + · · ·+ φ∗K12 )

which is not possible because the LHS is greater than 1, but the RHS is less than 1.

Case Φ4 and Φ∗6: We have

λ1 = λ∗1, λ2 = 1/φ∗2, φ1 = φ∗1, φ2 = 1/λ∗2.

From q(x4) = q∗(x4), we get

b1(λ
K2
1 + λK2−11 + · · ·+ 1) = b∗1(λ

∗K2
1 + λ∗K2−11 + · · ·+ 1)

which gives b1 = b∗1, so q1(x4) = q∗1(x4) and hence q2(x4) = q∗2(x4). This is the Case

L = 1 and hence λ2 = λ∗2, φ2 = φ∗2.

Case Φ5 and Φ∗6: From q(x3) = q∗(x3), we get

b1(λ
K2
1 + λK2−11 + · · ·+ 1) + b2λ

K2
2 + b2(φ2 + · · ·+ φK12 ) = b1λ

∗K2
1 + 1

which is not possible for the same reason as in the Case Λ1 and Λ∗2.

Case Λ1 and Φ∗1: From q(x3) = q∗(x3), we get

2∑

l=1

b∗l (λ
∗K2
l + λ∗K2−1l + · · ·+ 1) = b2λ

K2
2 + 1

which is not possible for the same reason as in the Case Λ1 and Λ∗2.

Case Λ1 and Φ∗2: Just as the case Λ1 and Φ∗1.

Case Λ1 and Φ∗3: From q(x3) = q∗(x3), we get

b∗1(λ
∗K2
1 + λ∗K2−11 + · · ·+ 1) + b∗2λ

∗K2
2 + b∗2(φ

∗
2 + · · ·+ φ∗K12 ) = b2λ

K2
2 + 1

which is not possible for the same reason as in the Case Λ1 and Λ∗2.

Case Λ1 and Φ∗4: we have

φ1 = 1/λ∗2, λ1 = 1/φ∗2, φ2 = 1/λ∗1, λ2 = 1/φ∗1 (4.74)
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From q(x3) = q∗(x3), we get

b1φ
K1
1 = b∗2φ

∗K1
2 ⇒ b2φ

K1
2 = b∗1φ

∗K1
1 (4.75)

b2λ
K2
2 = b∗1λ

∗K2
1 ⇒ b1λ

K2
1 = b∗2λ

∗K2
2 (4.76)

(4.75) and (4.76) give
φK11

λK21

=
φ∗K12

λ∗K22

=
φK21

λK11

which results in K1 = K2.

Suppose now K1 = K2 = K, From q(x2) = q∗(x2), we get

b1(φ1 + · · ·+ φK11 ) = b∗2(λ
∗K2−1
1 + · · ·+ 1) (4.77)

b1(λ
K2
1 + λK2−11 + · · ·+ λ1) + b1φ

K1
1 = b∗2(1 + φ∗2 + · · ·+ φ∗K12 ) (4.78)

(4.78) is equivalent to

b1(λ
K2
1 + λK2−11 + · · ·+ λ1) = b∗2(1 + φ∗2 + · · ·+ φ∗K1−12 ) (4.79)

(4.77) and (4.79) give

φ1 + · · ·+ φK11

λK21 + λK2−11 + · · ·+ λ1
=
λ∗K2−11 + λ∗K2−11 + · · ·+ 1

1 + φ∗1 + · · ·+ φ∗K1−11

=
λK−11

φK−11

1 + φ1 + · · ·+ φK−11

λK−11 + λK−21 + · · ·+ 1

which implies λ1 = φ1, λ
∗
2 = φ∗2.

Similarly from q(x4) = q∗(x4), we can get λ2 = φ2, λ
∗
1 = φ∗1.

Summarize the above arguments, we get down to a symmetric case which we have

proved the uniqueness of the parameters.

Case Λ1 and Φ∗5: From q(x3) = q∗(x3), we get

b∗1(λ
∗K2
1 + λ∗K2−11 + · · ·+ 1) + b∗2λ

∗K2
2 + b∗2(φ

∗
2 + · · ·+ φ∗K12 ) = b2λ

K2
2 + 1

which is not possible for the same reason as in the Case Λ1 and Λ∗2.

Case Λ1 and Φ∗6: we have

φ1 = φ∗2, λ1 = λ∗2, φ2 = 1/λ∗1, λ2 = 1/φ∗1

From q(x2) = q∗(x2), we get

b1(φ1 + · · ·+ φK11 ) = b∗2(φ
∗
2 + · · ·+ φ∗K12 )
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which implies b1 = b∗2. And so q1(x2) = q∗2(x2), q2(x2) = q∗1(x2). And this is the case

L = 1.

Case Λ2 and Φ∗1: we have

φ1 = φ∗2, λ1 = λ∗2, φ2 = 1/λ∗1, λ2 = 1/φ∗1 (4.80)

From q(x2) = q∗(x2), we get

b2(φ2 + · · ·+ φK12 ) = b∗2(λ
∗K2−1
1 + · · ·+ 1) (4.81)

b2(λ
K2
2 + λK2−12 + · · ·+ λ2) + b2φ

K1
2 = b∗1(1 + φ∗1 + · · ·+ φ∗K11 ) (4.82)

From q(x3) = q∗(x3), we get

b1(λ
K2−1
1 + · · ·+ 1) + b2(φ2 + · · ·+ φK12 )

= b∗1(λ
∗K2−1
1 + · · ·+ 1) + b∗2(λ

∗K2−1
2 + · · ·+ 1)

(4.83)

b1(1 + φ1 + · · ·+ φK1−11 ) + b2(λ
K2
2 + λK2−12 + · · ·+ λ2)

= b∗1(1 + φ∗1 + · · ·+ φ∗K1−11 ) + b∗2(1 + φ∗2 + · · ·+ φ∗K1−12 )
(4.84)

From q(x4) = q∗(x4), we get

b2λ
K2
2 + b2(φ2 + · · ·+ φK12 ) = b∗1(λ

∗K2
1 + λ∗K2−11 + · · ·+ 1) (4.85)

b2(λ
K2
2 + λK2−12 + · · ·+ λ2) = b∗1(1 + φ∗1 + · · ·+ φ∗K1−11 ) (4.86)

(4.80), (4.81) and (4.83) imply b1 = b∗2, then follow the same arguments as in Λ1 and

Φ∗6.

Case Λ2 and Φ∗2: we have

φ1 = φ∗2, λ1 = λ∗1, φ2 = 1/λ∗2, λ2 = 1/φ∗1 (4.87)

From q(x2) = q∗(x2), we get

b2(φ2 + · · ·+ φK12 ) = b∗2(λ
∗K2−1
2 + · · ·+ 1) (4.88)

b2(λ
K2
2 + λK2−12 + · · ·+ λ2) + b2φ

K1
2 = b∗2(1 + φ∗2 + · · ·+ φ∗K12 ) (4.89)

From q(x3) = q∗(x3), we get

b1(λ
K2−1
1 + · · ·+ 1) + b2(φ2 + · · ·+ φK12 )

= b∗1(λ
∗K2−1
1 + · · ·+ 1) + b∗2(λ

∗K2−1
2 + · · ·+ 1)

(4.90)
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b1(1 + φ1 + · · ·+ φK1−11 ) + b2(λ
K2
2 + λK2−12 + · · ·+ λ2)

= b∗1(1 + φ∗1 + · · ·+ φ∗K1−11 ) + b∗2(1 + φ∗2 + · · ·+ φ∗K1−12 )
(4.91)

From q(x4) = q∗(x4), we get

b2λ
K2
2 + b2(φ2 + · · ·+ φK12 ) = b∗1(λ

∗K2
1 + λ∗K2−11 + · · ·+ 1) (4.92)

b2(λ
K2
2 + λK2−12 + · · ·+ λ2) = b∗1(1 + φ∗1 + · · ·+ φ∗K1−11 ) (4.93)

(4.87), (4.91) and (4.93) imply b1 = b∗2. (4.87), (4.88) and (4.90) imply b1 = b∗1. Then

(4.88) and (4.91) imply φ1 = φ∗1 = φ∗2, which is a contradiction to φ∗1 < φ∗2.

Case Λ2 and Φ∗3: we have

φ1 = 1/λ∗2, λ1 = 1/φ∗2, φ2 = 1/λ∗1, λ2 = 1/φ∗1 (4.94)

From q(x2) = q∗(x2), we get

b2(φ2 + · · ·+ φK12 ) = b∗1(λ
∗K2−1
1 + · · ·+ 1) (4.95)

b2(λ
K2
2 + λK2−12 + · · ·+ λ2) + b2φ

K1
2 = b∗1(1 + φ∗1 + · · ·+ φ∗K11 ) (4.96)

From q(x3) = q∗(x3), we get

b1(λ
K2−1
1 + · · ·+ 1) + b2(φ2 + · · ·+ φK12 )

= b∗1(λ
∗K2−1
1 + · · ·+ 1) + b∗2(φ

∗
2 + · · ·+ φ∗K12 )

(4.97)

b1(1 + φ1 + · · ·+ φK1−11 ) + b2(λ
K2
2 + λK2−12 + · · ·+ λ2)

= b∗1(1 + φ∗1 + · · ·+ φ∗K1−11 ) + b∗2(λ
∗K2
2 + λ∗K2−12 + · · ·+ λ∗2)

(4.98)

From q(x4) = q∗(x4), we get

b2λ
K2
2 + b2(φ2 + · · ·+ φK12 ) = b∗1(λ

∗K2
1 + λ∗K2−11 + · · ·+ 1) (4.99)

b2(λ
K2
2 + λK2−12 + · · ·+ λ2) = b∗1(1 + φ∗1 + · · ·+ φ∗K1−11 ) (4.100)

From (4.95) and (4.99), we get

b2λ
K2
2 = b∗2λ

∗K2
2 (4.101)

From (4.96) and (4.100), we get

b2φ
K1
2 = b∗2φ

∗K1
2 (4.102)

From (4.101) and (4.102), we get

λK22 φ∗K11 = λ∗K21 φK12
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Suppose K2 > K1, since λ2φ
∗
1 = λ∗1φ2 = 1, we have λ2 = λ∗1. So λ2 = 1/φ2, which

violates the condition 1/φ2 < λ2. Similar situation for K2 < K1. So K2 = K1.

Suppose now K1 = K2 = K, (4.95) and (4.97) give

b1(λ
K−1
1 + · · ·+ 1) = b∗2(φ

∗
2 + · · ·+ φ∗K2 ) (4.103)

(4.98) and (4.100) give

b1(1 + φ1 + · · ·+ φK−11 ) = b∗2(λ
∗K
2 + λ∗K−12 + · · ·+ λ∗2) (4.104)

(4.103) and (4.104) give

λK−11 + · · ·+ 1

1 + φ1 + · · ·+ φK−11

=
φ∗2 + · · ·+ φ∗K2

λ∗K2 + λ∗K−12 + · · ·+ λ∗2

which implies φ1 = λ1 and then φ∗2 = λ∗2. (4.96) and (4.99) give

b2(λ
K
2 + λK−12 + · · ·+ 1) = b∗1(1 + φ∗1 + · · ·+ φ∗K−11 )

b2(φ2 + · · ·+ φK2 ) = b∗1(λ
∗K−1
1 + · · ·+ 1)

which imply φ2 = λ2 and φ∗1 = λ∗1. But this is a symmetric case.

Case Λ2 and Φ∗4: we have

φ1 = 1/λ∗1, λ1 = 1/φ∗2, φ2 = 1/λ∗2, λ2 = 1/φ∗1 (4.105)

From q(x3) = q∗(x3), we get

b1(λ
K2
1 + λK2−11 + · · ·+ 1) + b2λ

K2
2 + b2(φ2 + · · ·+ φK12 ) = 1 + b∗1λ

K2
1

which is not possible for the same reason as in the Case Λ1 and Λ∗2.

Case Λ2 and Φ∗5: we have

φ1 = 1/λ∗2, λ1 = λ∗1, φ2 = φ∗2, λ2 = 1/φ∗1 (4.106)

From q(x2) = q∗(x2), we get

b2(φ2 + · · ·+ φK12 ) = b∗2(φ
∗
2 + · · ·+ φ∗K12 ) (4.107)

b2(λ
K2
2 + λK2−12 + · · ·+ λ2) + b2φ

K1
2 = b∗2(λ

∗K2
2 + λ∗K2−12 + · · ·+ λ∗2) + b∗2φ

∗K1
2 (4.108)

(4.106) and (4.107) gives b2 = b∗2. Then (4.108) gives λ2 = λ∗2 which violates condition

λ∗2 < 1/φ∗1.
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Case Λ2 and Φ∗6: Just as Λ2 and Φ∗4, from q(x3) = q∗(x3), we get

b1(λ
K2
1 + λK2−11 + · · ·+ 1) + b2λ

K2
2 + b2(φ2 + · · ·+ φK12 ) = 1 + b∗1λ

K2
1

which is not possible for the same reason as in the Case Λ1 and Λ∗2.

Case Λ3 and Φ∗1: we have

φ1 = 1/λ∗1, λ1 = 1/φ∗2, φ2 = 1/λ∗2, λ2 = 1/φ∗1 (4.109)

From q(x2) = q∗(x2), we get

b1(φ1 + · · ·+ φK11 ) = b∗1(λ
∗K2−1
1 + · · ·+ 1) (4.110)

b1(λ
K2
1 + λK2−11 + · · ·+ λ1) + b1φ

K1
1 = b∗1(1 + φ∗1 + · · ·+ φ∗K11 ) (4.111)

From q(x3) = q∗(x3), we get

b1(φ1 + · · ·+ φK11 ) + b2(φ2 + · · ·+ φK12 )

= b∗1(λ
∗K2−1
1 + · · ·+ 1) + b∗2(λ

∗K2−1
2 + · · ·+ λ∗2 + 1)

(4.112)

b1(λ
K2
1 + λK2−11 + · · ·+ λ1) + b2(λ

K2
2 + λK2−12 + · · ·+ λ2)

= b∗1(1 + φ∗1 + · · ·+ φ∗K1−11 ) + b∗2(1 + φ∗2 + · · ·+ φ∗K1−12 )
(4.113)

From q(x4) = q∗(x4), we get

b2λ
K2
2 + b2(φ2 + · · ·+ φK12 ) = b∗1(λ

∗K2
1 + λ∗K2−11 + · · ·+ 1) (4.114)

b2(λ
K2
2 + λK2−12 + · · ·+ λ2) = b∗1(1 + φ∗1 + · · ·+ φ∗K1−11 ) (4.115)

From (4.110) and (4.112) we get

b2(φ2 + · · ·+ φK12 ) = b∗2(λ
∗K2−1
2 + · · ·+ 1) (4.116)

From (4.113) and (4.115) we get

b1(λ
K2
1 + λK2−11 + · · ·+ λ1) = b∗2(1 + φ∗2 + · · ·+ φ∗K1−12 ) (4.117)

From (4.110), (4.111), (4.114) and (4.115) we get

b∗1(λ
∗K2
1 + λ∗K2−11 + · · ·+ λ∗1) + b∗1(1 + φ∗1 + · · ·+ φ∗K11 ) =

1

2
(4.118)

b∗2(λ
∗K2
2 + λ∗K2−12 + · · ·+ λ∗2) + b∗2(1 + φ∗2 + · · ·+ φ∗K12 ) =

1

2
(4.119)
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b1(λ
K2
1 + λK2−11 + · · ·+ λ1) + b1(1 + φ1 + · · ·+ φK11 ) =

1

2
(4.120)

b2(λ
K2
2 + λK2−12 + · · ·+ λ2) + b2(1 + φ2 + · · ·+ φK12 ) =

1

2
(4.121)

From (4.120), we know that when λ1, φ1 are given, then b1 can be determined. From

(4.120) and (4.110), we determine b∗1. From (4.115), if additionally λ2 is also given,

then b2 can be determined. In other words, provided that λ1, φ1, λ2 are known, then

b1 and b2 can be determined, even φ2 can be determined also. But it is not possible

to determine the true values of b2 and φ2 based on λ1, φ1, λ2 since we can use only

equation (4.121) which has two unknown variables.

Case Λ3 and Φ∗2: we have

φ1 = 1/λ∗2, λ1 = 1/φ∗2, φ2 = 1/λ∗1, λ2 = 1/φ∗1 (4.122)

From q(x2) = q∗(x2), we get

b1(φ1 + · · ·+ φK11 ) = b∗2(λ
∗K2−1
1 + · · ·+ 1) (4.123)

b1(λ
K2
1 + λK2−11 + · · ·+ λ1) + b1φ

K1
1 = b∗2(1 + φ∗2 + · · ·+ φ∗K12 ) (4.124)

From q(x3) = q∗(x3), we get

b1(φ1 + · · ·+ φK11 ) + b2(φ2 + · · ·+ φK12 )

= b∗1(λ
∗K2−1
1 + · · ·+ 1) + b∗2(λ

∗K2−1
2 + · · ·+ λ∗2 + 1)

(4.125)

b1(λ
K2
1 + λK2−11 + · · ·+ λ1) + b2(λ

K2
2 + λK2−12 + · · ·+ λ2)

= b∗1(1 + φ∗1 + · · ·+ φ∗K1−11 ) + b∗2(1 + φ∗2 + · · ·+ φ∗K1−12 )
(4.126)

From q(x4) = q∗(x4), we get

b2λ
K2
2 + b2(φ2 + · · ·+ φK12 ) = b∗1(λ

∗K2
1 + λ∗K2−11 + · · ·+ 1) (4.127)

b2(λ
K2
2 + λK2−12 + · · ·+ λ2) = b∗1(1 + φ∗1 + · · ·+ φ∗K1−11 ) (4.128)

From (4.126) and (4.128), we get

b1(λ
K2
1 + λK2−11 + · · ·+ λ1) = b∗2(1 + φ∗2 + · · ·+ φ∗K1−12 ) (4.129)

From (4.124) and (4.129), we get

b1φ
K1
1 = b∗2φ

∗K1
2 ⇒ b2φ

K1
2 = b∗1φ

∗K1
1 (4.130)
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From (4.123) and (4.125), we get

b2(φ2 + · · ·+ φK12 ) = b∗1(λ
∗K2−1
1 + · · ·+ 1) (4.131)

From (4.127) and (4.131), we get

b2λ
K2
2 = b∗1λ

∗K2
1 ⇒ b1λ

K2
1 = b∗2λ

∗K2
2 (4.132)

From (4.130) and (4.132), we get

φK11

λK21

=
φ∗K12

λ∗K22

⇒ K1 = K2 = K

Suppose now K1 = K2 = K, (4.128) and (4.131) give

λK22 + λK2−12 + · · ·+ λ2

φ2 + · · ·+ φK12

=
1 + φ∗2 + · · ·+ φ∗K1−12

λ∗K2−11 + · · ·+ 1

which implies λ2 = φ2 and λ∗1 = φ∗1.

Similarly (4.123) and (4.129) imply λ1 = φ1 and λ∗2 = φ∗2. So the cases here

correspond to symmetric cases.

Case Λ3 and Φ∗3: we have

φ1 = 1/λ∗1, λ1 = λ∗2, φ2 = φ∗2, λ2 = 1/φ∗1 (4.133)

From q(x2) = q∗(x2), we get

b1(φ1 + · · ·+ φK11 ) = b∗1(λ
∗K2−1
1 + · · ·+ 1) (4.134)

b1(λ
K2
1 + λK2−11 + · · ·+ λ1) + b1φ

K1
1 = b∗1(1 + φ∗1 + · · ·+ φ∗K11 ) (4.135)

From q(x3) = q∗(x3), we get

b1(φ1 + · · ·+ φK11 ) + b2(φ2 + · · ·+ φK12 )

= b∗1(λ
∗K2−1
1 + · · ·+ 1) + b∗2(φ

∗
2 + · · ·+ φ∗K12 )

(4.136)

b1(λ
K2
1 + λK2−11 + · · ·+ λ1) + b2(λ

K2
2 + λK2−12 + · · ·+ 1)

= b∗1(1 + φ∗1 + · · ·+ φ∗K1−11 ) + b∗2(λ
∗K2
2 + λ∗K2−12 + · · ·+ λ∗2)

(4.137)

From q(x4) = q∗(x4), we get

b2λ
K2
2 + b2(φ2 + · · ·+ φK12 ) = b∗1(λ

∗K2
1 + λ∗K2−11 + · · ·+ 1) (4.138)
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b2(λ
K2
2 + λK2−12 + · · ·+ λ2) = b∗1(1 + φ∗1 + · · ·+ φ∗K1−11 ) (4.139)

From (4.137) and (4.139), we get

b1(λ
K2
1 + λK2−11 + · · ·+ λ1) = b∗2(λ

∗K2
2 + λ∗K2−12 + · · ·+ λ∗2) (4.140)

From (4.134) and (4.136), we get

b2(φ2 + · · ·+ φK12 ) = b∗2(φ
∗
2 + · · ·+ φ∗K12 ) (4.141)

From (4.140) and (4.141), we get

b2 = b∗2 = b1

So q1(x) = q∗2(x), q2(x) = q∗1(x). So we get L = 1 case.

Case Λ3 and Φ∗4: From q(x3) = q∗(x3) we have

b1λ
K2
1 + b2λ

K2
2 +

2∑

l=1

(φl + · · ·+ φK1l ) = b∗1λ
∗K2
1 + 1

which is not possible for the same reason as in the Case Λ1 and Λ∗2.

Case Λ3 and Φ∗5: we have

φ1 = 1/φ∗2, λ1 = λ∗2, φ2 = 1/λ∗1, λ2 = 1/φ∗1 (4.142)

From q(x2) = q∗(x2), we get

b1(φ1 + · · ·+ φK11 ) = b∗2(φ
∗
2 + · · ·+ φ∗K12 ) (4.143)

b1(λ
K2
1 + λK2−11 + · · ·+ λ1) + b1φ

K1
1 = b∗2(λ

∗K2
2 + λ∗K2−12 + · · ·+ λ∗2) + b∗2φ

∗K1
2 (4.144)

From q(x3) = q∗(x3), we get

b1(φ1 + · · ·+ φK11 ) + b2(φ2 + · · ·+ φK12 )

= b∗1(λ
∗K2−1
1 + · · ·+ 1) + b∗2(φ

∗
2 + · · ·+ φ∗K12 )

(4.145)

b1(λ
K2
1 + λK2−11 + · · ·+ λ1) + b2(λ

K2
2 + λK2−12 + · · ·+ 1)

= b∗1(1 + φ∗1 + · · ·+ φ∗K1−11 ) + b∗2(λ
∗K2
2 + λ∗K2−12 + · · ·+ λ∗2)

(4.146)

From q(x4) = q∗(x4), we get

b2λ
K2
2 + b2(φ2 + · · ·+ φK12 ) = b∗1(λ

∗K2
1 + λ∗K2−11 + · · ·+ 1) (4.147)
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b2(λ
K2
2 + λK2−12 + · · ·+ λ2) = b∗1(1 + φ∗1 + · · ·+ φ∗K1−11 ) (4.148)

From (4.143), (4.145), (4.146) and (4.148), we get b1 = b∗2 which implies q1(x) = q∗2(x).

And then we have the same situation as in the case Λ3 and Φ∗3

Case Λ3 and Φ∗6: From q(x3) = q∗(x3) we get the same equation as in the Case Λ3

and Φ∗4 which is not possible.

Case Λ4 and Φ∗1: we have

φ1 = 1/λ∗2, λ1 = 1/φ∗2, φ2 = 1/λ∗1, λ2 = 1/φ∗1 (4.149)

From q(x2) = q∗(x2), we get

b2(φ2 + · · ·+ φK12 ) = b∗1(λ
∗K2−1
1 + · · ·+ 1) (4.150)

b2(λ
K2
2 + λK2−12 + · · ·+ λ2) + b2φ

K1
2 = b∗1(1 + φ∗1 + · · ·+ φ∗K11 ) (4.151)

From q(x3) = q∗(x3), we get

b1(φ1 + · · ·+ φK11 ) + b2(φ2 + · · ·+ φK12 )

= b∗1(λ
∗K2−1
1 + · · ·+ 1) + b∗2(λ

∗K2−1
2 + · · ·+ λ∗2 + 1)

(4.152)

b1(λ
K2
1 + λK2−11 + · · ·+ λ1) + b2(λ

K2
2 + λK2−12 + · · ·+ λ2)

= b∗1(1 + φ∗1 + · · ·+ φ∗K1−11 ) + b∗2(1 + φ∗2 + · · ·+ φ∗K1−12 )
(4.153)

From q(x4) = q∗(x4), we get

b2λ
K2
2 + b2(φ2 + · · ·+ φK12 ) = b∗1(λ

∗K2
1 + · · ·+ λ∗1 + 1) (4.154)

b2(λ
K2
2 + λK2−12 + · · ·+ λ2) = b∗1(1 + φ∗1 + · · ·+ φ∗K1−11 ) (4.155)

From (4.150) and (4.152), we get

b1(φ1 + · · ·+ φK11 ) = b∗2(λ
∗K2−1
2 + · · ·+ λ∗2 + 1) (4.156)

From (4.153) and (4.155), we get

b1(λ
K2
1 + λK2−11 + · · ·+ λ1) = b∗2(1 + φ∗2 + · · ·+ φ∗K1−12 ) (4.157)

From (4.150), (4.154), (4.151)and (4.155) we get

b2φ
K1
2 = b∗1φ

∗K1
1 ⇒ b1φ

K1
1 = b∗2φ

∗K1
2 (4.158)
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b2λ
K2
2 = b∗1λ

∗K2
1 ⇒ b1λ

K2
1 = b∗2λ

∗K2
2 (4.159)

(4.158) and (4.159) give
φK11

λK21

=
φ∗K12

λ∗K22

=
φK21

λK11

which results in K1 = K2.

Suppose now K1 = K2 = K, From (4.156) and (4.157), we get

φ1 + · · ·+ φK11

λK21 + λK2−11 + · · ·+ λ1
=
λ∗K2−11 + λ∗K2−11 + · · ·+ 1

1 + φ∗1 + · · ·+ φ∗K1−11

=
λK−11

φK−11

1 + φ1 + · · ·+ φK−11

λK−11 + λK−21 + · · ·+ 1

which implies λ1 = φ1, λ
∗
2 = φ∗2.

Similarly from (4.154) and (4.155), we can get λ2 = φ2, λ
∗
1 = φ∗1.

And then we get symmetric cases.

Case Λ4 and Φ∗2: we have

φ1 = 1/λ∗1, λ1 = 1/φ∗2, φ2 = 1/λ∗2, λ2 = 1/φ∗1 (4.160)

From q(x2) = q∗(x2), we get

b2(φ2 + · · ·+ φK12 ) = b∗2(λ
∗K2−1
2 + · · ·+ 1) (4.161)

b2(λ
K2
2 + λK2−12 + · · ·+ λ2) + b2φ

K1
2 = b∗2(1 + φ∗2 + · · ·+ φ∗K12 ) (4.162)

From q(x3) = q∗(x3), we get

b1(φ1 + · · ·+ φK11 ) + b2(φ2 + · · ·+ φK12 )

= b∗1(λ
∗K2−1
1 + · · ·+ 1) + b∗2(λ

∗K2−1
2 + · · ·+ λ∗2 + 1)

(4.163)

b1(λ
K2
1 + λK2−11 + · · ·+ λ1) + b2(λ

K2
2 + λK2−12 + · · ·+ λ2)

= b∗1(1 + φ∗1 + · · ·+ φ∗K1−11 ) + b∗2(1 + φ∗2 + · · ·+ φ∗K1−12 )
(4.164)

From q(x4) = q∗(x4), we get

b2λ
K2
2 + b2(φ2 + · · ·+ φK12 ) = b∗1(λ

∗K2
1 + · · ·+ λ∗1 + 1) (4.165)

b2(λ
K2
2 + λK2−12 + · · ·+ λ2) = b∗1(1 + φ∗1 + · · ·+ φ∗K1−11 ) (4.166)

From (4.161) and (4.163), we get

b1(φ1 + · · ·+ φK11 ) = b∗1(λ
∗K2−1
1 + · · ·+ 1) (4.167)
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From (4.164) and (4.166), we get

b1(λ
K2
1 + λK2−11 + · · ·+ λ1) = b∗2(1 + φ∗2 + · · ·+ φ∗K1−12 ) (4.168)

From (4.161), (4.162), (4.165) and (4.166) we can get equations (4.120), (4.121),

(4.118), (4.119). Then the arguments follow similarly in Case Λ3 and Φ∗1. And we

say (4.161)-(4.166) can not be satisfied.

Case Λ4 and Φ∗3: we have

φ1 = φ∗2, λ1 = λ∗2, φ2 = 1/λ∗1, λ2 = 1/φ∗1 (4.169)

From q(x2) = q∗(x2), we get

b2(φ2 + · · ·+ φK12 ) = b∗1(λ
∗K2−1
1 + · · ·+ 1) (4.170)

b2(λ
K2
2 + λK2−12 + · · ·+ λ2) + b2φ

K1
2 = b∗1(1 + φ∗1 + · · ·+ φ∗K11 ) (4.171)

From q(x3) = q∗(x3), we get

b1(φ1 + · · ·+ φK11 ) + b2(φ2 + · · ·+ φK12 )

= b∗1(λ
∗K2−1
1 + · · ·+ 1) + b∗2(φ

∗
2 + · · ·+ φ∗K12 )

(4.172)

b1(λ
K2
1 + λK2−11 + · · ·+ λ1) + b2(λ

K2
2 + λK2−12 + · · ·+ λ2)

= b∗1(1 + φ∗1 + · · ·+ φ∗K1−11 ) + b∗2(λ
∗K2
2 + λ∗K2−12 + · · ·+ λ∗2)

(4.173)

From q(x4) = q∗(x4), we get

b2λ
K2
2 + b2(φ2 + · · ·+ φK12 ) = b∗1(λ

∗K2
1 + · · ·+ λ∗1 + 1) (4.174)

b2(λ
K2
2 + λK2−12 + · · ·+ λ2) = b∗1(1 + φ∗1 + · · ·+ φ∗K1−11 ) (4.175)

From (4.170) and (4.172), we get

b1(φ1 + · · ·+ φK11 ) = b∗2(φ
∗
2 + · · ·+ φ∗K12 ) (4.176)

b1(λ
K2
1 + λK2−11 + · · ·+ λ1) = b∗2(λ

∗K2
2 + λ∗K2−12 + · · ·+ λ∗2) (4.177)

From (4.176) and (4.177), we get b1 = b∗2 which implies q1(x) = q∗2(x) and then q2(x) =

q∗1(x) which becomes a case of L = 1.

Case Λ4 and Φ∗4: just as Case Λ3 and Φ∗4.

Case Λ4 and Φ∗5: we have

φ1 = 1/λ∗1, λ1 = λ∗2, φ2 = φ∗2, λ2 = 1/φ∗1 (4.178)
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From q(x2) = q∗(x2), we get

b2(φ2 + · · ·+ φK12 ) = b∗2(φ
∗
2 + · · ·+ φ∗K12 ) (4.179)

b2(λ
K2
2 + λK2−12 + · · ·+ λ2) + b2φ

K1
2 = b∗2(λ

∗K2
2 + λ∗K2−12 + · · ·+ λ∗2) + b∗2φ

∗K1
2 (4.180)

(4.179) implies b2 = b∗2. (4.180) implies λ2 = λ∗2 = λ1 which violates λ1 < λ2.

Case Λ4 and Φ∗6: just as Case Λ3 and Φ∗4.

Case Λ5 and Φ∗1: From q(x3) = q∗(x3), we get

1 + b2λ
K2
2 =

2∑

l=1

b∗l (λ
∗K2
l + λ∗K2−1l + · · ·+ 1)

which is not possible for the same reason as in the Case Φ4 and Φ∗5.

Case Λ5 and Φ∗2: just as Case Λ5 and Φ∗1.

Case Λ5 and Φ∗3: From q(x3) = q∗(x3), we get

1 + b2λ
K2
2 = b∗1(λ

∗K2
2 + λ∗K2−12 + · · ·+ 1) + b2λ

∗K2
2 + b2(φ

∗
2 + · · ·+ φ∗K12 )

which is not possible for the same reason as in the Case Φ4 and Φ∗5.

Case Λ5 and Φ∗4: we have

φ1 = φ∗2, λ1 = λ∗2, φ2 = 1/λ∗1, λ2 = 1/φ∗1 (4.181)

From q(x2) = q∗(x2), we get

b1(λ
K2−1
1 + · · ·+ 1) = b∗2(λ

∗K2−1
1 + · · ·+ 1) (4.182)

b1(1 + φ2 + · · ·+ φK12 ) = b∗2(1 + φ∗2 + · · ·+ φ∗K12 ) (4.183)

(4.182) and (4.183) imply b1 = b∗2 and q1(x) = q∗2(x). So this is a case of L = 1.

Case Λ5 and Φ∗5: just as Case Λ5 and Φ∗3.

Case Λ5 and Φ∗6: we have

φ1 = 1/λ∗2, λ1 = 1/φ∗2, φ2 = 1/λ∗1, λ2 = 1/φ∗1 (4.184)

From q(x2) = q∗(x2), we get

b1(λ
K2−1
1 + · · ·+ 1) = b∗2(λ

∗K2−1
1 + · · ·+ 1) (4.185)

b1(1 + φ1 + · · ·+ φK11 ) = b∗2(1 + φ∗2 + · · ·+ φ∗K12 ) (4.186)
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From q(x3) = q∗(x3), we get

b1φ
K1
1 = b∗2φ

∗K1
2 ⇒ b2φ

K1
2 = b∗1φ

∗K1
1 (4.187)

b2λ
K2
2 = b∗1λ

∗K2
1 ⇒ b1λ

K2
1 = b∗2λ

∗K2
2 (4.188)

(4.187) and (4.188) imply K1 = K2. From q(x4) = q∗(x4), we get

b2λK2 + b2(φ2 + · · ·+ φK12 ) = b∗1(λ
∗K2
1 + λ∗K2−11 + · · ·+ 1) (4.189)

b2(λ
K2
2 + λK2−12 + · · ·+ λ2) = b∗1(1 + φ∗1 + · · ·+ φ∗K1−11 ) (4.190)

(4.185) and (4.186) imply λ1 = φ1, λ
∗
2 = φ∗2. (4.187), (4.188), (4.189) and (4.190) imply

λ2 = φ2, λ
∗
1 = φ∗1. So we get the symmetric cases.

Case Λ6 and Φ∗1: we have

φ1 = φ∗2, λ1 = λ∗1, φ2 = 1/λ∗2, λ2 = 1/φ∗1 (4.191)

From q(x2) = q∗(x2), we get

b1(λ
K2−1
1 + · · ·+ 1) = b∗1(λ

∗K2−1
1 + · · ·+ 1) (4.192)

b1(1 + φ1 + · · ·+ φK11 ) = b∗1(1 + φ∗1 + · · ·+ φ∗K11 ) (4.193)

(4.191) and (4.192) imply b1 = b∗1. (4.193) implies φ1 = φ∗1 = φ∗2 which violates the

condition φ∗1 < φ∗2.

Case Λ6 and Φ∗2: we have

φ1 = φ∗2, λ1 = λ∗1, φ2 = 1/λ∗2, λ2 = 1/φ∗1 (4.194)

From q(x2) = q∗(x2), we get

b1(λ
K2−1
1 + · · ·+ 1) = b∗2(λ

∗K2−1
2 + · · ·+ 1) (4.195)

b1(1 + φ1 + · · ·+ φK11 ) = b∗2(1 + φ∗2 + · · ·+ φ∗K12 ) (4.196)

(4.194) and (4.195) imply b1 = b∗2. (4.196) implies φ1 = φ∗1 = φ∗2 which violates the

condition φ∗1 < φ∗2.

Case Λ6 and Φ∗3: we have

φ1 = 1/λ∗2, λ1 = λ∗1, φ2 = φ∗2, λ2 = 1/φ∗1 (4.197)
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From q(x2) = q∗(x2), we get

b1(λ
K2−1
1 + · · ·+ 1) = b∗1(λ

∗K2−1
1 + · · ·+ 1) (4.198)

b1(1 + φ1 + · · ·+ φK11 ) = b∗1(1 + φ∗1 + · · ·+ φ∗K11 ) (4.199)

We get b1 = b∗1, φ1 = φ∗1. So q1(x) = q∗1(x), q2(x) = q∗2(x) and the case becomes a case

of L = 1.

Case Λ6 and Φ∗4: From q(x3) = q∗(x3), we get

b1(λ
K2
1 + λK2−11 + · · ·+ 1) + b2λ

K2
2 + b2(φ2 + · · ·+ φK12 ) = b∗1λ

∗K2
1 + 1

which is not possible for the same reason as in the Case Λ1 and Λ∗2.

Case Λ6 and Φ∗5: we have

φ1 = 1/λ∗2, λ1 = 1/φ∗2, φ2 = 1/λ∗1, λ2 = 1/φ∗1 (4.200)

From q(x2) = q∗(x2), we get

b1(λ
K2−1
1 + · · ·+ 1) = b∗2(φ

∗
2 + · · ·+ φ∗K12 ) (4.201)

b1(1 + φ1 + · · ·+ φK11 ) = b∗2(λ
∗K2
2 + λ∗K2−12 + · · ·+ λ∗2) + b∗2φ

∗K1
2 (4.202)

From q(x3) = q∗(x3), we get

b1(λ
K2−1
1 + · · ·+ 1) + b2(φ2 + · · ·+ φK12 )

= b∗1(λ
∗K2−1
1 + · · ·+ 1) + b∗2(φ

∗
2 + · · ·+ φ∗K12 )

(4.203)

b1(1 + φ1 + · · ·+ φK1−11 ) + b2(λ
K2
2 + λK2−12 + · · ·+ λ2)

= b∗1(1 + φ∗1 + · · ·+ φ∗K1−11 ) + b∗2(λ
∗K2
2 + λ∗K2−12 + · · ·+ λ∗2)

(4.204)

From q(x4) = q∗(x4), we get

b2λ
K2
2 + b2(φ2 + · · ·+ φK12 ) = b∗1(λ

∗K2
1 + λ∗K2−11 + · · ·+ 1) (4.205)

b2(λ
K2
2 + λK2−12 + · · ·+ λ2) = b∗1(1 + φ∗2 + · · ·+ φ∗K1−12 ) (4.206)

From (4.201) and (4.201), we get

b2(φ2 + · · ·+ φK12 ) = b∗1(λ
∗K2−1
1 + · · ·+ 1) (4.207)

b1(1 + φ2 + · · ·+ φK1−12 ) = b∗2(λ
∗K2
2 + λ∗K2−12 + · · ·+ λ∗2) (4.208)
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From (4.205) and (4.205), we get

b2λ
K2
2 = b∗1λ

∗K2
1 ⇒ b1λ

K2
1 = b∗2λ

∗K2
2 (4.209)

From (4.202) and (4.208), we get

b1φ
K1
1 = b∗2φ

∗K1
2 ⇒ b2φ

K1
2 = b∗1φ

∗K1
1 (4.210)

(4.209) and (4.210) imply K1 = K2. But (4.201) and (4.208) imply λ1 = φ1 and (4.206)

and (4.206) imply λ2 = φ2. This gets down to a symmetric case.

Case Λ6 and Φ∗6: From q(x3) = q∗(x3), we get

b1(λ
K2
1 + λK2−11 + · · ·+ 1) + b2λ

K2
2 + b2(φ2 + · · ·+ φK12 ) = b∗1λ

∗K2
1 + 1

which is not possible for the same reason as in the Case Λ1 and Λ∗2.
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Chapter 5

Multivariate Extreme Value
Analysis to Value at Risk

5.1 Introduction

How to manage a portfolio efficiently, with the highest expected return for a given level

of risk, or equivalently, the least risk for a given level of expected return, is the key to

the success or failure of a financial system.

J.P. Morgan’s RiskMetricsTM (1996) defines risk as the degree of uncertainty of

future net return. Financial systems face many risks which may result in financial

collapse if not appropriately managed. According to RiskMetrics, a common classifi-

cation of risks gives four main categories of risk which are Credit Risk (the potential

loss because of the inability of a counterparts to meet its obligation), Operational Risk

(errors that can be made in instructing payments or setting transactions), Liquidity

Risk (inability of a firm to fund its illicit assets), and Market Risk (loss resulting from a

change in the value of traceable assets). This work focuses on ways of modeling market

risk via multivariate extreme value theories and methods.

To be aware of and to understand risks which a manager will face are very important

to the modern financial management. Especially, as financial trading systems have been

extended broadly and become more sophisticated, there has been increased awareness of

the dangers of very large losses. For example, see Smith (2000), large price movements

in security markets may cause the failure of financial systems. Examples include the

bankruptcy of Baring Bank, Daiwa Bank and Orange County in California. The most

spectacular example to date was the near-collapse of the hedge fund Long Term Capital

Management in September 1998. LTCM was trading a complex mixture of derivatives



which, according to some estimates, gave it an exposure to market risk as high as

$200 billion. Things started to go wrong after the collapse of the Russian economy

in the summer of 1998, and to avoid a total collapse of the company, 15 major banks

contributed to a $3.75 billion rescue package.

From the insurance industry, very large claims can cause insurance companies to go

bankrupt. Embrechts et al. (1997) lists 30 most costly insurance losses 1970-1995 in

table 1 (the largest one is 16,000 million dollars) and 30 worst catastrophes in terms of

fatalities 1970-1995 in table 2 (the largest fatality is 300,000), both taken from Sigma

(1996).

These events are relatively rare, but important. These and other examples have

increased awareness of the need to quantify probabilities of large losses, and for risk

management systems to control such events. A tool called Value at Risk (henceforth,

VaR) has been increasingly employed by many banks. It gained a higher profile in

1994 when J.P. Morgan published its RiskMetrics system. The Basle Committee on

Banking Supervision has proposed in 1996 that internal VaR models may be used in the

determination of the capital requirements that banks must fulfill to back their trading

activities (cf. Dave and Stahl 1999). Books, like Jorion (1996), Dowd (1998), aimed

at financial academics and traders and explained the statistics basis behind VaR. Best

(1998) is aimed at the risk management practitioners. Dave and Stahl (1999)’s working

paper studied 5 different VaR models with real data performance analysis.

Among many applications and models, portfolio returns are assumed normally dis-

tributed, or tail normally distributed. Such assumption makes the estimation easy.

However this may underestimate the risk of the system which actually has a fat-tailed

distribution. Most financial data are actually distributed with fat tail. LTCM and

banks have been criticized for not “stress-testing” risk models against extreme mar-

ket movements (Embrechts, 1999). Also back to November 1995, the Director of the

Federal Reserve, Mr. A. Greenspan stated “work that characterizes the distribution of

extreme events would be useful as well” (Embrechts, 1999). The excellent recent book

by Embrechts et al. (1997) surveys the mathematical theory of EVT and discusses its

applications to both financial and insurance risk management.

Although the use of EVT in finance and insurance industries has a considerable

literature on the subject, especially there is a much longer history of its use in the

insurance industry, most applications are restricted in univariate stochastic process

data. Again Embrechts et al. (1997) is an excellent literature. Smith (2000) presented
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a demonstration of the merits of combining established models for extreme values with

modern statistical techniques including Bayesian inference, hierarchical models and

Monte Carlo sampling for real insurance data. Tsay (1999) applied extreme value

theory to investigate the occurrence times and excesses over some high thresholds of

financial time series (S&P index). Both two works used similar methodology though

they had different kinds of data. As stated in Embrechts et al. (1997), in 1900 Louis

Bachelier showed that Brownian motion lies at the heart of any model for asset returns;

around the same time, Filip Lundberg showed that the homogeneous Poisson process,

after a suitable time transformation, is the key model for insurance liability data. As

to multivariate aspects, not much work has been done. However, it is very natural

to consider multivariate extremes in which a portfolio of asset returns is under high

risk due to a combination of various processes at extreme levels. For instance, daily

exchange rates for the value of 1 US dollar against foreign currency, or insurance models

in which there are several types of claims each day. There exist dependence structures

among the various assets in a portfolio. If the composition of the portfolio is held fixed,

then it may be enough to only assess the composition risk of the portfolio, which can

be done by applying univariate EVT. However, to manage a portfolio efficiently, or

equivalently to optimize the portfolio, the real rationale for considering multivariate

aspects is often to help design the portfolio. The famous mean-variance approach

first introduced by Markowitz is broadly used in financial management (Markowitz

1952, 1987, Korn 1997, Michaud 1998). The approach is based on an assumption

of multivariate normality for the joint distribution of assets or securities. One of

its formulae is to maximize the expected return subject to given risk (which is the

variance of a linear combination of assets). An alternative option is to use VaR as

the constraints, which we will investigate further and has drawn much more attention

in financial management. Conventional VaR theory is highly questionable due to the

joint multivariate normal distribution assumption of log returns which may not be

appropriate to the fat-tailed data and may result in an underestimate of the risk.

One approach to the problem is through multivariate EVT. Resnick (1987) is an

excellent source of information on possible approaches. Due to no standard notion of

order in high dimensional Euclidean space, most approaches to date have focused on the

one dimensional case. The good news is that there is a considerable progress. Coles and

Tawn (1991, 1994) have done an impressive progress on modeling extreme multivariate

events and made multivariate extreme value theory into a very practical method of data
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analysis. Embrechts, de Haan and Huang (1999) presented an approach for modeling

tail events and showed results in 2-dimensional case theoretically and numerically.

Smith and Weissman (1996) have proposed some alternative representations of extreme

value processes to characterize the joint distribution of extremes in multivariate time

series. They showed under fairly general conditions, extremal properties of a wide class

of multivariate time series may be calculated by approximating the process in the tails

by one of M4 form.

5.2 VaR methods

In risk management, one of its functions is to measure risk the financial system is

exposed to. Questions like: how much could a bank lose on a normal trading day? Or

what kind of risk the bank exposes to the market? These and other questions are very

often asked to the risk manager by the CEO of the bank. To answer these questions, we

seek some risk measurements to quantify the risk of all trading positions of the bank.

However, some traditional risk measurements have difficulties to answer questions like

those we have asked. Traditional methods usually only calculate each individual risk of

market variables invested in the market by a financial institution. The overall market

risk cannot be efficiently measured because of the number of market variables (hundreds

or thousands) and very long computing time needed. These methods may be of benefit

to traders who manage the trading activities for each financial instrument, but are not

very useful to senior risk managers or regulators. For example, the variance of the

portfolio return tells how variable the return is, but does not tell us how likely and

what amount of money the bank will lose. VaR methods can overcome those difficulties

the traditional methods suffered. VaR is defined as the value at risk is the maximum

possible loss on a portfolio over a given time interval, with a given level of confidence.

Statistically, if we let Xt be the loss over time t within a time horizon, say [0, T ], and

the confidence level is 1 − α, then the VaR is just the upper α percentile xα of the

random variable XT , which is

Pr(XT < xα) > 1− α. (5.1)

In the literature, there are three typical methods to calculate VaR, i.e. variance-

covariance approach, historical simulation approach, and Monte-Carlo simulation ap-

proach. We will briefly describe these methods further in the following subsections.
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5.2.1 Variance-Covariance approach

The variance-covariance approach is first widely used VaR calculation method. The

references, among others, include Chapter 11 of Jorion (1997), Chapter 3 of Dowd

(1998), Chapter 2 of Best (1998). This approach assumes the return has a normal dis-

tribution for a single asset or the returns have jointly multivariate normal distribution

for a portfolio with multiple assets. How to implement VaR calculation is presented as

in the following.

Consider now a portfolio of d assets and at time t the returns are R1t, R2t, . . . , Rdt.

We write Rt = (R1t, R2t, . . . , Rdt)
′. Rt is assumed to be jointly normally distributed,

i.e. Rt ∼ N(µ,Σ). Let w = (w1t, . . . , wdt)
′ be the weights of each individual position

and sum to unity. The return of the portfolio at time t is defined as

Rp
t =

d∑

i=1

witRit = w′Rt. (5.2)

So the VaR for the portfolio is calculated from

Pr(Rp
t > c) = α. (5.3)

Since Rp
t is distributed as N(w′µ,w′Σw) and hence

c = w′µ+ zα(w
′Σw)

1
2 (5.4)

where zα is the standard normal upper α percentile. And finally the VaR for the

portfolio is

V aRp = V ∗ c (5.5)

where V is the original position value or the investment. In practice, however, it is

customary to assume that the expected price change is zero with given time period.

The VaR for a portfolio is calculated simply as

V aRp = V ∗ zα(w′Σw)
1
2 = (v′Σv)

1
2 (5.6)

where v is a vector of VaRs for each individual position.

5.2.2 Historical simulation approach

The historical simulation approach is to use the empirical distribution based on the

past data. Theoretically, the empirical distribution converges to the true distribution
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of the interest random variable, here it is the portfolio return. The idea is to use

the empirical distribution to approximate the true distribution and to read off VaR

from the empirical distribution curve, usually a histogram. The advantages of using

historical simulation include no model assumption and no distribution required; VaR

can be read directly from a spread sheet. It also can capture the fat tailed behavior

of the data with enough observations and very large observed values. But there are

some disadvantages. For example, it may not be a good way to represent very extreme

events because there is no possibility of extrapolation beyond the observed range of

the data. It also assumes stationarity in time.

5.2.3 Monte-Carlo simulation approach

While the historical simulation approach using historical data to construct empirical

distribution, the Monte-Carlo simulation approach draws the data from a random

process and uses the drawn values to construct empirical distributions and further

read off the VaR from the constructed empirical distribution. Here we need a random

process to represent the price change. To achieve this, a continuous stochastic process

which can be written into a stochastic model is often used in the literature. A simple

model of price change may have the form

dXt = σdWt

where Wt is a Brownian motion, and σ is known or at least estimable. This simple

model has a solution

Xt = X0 + σWt.

From this representation, we can draw values of Xt from Monte-Carlo simulation

scheme which draws a random number from a random number generator, and then

transforms this number into a normal random variate, and finally gets a simulated

return value. This procedure is repeated over and over, until we think we have enough

values which can be used to construct an empirical distribution.

Note: since the example model here is rather simple, Xt itself is normally dis-

tributed. We can calculate the V aR from Variance-covariance approach directly. The

Monte-Carlo simulation approach is usually taking advantage when the portfolio con-

tains multiple assets and relatively complicated structure which may not be easily

solved by simpler approaches.
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5.3 Extreme value approaches

The three methods described in the previous section have their own disadvantages. In

general VaR is regarded as an extreme quantile of the loss distribution because we are

interested in a 95%, 99% or even higher confidence level. For example, Bankers Trust

uses 99%; Chemical and Chase uses 97.5%; Citibank, a 95.4% level; Bank America

and J. P. Morgan uses 95% (Jorion, p20, 1997). Financial returns are fat-tailed and

exhibit the form of clustering which usually caused by extreme price movements. The

variance-covariance approach may not be suitable because its normality assumption.

Historical simulation may not work due to lack of extreme observations. Also it is hard

to use historical simulation to characterize the dependence structure among assets

of a portfolio. The Monte-Carlo simulation also has a normality assumption for the

underlying stochastic process.

The extreme value approach has drawn a major attention in VaR study recently. It

has advantages in analyzing fat tailed data, which financial data are, and extrapolating

beyond the range of observed data. Just as the variance-covariance approach has a

distributional assumption, extreme value approaches assume the underlying limiting

(for the extreme values) distributions are extreme type distributions. There are three

types of extreme value distributions which we stated in Chapter 1 and they can be

written into a generalized form

H(x;µ, σ, ξ) = exp{−[1 + ξ(x− µ)

σ
]−1/ξ} (5.7)

which is (1.6) in Chapter 1. Now to calculate VaR of the underlying loss distribution is

equivalent to computing the extreme quantile of (5.1) in case a portfolio only has one

position or is statistically univariate. It is known that the normal distribution is stable

and the extreme value distributions are max-stable. As a result, if Rit in (5.2) follows

one of the extreme type distributions, Rp
t won’t follow any extreme value distribution.

But the limiting form of Rt will follow multivariate extreme distribution which we are

interested in. So the VaR calculation is transformed into the calculation of critical

value c in (5.3) from a multivariate extreme value distribution.

The multivariate extreme value distribution has no explicit forms, unlike the uni-

variate extreme value distributions. We need to adopt one of the existing multivariate

extreme value distributions to model the data. But the observed data are not indepen-

dent, so we then need to estimate the extreme index for the multivariate time series
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under stationarity conditions. Since financial data exhibits clustering, it may be a

better choice to model the extreme value of the data by using one of the M4 process

since we have seen under mild general conditions a stationary stochastic process can

be approximated in the tails by a max-stable process and very closely a max-stable

process can be approximated by anM4 process. We present applications ofM4 process

to the financial data in section 5.5.

5.4 Optimal portfolio theories

Not putting all one’s eggs in one basket has been a basic concept for a long history if

one suspects the basket is not completely secured. In finance, portfolio diversification

has been thought as an essential component of modern risk management. To minimize

the risk will result in investing money on those market variables with smaller risk.

On the other hand, an investor expects to gain the maximum possible returns with

his investment. In general, the higher the risk, the higher the return. These two

investment strategies, low risk and high return, are opposite to each other. Naturally

an investor would seek an optimal investment plan with which either to maximize the

portfolio mean return such that the estimated risk is not higher than an upper risk

limit or to minimize the risk such that the mean return is not lower than a lower mean

return limit within a given time period. This is referred as the portfolio problem in

the literature.

The mean-variance approach pioneered by Markowitz (Markowitz 1952, 1987, Korn

1997, Michaud 1998) is the earliest approach to solve a portfolio investment problem.

Although it is a one time period model approach it is still highly valued. In 1990,

Harry M. Markowitz, Merton M. Miller and William E. Sharpe gained the Nobel Prize

in economic sciences for their pioneering work in the theory of financial economics.

Let’s now assume a portfolio consists of d assets. At time t = 0, an investor has to

decide how many shares of each asset to hold until time t = T . Suppose the proportion

of total money invested on asset i is πi and the price of asset i at time t is Pi(t), then

the return of asset i is Ri =
Pi(T )
Pi(0)

. Finally the portfolio return is

R =
d∑

i=1

πiRi
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and the mean return is defined by

µ(π) = E(R) =
d∑

i=1

πiE(Ri) =
d∑

i=1

πiµi

and the variation of the portfolio return is

σ2(π) = Var(R) =
d∑

i,j=1

πiCov(Ri, Rj)πj =
d∑

i,j=1

πiσijπj.

Then mean-variance approach is to decide the optimal investment plan π by solving

one of the following two optimization problems.





min
π∈Rd

σ2(π)

s.t. µ(π) ≥ µlow, πi ≥ 0,
d∑
i=1

πi = 1
(5.8)

where µlow is lowest mean return. Or





max
π∈Rd

µ(π)

s.t. σ2(π) ≤ σmax, πi ≥ 0,
d∑
i=1

πi = 1
(5.9)

where σmax is regarded as maximum risk one can take. (5.8) is a quadratic optimiza-

tion problem. There is a unique solution. Under some conditions (5.8) and (5.9) are

equivalent. In practice, (5.9) seems more natural. We adopt (5.9) as a basic model

in this present work and extend it to the VaR constraints calculated from a extreme

value distribution.

Traditional risk measurement, for example, the variance-covariance approach, may

under-estimate the risk a financial institution exposed to. And so we model the port-

folio returns by using a multivariate extreme value distribution function, especially in

this present case we adopt M4 processes modeling. And so our optimization model is





max
π∈Rd

µ(π)

s.t. Pr(Rp > c) = α, πi ≥ 0,
d∑
i=1

πi = 1
(5.10)

where Rp =
d∑
i=1

πiRi = π′R, and the limiting distribution of exceedances over a high

threshold of R follows a multivariate extreme value distribution.
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5.5 Dynamic financial data modeling

In this section we will model financial time series data asM4 processes. Stock prices of

GE, CITIBANK and Pfizer will be studied. Parameter estimates of M4 processes are

based on an multivariate time series of approximately 5000 days. We first look at those

extreme values of the negative returns and check whether extreme value distribution

fitting is appropriate or not by using mean excess plot, Z-plot and W -plot. The data

are standardized using GARCH(1,1) model which gives estimated conditional standard

deviation. Then we check whether extreme value distribution fitting is appropriate or

not to the standardized time series. A generalized Pareto distribution is used to fit the

data above certain threshold(.02 is used in this study) for each sequence. The data are

then transformed into Fréchet scale from fitted GPD function. The transformed data

are used in M4 processes modeling. We begin at introducing some concepts and basic

backgrounds.

5.5.1 Mean excess plot

The mean excess plot is a plot of the mean of all excess values over a threshold u against

u itself. It usually suggests whether a extreme value distribution fitting is appropriate

or not. It is very useful for initial diagnostics and selecting the threshold. It is based

on the following identity: if Y has a generalized Pareto distribution, provided ξ < 1,

then for threshold u > 0, define the mean excess function

e(u) = E{Y − u|Y > u} = α + ξu

1− ξ
.

Thus, a sample plot of mean excess against threshold should be approximately a

straight line if the model is correct.

5.5.2 Z-statistics and W -statistics

The underlying idea behind these analysis of Z-statistics and W statistics is the point-

process approach to univariate extreme value modeling due to Smith (1989). According

to this viewpoint, the exceedance times and excess values of a high threshold are viewed

as a two-dimensional point process. If the process is stationary and satisfies a condi-

tion that there are asymptotically no clusters among the high-level exceedances, then

its limiting form is non-homogeneous Poisson. Smith and Shively (1995) introduced
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a number of diagnostic devices to examine the fit of the generalized extreme value

distributions. One idea is based on what they called Z-statistics

Zk =

∫ Tk

Tk−1

Λs(u)ds

where Tk denotes the time of the k’th exceedance of u. Λt(x) is given by

Λt(x) = (1 + ξt
x− µt
ψt

)
−1/ξt
+

the intensity of a nonhomogeneous Poisson process of exceedances of a level x. If

the model is correct, then Z1, Z2, . . . , will be independent exponentially distributed

random variables with mean 1. The Z-statistics are an indication of how closely the

exceedances of a fixed level u are represented by a nonhomogeneous Poisson process,

but they do not test the generalized Pareto distribution assumption for the distribution

of excesses over the threshold. This can be done via W -statistics:

Wk =
1

ξTk
log[1 + ξTk

Yk − u

ψTk + ξTk{u− µTk}
].

Then W1,W2, ... are also independent exponential random variables with mean 1, if

the model is correct. These techniques have been broadly used in model diagnostics,

for example, Tsay (1999), Smith and Goodman (2000).

5.5.3 GARCH(1,1) model

Traditional time series model AR(p) assumes constant variance cross the time which

experience has shown not the case. GARCH, generalized autoregressive conditional

heteroscedasticity, process model the residual of a time series regression. The model

was proposed by Bollerslev ( 1986 ). It does not assume the constant variance. Research

has shown that it has been quite successful to use GARCH model of fitting financial

time series. We now introduce the GARCH model.

Suppose time series regression has the form

yt = φ0 + φ1yt−1 + · · ·+ φpyt−p + ut,

where

ut =
√
htvt

ht = κ+ δ1ht−1 + · · ·+ δrht−r + θ1u
2
t−1 + · · ·+ θsu

2
t−s

vt ∼ N(0, 1).

These three formula together are called GARCH(r,s) model.
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5.5.4 Initial diagnostics

Figure 5.1 are time series plots of three stock returns. We can see there are extreme

observed values in each sequence and they are not stationary. A data transformation

may be needed in order to have stationarity and apply M4 process modeling. Before

we do that, we check whether extreme value distribution fittings are appropriate or

not for the observations which are above certain threshold.

Figure 5.2 is initial diagnosis which suggests that extreme value distribution fitting

for the Pfizer data but not for the other two data sets. Further diagnosis based on Z

and W statistics are used.

All W -plots from Figures 5.3 -5.5 suggest a generalized extreme value distribution

fitting is appropriate. Some caution should be taken since a few points, partly the

result of Oct. 87 crash, are away from the straight line. But Z-plots do not suggest a

generalized extreme value distribution fitting.

5.5.5 Data transformation

As we mentioned earlier, our goal is to model M4 process to the three time series data

sets. We now use GARCH(1,1) to model the volatility. Figure 5.6 shows estimated

conditional standard deviation. Figure 5.7 shows standardized time series. Visually

they look stationary. Figure 5.8-5.10 suggest a generalized extreme value distribution

fitting is appropriate. Notice that the earlier Z-plots were not consistent with the

model, but now they are.

After fitting the generalized extreme value distribution, the data set are transformed

into unit Fréchet scale and the transformed data are plotted in Figure 5.11.

Since an M4 process has double indexes, one for signature patterns and one for

moving range, we need to determine the order of moving range and the number of

signature patterns. We apply graphical diagnostic methods to determine the order and

propose a criteria to determine the number of signature patterns.

Based on the properties that an M4 process appears clustered observations when

an extreme observation occurs, we check those observed values which are larger than

a certain threshold. Empirical counts can tell both the moving range order and the

dependence range. We look at the counts of paired neg-daily returns on unit Fréchet

scale in different ways. We count the days when two different stock products both had

price drops over certain threshold. We count the days when a single stock product had
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Figure 5.1: These figures show that there are extreme observations and the greatest
drop happened in the same day in all three time series, i.e. October 19, 1987, the date
of the Wall Street crash.
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(a) Pfizer
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(c) Citibank
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Figure 5.2: The mean excess plot usually suggests whether a extreme value distribution
fitting is appropriate or not. The plot for the Pfizer data suggests extreme value
distribution fitting since the plot is contained in its corresponding confidence interval.
The other two are more doubtful since the plot goes outside the confidence bands,
though further analysis shows that the extreme value approximation is reasonable in
this case also.
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Figure 5.3: W -plots show a generalized extreme value distribution fitting is appropriate.
Some caution should be given since a few points, partly the result of Oct87 crash, are
away from the straight line.
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Figure 5.4: W -plots show a generalized extreme value distribution fitting is appropriate.
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Figure 5.5: W -plots show a generalized extreme value distribution fitting is appropriate.
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Figure 5.6: Estimated volatility
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Figure 5.7: Standardized series
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Figure 5.8: W -plots show a generalized extreme value distribution fitting is appropriate.
Some caution should be given since a few points, partly the result of Oct87 crash, are
away from the straight line.
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Figure 5.9: W -plots show a generalized extreme value distribution fitting is appropriate.
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Figure 5.10: W -plots show a generalized extreme value distribution fitting is appropri-
ate.
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Figure 5.11: The negative returns after transformed into unit Fréchet scale.
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two consecutive daily drops. We also count the days of two day range in which one

stock price dropped in the first day, the other stock price dropped in the second day.

We also calculate the expected counts under the assumption of independent.

We observe throughout that the “observed” values are larger than the “expected”,

and therefore we conclude that the variables are dependent. The choice ofM4 processes

to model the dependence may be appropriate.

5.5.6 Model selection and parameter estimations

All the figures suggest an M4 process fitting may be a good choice for financial time

series data with multivariate temporal dependence.

Figure 5.11 and 5.12 suggest that a model of time dependance range of order 2 or 1

and at least 3 signature patterns. Some of these patterns have order of 2, corresponding

to drops happened in two consecutive days, and one has order of 1, which corresponds

to a single drop. Figure 5.12 shows that the strong dependence appears in the same

day between series and in two consecutive days within each series.

We now use the following model to fit the data.

Yid = max(a1,−1,dZ1,i−1, a1,0,dZ1,i,
· · ·

aL−1,−1,dZL−1,i−1, aL−1,0,dZL−1,i,
aL,0,dZL,i)

(5.11)

But we need to determine the number of signature patterns L. Define

Q1(x) = Pr(u+ x > Yi+1 > u, Yi > u)

Q2(x) = Pr(u+ x > Yi+1 > u, Yi < u)

A1(x) = (u,+∞)× (u, u+ x)

A2(x) = (0, u)× (u, u+ x)

X̄Aj(x) =
1

n

n∑

i=1

IAj(x)(Yi, Yi+1), j = 1, 2.

We extend Kolmogorov and Smirnov’s distance into the following form

errl = sup
x>0

[|Q1(x)− X̄A1(x)|, |Q2(x)− X̄A2(x)|]}
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Figure 5.12: (i) All plots are based on Fréchet transformed exceedances of a high
threshold based on negative log returns ( so they represent price drops, not price
rises); (ii) the purpose of the plots is to look for dependence among neighboring values;
(iii) the numbers in parentheses show expected and observed numbers of simultaneous
exceedances by the two variables, where “expected” is calculated on an independence
assumption.
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Where Q1(x) and Q2(x) are calculated under estimated parameter values.

The idea here is that we use the given information up to today and compute the

probability of the event that the return falls into a certain range next day. Instead

of computing conditional probability, we compute joint probability and joint empirical

probability and compare the approximation errors.

For l = 3, 4, 5, . . . , we compute errl at discrete points in interval [u, 2u]. Figure

5.13 shows the trends of errl when l is increasing. We can see when l = 5 the curve

reaches stability for CITI data. And similarly l = 6 for GE and Pfizer data.

0 5 10 15 20 25 30 35
0.17

0.175

0.18

0.185

GE
CITI
Pfizer

Figure 5.13: Number of signature patterns L vs Err plot.

We now fit three transformed time series data using the following model.

Yid = max(a1,−1,dZ1,i−1, a1,0,dZ1,i,
· · ·

a5,−1,dZ5,i−1, a5,0,dZ5,i,
a6,−1,dZ6,i−1, a6,0,dZ6,i,

· · ·
a9,−1,dZ9,i−1, a9,0,dZ9,i,

a10,−1,dZ10,i−1, a10,0,dZ10,i,
· · ·

a14,−1,dZ14,i−1, a14,0,dZ14,i,
a15,0,dZ15,i)

(5.12)

where al,k,d = 0, l = 1, . . . , 5, d = 2, 3, al,k,d = 0, l = 6, . . . , 9, d = 1, 3, al,k,d =

0, l = 10, . . . , 14, d = 1, 2. We have considered here to treat those drops in two

consecutive days as independent processes and single drops as dependent processes.

We can apply more complex structure and use the arguments about how to model
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inter-series dependence discussed in section 3.3. But we adopt a relatively simple

model to illustrate M4 process modeling to financial time series data here.

Table 5.5.6 is constructed based on the probabilistic properties of M4 processes.

The returns above certain threshold in two consecutive days are clustered into 4 or 5

groups. Initial estimates are obtained by taking average of those points within each

group. Then we can solve the system of nonlinear equations or minimize a weighted

least squares functions. What we actually do here is to use the initial estimates as the

base of selecting evaluation points x1, x2, · · · , xm used in (3.11) and (3.12). Based on

the initial estimates, we compute the adjacent parameter ratios. For each ratio value,

say ri, we let xj = .95 and xj+1 = 1.25ri. The value ofm is equal to twice of the number

of those ratios. The numbers .95 and 1.25 are arbitrary. Other numbers can be used

as long as one is less than 1 and another one is larger than 1. Intuitively we choose the

numbers as big as possible because the nature of function b̂(x), which has less variability

for large x, but we need to have two points between two adjacent ratios. We don’t have

a criterion to guide the choice of xj’s at this time. An optimization problem based on

a’s and xj’s may be useful, but we will not pursue this in the current work. After the

xj’s have been chosen we solve (3.16) under a constraint that the matrix formed in the

left hand side of (3.16) is the same as the one when the initial estimates are used. Using

the estimated parameter values, we can compute asymptotic covariance matrix. Since

we only have about 2200 observed drops but many parameters, the computation of the

asymptotic covariance matrix of the joint distribution of the estimates is not efficient,

i.e. the standard deviations of the estimators are not less than 1 as they are supposed

to be. The results in Table 5.5.6 are simulation results based on 100 replications of

sample size 1000.
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Table 5.1: Estimations of Parameters

Param. GE CITI Pfizer

a1,−1/a1,0 0.0614 / 0.0206
std 0.0169 / 0.0075

a2,−1/a2,0 0.0778 / 0.0026
std 0.0381 / 0.0019

a3,−1/a3,0 0.0220 / 0.0174
std 0.0089 / 0.0089

a4,−1/a4,0 0.0070 / 0.0121
std 0.0043 / 0.0100

a5,−1/a5,0 0.0020 / 0.0126
std 0.0011 / 0.0104

a6,−1/a6,0 0.1937 / 0.0005
std 0.0482 / 0.0002

a7,−1/a7,0 0.0086 / 0.0077
std 0.0079 / 0.0077

a8,−1/a8,0 0.0012 / 0.0067
std 0.0014 / 0.0092

a9,−1/a9,0 0.0003 / 0.0062
std 0.0003 / 0.0071

a10,−1/a10,0 0.1594 / 0.0260
std 0.0162 / 0.0041

a11,−1/a11,0 0.0190 / 0.0105
std 0.0089 / 0.0074

a12,−1/a12,0 0.0062 / 0.0078
std 0.0027 /0.0060

a13,−1/a13,0 0.0029 / 0.0055
std 0.0014 / 0.0049

a14,−1/a14,0 0.0011 / 0.0062
std 0.0005/ 0.0052

a15,0 0.7645 0.7750 0.7553
std 0.0128 0.0274 0.0042
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Figure 5.14: Simulated time series
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5.6 VaR calculation and portfolio optimization

So far we have considered modeling the three time series to M4 processes. We now

turn to do VaR calculation and portfolio optimization. For comparison, we will use

variance-covariance approach and extreme value approach.

5.6.1 Using variance-covariance approach

We now compute the VaR of a portfolio containing three stock products, GE, CITI

and Pfizer. At time t the returns are R1t, R2t, R3t. We write Rt = (R1t, R2t, R3t)
′. Rt

is assumed to be jointly normally distributed, i.e. Rt ∼ N(µ,Σ). We can estimate the

covariance matrix Σ by the sample covariance matrix

Σ̂ =
1

1000



0.2539 0.0408 0.0180
0.0408 0.4591 0.1246
0.0180 0.1240 0.3557


 .

For the standardized time series we have the estimates

Σ̂ =
1

1000



0.2310 0.0298 0.0156
0.0298 0.4399 0.1136
0.0156 0.1136 0.3372


 .

The following figures plot calculated VaRs for different investment combinations, using

original time series, standardized time series. We also plot the VaR versus Expected

returns. In all plots, each point represents a portfolio investment plan or combination.

For example, one point may represent (.25, .35, .4) which means 25% of money invested

in GE, 35% of money invested in CITI and 40% of money invested in Pfizer.

Figures 5.15 and 5.16 are based on the original data. Figures 5.17 and 5.18 are

based on the standardized data. Both figures 5.15 and 5.17 show risk diversification.

In all figures, a green circle means investing all money on GE stock, a red cross means

investing all money on CITI stock, and a blue diamond means investing all money on

Pfizer stock. A green dot, a red dot or a blue dot means investing 50% or more of total

money on stock GE, CITI or Pfizer respectively. A black dot means no individual stock

received more than 50% of total money. From figures 5.16 and 5.18 we can optimize

the portfolio with highest expected return for a given level of risk. It is the point of

the upper curve when the risk is given.
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Figure 5.15: VaR for a portfolio of 3 stock products
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Figure 5.16: Expected returns for a portfolio of 3 stock products
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Figure 5.17: VaR for a portfolio of 3 stock products, standardized data
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Figure 5.18: Expected returns for a portfolio of 3 stock products, standardized data
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5.6.2 Using M4 process approach

The multivariate normal distribution assumption makes most statistical computations

easier. But it may give inaccurate results if it doesn’t fit the data and result in a wrong

decision. In risk measurement it may under estimate the risk since Normal distribution

is best fitting the centralized data. We now introduce a new method based on the M4

process modeling and use it to compute VaR and optimize a portfolio with the VaR

constrains.

Suppose c1, c2, c3 are proportions of stock products in a portfolio, V aRp is the

VaR of the portfolio return c1Y1 + c2Y2 + c3Y3 calculated from P (c1Y1 + c2Y2 + c3Y3 >

V aRp) < α for given level of confidence 1 − α. Due to the complex transformation

to the original data, it’s not possible to compute the maximal possible loss based on

V aRp since each individual stock behaves differently. One way is to model a univariate

time series c1Y1i + c2Y2i + c3Y3i in M4 process. But this is not practically applicable

since the investments change all the time.

We propose the following procedure to determine the V aRp = d and individual risk

factors V aR1 = d1, V aR2 = d2 and V aR3 = d3 simultaneously.




max
d1>0,d2>0,d3>0

P{c1Y1 ≥ d1, c2Y2 ≥ d2, c3Y3 ≥ d3}
s.t. P (c1Y1 + c2Y2 + c3Y3 > d) < α

d = d1 + d2 + d3

(5.13)

The constraints are very natural since they are the definitions of VaR of a portfolio.

The objective is thought to have the highest probability for all individual risk factors

beyond certain values when the portfolio is at the VaR.

Figure 5.19 draws the VaR versus the different combinations. Contrast to Figure

5.15 and 5.17, it has same trend as the other two have. But it doesn’t show smoothed

features. Figure 5.20 plots the VaR and expected returns. It is very different from

Figures 5.16, 5.18. The maximal VaR of candidate portfolios under normal assumption

is less than the minimal VaR of same candidate portfolios calculated by extreme value

approach. In extreme value model, when the VaR is beyond certain value, the expected

highest return is decreasing when the risk is increasing.

From Figure 5.18, one see that Pfizer gives highest return if invest all money to

stock Pfizer. Stock CITI gives highest risk. Stock GE has lowest return. From Figure

5.20, the extreme portfolios ( invest all, or almost all, money to one stock ) behave

similarly. But the overall structure is different.
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Figure 5.20: Portfolio Optimization Using Extreme Value Theory
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5.6.3 Historical simulation approach

As we have seen that variance-covariance approach gives low VaR, while M4 process

approach gives high VaR. We just can not simply tell which method is better. The

goal of this section is to distinguish them more through the results from historical

simulation approach.

The variance-covariance approach may be useful in routine risk management, while

the extreme value approach should be the method used to extreme risk management.

All VaR calculations in previous sections are unconditional, which means we didn’t use

the price move history. The variance-covariance approach can not be used to calculate

the conditional VaR since they are under the independent assumption, but the extreme

value approach can calculate the conditional VaR. Further comparisons between two

approaches can be done using historical simulation approach which gives VaRs between

VaRs obtained from the variance-covariance approach and the extreme value approach.

In Figure 5.21, we use those historical data when all three stocks had price drops

simultaneously. As you can see the VaRs in Figure 5.21 are higher than those in Figure

5.16, but lower than those in Figure 5.20. If we use thresholds to historical simulation

approach, we can see the VaRs move forward to the right, the VaRs in Figure 5.22 are

very close to those, some are even higher than, in figure 5.20.

Since the historical simulation approach doesn’t model dependence structure and

is very difficult to calculate the conditional VaRs, the extreme value approach may be

a better method, especially when considering extreme risk management.
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Figure 5.21: Portfolio Optimization Using historical simulation approach
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Figure 5.22: Portfolio Optimization Using historical simulation approach
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Chapter 6

Summary

6.1 General discussion

The methods described here represent completely new approaches to the modeling of

financial time series data. The main goal here is to propose an approach which can

efficiently model multivariate time series which are both inter-serially and temporally

dependent.

In order to achieve that goal, we have extended and proved some probabilistic prop-

erties of M4 processes. Then we have proposed estimating procedures when the ratios

can be determined using probabilistic approach. We have also proposed a practically

applicable method ofM4 processes modeling. The consistency and asymptotic proper-

ties have been proved. We have also proposed a VaR calculation method based on M4

process modeling. The main theorems proved are Theorem 2.3, Theorem 2.4, Theorem

2.16, Theorem 3.7, Theorem 3.8, Proposition 3.12, Proposition 3.13, Theorem 3.15.

The results obtained can be used in many ways. For example, they can be used to

compute VaR or to optimize the portfolio under VaR constraints and given information

or historical data. Studies have shown financial data are fat tailed. They are not

normally distributed. Compare with traditional assumption of normality of underlying

distribution. These results provide more information to risk managers who may be

most interested in the situation when an extreme price movement occurs what kind of

risk the company is exposed to. The methods described can be used to other fields,

such as modeling insurance data, environment data etc.

It may be possible to propose some variants of proposed estimators and to reduce

the conditions imposed on the parameters. The choice of the points around the jump

points and the selection of model need some further work.



6.2 Directions of future research

In this section, I list some research directions under extreme value settings.

• Some extreme theorist believe that multivariate extreme value study still has a

long way to go. Besides M4 processes, it is worth to explore other dependence

structures which have multivariate extreme value distribution representation.

• It may be worth to study modeling time series data through Markov process and

extreme events, or Bernoulli jumps and extreme process, or Poisson jumps and

extreme process.

• In a short term, it is worth to study the models:

Yid = max
1≤l≤L

max
−K1≤k≤K2

alkdZl,i−k +N(0, σ2), d = 1, · · · , D, (6.1)

where
∑L

l=1

∑K2
k=−K1

alkd = 1 for d = 1, · · · , D. Under the model we may be able

to reduce the number of signature patterns and get more efficient estimates and

their standard deviations.

Yid = max
1≤l≤L

max
−K1≤k≤K2

alkdZl,i−k ∗N(0, σ2), d = 1, · · · , D, (6.2)

where
∑L

l=1

∑K2
k=−K1

alkd = 1 for d = 1, · · · , D. Or other variants under which we

can study both positive and negative returns and allow model to include short

selling. It increases the flexibility and may be more practically useful.

• Estimation based on regression over threshold is worth to look into.

• It may be worth to look into multivariate max-stable ARMA(p, q) processes for

its natural link to ARMA(p, q) process.

• It may be worth to study general volatility modeling in an extreme value settings.
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