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ABSTRACT
ZHENGJUN ZHANG: Multivariate Extremes, Max-Stable Process Estimation

and Dynamic Financial Modeling.
( Under the direction of Professor Richard L. Smith )

Studies have shown time series data from finance, insurance and environment etc.
are fat tailed and clustered when extremal events occur. In order to characterize such
extremal processes, max-stable processes or min-stable processes have been proposed
since the 1980s and some probabilistic properties have been obtained, but the applica-
tions are very limited due to lack of efficient statistical estimation methods.

In this work, some probabilistic properties of the processes are proved and a series
of estimation procedures to estimate the underlying max-stable processes are proposed,
i.e. multivariate maxima of moving maxima processes. The first proposed method is
purely probabilistic. It is designed for the time series with only one signature pattern,
which can be regarded as a clustering pattern. It gives true parameter values if the
model is correct. The second proposed method is a two step estimating method. At the
first step, the method gives exact parameter values within each signature pattern, then
it estimates the proportions of different signature patterns in the process. Consistency
and asymptotic properties for the estimators are proved. The third proposed method
is a generalized version of the second one but is not tied with the data, i.e. the
data are not assumed to follow the model exactly. It is practically applicable. Three
variants of the third method are proposed. They are designed to provide more specific
estimators for special cases of the model, such as symmetric, monotone and asymmetric
data structure respectively. All the estimators have been proved to be consistent and
asymptotically normal.

To date, the exceedance over threshold approach which uses a generalized Pareto
distribution(GPD) has been advocated. Assuming the population distribution belongs
to the multivariate domains of attraction of multivariate extreme value distributions
we develop threshold methods to estimate the parameters of the underlying max-stable
process from the observed data. All previously developed six methods have their cor-

responding version under threshold methods.
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How to manage a portfolio efficiently, with the highest expected return for a given
level of risk, or equivalently, the least risk for a given level of expected return, is a
key to the success or failure of a financial system. As an application of max-stable
processes, financial time series data are standardized and transformed. The new time
series are modelled as max-stable processes. The VaR ( Value at Risk ), maximal
possible losses of portfolios under given confidence level, of portfolios are calculated

and portfolio optimizations under VaR constraints are then studied.
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Chapter 1

Introduction

1.1 General introduction

Extreme events or rare events have major impacts (bad or good) on the real world.
Imagine the major damage caused by a disaster hurricane or the impact of winning
three million dollars in the lottery. Such rare events are part of our life. We must face,
understand and study those phenomenon and problems caused by rare events. Indeed,
the study of extreme events has become very important and drawn major attention in
probability and statistical research.

The extreme type theorems play a central role of the study of extreme value theory.
In the literature, Fisher and Tippett (1928) were the first who discovered the extreme
type theorems and later these results were proved in complete generality by Gnedenko
(1943). Galambos (1987), Leadbetter, Lindgren and Rootzén (1983), and Resnick
(1987) are excellent reference books on the probabilistic aspect. Smith (1990) gives
a comprehensive account of statistical aspects, especially maximum likelihood meth-
ods in parameter estimation. A recent book by Embrechts, Kliippelberg, and Mikosch
(1997) gives an excellent viewpoint of modeling extremal events. The extreme type
theorems say that for a sequence of i.i.d. random variables with suitable normalizing
constants, the limiting distribution of maximum statistics, if it exists, follows one of
three types of extreme value distributions. In the multivariate context, the maximum
is taken componentwise and there is no specific parametric type of limiting distribu-
tion. However, there have been many attempts to characterize the possible limits, such
as de Haan and Resnick (1977), de Haan (1985) and Resnick’s (1987) point process
approach, and Pickands’s (1981) representation theorem for multivariate extreme value

distribution with unit Fréchet margins. Some efforts have been devoted to extending



the i.i.d classical results to dependent sequences under some conditions such as station-
ary, mixing conditions etc. For instance, Leadbetter, et al (1983) contains an abundant
account of the theory of extreme values for dependent sequences, both stationary and
non-stationary, as well as for stationary continuous time processes at a rigorous math-
ematical level. The extremal index, originated by Cartwright (1958), Newell (1964),
Loynes (1965), O’Brien (1974) and Leadbetter (1983), is a quantity which allows one
to associate the limiting distribution of a dependent sequence to the extreme value
distributions. In a multivariate analog, Nandagopalan (1990, 1994) introduced the
multivariate extreme index and derived some elementary properties.

In the statistical aspects, the focus is on extremal events modeling, parameter es-
timation and testing of hypotheses. There are many applications to real problems.
Among them, extreme value theory has been largely applied to environmental prob-
lems such as river flow, wind speed, sea level, temperature and rainfall, and insurance
and finance (cf. Smith 1990 and Embrechts, Kliippelberg, and Mikosch 1997). To
model extremal events in a univariate context, usually the generalized extreme value
distribution is adopted. To date, the exceedance over threshold approach which uses a
generalized Pareto distribution(GPD) (Pickands 1975, Davison and Smith 1990) and a
fixed number of extreme order statistics approach (Weissman 1978, Smith 1986, Tawn
1988, Robinson and Tawn 1995, Smith 1997) have been advocated.

Although there are well-developed approaches to model univariate extremal pro-
cesses, problems concerning the environment, finance and insurance etc. are multivari-
ate in character: for example, floods may occur at different sites along a coastline; the
failure of a portfolio management may be caused by a single extreme price movement or
multiple movements. Here multivariate extreme modeling is essential for risk manage-
ment and precision of modeling. What one needs is to choose or develop appropriate
multivariate extreme value distributions which can be used in modeling multivariate
extremal processes. As we mentioned earlier, multivariate extreme value distributions
have no specific parametric form. Fortunately several models have been developed
that are multivariate extreme value distributions. Among them, it is worth mention-
ing models such as Bivariate Logistic model by Marshall and Olkin (1983), Bivariate
Exponential model by Mardia (1970), Asymmetric Logistic model by Tawn (1990),
Negative Asymmetric Logistic model by Joe (1989), Dirichlet model by Coles and
Tawn (1991), Bilogistic model by Smith (1990), Nested Logistic model by McFadden
(1978) and Time Series Logistic model by Coles and Tawn (1991). These models are



listed in Coles and Tawn (1991). Coles and Tawn (1994) also demonstrate how statis-
tical methods for multivariate extremes may be applied to a very practical problem of
data analysis.

In general, an multivariate distribution function characterizes the dependence struc-
ture within the random vector. It does not show the time dependent structure of the
vector time series. Since multivariate extreme value distributions are in fact max-stable
distributions ( Resnick 1987 ), and the extreme values of an multivariate stationary
process may be characterized in terms of a limiting max-stable process under quite
general conditions ( Smith and Weissman 1996 ), it is very natural to model extreme
processes by max-stable processes.

In this work, I mainly focus on proving probabilistic properties of a certain class
of max-stable processes and proposing a series of estimation procedures of estimating
the underlying max-stable process. The consistency and asymptotic properties of all
estimators are proved. Applications of max-stable process in finance will be addressed.

In the rest of this chapter we will give some background results. We will discuss
extreme value theory for multivariate random variables in section 1.2. Also in section
1.2 extreme value theory for univariate random variables will be briefly reviewed since
the marginal distributions of MEVD have to be univariate extreme value distributions.
And multivariate maxima of moving maxima processes will be discussed in section 1.3.

In chapter 2, we will study the properties of multivariate maxima of moving maxima
processes, extend probability properties, propose statistical estimation methods for the
parameters and prove consistency and asymptotics. Some examples will be given in
this chapter to demonstrate the processes and the statistical aspects.

In chapter 3, we will consider modeling multivariate maxima of moving maxima
processes by using the bivariate joint distribution of the sequence of dependent random
variables. We shall study estimation of parameters and consistent properties as well
as asymptotics. Examples will be illustrated.

In chapter 4, we will consider the parametric structure for multivariate maxima
of moving maxima processes. Estimation of parameters, consistency and asymptotic
properties will be addressed.

In chapter 5, we first review literature on the applications of extreme value theory
to finance and insurance. We will briefly review the definition of VaR and some typical
calculation methods. Then extreme value approaches will be discussed. Finally we

model multivariate extreme value distributions to multivariate financial time series



data and illustrate VaR calculation as well as portfolio optimizations. Comparison

among extreme value approaches and other approaches will be illustrated also.

1.2 Multivariate extreme value theory

1.2.1 Extreme value theory for univariate random variables

Suppose X1, Xo, ..., X, are an i.i.d. sequence with distribution function F'(z) and let
M, = max(Xy, Xo,..., X,). (1.1)

Then M,, has the distribution function
Pr{M, <z} =Pr{X; <uz,--- , X, <z} =F"(x). (1.2)

It is clear that the maximum of a sample simply tends to the right-hand endpoint of
the distribution almost surely, no matter whether it is finite or infinite. Let Xz be the

right endpoint, since

Yo Pr{|M, — Xp|>€} = > Pr{M, < Xp—¢} = > Pr{X; < Xp —¢€}"
n=1 n=1 n=1

Pr{X;<Xp—e}

= ToPrxi<Xp—q ~ X

and this shows M,, =% Xr. What we are interested in is the form of limits

M, —
lim F"(a,z + b,) = lim Pr(M

<x)=H(x) (1.3)
n—oo n—oo an
for suitable normalizing constants a,, > 0, and b,,.
If (1.3) holds, we say F' (or X) belongs to the (maximum) domain of attraction of
H and write FF € MDA(H) (or X € MDA(H)). H has one of the following three
parametric forms (which are generally called extreme value distributions)

Type I:  H(x)=exp{—exp(—z)} (—o0 <z < 0)

if v <
Type II1: H(z)= 0 ?x_O,
exp(—z~%) ifx >0,
exp(—(—x)¥) ifz <0,
T IIT: H(x)=
ype ()=19, if > 0.

In II and III, « is any positive number. The three types are also often called the
Gumbel, Fréchet and Weibull types respectively.

The following theorems are very useful in finding the M DA(H) of F and the suitable
normalizing constants. The proofs of the theorems can be found in Leadbetter et al.

(1983), Resnick (1987), Galambos (1987), etc..

4



Theorem 1.1 Let 0 < 7 < oo and suppose that for suitable normalizing constants

a, >0 and by, u, = u,(x) = =+ b,, such that
n(l — F(u,)) — 7 asn — oo

then

P(M, <u,) —e " asn — oo

Conversely, if (1.5) holds for some 7, 0 < 7 < oo, then (1.4) holds.

(1.4)

(1.5)

Theorem 1.2 Necessary and sufficient conditions for the distribution F belongs to the

MDA of
Type I: [[°(1 — F(u))du < oo,

1 Flreg®) _
1 Xp 1-— F(t)

for all real x, where
[ (1 = F(u))du

t) =
fort < Xp.
Type II: Xp = 0o and
Y 1 — F(tx) a
im =
e 1R
a >0, for each x > 0.
Type II1: Xr < 0o and
1— F(Xp—xh
lim (Xp — 2 >—:E°‘

a >0, for each x > 0.

Some other theoretical results may be very useful for finding the M DA(H) of F' and

finding the normalizing constants. Those results and examples whose distributions

belong to each of the three domains of attraction can be found in Leadbetter et al.

(1983), Resnick (1987), Galambos (1987), etc.. As a simple example, we consider now

the Pareto distribution
Fz)=1—rz™® a>0k>0,z> s/

5



We have
1— F(tr)  (to)™

1-F@)  t~@
so F' belongs to MDA of a Type Il extreme value distribution. By setting

—

n(l— F(u,)) =71

we have

U, = (kn/7)Ye.

By putting 7 = 2= for x > 0, we have
P{(kn) Y M, < 2} — exp(—z"?)

SO

an = (kn)~Y, b, = 0.

The extreme value distributions are maz-stable distributions. We say a non-degenerate
distribution H is maz-stable, if H"(a,x +b,) = H(x) holds for some constants a,, > 0,
and b, for each n = 2,3, .... The next result (Theorem 1.4.1 in Leadbetter et al. 1983)

shows the relation.

Theorem 1.3 Fvery max-stable distribution is of extreme wvalue type, i.e. equal to
H(ax + b) for some a > 0 and b; Conversely, each distribution of extreme value type

18 maz-stable.

The three types of extreme value distributions can be written into a generalized extreme
value (GEV) distribution form (which is very useful for statistical purposes)

H(x:1.0,6) = expf—[1 + =gy (16)

where 1 + &(x — p)/o > 0, 0 > 0 and p, & arbitrary. The case £ = 0 is interpreted as
the limit & — 0, that is

H(x:1.0,0) = expf{ - exp[~ T 2]} (L7)

Type IT and III correspond to & > 0 (£ = é) and £ <0 (£ = —é) respectively. Smith
(1990) has a detailed review of statistical treatments, applications and estimations, of
GEV.



Suppose now {X;,7 =1,2,..., } is a stationary sequence with a continuous marginal
distribution function F'(x) and {)A(Z,z =1,2,...,} is the so-called associated sequence
of i.i.d. random variables with the same marginal distribution function F. M, stands
for the maximum as usual, defined by (1.1), while M,, denotes the corresponding max-
imum of {X;, -+, X,}. The limiting distribution of M, can be related to the limiting
distribution of ]/\4\” via a quantity 6 defined below.

If for every 7 > 0 there exists a sequence of thresholds {u,} such that
Pr{M, <u,} — e (1.8)
and under quite mild additional conditions,
Pr{M, <u,} — e (1.9)

Then 0 is called the extremal index of the sequence {X,}. This concept originated in
papers by Cartwright (1958), Newell (1964), Loynes (1965), O’Brien (1974). Leadbetter
(1983) gave a formal definition.

The index 6 can take any values in [0,1] and % is interpreted as mean cluster size
of exceedance over some high threshold. When 6 = 0, it corresponds to a strong
dependence (infinite cluster sizes) but not so strong that all the values can be the
same. While 6 = 1 is a form of asymptotic independence of extremes, but it does not
mean that the original sequence is independent.

If (1.9) holds for some 7 and corresponding {u,}, then it holds for all 7’ (equal
or not equal to 7) and its corresponding {u/ }. Estimators of the extremal index have
been proposed by Leadbetter, Weissman, de Haan, and Rootzén (1989), Nandagopalan
(1990), Hsing (1993). Smith and Weissman (1994) gave a review of estimating the
extreme index and proposed two estimating methods, i.e., blocks method and runs
method. Other references include chapter 8 in the book by Embrechts et al. (1997).

1.2.2 Limit laws of multivariate extremes

Suppose {X; = (X1, -+, Xip),i = 1,2,...} is a D-dimensional i.i.d. random process
with distribution F(x) = F(x1,...,zp) = Pr{Xyy < x4,d = 1,..., D} and marginal
distributions Fy(z) = Pr{X;y < z4},d=1,...,D. Let M,, = (M, -+, M,p) denote

the vector of pointwise maxima, where M,; = max{X;4,1 < ¢ < n}. If there exist



normalizing constants a,, > 0, b,, such that

PI‘{Mn S a,x + bn} = PI‘{Mnd S ApdTq + bnd; d= 1, ceey D}
= Fn(anlxl + bnl; An2T2 + bn27 v, QppTp + an) (11())
= F"(a,x+b,) — H(x)

as n — oo and for the limit distribution H being non-degenerate such that each
H; v =1,..., D isnon-degenerate and must be in the GEV family, then the distribution
H is called a D-dimensional multivariate extreme value distribution and £ is said to
belong to the domain of attraction of H, which we write F' € D(H).

These distributions have received theoretical consideration in works by de Haan
and Resnick (1977), de Haan (1985), Pickands (1981), and Resnick (1987). In the
characterization of the multivariate extreme distribution, max-stable (or min-stable)
distributions play a central role. We say a distribution H(x) is maz-stable if for every
t > 0 there exist functions a(t) > 0, 3(t) such that

H'(x) = H(at)x + B(t) = H(a1(O)z1 + Bi(t), ... .ap(t)zp + Bp(t)).  (1.11)

The following theorem describes the equivalence between multivariate extreme value

distributions and max-stable distributions.

Theorem 1.4 The class of multivariate extreme value distributions is precisely the

class of maz-stable distribution functions with non-degenerate marginals.

This is Proposition 5.9 in Resnick (1987). After slight modification of Pickands’ repre-
sentation of a min-stable multivariate exponential into a representation for a max-stable

multivariate Fréchet distribution, we have

Theorem 1.5 Suppose H(x) is a limit distribution satisfying (1.10), then

H(x) = exp{— [ max (-2)dG(w)} (1.12)

sp 1<i<D 1

where G is a positive finite measure on the unit simplex

D
Sp={(w,...,wp): ¥ w;=1w; >0,i=1,...,D}
i=1
and G satisfies
/ wdG(w) = 1,i=1,...,D (1.13)
Sp



Note v(x) = [, Sp 1@%% (¥)dG(w) is called the exponent measure by de Haan and
Resnick (1977). So to model a multivariate extreme value distribution function is in
fact to model the measure function G. De Haan (1985) gave a simple nonparamet-
ric procedure for modeling the measure function G. Coles and Tawn (1991) argued
that parametric models are preferable when one wants simultaneously to estimate the
exponent measure and the dependence structure.

In section 1.2.1, we looked at the limit distribution of a dependent sequence of
univariate random variables, and some of the results can be extended in the multivariate
context. Suppose now {X; = (X;1, -+, Xip),? = 1,2,...} is a D-dimensional stationary
stochastic processes with distribution function F' and marginals Fj;. Also let {XZ} be

the associated sequence of i.i.d. random vectors having the same distribution function

F. M, and M, are both pointwise maxima of {X;} and {X;} respectively. Suppose
lim Pr{M,; < up1,..., Myp <up,p} = H(T)

noee — — ~ 1.14
lim Pr{M,; < upi,...,Mup < up,p} = H(T) ( )

both exist and are nonzero, then a quantity that Nandagopalan (1990, 1994) called
the multivariate extremal index can relate the extreme value properties of a stationary

process to those of i.i.d. sequence. The multivariate extremal index is defined by
H(r) = H(T)"™ (1.15)

where (1) satisfies

(i) 0<6(r) <1 forall T,

(ii) 0(0,...,0,74,0,...,0) = 6, for 74 > 0, where 0, is the extremal index of the d

component process.
(iii) #(ct) =0(7) for all ¢ > 0(Theorem 1.1 of Nandagopalan 1994).

Smith and Weissman (1996) pointed out that these properties are not sufficient to
characterize the function 6(7). They also argued two reasons why one needs to obtain
a more precise characterization to cover a much broader range of processes and to
correspond to real stochastic processes, for instance, multivariate maxima of moving
maxima processes which we are going to address in this work. The first reason is that
“the number of examples for which the multivariate extreme index has been calculated

is currently very small (Nandagopalan 1994, Weissman 1994) and it is important to
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be able to extend this class to cover a much broader range of processes”. The second
reason is that “why we need a characterization is statistical: crude estimators of 6(7)
are easy to construct, but would not correspond to multivariate extreme index of any

real stochastic process.”

1.2.3 Basic properties of multivariate extreme value distribu-
tions

In this subsection, we study some basic properties of multivariate extreme value distri-
bution functions. The following two lemmas are very general, not restricted to MEV,
they are theorems 5.1.1 and lemma 5.2.1 in Galambos (1987).

Lemma 1.6 Let F(x) be a D-dimensional distribution function with marginals Fy(x),
1 <d< D. Then, for all x1,xs,...,2p,

NE

max(0, Fy(xq) — D +1) < F(x1,29,...,2p) < min(Fy(z1), Fa(z2), ..., Fp(zp)).

d=1
Lemma 1.7 Let F,,(x) be a sequence of D-dimensional distribution functions, Fyq(zq)
be the dth univariate marginal of F,(x). If F,,(x) converges weakly to a nondegenerate
continuous distribution function F(x), then, for each d with 1 < d < D, F,4(zq)
converges weakly to dth marginal Fy(xq) of F(x).

The Copula, or dependence function, is a very useful concept in the investiga-
tion of limit distributions for normalized extremes. It is an multivariate distribution

with all marginals being uniform U(0, 1).

Definition 1.1 Let F(x) be a D-dimensional distribution function, with dth univariate
margin Fy. The copula associated with F, is a distribution function C : [0,1]™ — [0, 1]
that satisfies

F(xy,29,...,2p) = C[Fi(z1), Fo(x2), ..., Fp(xp)].

Write Cp = Cr(y) = C(y) over the unit cube 0 < yy <1, 1 <d < D.

Based on the function C(y), we now re-state theorems which relate the univariate

marginals and the multivariate or dependence structure of the limit distributions.
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Theorem 1.8 If (1.10) holds, then the dependence function Cg of the limit H(x)
satisfies

1/k  1/k 1/k
Ollfl(yl/ 7y2/ 7"'7yD/ ) :CH<y17y27"'7yD)

where k > 1 is an arbitrary integer. (This is Theorem 5.2.1 of Galambos 1987).

Theorem 1.9 A D-dimensional distribution function H(x) is a limit of (1.10) if and
only if its univariate marginals are of the same type as one of three type distributions
and if its copula Cy satisfies the condition of Theorem 1.8. (This is theorem 5.2.4 of
Galambos 1987).

Theorem 1.9 tells in principle that if we want to determine a,, and b,, we just need
to determine the components from the marginal limit convergence forms. Let’s look at

a simple example to illustrate how Theorem 1.9 works.

Example 1.1 Let (X,Y) have a bivariate exponential distribution function F(z,y).
If M’gi;a" converges weakly to a nondegenerate distribution function H(x,y), we can
choose

a, = (logn,logn) and b, = (1,1).

1.3 Subclasses of max-stable processes

Davis and Resnick (1989) studied what they called the max-autoregressive moving av-
erage (MARMA (p,q)) process of a stationary process {X,,} which satisfy the MARMA

recursion,
Xp = Xn VNV X0 pVZNOZy VN 0,7,

for all n where ¢;,6;, > 0,1 <i<p,1<j<gqgand{Z,}isiid. with common distribu-
tion function F(z) = exp{—ox~'}. For any given {¢;}, {6}, the corresponding process
is a max-stable process. They have argued “it is unlikely that another subclass of the
max-stable processes can be found which is as broad and tractable as the MARMA
class”. Some basic properties of the MARMA processes have been shown and the pre-
diction of a max-stable process has been studied relatively completely. However, much
less is known about estimation of MARMA process. For prediction, see also Davis and

Resnick (1993). A naive estimation procedure for ¢;,0;’s when the order ¢ = 1 is given
in Davis and Resnick(1989).
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Deheuvels (1983) defined what he called the moving minimum(MM) corresponding
process as

T; = min{oyZ;_p,—00 < k < 00}, —00 < i < 00,

where §;, > 0, and {Z;} are i.i.d. exponential 1. The main theorem of Deheuvels (1983)

is exactly stated as the following theorem.

Theorem 1.10 If (Ty,...,T,) follows a joint multivariate extreme value distribution

for minima with exponentially E(1) distributed margins, then there exist m+1 sequences

{at(n), —oo < k < oo} depending on n = 1,2,..., of positive numbers, such that,
if T;(n) = min{a,(n)Z_j, —0 < k < o}, i = 0,...,m, then (Ty(n),...,Tn(n))
converges in distribution to (Ty, ..., T,,) as n — oo.

The results of Deheuvels (1983) are very strong, but the model itself is still not easily
tractable for the estimation of parameters. Notice that the reciprocal of TL gives the

moving maximum processes as

1 1
— =max{—Z,_,, —00 <k <00}, —00<i<00
T; Ok

where {7} } are i.i.d unit Fréchet random variables. Smith and Weissman (1996) ex-
tended this definition to a more general framework which is more realistic and is called

multivariate maxima of moving maxima (henceforth M4) process. The definition is

Yia = max max apdlyi-k, d=1,---,D, (1.16)

)

where {Z);,1 > 1,—00 < i < oo} are an array of independent unit Fréchet random
variables. The constants {a; x4, > 1,—00 < k < 00,1 < d < D} are nonnegative
constants satisfying o
Y agpa=1ford=1,....D (1.17)
I=1 k=—o0
As we have seen that M4 processes deal with D dimensional random processes whereas
MM processes deal with univariate processes (D = 1). Under the model (1.16),
Smith and Weissman (1996) have shown very attractive results. Some are parallel to
the results of Deheuvels (1983). Although M M processes are only specified over one
index there are possibilities to easily extend to over two indexes. The extension of

M M processes to M4 processes results in hopes to estimate model parameters easily.
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Following de Haan(1984), (1.16) defines max-stable processes because for any finite
number 7 and positive constants {y;q} we have

Pr{Yis <9y, 1 <1 <r,1<d<D}
=Pr{Z,; < Bl forl>1,—c0<k<oo,1<i<r1<d<D}

Al k,d

=Pr{Z,, < min min Y2l 1> 1 00 < m < oo} (1.18)
’ 1-m<k<r—m 1<d<D %k.d
= exp[— > > max =~ max —bkd ]

M= _m<k<r—m 1<d<DYm+k.d

This is (2.5) of Smith and Weissman (1996) and we have
Pr'{Yig <nyig, 1 <i<r,1<d< D} =Pr{Vig <9ig,1 <i<r,1<d< D}

which tells that {Y;} are max-stable. They have argued that the extreme values of
a multivariate stationary process may be characterized in terms of a limiting max-
stable process under quite general conditions. They also showed that a very large class
of max-stable processes may be approximated by the M4 processes mainly because
those processes have the same multivariate extremal index (Theorem 2.3 in Smith and
Weissman 1996). The theorem and conditions appear below.

Now fix 7 = {r,...,7p} with 0 < 7y < 00, d = 1,...,D. Let {unq, n > 1} be a
sequence of thresholds such that n{l — Fj(u,q)} — 74 under the model assumption.
Since Zj, is unit Fréchet we can take u,g; = f—d Denote u, = (up1,...,Unq) and
Bf(un) the o-field generated by the events {X;q < ung, j < i < k,1 < d < D} for
1 < j <k <n. Define

e = sup{|P(AN B) — P(A)P(B)| : A€ Bku,), BB, (u,)} (1.19)

where the supremum is taken over 1 < k < n — t and two respective o-fields. If there

exists a sequence {t,,n > 1} such that
tn — 00, th/n — 0, any, — 0 asn — oo (1.20)

the mixing condition A(u,) is said to hold (Nandagopalan 1994, Smith and Weissman
1996). And further, there exists a sequence {k,, n > 1} such that

ky — 00, kptn/n — 0, kyayn:, — 0 asn — oo. (1.21)

Let r, = [n/k,] the integer part of n/k,. We now exactly state a lemma and a theorem
(Lemma 2.2 and their main theorem Theorem 2.3 of Smith and Weissman 1996).
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Lemma 1.11 Suppose (1.19)-(1.21) hold. Then
Y14
O(1) = lim Pr{Vs <wupg, 2<i<r,,1<d< D|m§u{( 4 > 1} (1.22)
n—00 Und
Alternatively, if we assume

lim lim Z Z Pr{Y;q > tnq] max( ) > 1} =0, (1.23)

T—00 N—00

i=r d=1

then (1.22) is equivalent to

Yiq
() = lim lim Pr{Yiy < upg, 2<i<r1<d< D|max(—2) > 1} (1.24)

r—00 N—00 d Und

This lemma is basically a restatement of results of O’Brien, for example O’Brien (1987).

Theorem 1.12 Suppose A(u,,) and (1.23) hold for {Y;}, so that the multivariate
extremal index 0¥ (1) is given by (1.24). Suppose also the same assumptions hold for

{X;} (with the same t,, k, sequences). So the multivariate extremal index 6%(T) is
also given by (1.24) with Xiq replacing Yiq everywhere. Then 0¥ (1) = 6%(T).

The extremal index of the process defined by (1.16) is

>, Maxy, Maxy agk dTd
1 2 MAXg Ay k,dTd

Although theoretical results have been obtained, the estimation of parameters in both

() = (1.25)

MARMA (p,q) and M4 processes are not well developed and the applications of the
two processes are very limited. Recently Hall, Peng and Yao (2001) discussed moving
maximum models

Y; = sup{a;_;Z;, —00 <i < oo}
where the distribution of Z; is assumed either F(z|0) = exp(—2~Y) or the generalized
Pareto distribution F(z2]0) = 1 — (1 + 2z)~% Then for a finite number of parameters,
they chose (0, a(y,)) to minimize

Dm(97a<m>)=f(@(y)— ﬁ F[min{ai Y (1.26)

max(i, 1) < j < mm(z—f—m k)}O))?w(y)dy,

where the integral is over y = (y1,...,yx) € RY and

n—k
Gly) = (n—k)~ Z I(Yi+j_1§yj for 1<j<k) (1.27)

=1

and w is a nonnegative weight function. We state their main theorem as follows.
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Theorem 1.13 Under conditions
e [ has support on the positive half-line, and is in the domain of attraction of a
Type 11 extreme value distribution.

r—E€

e cach a; is nonnegative and, for some e € (0,r), 0 < > . al ¢ < oo.
then

Sup ‘Pr(le* Syl?"'ﬂyk* SykD/l?’Yn) —PI‘(Yi < yl?'-'ayk < yk)| —0
—00<Y1 5., Yf <OO
(1.28)

where Y 1s defined by
Y = sup{a;_iZ, —oo <i < oo}

a;_; and 0 are solutions of (1.26) and Z} has distribution function F(\g) More-
over, if m > Cy(logn)? for Cy sufficiently large, the rate of convergence in (1.28) is
O, (n=W/2+3) for all § > 0.

Our present work on the estimation of M4 processes is somewhat parallel to Hall et
al. (2001)’s work. In contrast to the bootstrapped processes which Hall et al. (2001)
used to construct confidence intervals and prediction intervals, we directly construct
parameter estimators and prove their asymptotic properties. We will systematically

solve the estimation problems of M4 processes in this work.
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Chapter 2

Probabilistic Properties of
Multivariate Maxima of Moving
Maxima Processes and Basic
Estimation of Parameters

2.1 Introduction

In this chapter we consider the model specified in Smith and Weissman (1996), ex-
tend some properties and propose estimating procedures which determine max moving
range, signature patterns and estimation of parameters.

Let {Zj,l > 1,—00 < k < oo} be an array of independent unit Fréchet random
variables. Smith and Weissman (1996) studied the following process which they call
M4 process.

Yid:maxmaxalde“,k, dzl,"',D,
l k vy k)

for nonnegative constants {a;x 4,0 > 1, —00 < k < oo} satisfying > 2, >0 aipa =
lford=1,---,D.

Since in practice we will not have infinitely many parameters, usually we have
Il =1,---,L and —K; < k < K, for some finite numbers L, K; and K. Here L
corresponds to the maximum number of moving patterns. And K, and K5 characterize
the range of the sequence dependence. We will focus on the finite dimensional M4
process which we state as

}/id: max max alde“_k, d= 1, ,D, (21)
IISL —K1<k<Ky 77 7

where} > | 712 apg=1ford=1,--- D.



The model assumptions made here can be related to some real motivations in insur-
ance and finance as well as environmental engineering. For example, insurance claims
result from different factors (or patterns) and claims are usually made within a cer-
tain period. Stock market variation results from an internal or external big market
price movement and will last a certain period. As we mentioned in section 1.1, the
exceedance over threshold approaches have been advocated in modern extreme value
theory applications. The exceedances over a high threshold of the observed process are
modeled as the exceedances over threshold of an M4 process. We are not modeling the
whole process as M4.

Under model (2.1), it is easily to obtain the finite distribution of {Yj4, 1 < i <
r, 1 <d < D} as a consequence of (1.18). The distribution has the following form

L r+Kq
Pr{Vig < yig,1 <i<r,1<d<D}=exp|— Z Z max max M]

A, mskSrom 1Sd<D Ytk a
where a;,4 = 0 for £ < —K; or k > K. The goal is to estimate all parameters
{air.qa} under the constraints that all parameters are nonnegative and the summation
is equal to 1 for each d = 1,..., D. Due to the singularity that appears in the distri-
bution function, maximum likelihood method is not directly applicable because of the
singularities. One way to avoid this problem is to use a grouped likelihood approach,
which has been advocated in similar circumstances by Barnard (1965) and Kempthorne
(1966), and developed in detail by Giesbrecht and Kempthorne (1976) for the particu-
lar case of a three parameter log-normal distribution. But this is not so easy to apply
in a multivariate context, so we consider alternative approaches.

In this work, first we study the structure of model (2.1) and prove probabilistic
properties which can be used to construct estimating procedures. Second, we study
empirical distribution functions of the finite number of random variables. Guaranteed
by the strong law of large numbers or ergodicity, we are able to construct estimators of
all parameters and prove the consistency and asymptotics of the proposed estimators.
We will start from simple examples which help us to understand the model structure
and easily construct some basic estimating procedure which is based on the probabilistic
properties of the M4 process. The related results are illustrated in section 2.2. Then in
section 2.4 we study more general case and develop an estimating procedure which first
estimates the weights within the same pattern and then estimates the weights among

patterns.
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2.2 Extended properties

Under model (2.1), it is possible that a big value of Z; (unobservable) dominates
all other values within a certain period of length Ky + K7 + 1 and there is a strong
dependence among the big values (this is part of motivation for the model (2.1)).
Actually this occurs infinitely many times of the whole process. It will be clear after
looking at some examples and some theoretical results later on.

Consider now a simplified model,

Yi = max apgZ;_i 2.2
id Ky <k<Ks d&i—k> ( )

which is corresponding to L = 1 (single pattern).
Define

v

max  ardLi—k,
—K1<k<K>
k#—Kj

d
Af = la_g,dZi4 K,

v

max  ApgZis1—rk, (2.3)
K1 <k<K>
ki —K{+1

A_ K\ +1,d 01+ K,

UK dZir Kk, = nax kd L4 Ky + Ko—k)
TATITSRSNA2
kZKy

We have Pr(A¢) > 0,¢ > 1. We now derive the explicit form of Pr(A¢). Denote

A¥ = (a_ w42 > max  ApgZli—p
o= lomaz 2 —K1<k<K> ’
k#— Ky

A_FK,4+1.d7 > max adet 1—k 2.4
1+1, Ky <k<Ks + 9 ( )
k#—Kq+1

AK,d? = MAX  Apd iy Ky +Ko—k
2 Ky <k<Ks +Ki1+K2 ]
kZKo

Based on (2.3), we can draw the following diagram:

Ziky v Zia Ziv Ly Zpyv o Zka- | Lk | Lkl ik 42
AKyd  *° Q24 14  Qod G—-1d - (A—K;+14d G_Kd
a3d G2q Q14 QAod *°° (A—Kj42d | A—K1+1d | O—Kid
AK,d UKy—1,d OKy—24d
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then .
Pr(A:%) = Pr(Zi_g, < =211z

Zi_k,+1 < min(

A_Kid OG—Ki+1.d )Z
AKy—1,d°  GKod

. G_Kid O—Kq+l,d AKy—2,d
Zirk,—1 < min( ) e )
—K1+42,d Z—K1+2,d gkzd
. (O-Kj41.d O—Kj+2.d Kod
A < min 1T T 2
tHK+L = ( a_K;d ' O—Ky4+1,d’ T agy,-1,d
. a*K1+2,d a*K1+3,d a‘sz
Zy k42 < min(— .- e )
—Kyd —Ky1+1,d aK272,d

AKy—1,d AK5,d )
a_fKid ' G—Ki+1,d

Zt+2K1+K271 S mln(

Zt+2K1+K2 S a(iﬁldd Z)
= expl {3 (A ey | sy
p z iz il AK9—j+i,d il Ay +j—id
= exp[—24]
SO
” L 1 _1+ay 1
Pr(A%) = PAZd—_zd:/_—zdzi
. /0 A )226 ’ 0 2 : (14 Ay)?
thus
1
Pr(A%) = | )
r(A7) [1+K1§:K2(/j\ a—K1+i—1ad+/j\ oy ) (2.5)
Jj=1 =1 GKa—j+id iy G- Kiti—id

For P(AYAL, ), it is clear P(A{AY ) = (P(AY))? if m > K; 4+ K». Suppose 1 < m <
K1 + KQ, then
from A; we get

UKy 4m,d L1+ K1 = O—K,d Dt m+ K, (2.6)

from A¢ = we get

AR dZttmt Ky 2 O—Ky+m,d Lt I - (2.7)

So (2.6) and (2.7) imply a_ g, +maZi+k, = O—KydLismtk,, thus

(P(Ag))Q ifm > K1 + K27

. (2.8)
0 ifl1<m<K;+ Ks.

We have the following lemma.

Lemma 2.1 Under the model (2.2), for each d we have

Pr(A?, i0.) =1
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Proof. Let {t1,ta,--- ,} be subsequence of {¢t > 1} such that ¢; .1 —t; > K1+ Ky,i > 1,
then {A{} is an independent sequence of events. By the Borel-Cantelli lemma for
independent events we get

Pr(()(JA4f) =1

1=1n=1

since P(A{) > 0. But

ﬁ@%gﬁ6%7

t=1n=t i=1n=i
SO o w
Pr(Af, i0o)=Pr([)[ A =1
t=1n=t
and this completes the proof. O

This theorem tells there are an infinite number of time periods within which the
process is driven by a single extreme jump. For example, a real-world interpretation
might be that a flood in a certain region and a certain time period is caused by a
specific hurricane. The strengths of different hurricanes are different and the costs are
different. Or we say they follow different patterns.

We have following theorems.

Corollary 2.2 Under the model (2.2), for each d we have

P(Yi = a_r,0Zi1 Kk, Yit1.d = O— i 41,0214k, s Vit Kot Kynd = OKydZit iy, 1.0.) = 1
or
Yid ,
P =a_g,q4, 1.0.)=1, 2.9
(Yid +Yiat o+ Yiikotkid ' ) (2.9)
and equivalently
Y;—l—md .
P : = a_Kg,4+md, 1.0.)=1 2.10
(Y;Sd +Yiat Ykt Kk 4 i ) ( )

m=0,---, K+ K,
Proof. The condition defining the set A? implies

Yie = a—riaZiik1s Yit1,d = Ok 41,d004K1 5 " > Vit Ko+ Ki,d = OKodZt4+ K »

and hence by the theorem we have proved the corollary. O
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Theorem 2.3 Under the model (2.2), if P( Yeim.d i.0.) =1

= C
Yia+Yip1,a++Yir Kot Kyq,d md;

form=0,--- Ky + Ky, then ¢pg = g, +ma and those {Yiq, -, Yiik,15,.4} form the
. Y,
Ad t+m,d — )
cvents Af if Yia+Yir1,at+Yer ko1 Ky d Cmd

Remark: The theorem says, for example when m = 0, there is only one constant

. . Y, .

= h that (2.9) is true. And if ttm.d = is true for on
Cod = G_k,q such that (2.9) is true d VT Voo Y = Cmd s true for one
m, it is true for all m.

Proof. We only prove the case when m = 0. Define random variables

Ed = SI(thd:atfs,dZs) :

Notice that t — Ky < s < t+ K; and T4 is uniquely defined for each ¢ and hence for all ¢
because the Z;s have an absolutely continuous distribution. The event A¢ corresponds
to

Tig=Ti1a=" =Ttk +Ka =t + K.

Suppose now we have that

Yia
= Pd (211)
Yia+Yiriat+ -+ Yk 1k a
occurs infinitely many times for pg # a_g,q, then Tyq, Tiy1,4, - -+, T4 Ky + k5,0 must follow
one of the following two cases.
(1) Ty = Ths1a = -+ = Tiyki4koa = t + K, where K # Ky, K € {—Ky, —K; +
1, Ky —1}

(2) Tia; Tit1,45 - > Tit Ky + k0,0 coOntain at least two different values.
For case 1, Yig = a_giZivk, Yit1,da = G1—kaZivKs "+ YidKi+Ko,d = OK +Ko—K,d2t+K =
0 since K; + Ky — K > Ky, and ag,+1,4 = ak,124 = - - = 0. This is a contradiction to
Yiq > 0 all t.

For case 2, this means the LHS of (2.11) is a function of at least two different Z,’s,
because if they are the same, the value must be equal to ¢t + Ky which corresponds to

Pa = a_k, 4, otherwise it is the case (i). (2.11) can be written into

at—sl,dZsl

= pa (2.12)
at*ShdZSl + at+1782,dZ82 +t at+K1+K2*5K1+K2+1,dZSK1+K2+1

where s1, Sa2,...,5K,+k,+1 depend on t. Since the range of ¢ — sy, t +1—s9,...,t +

K1 + K5 — Sk, 1+k,+1 18 finite under the assumption of (2.2), there are fixed numbers
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ho, ]’Ll, ceey hK1+K2 such that

Ahy.d s
- A ~ = pa (2.13)
(hg,dLs; + Ahydlsy T T Qhye s g0, dLsiey 410041
occurs infinitely many times. This implies
( Ahg,dZsy
Ahg,dLsy +ah1,d252+"'+ahKl+K2,dZsK1+K2+1
B ahg.a Ly, )50 (2.14)
o ang,aZ +ah1,dzslz+"'+ahK1+K2,dZS}(1+K2+1
for some s1, 82,..., 5K 4K,41 and 8, S5, .., Sk, 4k, 41 Such that
( ) < min(s}, s ' )
Max(s1, S2,...,8K +Kyt+1) < MIN(s], 8, ..., 8k L, 01)-

But (2.14) is not possible since all Z;’s are continuous random variables and the quantity
of the LHS in the bracket in (2.14) is independent of the quantity of the RHS in the
bracket in (2.14). This shows that (2.11) can not be true.

Suppose now (2.11) occurs at ¢t = t; and ts, i.e.

I'( aho,dZsl
aho,dZsl+ah1,dZ52+"'+ahK1+K2,dZSK1+K2+1
ap aZy (2.15)
:a/ Z g +ay: Z/+"0'+(l/1 Z :pd>>0
hg.d™s1 T Thyd sy Pri+K2% 5K Ko t+1
then s, s S and s', s s must have some common values
1 2y -y 9K+ Ko+1 1 27 2 K1+Ko+1 ?

otherwise (2.15) cannot be true. But (2.15) implies (2.13) occurs infinitely often, and
(2.13) implies (2.14) and so we have (2.11) cannot occur even twice.
Both cases have shown contradictions for p; # ag,. So cyg = a_g,qand those
{Yia, -+, Vi k4 5,.a) form events A%, therefore the proof is completed. O
The following theorem tells that the range cannot be over Ky + K7 + 1 numbers in

order to get infinitely many ratios which are equal to a constant.

Theorem 2.4 Under the model (2.2), for each d

P Yia
Yie+Yiia+ -+ Yk k41,4

=cq, 1.0)=0
for any constant cq.

Proof. Because Yy and Yi; g, +k,+1,4 cannot be written as functions of just one Z;,

Yiq . . . s
oS vewp— R L function of at least two different Z;’s. The proof then
follows by the same arguments as in Theorem 2.3. O
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Theorems 2.3 and 2.4 tell that in order to estimate the parameter a_ g, ., we only
}/151+m,d Yt2+m,d
Yiat+Ye 4k +K9,d" Yigat+Yig+ K +Ko.d

need to observe two equal values of at time t; and

to, where t9 — t; > K7 + K5. Naturally one wants to know how fast a sequence defined

Y,
b t+m,d
y Y;fd+"'+Yt+K1+K2,d ’

time Markov chain method to study this problem in section 2.5.

t = 1,2,..., reaches the desired value a_g, 1., 4. We use discrete

2.3 Examples of M4 processes

In order to have insight into what the theorems have shown, now we turn to give some

examples to demonstrate applications of the theorems.

2.3.1 Case L=1

Example 2.1 Consider the model
Yiq = max(aiqZy—1,a0aZ;), d=1,...,D

Define
Al = [a1aZi 1 < aaZs,  a1aZ: < apaZis]

We have P(A?) > 0, so by Theorem 2.3,

P(Yiq = aoaZs,Yis1,0 = amaZy, t1.0.) =1

or
Y, a 1—a 1
p(=d = T U _— 1, i0)=1.
Yia aod aoq aod
We seek all those ratios of Yt%;d such that the ratios are close to a constant. Or
equivalently consider
Yiq
P(——— =agq, i.0)=1
Yia +Yir14

The ratios are bounded and in [0,1], we have a;4 = 1 — agq. In this way we can find
accurate estimates for parameters. Figure 2.1 plots the partial points from the original
sequence and points from (2.9). Those points falling onto a horizontal line (in the right
figure) correspond to those spikes with same shape (in the left figure). Those spikes
follow the same moving pattern. The intercept of the line to vertical axis gives the

value of agq.
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150 observations of an M4 process Ratios within moving range of an M4 process
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Figure 2.1: Left figure is a time series plot of 150 observations of process Yy =
max(a1qZ;—1, apgZ;) for some d. Right figure is a time series plot of 3000 observations
of ratios —24—. The value of agq can be read from the right figure.

Yia+Yit1,4
Example 2.2
Yia = max(a14Z;-1, aoaZs, G—14Z1+1)
Define
d_
A =la_1¢Zi1 > max(araZi—1, oal),
aoaZir1 > max(aigZs, a—1a2i42),
a1aZy1 > max(aoaZiya, a—1aZi+3)]

we have P(AY) > 0, so by Theorem 2.3,

P(Yig = a_14Zi11, Yit1.d = @0aZit1,  Yitod = G1aZi1, .0.) =1

or v
P td =a_1q, t.0.)=1.
(Ytd + Y14+ Yiioa ! )
FEquivalently, v
t+1,d .
’ = agq, ©.0.)=1
<Ytd + Y10+ Yiroa 0 )
and

( Yitod
Yia +Yip1.0 + Yigod

= a4, ZO) =1.

Figure 2.2 again shows the significant pattern of value a_14.
Examples 2.1 and 2.1 have shown how to get the moving coefficients in each indi-

vidual process, but we are mainly interested in multivariate processes. In other words,
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150 observations of an M4 process Ratios within moving range of an M4 process
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Figure 2.2: Left figure is a time series plot of 150 observations of process Yy =
max(a1qgZs—1, @oaZt, a—14%1+1) for some d. Right figure is a time series plot of 3000

observations of ratios Yid . The value of a_14 can be read from the right
Yia+Yiqr1,atYeq2,4

figure.

we need to know how to distinguish different processes. For example we have two

bivariate processes

Vi1 = smax(Z1,-1, Z1) (2.16)
Yy = %max(ZLi_l, Zii, Zyiv1)
Vi = smax(Zi-1, Zi;) (2.17)
Yy = %maX(ZLi, Zl,i+17 Zl,i+2)

By plotting v v
i i+1,1

Vi + Yieia' Ya + Y

or
Yio Yit1o Yijoo

Yio4+ Yis1o 4+ Yisoo Yo+ Yo+ Yoo Yo+ Yiiio+ Yigoo

we can get all coefficients % and %, which can be read off from the pictures. But we

need to know which model, (2.16) or (2.17), is the true model. We now study this.

When
Y; Yieig 1

Yio + Y 2 Yir + Yigia 2
were from Z ;, then
Yiio Yio Yiyi2 1

— =, = -, - = 218
Yiio+Yio+ Yo 3 Yioio+Yio+Yine 3 Yiio+Yio+Yiga 3 ( )
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for model (2.16), but

Yi oo 1 Yiio 1 Yio 1 (2.19)
Yiogo+Yiqo+Yia 3 Yigo+VYiqo+Yia 3 Vieo+VYiio+Yi, 37

for model (2.17). So if (2.18) is the case we conclude model (2.16), otherwise it’s model

(2.17). Some other comparison also can be done in order to distinguish the models.

2.3.2 Case L >1

Now consider L > 1, where the model is (2.1). Define for each !

1d
Al =l -k aliik, = max  a.dZii—k,
—K1<k<Ky
kA Ky

a1, K 41,d 004K, 2 X a1k, d 24+ 1—k (2.20)
—NISRSA2
ket K41

v

max a2+ Ky +Ko—k)-
K <k<I, UF St K1+ Ko ]
k#£Ko

al,Kg,le,t-i-Kl

Remark: we can define such event for all [ simultaneously, but we don’t need here.
Notice P(AY) > 0, so by Theorem 2.3, for each m = 0,1,--- , K; + K5, we have

P Yiima _ 1K) 4m.d i0)=1 (2.21)

Yia+Yer1,d+ Yt kot Ky .d ai,—Ky,dtal,—K,+1,d++a; ky.d’

Xf+m,d
Yia+Yip1,at+Yir kgt Kq.d’

. . ap — .
patterns give estimates of LKy tmd , 1 <1 < L. Figure 2.3 shows three
Ql,—Kq{,d+01,— K +1,d T +01,Ky,d

different signature patterns (points fall onto 3 horizontal lines) which correspond to

We expect to have L signature patterns on the plot of and these

L = 3. As we have already seen, the plots give accurate estimates of the ratios. When
L = 1, we can exactly get all the values of agy. But for L > 1 we cannot. Even
for L = 1, we have assumed that the model assumptions are exactly satisfied, not
something we would expect to use in practice. Also, the whole method presupposes
that the margins are transformed into unit Fréchet margin and this wouldn’t be exact
in practice, either. We need to develop estimation procedures to obtain estimates of
a,q in a more practical way. We study this in Chapter 3. In the next section we still

assume that the model assumptions are exactly satisfied but L is greater than 1.
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150 observations of an M4 process Ratios within moving range of an M4 process
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Figure 2.3: A demo of multiple signature patterns.

2.4 Estimation of weight parameters

. . . . ap d
In the previous section, (2.21) gives estimates of I tm, , not the
Ql,—Kq,d+0l,—K{+1,d+ "+, Kq,d

parameters themselves. We solve this problem in this section. Rewrite the model as

Yie = max max arqZii—k
1<ISL —K1<k<K>

= maxbld max Cldelz‘—k (222)
IKISL —Ki1<k<K> 7 7

where by is the weight of I’s signature pattern and such that >, b = land ), ¢ 50 = 1
for each [ and d.

It is easy to show P(Yi4 < y14) = eii from (1.18). As mentioned in section
2.1 our goal is to approximate the distribution function and from the approximation
we obtain estimates of all parameters. Since the univariate distribution studied here
does not relate any parameters to the distribution function, we seek a jointly k-variate
distribution function approximation. Throughout this work we will consider £ = 2

only because the cases of k > 2 can be generalized from the case k = 2. First we have,

L 2+K;

Cli-md Clo2—m
P(Y1a < Y14, Yoa < Y2a) = exp[— Z bua Z max (= )] (2.23)
=1 me1-K, Yid Y2d

where Cl,Ko+1,d — O, C—-K,-1d = 0

Under the model (2.22) all ¢, 4 can be estimated by looking into

Yia+Yiat+ -+ Yiikira

= Cl,—K1+m,d> ZO) =1 (224)
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and therefore we only need to estimate by4.
It is known that an empirical process approximates the random process from which

observations are obtained. Let A be any subset of R% = (0,00) x (0, 00) and define
Xia = 1a(Yia, Yitr,0)-
Let pq be the mean of X4, then
E(Xia) = P((Yia, Yit1,0) € A) = pa

Var(Xia) = B(Xjy) — (E(Xi4))® = pta — p1g

By appropriately choosing A, we can construct parameter estimators.

2.4.1 Estimation using independent observed values from a
dependent sequence

Now let Ay = (0,714) % (0,7,), -+, Ar—14 = (0,2-14) x (0,27 _, ;) be different and
define

_ 1 <
XAjd = E ZIAjd( i/d7 i/+1,d) (225>
=1

where (Y, Y/, 4) are ii.d pairs taken from an M-dependent time series, which we
study in this work. Then SLLN implies
XA N P(Ajd) = P()/ld < «Tjd7}/2d < x;d) (226)

jd

Now let

L 2+ K1

expl~Y b Y max(Timd Gy g, j=1-- L1  (227)

X; X .
=1  m=1—-K Jd jd

then we can construct parameter estimators from solving D systems of linear equations

L 7 2+ K1 Cl,il—m,d €Cl,2—m,d _ Ve
Dot byl g, max (==, W) = —log(Xa,,)
~ ) 2.28)
L 2+ K1 Cl,1—m,d €Cl,2—m,d _ _ Ve ( '
Zlil bld Zmil—Kg maX( Tr_1,d Y :B/Lfl,d ) — ]'Og(XAL—l,d)
L~
Yo bia=1
e choose valuesof x4, 2% ;, -+ , X114, T7_ uc 1 em of linear equation
We choose values of z14, 27,4, - -, d» 7 _1 4 such that this syst fl ations

has unique solution. Since now ¢;;q's are known, we are able to choose values of
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Tid, Thg 5 TLo14, Ty, g Such that the determinant of the system of linear equations is
not zero. This may not be true for some special cases, for example when all coefficients
are identical we get Zlegld = 1 for each equation of those L equations in (2.28).

We say two signature patterns, [th and I’th, are identical when the coefficients can

be written as
bia(Cr,— iy ds Cl—Ki41,d, "+ > CLKod),
bra(Cl—Ky d> Cl—Ky+1,ds " " > CLE.d)-

The identical patterns have the following property:

d /
max(bg max ¢ galii—k, bra max  cypaZy i) = (big+brg) max cyrali; 4
—K1<k<K3 —K1<k<Ky —K1<k<K> ’

where Z]; ,’s are unit Fréchet. We assume there are no identical patterns in models
considered in this section. The results may apply to some cases when there exist
identical patterns.

For a specific d, define

[ 2+K4 . . 24K, . . T
1,1—m,d 1,2—m,d .. L,1—m,d L,2—m,d
Z maX( T1q ? :Elld ) Z maX( x1g ? mlld )
m=1—Ks m=1—Ks
A, =
I 2t c c 2t c c
1,1—-m,d 1,2—m,d L,1—m,d L,2—m,d
2. max(jremt, oEmme) e 50 max(eme, A
Xy — x Xy — €T
m=1-K, botd © TL-1d m=1-I, L-1d ' Tpo14
I 1 1 |

i.e. |A4| is the determinant of the system of linear equations. Assume now the L

determinants of the (L — 1) x (L — 1) matrices formed from the bottom L — 1 rows are
not all zero. For fixed z/,, since ¢ ;4 are known and anil?_lﬁ Cli—md = 1, 1 = 1,2,
then there exist Zming and Tmaxq such that when 214 < ZTming Or 14 > Tmaxa, all

elements of first row in A, are i or x,i respectively. And so when x4 < Zping OF
1d

T1d > Tmaxd, |Ad| = 0. When x4 varies in [Zmin 4, Tmax.a), denote Ay by Ag(z14), then
1 1
d\T1d)| = — Cijd|Rd|1; T —— Citjrd| Rd|15 .
|Ad(71a)| > calAaly + == cjral Ad (2.29)
L1d Lq

where |Agli; # 0, |Agl1jo # 0 are the (1,7) or (1,7') minors of A,;. Both summations
are over all non-zero minors of the first row of A; and the corresponding % or Cx%d
If |[Ag(x14)] = 0, by varying 14 in [Zmin d, Tmax.q), at sSome point x, some iczjdmdhj of
the summation g;lj > cijalAglij change to ici/j/d|Ad|1j/ and add to ff%d > cijralDaliy,
or vice versa, and this change results in |Ay(z)| # 0. Hence it cannot be true that
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|Ay4] = 0 for all x14. This argument can be applied to lower dimension matrices. On
the other hand, we can start from a 2 x 2 matrix and extend it to L x L matrix

such that the determinant is not zero as required. Therefore, there exist constants

Tid, Ty, TL-14, Ty 4 Such that each system of linear equations (2.28) has a unique
solution.
So we get
7 L-1 =
bia > io1 Bhjalog(Xa,,) + constantg

(2.30)

=2 Z;;ll 0ijalog(Pr(A,q)) + constant,; = by

for suitable constants 6;;4 which are the elements of the inverse of Ay . Let
Hjd = E(IAjd(Yllw Y54)) = Pr(4;a)

trija = E(La,,(Yg, Yog)Ia,(Yig, Yoq)) = E(La,,,,(Yiy, Yog)) = Pr(AigAja)

then we have well-known asymptotic normality properties.

Proposition 2.5 If (Y}, Y/, ;) are i.i.d pairs, and X4, is defined as in (2.25), then
. > d

(1) \/E(XAjd - lujd) - N(Ov Hjd — M?d)

(i) Vn(log(Xa,,) — log(sa)) —= N(0, L2511

Hia
XAld H1
)EAL—Ld Mr—1
where 3 Tl = Hiid = ,t;id#jd ZfZ # j,
Oijd = Mid — Hig ifi=j.

The proofs are trivial and can be found in most theoretical statistical books, for example
Arnold (1990), Chen (1981). O

Theorem 2.6 For each [,

\/ﬁ(/b\zcz - bld) i> N(O, 0124)

where
9114
H1d
2 0114 01114 .
O = s T )Ed :
Hid HL—1.d 010 1.4
KL—1,d
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Proof. By the mean-value theorem,
R dh XAM Hid
Vi(bia — ba) = Vn[—=] : - :

Xap 14 fL—1d

where h(uq) = Zf;ll Orjalog(1jq), [) = (fud ... H”L—’l’d) and ¢’ is between (X4, - - -

dpq Hid’ HL-1,d

Xa, ,,) and (piaa, -+, pir-1,4). By the proposition and Slutsky theorem,
XAld H1d
T . . d dh
\/ﬁh/(g) B . - : - [%]/27 Z ~ N(07 Ed)
XAL,M Hr—1,d
dh 1/y[ dh
7 Ldpg dpg
and this completes the proof. O
A generalization of the theorem to the joint distribution of 31(1, ceey ZLd can be

obtained and the proof arguments are similar. We have

Theorem 2.7 \/ﬁ(l/); — by) 2, N(0,04%,0)),

where

1 biq br1a/ g Or2a/poa - O1r—1.4/i—1.d

oo — b?d by — b?d 6, - 921d/#1d 922d/ﬂ2d 92,L71,d‘/,UL71,d

/b\Ld brd 9L,1d/u1d 9L,2d/ﬂ2d QL,Lfl,d//ﬁLfl,d

Note: ©43,;0, is singular because Zlead =1
We still need to specify the asymptotic joint distribution of all b;;. Now let

Hijdd' = E(IAid (Y’1/d7 Yv2/d>[Ajd/ (leld’v }/;d’))'

S = (Sar)

where each component of ¥ is a covariance matrix. Xgq = g, Zaa (1) = Hijaar —

tijattijar- Then we have the following generalization.

Corollary 2.8 \/ﬁ(g —b) 4, N(0,0X0),

where -
P\l b, O,
~ b b )
b=| *|.b=] ‘|, ©= ?
by bp Op
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2.4.2 Estimation using the whole dependent sequence

In subsection 2.4.1, we were using independent draws from the bivariate distribution of
(Yid, Yii1.4) for each d. Since the observed process is a dependent process, independent
draws do not contain all information from the data. The estimates may not be accurate.
If we use the entire observed process to estimate all parameters, the efficiency of the
estimators may be higher and of course it is a more realistic scenario for practical
applications.

Like previous subsection, we estimate parameters associated to dth series by the
observed values of that series. We now drop the sub-index d from Y4, a; 4, etc. We
write Y;, aj. only.

We use the same notations ( without index d ) as in section 2.4.1, for A;s and define

Xa, = %X;IAJ-(Y;,YHQ
which means we use the original observations which are an M-dependent sequence
(M = K; + K5+ 1 here). In order to derive similar results as in section 2.4.1 without
loss of data information, we will apply ergodicity. We quote an ergodic theorem here,
whose proof can be found in Billingsley (1995).

Let (2, F, i) be a complete probability space and 7" : Q — €2 be a one-to-one onto
map such that 7" and 7! are both measurable: T7'F = T'F = F. Assume further
that u(T'E) = p(E) for all E € F. A map T satisfying these conditions is called
a measure-preserving transformation (or m.p.t. for short). The F-set A is invariant
under T if T7'A = A; it is a nontrivial invariant set if 0 < pu(A) < 1. And T is
said ergodic if there are no nontrivial invariant sets in F. A measurable function f is
invariant if f(Tw) = f(w) for all w.

Theorem 2.9 The ergodic theorem Suppose that T is a m.p.t. on (Q,F,u) and

that f is measurable and integrable. Then

~

fim L 3 (7 1) = Flw
k=1

with probability 1, where f is invariant and integrable and E[ﬂ = E[f]. If T is ergodic,
then f = E[f] with probability 1.
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If f=14and T is ergodic, we have

with probability 1.
By the mean-value ergodic theorem

XAJ‘ — E([Aj (Ka Y;+1>) = Pr(Aj)

where T is taken to be a Bernoulli shift. And again we apply the same method we had

in section 2.4.1, we get

b

ZJ;:_ll 01 log(XAj) + constant,
i f:_ll 6,5 log(Pr(A;)) + constant; = b,

»

In order to study asymptotic normality, we introduce the following proposition which is
Theorem 27.4 in Billingsley (1995). First we introduce the so-called c-mixing condition.

For a sequence Y7, Y, ... of random variables, let «,, be a number such that

| P(AN B) — P(A)P(B) |< an

for A € o(Y1,...,Ys), B € 0(Yiin, Yirnst,-), and k > 1,n > 1. When «,, — 0, the
sequence {Y,,} is said to be a-mixing. This means that Y; and Yj,,, are approximately

independent.

Proposition 2.10 Suppose that Xy, Xs,---, is stationary and a-mizing with o, =
O(n™3) and that E[X,] =0 and E[X!?| < oco. If S,, = X; + -+ + X,,, then

n~ VarlS,] — 0% = E[X7] + 2 E[X1X1.4],
k=1
where the series converges absolutely. If o > 0, then S, /o\/n R N(0,1).
Remark: The constants a,, = O(n™°) and F[X}?] < oo are stronger than necessary
as stated in the remark followed Theorem 27.4 in Billingsley (1995) to avoid technical
complication in the proof.
Proposition 2.11 If o; > 0, v/n(Xa, — ;) 4, N(0,0%),

where

Ki+K>+1
o] =pi— 5 +2 Y (Pr(Yi <y, Ye <), Vi < a5, Yaru < ) — 1)
k=1
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Proof. Let X, = I4,(Yy, Yo41) — pj, then E[X,] = 0 and E[X}?] < oo because X, is
bounded. And the a-mixing condition is satisfied since Y,,’s are M-dependent. So the
conditions of Proposition 2.10 are satisfied. Then the proof follows after calculating

the following values and applying Proposition 2.10.
X? = L (Y1, Ya) — 2514, (Y, Ya) + 422

EXT = pj — 205 + 5 = pj — 15

Xi X = (La;(Y1,Y2) — ) (La, (Yigr, Your) — 1t5)
= ]Aj (i/la Yé)]Aj (}/l-ﬁ-k‘a Y2+k) - [Lj_[Aj (}/la YVQ) - ,ujIAj <}/l+ki7 }/2-5-]6) + ujz

and
E(X1X14) = Pr(Y1 <2, Y <2}, Yigp <25, Yoy <)) — ,u?
O
XAl M1
Lemma 2.12 /1 S I I ~L N0, S+ e WL+ W)
Xa, Hr—1
where

Oij = [ij—iltj, the matriz Wy, has entries w,ij =Pr(Y) <, Ys <, Vi <, Yor, <
) = fifhys Mii = Hi-
Proof. Let
U1 = (IAl (}/17 YQ) - ILL17 T ’]ALfl(}/h }/2) - ML—I)/7
Ursre = (Lay Yiaw, Yori) = pa, -+ 5 Lay o, (Yiw, Yaqi) — pir—1)’,

and o = (g, -+ ,ar_1) # 0 be an arbitrary vector.

Let X; = a'Uy, Xy = o'Us, - -+ , then F[X,] = 0 and F[X!?] < co. And so Propo-
sition 2.10 can apply. We say expectation are applied on all elements if expectation
is applied on a random matrix. But F[X?] = «E[U U]Ja = o/Sa, E[X1 X144 =

o E[ULU] 1 Ja = o'Wy where

E[([&(Yi, Yé) - /“Li)<IAj (Yiv }/2) - uj)] = Hij — Hiftj

BEl(14,(Y1,Ya) — i) (La;(Yigr, Yoiu) — 1))
=Pr(Yy <, Yo <2, Y <y, Your < 2%) — gty

So the proof is completed by applying the Cramér-Wold device (see below). O
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Cramér-Wold device: (Cambanis and Leadbetter 1994) Let £ = (&1,...,¢p), & =

(&nts- -, éap), n=1,2,..., be random vectors. Then
&n <, £ asn— o0
if and only if
a1ép1 + -+ apénp i>04151+"'+04[)§p as n — oo
forall aq,...,ap € R.
Theorem 2.13 For each ,

V(b —b) % N(0,07)

where .
11
2 — / .
! H1 HrL—1 ; b A1
ML —1

Proof. This follows from lemma 2.12 using the same argument as in the proof of
Theorem 2.6. a
A generalization of the theorem to the joint distribution of /b\l, o /l;L can be obtained

and the proof arguments are similar. We have

Theorem 2.14
N Ki+Ko+1
Vi(b—b) =% N(0,6(E+ Y Wi+ WiHe),
k=1

where B, b and © are defined as the same as in Theorem 2.7.

For all Ed, a similar result of Corollary 2.8 can be obtained.

2.5 Results from discrete time Markov chain the-
ory

In order to simplify the notation, we only consider the case of D = 1 and L = 1 in this

section. Now define
X =14, t=0,£1,£2, ...
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and suppose the sequence {X;} starts at t =0 with X, , =0, k=1,..., K; + Ks.
If X; =0, then

Pr(Xiy =0[X; =0) = Pr(Af,
1-2Pr(A¢)

1-Pr(A:)

|AC) _ Pr(AfAZ, ) _ 1-Pr(Ay)—Pr(Ai1)
t Pr(A7) 1-Pr(A;)

If X, = 1, then

Pr(Xp =0[X; =1) =1, Pr(Xp2 =0[X, =0)=1,...,
Pr(Xii k4 ko1 = 0| Xerky 4, = 0) = 1.
If we consider all the 0’s before the sequence {X;} reaches 1 are different, and similarly
for the 0’s after reaching 1, then we can construct a Markov chain which has the

following transition diagram. Where bl corresponds to Af, b2 corresponds to Af,,

Figure 2.4: Transition Diagram of the Constructed Markov Chain.

and similarly for b3,...,bx, K = K; + K5 + 1. Once the chain reaches the state by,
it moves either to 1 or to b;. Because A;ik, +k,+2 is independent of A;, so we can
think the chain return to b; and ‘restart’ again. Once the chain reaches the state 1, it
must move at least K; + K5 + 1 steps to reach the state 1 again. Or after K| + K»

steps, the chain ‘restart’ again. We have the following transition probability matrix of
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{blaan s 7bK7 1,@1,(12, s aa'K—l}-

0 p 0 -~ 0 qg 00 07
00p -+ 0gqg 00 0
000 » g 00 0
p_|p 00 0 ¢g 00 0
~ 10 0 0 0010 0
000 0001 0
000 - 0000 - 1
100 -~ 0000 - 0

Define now a; = 2,a3 = 3,...,ax_1 = K,bp = K+ 1,bb = K +2,...,bg = 2K + 1,
and
T =min{n : X, = 1},
and
ui(n) = Pr{T < n|Xo =i}, m; = E(T|X, =1).
Then we have standard DTMC results:

2K +1
wi(n) = Py + Z Pjuj(n—1), 1>2, n>1,
=2
2K +1

mi=1+ Y Pym;, i=2,... 2K +1.
7j=2

The proofs of these results can be found from books such as Kulkarni (1995). We give

an example to show how fast we can get a desired value.
Example 2.3 Let
Y; = max{.th_g, .2Zt_1, .4Zt, .2Zt+1, .1Zt+2}

then by (2.5) we can have
1—-2 PI'(At)
1-— PI'(At)

The value of .0342 approximately tells among 100 independent events, we can get 3

Pr(4,) = .0331, p = = 9658, ¢ = .0342.

times of the desired value. But to get 100 independent events, we need to have 600
Ays. Since A;s are dependent, the number of 600 can be dramatically reduced. In fact
from m; = E(T| Xy = 1), 29 is the mean number of needed A;s to get the desired value

once.

37



2.6 Approximation of two M4 processes

The characterization of extreme observations of a stationary process in Smith and
Weissman (1996) are infinite order M4 processes. But in practice, it is unrealistic to
estimate infinite many parameters. It is natural to apply models with finite number of
parameters to real data if the candidate model well approximates the true model.

In this section, we will create conditions under which two processes are arbitrarily

close and the following two theorems show that.

Lemma 2.15 Suppose >, «o;=1, > o,=0,X=\ «Z; andY = \ «o;Z;,
—00<i<00 li|>K li|>K li|<K

where {Z;} are i.i.d Fréchet. Let Zs = 75Y, then
(lsin%PHZ(; —XVY|>¢=0.
Proof. 1t is easy to check that X, Y, X VY, Zs have the distributions:
1-6 1

s _ _1 _1
X~e o, Y~e v, XVY ~e =, Zyg~e =,

P(X>Y) = [PX>ySe v dy
0

PlZs—Y >¢ = P[(+ —1)Y >¢ =P[5V > ¢

Now

P[|Zs — X VY| > ¢ PlZs—XVY > e +PXVY — Zs > ¢

= PlZs—X>¢, X>Y|+PZs—Y >¢, Y > X]
+PX —Zs>e, X>Y|+PY -Z;>¢€ Y >X]
2P[X >Y|+ PlZs—Y > ¢ +0

2(5—1—1—6’%

IIA

which proves the assertion. O
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Now pick 6, so that P[|Zs; — X VY| > ¢ < 27" for § < §,; then

Pllim Zs, #X VY] = P[||Zs, — X VY| >e¢, i0l
= P[0 U %, —XVY|>¢

n=1j=n

lim P[{J |Zs, = X VY| > ¢

< lim ) P[|Zs;, = X VY| > ¢
n—oo i,
< lim 27"t =0

So Zs, “* X VY.
Apply this result to a process, we have Z;5, —> X; V'Y;, each i, and
PN lim Z;, = X; VY] = 1—P[ lim Z;, # X, VY]]
i=1 "0 i=1"7

i—1 n—00

So
PN U 1Zis, - XivYi > g =0.

i=1m=1n=m
We now state the theorem which shows how a finite moving range model arbitrarily
closely approximates an infinite range moving process. The proof is just a generaliza-

tion of the arguments above.

Theorem 2.16 Suppose > > wra=1, Y. ara= 04> 0, where K is a finite

I=1k=—00 {lk}gK
index set.
Yia = max m’?XCLl,k,le,i—ka d=1,---,D, (2.31)
Yis, = bikaZiiog, d=1,--- D, 2.32
= X buja ik (2.32)

1—

wherey |, kKj_Kl biga=1ford=1---,D. And bjq = %dal,lc,d for {lk} € K,

then there exist {6ma}, Oma — 0 as m — oo, such that

PllJ U N U W, — Yl > € =0.

d=1i=—o00 n=1m=n

Therefore we conclude {Yis,} — {Yia} for all i and d with probability one.
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Chapter 3

Estimation Based on Bivariate
Distribution

3.1 Introduction

The methods developed in previous chapter are idealized methods because they assume
the model holds exactly. Also the M4 process is itself just an approximation to the
general max-stable process. The process may be max-stable without being exactly M4.
In practice we may not be able to estimate the ratios accurately as stated in sections
2.4.1 and 2.4.2, especially when the data are with error. In this chapter, we will develop
methods which can be applied to estimate a; 4 directly. In the previous chapter, the
bivariate distribution functions were used to estimate the weight parameters. Here our
intention is to determine when the bivariate distribution functions determine all the
a;q’s, and then to construct estimators. Define Ayq, Aaq, - -+, Ay (k) +Ka+1)—1,4 Similarly

as we did in the previous chapter and then solve a system of nonlinear equations

( L 2+ K ap— apo_ Y
Zlel Zm—‘r[g—Kg max(ilylzf;ma il’i/ﬁmd) = - log(XAm)
2 ap1— a;o— <
Sy S o, max( i, Sz = —log(Xa,)
L 24K A1-m.d 12— m,d _ _ \
\ Zl:l Zm:l_KQ max(xLX(K1+7Kn2+l)’d7 IILX(K1+:2+1),d) - 10g(XALX(K1+K2+1>’d)

Under some conditions, this will give unique solutions which converge to true parameter
values for each d, i.e. the bivariate distribution function determines the whole process.
We will introduce such conditions and prove some theoretical results. Like Chapter 2,
we drop the index d when we deal with a single process or we treat multiple processes

separately.



3.2 Modeling time dependence

In this section we mainly focus on the time dependence of each single process and we

will not use the index d in sub-sections 3.2.1 and 3.2.2.

3.2.1 Preliminary estimation

First we let L = 1 and study the structure of bivariate distribution function

2+ K1

A1—m A2
P(Yi <y, Ya <yp) =expl— Y max(—", =) (3.1)
E—— Y1 Y2
2
where ag,11 = 0,a_g,—1 = 0. Now define
Ka—1
q(z) =a_g, + Z max(za;, aji1) + Tag,, (3.2)
j=—K1
then P(Y; <1,Y; < x) = exp[—q(x)/z].
Define
M(z)={j: 2 5 (3.3)
a

J
where we include —K; —1 € M (x), Ky € M () complement of M (x) for all z € (0, ).
Note that M(x) T as « |. Then
d@ = ) at+ Y au, (34)
JEM (x) jeM(x)

—Ki+1 QO—Kq+2 . aAKy
a—g, ' a—K+41’ Tak,—1"

and ¢'(z) = >y, @5 everywhere except when z is one of ¢
A typical ¢(z) picture is shown in Figure 3.1.
Asz — 0, g(x) — I_(iﬁ a; = 1. For x sufficiently large, ¢(z) = a_k, + 2> a; =
a_g, +x. Soif 1y <17y <--- <1, denote the p < K; + K, distinct values of a;#, we
J

can deduce from ¢(z),
(i) a—Ky,
(ii) the values of ry,rg, - - 1),

(iii) all sums of the form 7, a; and 3° ) a1 where A(i) = {j : afl—jl = r;}.
This is true because ;. ;) a; is just the change in ¢'(z) at = r;, while

ZjeA(i) Aj+1 =T ZjeA(i) aj-
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A typical g(x) picture
351

q(x)
\

151 -

Figure 3.1: A demo of ¢(z) and its slope ¢’(x) and ratio change points.

aj41

L are distinct we can deduce all the r;’s and the
J

In particular, when all the ratios
values of a; and a;;1 = r;a; corresponding to each ;. However, the model may still be

non-identifiable if there are non-trivial permutations of the a;’s that preserve the r;’s.

Proposition 3.1 If all (K1+;{2+1) ratios ;1_], are distinct, the model is uniquely identi-
J
fied by q(z).

The reason why Proposition 3.1 is true is that in this case, any permutation of the a;’s
must create a new set of values of 71, |7k, 1 Kk,-

Remark 1: This justifies statements like “for almost all (w.r.t Lebesgue measure)
choices of coefficients a_g,, -+ , ak,, the model is identifiable from ¢(z)”.

Remark 2: The uniqueness means the values of the vector

(a/Kla a—K1+17 D) aKg)

are uniquely determined. The reason is because we can not simply distinguish the

following two processes without further analysis.
}/z' = max(.?Zi_l, 3Zz; .5ZZ'+1>,
Y;, = max(.QZi, -BZi—i-la 5ZZ+2)
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But it should be no ambiguity that we treat them as one model since they have the
same joint distribution functions within each sequence.

Since we use the bivariate distribution to construct estimators of parameters, from
the previous arguments, if the condition of Proposition 3.1 is false then we may not
be able to identify the model. But we may be able to identify the model via some
higher-order joint distribution. We now construct an artificial example to demonstrate
this idea.

Example 3.1 This is a counterexample to show a process that is not identifiable via the
bivariate joint distribution, but can be identifiable from the trivariate joint distribution.
Let (ag, -+ ,a4) = %(1, 1,2,1,1) and (bg,--- ,by) = é(1,2, 1,1,1). We consider the two
processes generated by the sequences ag,--- , a4 and by, -+ ,by. Thenp = 3,1 = %, ro =

1,73 = 2 for both configurations, so q(x) is the same and displayed in Figure 3.1 with

1 1
6 O<z< 9
1 1

q,<1’): 3 §<I<17
2 l<z<2,
1 2<z

i.e. we can’t distinguish the a;’s from the b;’s on the basis of q(z). However, consider

the formula

log(Pr(Y1 < y1,Y> <2, Y3 <ys)) = +max(2, %)+ max({2, 32, &)
a a2 as apg a1 a2
—i—maX(g—l, 3—27 y_3>a+ max(y—l, o, E)
+max(y—g, y—;) + %

and let y; = 1,yo = y3 = ¢ where ¢ > 2.
With a = (1,1,2,1,1):

1 1 1 1
—logP=—-[141+4+2+1414+-4+-]=1+ —,
6 c c 3c
With a = £(1,2,1,1,1):
1 2 1 1
—logP==-[1+14+14+24+14+=-4+-]=14—,
6 c ¢ 2c

So the two values of Pr(Y1 < y1,Ys < s, Y3 < ys) are distinct in this case.

In other words, the two possible models for a are distinguishable from their trivariate
distributions, but not bivariate. However this is a specific example where we need

trivariate distribution function, in most cases bivariate distributions are enough.
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Now we turn to Case L > 1, we have

L 2+ K1
iem QL2—m
Py <y, Ya<yo) =exp[— > Y max(—" 2] (3.5)
I=1 m=1-K Yy Y2
2
where A Ky+1 = 0, A —K,—1 = 0. And
L Ko—1
@) =Y la ki + Y max(zay, ;1) + T ). (3.6)
=1 =K1

And similarly, g(x) is a piecewise linear function and its change points are those adja-

cent ratios of the coefficients. We have

Proposition 3.2 If all (LX(K1;K2+1)) ratios :;i are distinct, the model 1s uniquely
J
identified by q(x).

Proof. . Since all the ratios are different and are points at which ¢(z) changes slopes or

alj+1
alj

¢'(x) has jumps. So based on the jump points of ¢(z), the ratios of are uniquely

determined. Let’s now rewrite (3.6) as

L Ky—1
q(z) = Z bilci—k, + Z max(zcyj, aj+1) + €K, (3.7)
=1 j=—K1

where ) ¢;; = 1 for each [ and all ¢;; are uniquely determine by the ratios. We also
J
write ¢(z) as

L 2+K; c
1,2—m
q(z) :Zmbl Z max(cy,1—m, Qx )] (3-8)
=1 m=1—Ko

Suppose now ¢(x) has a different representation, say

L 24K

q(z) = be; Z max (¢, 1—m, ClQT_m)] (3.9)

=1 m=1—Ko

then
L 24K, c
Si—b) > max(cim, —2)] =0 (3.10)
=1 m=1—Ks x

for all x.
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Suppose we have chosen xy, s,...,x;_1 and formed the matrix

i 2+K1 c 2+K1 . -
;K Max(C1 1 —md, SEL) - ;K max(c, ;- pn,a, 2 )
12K, T Ky
Ay = : .
2K 24+ K1 .
Z mMax(cy g md, ) - > max(cpioma, =E2)
—Ka s m=1—Ko TL-1
i 1 e 1 |
and
[ ¢ d 2 cL d ]
1,2— P
:;KZ maX(CLl—m,d, ’xlm, ) e m:;KQ max(cL,l,m,d7 Tm) b — b/l
24K, . ' 21K, ) =0
Z max(cl l—m,d Lmd) c. Z maX(CL,l—m,d, Lg,ﬁzim,d) ,
—K> s m=1-K L=t br, — b}
1 e 1

we can follow the lines after (2.28) and show |A,4| # 0, then conclude b, = b}, all I. So

¢(x) uniquely determine all a; ;. O

3.2.2 Asymptotics for the case of D =1

Now we define

L

Z [ ark, + max(a; gx,-1,
=1

alVKQ) + maX(aLK?_g, al7K2_1)

ay g, ap _ ap _
+ max(a g, 5, —22) 4 -4 max(ag g, ——) 4 l’xKl] = b(x(3.11)
so we have g(x) = xb(x). Let Y7,Ys, -+ Y, be observed values and
/l;( log Z I (V;<1 YZ+1<x) (312)
then q(z) = xz(x)
Theorem 3.3 For each x, we have
Vi(b(z) = b(z)) = N(0,07)
where o2 — pa =342 3 e 2 (Pr(vi <1,Ya <, Y14 <1, Yo 1<) —4i2) =Pr(; <1,Y; < 2)
/%25 3 Mz 1 2 > .
Proof. Directly apply Proposition 2.5 and 2.10. a
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Corollary 3.4 For each z, we have v/n(q(z) — q(z)) == N(0, 2%02)

Now suppose the functions b(:p),q(x),g(x),/q\(x) are evaluated at © = 1,29, , Ty,

then we have the following theorem.

Theorem 3.5
R Ki+Ko+1
V(b —b) <= N(0.6(S+ Y {Wi+ WiHe),
k=1
where
b(a1) b(a1) o 0 0
1
o b(z2) b b(%’g) o— 0 o 0
B(zm) b(zm) 0 0 -
where

i =Pr(Y1 <1,Y, <), i; = Pr(Ys < 1,Ys <min(x;, z5)), 035 = pij — pitls,
wy =Pr(Y1 < 1,Ys <2, Yigr < 1, Youy, < 25) — pifty, i = fs.

Proof. This follows from Lemma 2.12, Proposition 2.5 and the same arguments in the
proof of Theorem 2.7. O

Theorem 3.5 indicates that when the sample size n is sufficiently large, b—bis an
asymptotically normally distributed random vector. If the points x;s are used to get

estimates of a;s, we have the following theorems.

Theorem 3.6 If all the ratios of parameters in the model (2.22) are different, then
(3.11) uniquely determine all ay.

Proof. We only prove the case when L = 1 and all the ratios are different. Similar

proof for L > 1 can be done. Now suppose we have different b; such that

b, + max(bg, 1, b%) + max(bg, o, bKi_l)

+ max(bg, 3, bK272) + -+ max(b_kg,, IH{—IH) e - b(x)

xT x xT

and suppose {a;} are the true values in (3.11). Define

AR,—i / ng—i .
rp= 2 =22 i =0,1,... K+ Ky + 1.
ARH—i—1 ng—i—l

Let {r}} be a permutation of {r;} such that

_ * * k * _
0—7’0<’f‘1<7“2<"'<7“K1+K2+1—OO
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then when z,y are varying within (r},77,,),

a_ a_ ag @
bly) —blz) = —* - —2 4 Y (F - (3.14)
y x wol Y ¥
ak >
since max(ay, %) is a, when “ < 2, and “£=2 otherwise.

When z is in (v}, 7}, ;) and y is in (r], i+2), then

by) o) = = T e = T B (T (3.15)

‘lk+1 *
>r
1+1

Ak41 Ap41

~%) = ay, and there exists a k

for some £ since max(ay, =) = a5, implies max(a,

Glc+1)

such that max(ay, = % and max(ax, ’““) = ay.

Let {r];} be a permutatmn of {r!} such that

o / / / o
O_T*O<T1*<T2*<"'<T*K1+K2+1_OO

and without loss of generality we assume 7, < r§, then let z < 7,r, < y < 15,

then (3.14) and (3.15) give different b(y) — b(x), and hence we must have r, = r} and
therefore 1, = 77, i.e. 1, =r;, all 7.

Within (0, r5), we have
1 1
b(x):aK2+;:bK2+;

e
Within (7%, | x,, ), we have

which gives a_g, = b_k,,ax, = bk,.

O .
Within(r%, 4 x, -1, Tk, +x,)» We have

b(y) — b(z) = m_er G _ %k
Wb = ot T G-
g 1 2~
= bx bery D (B — b
Yy x Yy T
IZ+1>K+K1
k 1 2

which gives a; = b; for i # — K, j # —Ki, inductively, we have a; = b; = a;, but by
Proposition 3.1, we have all a; = b;. So the proof is completed. O
Remark: the conditions of Proposition 3.1 are stronger than necessary and can be

weakened.
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Now let Y7,Y5,--- .Y, be observed values and

/b\( 108; Z ](Y <1 YZ+1<;L~

which we expect to get (K7 + K») 7; such that (3.14) and (3.15) are true when b(x) is
replaced by /l;(x) and a; are replaced by a,.

By the ergodic theorem, g(x) 2% b(z) as n — oo. Now suppose the model is
identifiable from z,...,x,,, where these values are different from the ratios of true
parameters as stated in Corollary 3.1, and define b = (b(z1),...,b(z,))’, and b =
(/b\(xl), o ,/b\(xm))’, then b % b. Suppose the probability space is (2, F, P), then
there exists an A € F such that Pr(A) = 1 and for each w € A, b. — b.

Notice that a permutation of [ and I’ will not change the value of b(z) in (3.11).

This can be easily seen in the following example.

Example 3.2 The following two processes

0.05Z1,1, 0.1Z;;, 0.03Zy ;41 |
Y; — max 0.15Z27i_1, 0.22271', 0.02Z27i+1
0.1623,-1, 0.1723;, 0127311 |

0.16Z1,_1, 0.17Z14, 0.12Z1 141
Y;«, = Imax 0.052272‘_1, 0.122’1‘, O.OSZQ’Z‘_H
0.15Z3;-1, 0.2Z3;, 0.0273,41 |

have the same joint distributions.

Unless we specifically say [ and [’ are not permutable, otherwise we allow those I’s
in (3.11) are permutable.

Suppose the solutions of

(

L
Slavk, + max(az,Kg—lja;}f

ap,Ky—1 )

) + max(a; k,—2, o

~
—_

max(a; k,—3, a“;f”) + -+ + max(a; g, , al'fzﬁl) + al’;lKl] - Zw(m)
(3.16)

alKQ l)

M=
) .

a1k, + maX(aZ,KQ_h P =2) + max(a k, 2,

T
I

max(a x,—3, o, K:L_Q) + -+ -+ max(a;_g,, al’_KIH) + al’_KI] = /b\w(mm)

T Tm,
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are a,. This is equivalent to C, a, = Bw in matrix notations where (), is uniquely

determined by a,,. The elements of C,,, are either 1, a:% or 1+ x% And the solutions of

(
ap

L
Ylax, + max(ar, 1, —22) + max(a x, 2,

+ maX(CLl’K2_3, al’K272) + -+ max(aL_Kl, al'iKlJrl) + alﬁKl] = b(l’l)

1 1 1 (3.17)

al, Ko—1 )
x1

~
—_

al, K.
larx, + max(agg,—1, 72

al,Kzfl )
Im

M=

) + max(al,KQ_g,

m

T
I

al,K272
Tm

+ . _'_ max al K ap,—Kqi+1 + al,—Kq — b xm
) 1

Tm Tm

L +  max(ay r, -3,

are a. And similarly this is equivalent to Ca = b. Since Bw — B, which implies

the estimated ratios converge to the true ratios, then a, — a as n — oo by The-

orem 3.6 and the assumption that the model is identifiable from zi,...,x,. But
max (ay, x,—i, ‘”K;i:“) converges to max(a; r,—i, (”}(57:“) for each 7 and k. In other

. .. A Kg—itl Ol Kg—j+1
words, ) remains in intervals ( =2 = a2 S
s 8o —1 8o —7

) for some i and j when n is suffi-

ciently large. So (), — C as n — oo. And so we have proved the following theorem.

Theorem 3.7 Suppose the model is identifiable from x1,...,x,,, where these values
are different from the ratios of true parameters, then the solutions of (3.16) converge

to the solutions of (3.17) almost surely. i.e. a == a and C,, == C.

Since the elements of both (), and C are either 1, mi or 1+ %, then for sufficiently

large n, we have C,, = C. Bearing this in mind, we have the following multivariate

central limit theorem.

Theorem 3.8 Suppose the model is identifiable from x1,...,x,,, where these values
are different from the ratios of true parameters, then
K1+ Ky+1
Vi@ —a) -5 NO,BO(S+ Y {Wi+Wi})e'B)
k=1
where B = (C'C)~'C", ©, ¥ and W}, are defined the same as in Proposition 2.5,
Theorem 2.7 and Lemma 2.12.

Proof. Since (C!,C,,)~1C! == (C"C)~1C" so

Vi@—a) = Va((C,C,)'Cib — (C'C) D)
VI(CLC) T Ch(b = b) 4 /n((CC,) ' C = (C'C) MO
N0, BO(E + S Wi+ WHO'B).

L=l

and hence this proves the theorem. O
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3.2.3 Asymptotics for a special case of L =1 and D > 1

For all @ 4, a similar asymptotic joint normal distribution result of Corollary 2.8 can
be obtained if the permutability of index [ in each d are not an issue. But this is not the
case in general, so we will not give the asymptotic joint distribution here based on the
estimates obtained one component at a time since we didn’t simultaneously estimate
arq- We illustrate a special case here under which we can identify all parameters
based on estimating each single process and putting all estimates together. We will
discuss why this special case can not be generalized in section 3.3. Also in section 3.3
a method which can simultaneously estimate all parameters for the cases of L > 1 and
D > 1 is proposed.
We now consider the model

Y;'d = max ak,dZi_k, d= 1, c. ,D (318)

—K1<k<K>

where Y ayq = 1,a54 > 0 for each d.
%

By Proposition 3.1,

AK,.d

a _
lax,a + max(ar, 1.4, ) + max(arx, 2.4, KZ Ldy (3.19)

AK,—2.d

L) T = by (a)

)+ -+ max(a_g, 4 x

+ max(ax,-3.4,

uniquely determines ay 4 for each d when the values of by(x) are given. But we just
can not simply put all values obtained from (3.19) and form (3.18) because for some

d, (3.19) may give different vector values of
(CLKl,d, QK +1,ds -+ - CLKg,d),
for example when K7 + Ky + 1 = 4 we may get something like
(0, .2, .3, .5) or (.2, .3, .5, 0).

But their functions in (3.18)are different and will result in a different multivariate joint
distribution.

The following proposition shows that under certain conditions we can simply put
the solutions of (3.19) for each d together and then those solutions uniquely determine
the true model (3.18).
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Proposition 3.9 Suppose a_k, 4 > 0, ag,q > 0 for all d, and all ratios aj;—;d are
J
distinct for each d, then
aKQ,d a“KZ_lyd
lar,a + max(ax,—1.4 . ) + max(ax, 2.4, . ) (3.20)
AK>—2.d A_Ki+1,d Q_K,.d
+ max(ax,—3.4, )+ -+ max(a_g, 4, )+ . | = ba(x)
d=1,...,D
uniquely determine the matriz
-1, QA-Ky+11, ---5 QK51
(3.21)
a-Ky,D;, Q-K1+1,D5; ---; QKD
Furthermore, there exist points
Tidy L2d, ---5 Tmds d:177D
such that
a/Kg,d a’K2_17d
[akya + max(ar,-14, ) + max(ax,—2.4, ) (3.22)
Ljd Zjd
AK,—2.d A_K,+1,d K, d
+ max(ax,—3.4, )+ -+ max(a_ g, 4, ) + | = ba(w;a)
Tjd Tjd Tjd

d=1,....D
uniquely determine the matriz in (3.21).

The proof of this proposition is obvious by noticing that a_g, 4 > 0, ak, s > 0 for all
d.
Now let A;4 = (0,1) x (0,z,4), for j =1,...,m, d=1,...,D and define

_ 1 <
Xaju = o Z; L4, (Yia, Yitr,a), (3.23)
tja = E{La,,(Yia, Yis1a)} = P(Y1a < 1, Yaa < 2ja), (3.24)

pigra = E{la;,(Yia, Yirra)la,, (Yia, Yiera)}

3.25
= PY1a<1,Y9 <25, Y1ia < 1,Yow < xja), (3:25)

[ XAll H11
Lemma 3.10 /n ))%Aml - l;ml 4, N(0,% + ZkK:lIrK2+1{Wk + Wi}
A12 12
—XAmD_ _/’LmD_

where
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Y has entries 0,5 = jgirar — [ialsjar, the matriz Wy, has entries w;® = P(Y14 < 1,Y5 <
s—l]

m

Tja, Yigna <1, Yorna < Tja) — pjapya ford=[=2], j=r—(d—1)xm, d =
j=s—(d—1) xm.

Proof. This can be done exactly as the proof of Lemma 2.12.

We now state the asymptotic joint distribution of all @y 4 in the following theorem.

Theorem 3.11 Suppose the model is identifiable from x4, ..., xmq for each d, where
these values are different from the ratios of true parameters, then under the conditions

i Proposition 3.9

Ki+Ka+1
Vi@ —a) -5 NO,BO(S+ Y {Wi+Wi}e'B)
k=1
where Cy is the matriz formed from (3.22) when dth model is considered. © = dz’ag{ﬁ,
L L}, C = diag{Cy,Cy,...,Cp}, B=(C'C)~'C".

."Nm17 ’//LmD

3.2.4 Simulation examples

In this section we perform simulation studies. The first model illustrates a simulated
M4 process with two signature patterns where each pattern has order of 2 and the

second model adds Gaussian noise into the first model.

Example 3.3 We perform two simulation experiments with the following two pro-

CESSES.

Y;‘ = max(.lZl,i_l, '4Z1,i7 .352272‘_1, 1522,1) (326)

and
1/;' = maX(.lZLi,l, .42171', -35Z2,i717 152272) + N,L (327)

where N; ~ N(0,.01) are i.i.d.

We plot the ratios 3 f;}ﬂ for both models. Plots in Figure 3.2 look almost exactly the

same. However, when a portion of the plot is magnified, as in Figure 3.3, we can see

the difference.

We now apply estimating methods developed in previous sections and list all results
in the following tables.
The estimated values are based on a sample of size 10000. The standard devi-

ations are obtained by evaluating the formula in Theorem 3.8 with the true values
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Figure 3.2: The left plot is the ratios of v j;i,m at the threshold level 10 under the

model (3.26). The right plot is the ratios of %YH at the threshold level 10 under the
model (3.27).
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Figure 3.3: The left plot is the ratios around .3 with distance .01 at the threshold level
10 under the model (3.26). The right plot is the ratios .3 with distance .01 at the
threshold level 10 under the model (3.27).

Parameter a1 | a1 | Gg—1 | G20

True value 1 4 .35 .15
Estimated value 1226 | 3678 | .3747 | .1398
Standard Deviation. | .0145 | .0469 | .0513 | .0181

Table 3.1: Simulation results for model (3.26). = =(0.3214, 0.6282, 1.0275, 1.3778,
1.6789, 2.4043, 3.5540, 4.5417).
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Parameter a1,—1 | a1 | ag—1 | G20

True value 1 4 .35 .15
Estimated value 1169 | .3599 | .3804 | .1477
Standard Deviation. | .0138 | .0462 | .0502 | .0197

Table 3.2: Simulation results for model (3.26). x =(0.3214, 0.8279, 1.5283, 2.9791,

4.5417).

Parameter a1 | a1 | Gg—1 | G20

True value 1 4 .35 .15
Estimated value 1203 | .3541 | .3919 | .1341
Standard Deviation. | .0144 | .0466 | .0509 | .0180

Table 3.3: Simulation results for model (3.27). = =(0.3214, 0.6283, 1.0277, 1.3782,

1.6799, 2.4054, 3.5546, 4.5422).

Parameter a1 | a1 | Gg.—1 | G20

True value 1 4 .35 .15
Estimated value 1172 1 .3605 | .3805 | .1461
Standard Deviation. | .0138 | .0461 | .0501 | .0197

Table 3.4: Simulation results for model (3.27). x =(0.3215, 0.8277, 1.5279, 2.9773,

4.5384).
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Parameter ay,—1 ap as, 1 a0

True value 1 4 .35 .15
Estimated value 0.1401 | 0.3801 | 0.3561 | 0.1353
Standard Deviation. | 0.0419 | 0.0684 | 0.0697 | 0.0493

Table 3.5: Simulation results for model (3.26)

Parameter ar—1 | aio | Gz—1 | G20
True value 1 4 .35 .15
Estimated value 1404 | 3791 | .3572 | .1351
Standard Deviation. | .0421 | .0668 | .0668 | .0492

Table 3.6: Simulation results for model (3.27)

approximated by the empirical values. These simulation experiments show that the
effectiveness of the estimating procedures proposed.

The estimated values in Tables 3.5 and 3.6 are mean values of estimates based on
100 replications of sample size 10000. The standard deviations are sample standard

deviations.

3.3 Modeling temporal and inter-serial dependence

As we mentioned in section 3.2.3 we can’t just estimate the coefficient one compo-
nent at a time and then put them all together to derive the full model for the joint
distribution of the multivariate processes, even if each single component process only
has one signature pattern. Example 3.2, in section 3.2.2, showed that two different
processes have the same distribution functions. The reason is because the coefficients
in the second process are permutations of the coefficients of the first process. The
permutations are on index [. Proposition 3.2 actually tells that all the values of a;
are uniquely determined by b(z) when the permutation of index [ is allowed. But this
is not the case when we have multivariate processes. We use the following artificial

bivariate processes to illustrate why this is not the case.
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Suppose we have the bivariate processes

( -0.052171‘_1, O.lOZLi, 0'0321,i+1-

Yii = max |0.1275; 1, 0.16Z5;, 0.09Z5,;41
_0.162371',1, 0.172371', 0-12ZS,i+1_
(3.28)
-0.1021’1'_1, 0'1321,1'7 0-1721,2'4-1-
Yio = max [0.07Z3,;_1, 0.04Z5;, 0.03Z3 ;11
1011731, 0.12Z3;, 0.23Z3,11 |

\

Suppose we have the observed values {Y;;1, Yi2} and get estimates based on the methods
developed for single component process.

A possible representation or estimation of process {Y;} could be

0.16Z14-1, 0.17Zy4, 01271141
Y}, = max [0.05Z5,;_1, 0.10Zs;, 0.03Zs, 1 (3.29)
0.12Z3;_1, 0.16Z5;, 0.09Z3,41

and a possible representation or estimation of process {Y;2} could be

0.10Z1,4_1, 0.13Zy;, 0.17Zy 441
Y;/Z = Imnax 0.1122’1‘_17 0.122271', 0~23Z2,i+1 (330)
0.07Zs;_1, 0.04Zs3;, 0.03Z3:41

Note: we used the exact coefficients of original processes in these two representations,
in real situation this may not be the case. What we do here is just for illustration.

Now if we put the two estimated processes together, we have

( (0162, 1, 0.17Z1 4, 01271441
Y;/l = Inax 0.0522’1'_17 O.].OZQJ', 0.0322’2'4_1
01275, 1, 0.16Z5;, 0.09Z5 141 |
(3.31)
[0.10Z1,_1, 0.13Z1;, 0.17Z141]
Y;’2 = max 0.112271',1, 0.122271', 0-23ZZ,i+1
0.07Zs;1, 0.04755, 0.03Z3;,1 |

\

It is obvious {Y;1} and {Y/} have the same joint distributions, {Y;2} and {Y},} have
the same distributions, but {(Yi1, Yi2)} and {(Y}}, Y5%)} don’t have the same joint
distributions. This can be seen from Figure 3.4.

3.3.1 Inter-serial dependence

We now consider modeling spatial dependence of multivariate time series. We use a

similar structure as we used for modeling time dependence, see section 3.2. What we
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Figure 3.4: A demo of two different bivariate processes. The blue curve are drawn from
the original process. The red curve are drawn from the permuted process. qgap(z) =
—zlog(P(Y11 <1,V <x)).

do in this section is to estimate parameters based on the joint distribution of a pair of
random sequence {(Yig, Yiar)}, where d £ d', 1 < d,d < D.
It is easy to derive that

L 14K
Pr{yld < Y1d, }qd/ < yld’ = exp Z Z max CLl,l—'m,d, Ay 1—m,d
I=1 m=1—K Yr.d Yi,a
and simply we have
L 1+K, a
Pr{}/ld S 1; }/id’ S .’I/'} - exp[— Z max(al71_m7d7 —l7lim’d )]
I=1 m=1-K> z
Define
S Qj,1—m,d’
bdd’(l’) = Z max(a’l,l—m,da ’Tm")’ (332>
=1 m:l—Kg
Qdd/(l’) = xbdd’ (l’),
> 1
baa () = —log( " Z[(deﬂ de<x))

é\dd/(x) = xbdd' (917)7

then it’s obvious that as n — oo
3dd/ (l‘) £ bdd/($)7 qud/@) o Qdd'(x).
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Like section 3.2, we assume now all ratlos are distinct for all [ and k. Then byq ()
or ¢z (x) can uniquely determine all ratlos = since these ratios are the jump points
of piecewise linear function of g4 (), but bdd/( ) or g (x) can not uniquely determine

all a4 and a; o since bgy (x) doesn’t distinguish the index & and the index .

3.3.2 Temporal and inter-serial dependence

We now combine (3.11) and (3.32) together as a system of nonlinear equations.

[ ba(r) = Y[ lank,a + max(a g0, HE20) + max(ag 2.4, 22

+maX(al Ko 8.ds ) e max(ar, ;4 e e R
L, x
bd/<l') = lel[al,Kg,d’ —+ max(a'l7K2—17d ’ AU,Ky,d ) + max(al Ko—2.d'» W) 5 33)
+ max(alyKQ_?),d,, %7*2@’) + -+ max(al,—Kl,d/, a, K$+1 d’) + al77§17d,f .
L 1+ K4
bar(z) = > > max(agi_mg, L)
L I=1 m=1—K>

then we will show (3.33) uniquely determine all parameters a; x4, .-

Proposition 3.12 Suppose all ratios Z”j’d for all l and j # j' are distinct, all ratios
le# for all I and j # j' are distinct, and all ratios Hkd for all | and k are distinct,
sJ

then (3.33) uniquely determine all values of a4 a,nd al7k7d/.

Furthermore, there exist points x1,xs, ..., Ty, m < 3L(K; + Ky + 2), such that
ba(x;) and bay(z;),i=1,...,m
uniquely determine all values of ajpq and ayj .

Proof. By Proposition 3.2, by(x) and by (x) uniquely determine all values of parameters

arrq and a; i respectively. So we can get

(al’,[(hd, a17,K1+17d, e ,alyKQ,d), l = 1, ey L

and
/
(v k@, Qv —ryv1as- v ya), U'=1,..., L.

L& are distinct, any permutation of index [ in a;yq will result in
d 1Yy

Since all ratios P
different ratios which will be different from the jump points of ggq(x), so the jump

points of ¢z () uniquely determine

A —Kyd  AlL—Ki+1,d a1 Ky .d
)

) b
A —K,d Al —Ki+1,d Q1 Ky d!
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for some [ and !I’. So (3.33) eventually uniquely determine all the true values of all
parameters a; ;g and a; . q .

The reason why 1, %o, ..., %, uniquely determine all values of a;;q and a;pq is
because qq(x), qo(x) and gqq(x) are piecewise linear functions which can be uniquely
determined by finite number of points as long as there are at least two points between

any two jump points. O

l,j,d

Proposition 3.13 Suppose all ratios ZZ .
J

for all l and j # j' are distinct for each
d=1,....,D and % for alll, I" and k are distinct for each d =2,...,D, then

ba(r) = S0 [anka + max(ay,—1.4, 222) + max(ay g, 2,4, 2E211)
+ max(a; x,—3.4, = 22 + max(a;, _k, 4, alﬂ;ﬁl’d) + al’ffl’d],
d=1,....D
L 1+ K4 a ,
bld’ (.CE) = Z Z max(am_m’l, %), d = 2, c. ,1)7
=1 m=1-Ko

uniquely determine all values of ajpq, d=1,...,D, l=1,...,L, —K; <k < K.
Furthermore, there exist points x1,Ta, ..., Ty, m < (2D — 1)(K; + Ko + 1) + 2D,
such that

ba(x;) and byg(x;),i=1,....m, d=1,...,D, d =2,....,D
uniquely determine all values of aj 4.

Proof. . This can be done by following the arguments in Proposition 3.12. a
3.3.3 The estimators and asymptotics
Now for suitable choice of

T1d;, T2dy - - -5 Tmds dzl) BRI Da

ZL‘lldH l’éd/, ey /d/ d/ = 2 D7
define
Ud(l’jd ZI(de<1 y2+1d<a;]d),]—1,...,m,dIl,...,D,

i=1

/l;d(xjd) = —log(Ud(fL'jd)), ] = 17' <, M, d= 17' . 'aDa

Uld/ ]d/ = ZI Yi1<1, Yd/<x o) jzla"'am/a d/:27"'7D7
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bia(ty) = —log(Ua(¢}y)), j=1,....m, d =2,...,D,

[ Ui (z11) | /l[}l(xn)
Ui (w21) 1)
U1($m1) I/)\l<xm1)
Us(z12) bal(12)

U = UD(me> B = ED(ImD)
U12($j12) ’ 212($/12)
Utz () b2 (732)

Ulz(x%ﬂ) D1 ()
U13<$13) 313(55,13>

U I'/ ’ D

| 1D< mD)_ _le(x;n’D)_

Let
pagja = E(Ua(xjq)) = Pr(Yig <1, Yaoq < z4),
d=1,....D, j=1.....m

taja = E(Ura (xg"d')) = Pr(Yn <1, Yig < x;"d’)>
d=2....D, 5 =1....m.

taa, aja = El(Iyia<ivoaze;s) = Paia) (v, <1 Yoy <ayg) — Harjrar)]
= PI‘(Yld S 1, }/2d S :dey}/ld/ S 17 Y2d’ S xj/d’) — ,udjd/fl’d/j’dH
dd=1,...,D, j,j'=1,...,m.

paja 1w = Elllong<ivoasa,n) = paa) Lvn<ivg<at,,) = Paga)]
= Pr(Yig <1, Yog < 2jg, Yiu <1, Yig < 2y) — prajapiraryear
d=1,...,D, 7=1,...,m,
d=2,....,D, j7/=1,....m.

pdgd, did = E[(I(Yug,yld,gz;/d,) — iy ) (Lyi4<1 You<a,q) — Hdjd)]
Pr(Yig <1, Yaa < wja, Yin <1, Yio < 2%y) — Hajatnajra
Hdjd, 1d'j'd’

d=1,...,D, 7=1,...,m,
d=2....D j =1, m.

Mdjd, 1d/j'd El(Ivii<1via<al,y — tda) Iy <iy,g<at, ) = taryra)]

(1
Pr(Yi <1, Yig <y, Yiu <1, Yie < 2%y) — tgjatirarjar,
d=2,....D, j=1,....m/,
d=2....D j=1, . m
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(k) —
Waid, drj'dr = E[<I(Y1d§1,y2dﬁ$jd) - ,Udjd) ([(Yl+k,d’317Y2+k,d’§$j’d') - ,ud’j/d’)]
= PI‘(Yld S ]_, }/Qd S Tjd, }/l—l-k,d’ S 17 }/2—l-k,d’ S Ij’d’) — Hdjdlbd’j'd’

dd=1,....D, j,j'=1,....m.
(k) _
Woia, 1y = ElIonag1vaasaso = Hasa) L3 pa <1y o<et,) = Paaga)]
= Pr(Yig <1, Yog <@g, Vigrnr < 1, Yigpa < 2hg) — plgjathraryiar,
d=1,...,D, 7=1,...,m,
d=2..D,j=1,..m.
k
Wigrjrar, djd = E[(I(Yngl,Yl’d,gx;_,d,) - /'le/j,dl>(I(Y1+k,d§17Y2+k,d§$jd) - Ndjd)]
Pr(Yin <1, Vig <@g, Yigna <1, Yorna < @ja) — flgjatiaja,
d=1,....D, j=1,...,m,
d=2,...D, j=1,..m.
¥ = Bl — gia) (I — piaya)
Wy gjd, 1d/j'dr = (Yuu<1,Y1a<aly) = Hdjid)\E (Vi1 <Yy @ <2ty ,) = Hady'd!

= Pr(Yi1 <1, Yig < x;'d>Yl+k,1 <1 Yigpa < x;,d,) — HidjdH1d’j'd’ s

d=2,....D, j=1,....m/,
d=2....D,j=1,...,m.

[ H111 1 [ H1 | [ by(711) ]
H121 H2 by(w21)
Him1 Hm bl('xml)
212 Hm+1 ba(712)

= HDmD | _ HDxm b— bp (me)
H1212 HDxm+1 ’ 512@7/12)
1222 D xm-+2 bia(;)
H12m/2 KD xm4m/ 512(%@'2)
1313 D x m4-m’+1 biz(z]3)
| H1Dm/ D | | D xm+(D—1)m/ | _le(x;n’D)_

We have the following relations

fga — fe, d=[=2]+1, j=r—(d—1)xm if r <D xm,
djar —  frs d’:[“DT:i,m_l]—i—Z j=r—-Dxm—(d—=2)xm' ifr>Dxm,.
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We now use the similar relations between the indexes of p4¢ and the indexes of p,

define the following variables.

'dedVd/j/d/ if , r<Dxm,s<Dxm

- Kdjd,1d’j'd’ if o< Dxm,s>Dxm
Hidjd,d'j'd’ if , > D x m,s < D xm

\ H1djd,1d'5'd’ if ,r>Dxm,s>D xm.
(wc(g;,d,j,d, if ,r<Dxm,s<Dxm

wrE = w%:%l,ld/j'd/ %f r<Dxm,s>Dxm
W) gid,dr ' if,r>Dxm,s<Dxm
\wlljljd,ld’j’d’ if ,r>Dxm,s>D xm.

and
Y= (), Wi = (wy), © = (diag{u})~".
We now put everything above together. Then we obtain the following lemma. Its proof

is just simply following the lines used in lemma 2.12.

Lemma 3.14 For the choices of x4, xya and the definitions of each variables above,

we have

Ki+Ka+1
ViU = p) =5 NO.Z+ D7 (Wit W)
k=1
R Ki+Ko+1
V(b —b) <5 NO,0(2+ Y {Wi+ W He).
k=1

Now consider the system of non-linear equations

([ ba(zjy) = Zle[au@,d + max(a; x,—1,d, al:j’d) + max(a x,—2.4, “”;2—;161)
+ max(a, x,—3.d, a”;i—:”) + -+ max(a;, g, 4, al’_zldﬂ’d) + al’;Zl’d]
. er;ll,...,m,d:l,...,D (3.34)
ap1-m
bld’ <$;’d’) = Z Z maX(alme,d; l’;/ . )
=1 m=1—K i
\ J=1,....m, d=2..D

and denote the left hand side of (3.34) as b. Since (3.34)uniquely determine the values

of all parameters a; 4, (3.34)has the matrix representation

b= Ca (3.35)
or equivalently

(C'C)'C'b = a. (3.36)

62



We now obtain our estimators by solving the system of non-linear equations

( ~

ba(rja) = ZlL:l[al,Kz,d + max (@, k,—1.4, algjd) + max(a, x,—2,4, a”;i—;ld)
+max(ly,r,-s.d, 52 + o+ max(@n g g, ) T
j: ,...,m,d:L...,D (337)
b / _ L e - a\‘l,lfnL,d/
(@) = 22 >0 max(ayi-ma, —5 ")
I=1m=1-Ko g'd’
\ j=1....m d=2,....,D

As n sufficiently large (3.37) can be written as the following matrix representation
(C'C)'C'b =a. (3.38)
Summarize all arguments above we have obtained the following theorem

Theorem 3.15 If all ratios CZL—J/‘Z for alll and j # j' are distinct for eachd =1,...,D
IV AN
and % for all I, " and k are distinct for each d' = 2,...,D, of the multivariate

processes {Yiq}, then there exist
Tid, T2ds -+ Tmds dzl: SR D)

/ / / !
ajld/, .TQd/, ey QJm/d/, d :2, ey D,

such that the estimators a satisfies

Ki+Ko+1
Vi@ —a) -5 NO,BO(S+ Y {Wi+Wi})e'B)
k=1

where B = (C'C)~'C".
3.3.4 Simulation examples

We continue the simulation examples used in section 3.2.4 and consider now the bi-

variate processes

Yy — max [0.10Z, 1, 0.40Z, ;]
’ 10.35 75,1, 0.15Z5,]
(3.39)
Y, — max [0.3521 -1, 0.157;]
! _0.1022’1‘_1, 0.40Z2?7;_

We first generate data by simulating these bivariate processes, then based on the sim-

ulated data re-estimate all coefficients simultaneously and compute their asymptotic
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Parameter a1,-11 | @101 | A2—11 | G20,1 | A1,—-1,2 | @102 | A2,—-1,2 | 202
True value 1 4 .35 .15 .35 .15 1 4

Estimated value 1169 | L3804 | .3599 | .1477 | .3693 | .1303 | .1508 | .3493

Standard Deviation. | .0123 | .0427 | .0491 | .0128 | .0345 | .0204 | .0226 | .0369

Table 3.7: Simulation results for model

covariance matrix. Notice that the coefficients in the second process are the permuted
coefficients in the first process. The purpose here is to apply estimators developed in
section 3.3.3 and compare the asymptotic standard deviations obtained by Theorem
3.15 with those obtained in section 3.2.4. Table 3.7 is obtained using simulated data
with a sample size of 10000. If we compare Table 3.2 with Table 3.7, we find the
standard deviations in Table 3.7 are smaller than those in Table 3.2. We think this
is because the model in section 3.3.3 uses more data and data information than other

models use.

3.4 Weighted least squares estimation

In this section, we assume the model is identifiable from the bivariate distributions.
Proposition 3.2 has given sufficient conditions for this.

From (3.4) and finite number of {1, za, - , Tk, 1Ky, Tky+Ky+1} Such that
T <1 <Xy <7y < <Tr 4Ky <TK 4Ky < TK{4+Ko+1,
then the model is identified by ¢q(z1), ¢(z2), ..., q(TK,+Kx,+1). And we have

Corollary 3.16 Suppose the model is identifiable w.r.t. bivariate joint distribution.

Let ro = 0,20 =0, {x1, 29, -,z } are m points such that x1 < ri, Ty > TK, 1K, and
min(x; 1 — x4, =0,--- ,m) <min(r;; — 75,1 =0,--- , K; + K»)
then the model is identified by q(z1), q(z2), ..., q(zm).

Under the assumptions in Proposition 3.1, solving a;’s iteratively is equivalent to an

optimizing problem

min (@ | Z a+ > a4 —q(x)) (3.40)



which gives least squares solutions.
In practice, what we observed is g(x;), or an estimation of ¢(z;), for each i. Based

on Corollary 3.4, for sufficiently large n,

where ¢; are normally distributed and correlated with variance-covariance matrix V', a
generalization of Corollary 3.4. So the weighted least squares estimates are optimum
solutions of

min (G —q)'V"'(d - q). (3.42)

aJ—
aj >0

where q= (Q(m1)7 T aq(xm))lw /(i - (Z.I\(xl)v T 721\(1‘771))/

Suppose now a is a solution of (3.42), if we restrict the parameter space to a
neighborhood of a, written 6(a), then each ¢(x;) is a linear combination of a;’s and so
there exists a matrix C' which depends on a but can be exactly determined such that

miI}l (d—Ca)'V(q— Ca) (3.43)
ago(,lie_a@
has a solution of & = (C'V~1C)~*C"V~'q = Bb, where B = (C'V-1C)~1C"V~'diag{1,
“Zm}, q(x) = xb(x). And then we have a corollary,

Corollary 3.17

Ki1+Ka+1
Vi@ —a) -5 NO0,BO(S+ Y {Wi+Wi}e'B)
k=1
Proof. By the same arguments as in the Theorem 3.8. O

3.5 Threshold Methods

In the real world, a time series may not follow the assumed statistical model. But in our
applications the tail probability of large observations is the main concern, for example,
what is the probability of a big price movement of next day given today’s information
on the stock market. There has been an extensive development of threshold methods

in extreme value statistical research. In this section, we develop a unified procedure for

65



modeling within-cluster behavior at extreme levels by using M4 processes to model the

temporal dependence of exceedances. We assume those values above certain threshold

value u are actually observed and follow the tail distribution of unit Fréchet. Those

values below the threshold u are not observed or treated as zero. Our development

is focusing on univariate time series data, but without any difficulty it can be easily

extended to multivariate time series data with multiple thresholds.

_ L 2+ K7 A 1-m %,2—m
Pr(Y; < u+z, Yigr <u) =e izt Zmeimig max(S5gh om0
2+K, (az,17m al,27m)

L
Pr(Y; <w, Yijgn <u+x)= ™ Lt m=i-xp MAX

Let Ai(z) = (0,u) x (0,u+ ), As(z) = (0,u+ z) x (0,u), and define

u ’ u+x

_ 1 & .
Xy = =D Ay (¥ Yin), j=1,2
i=1

then for a fixed u, as n — oo,
Xy = Pr(Yi <u, Yin <u+z) =pi(z),

XAQ(x) L5 Pr(Y; < u+x, Yig < u) = py(x).

We have
( — —m
Zizl ZZ{:?_KQ max(pE%, S22) = —log(pi(z1))
A 1—m Ql.2—m
Dt1 D =i, max(Z, i) = —log(pa(1))
L 24K m G2emy
S Tt e max(22, 22) — —log(p ()
A 1—m Ql.2—m
[ 2ttt Dot g, maX(Z, ) = —log(pa (@)
or equivalently
L 24K —m 1
( 2111:1 Zgj:[%lfKQ maX(al,l—m7 7“%5—&%*1)) — _10g1(ﬁia(:ﬂ131))
- a,2-m
Dt D i, MAX (A1 (ujr’il)/u) - _og(pz(:m))
L 24K i . 1 m
ZZLZI Z;n—‘r:élng maX(al:lfm’ u/a(qu—&-xm)) = 1_ ogl(ﬁﬁicfn )
[ 2 Zm+:11—K2 max (az,1—m (uﬁ;:)n/u) = Og(pi(mm»

(3.44)

(3.45)

The left hand side is similar to (3.17) and hence according to Theorem 3.6 and assuming

unit Fréchet margin for those observed values at extreme level, P(Y;11 < u+z, Y; < u)

and P(Y;41 < wu, Y; < u—+ x) uniquely determine all the parameters since we can take

logarithm transformation to get (3.11), so the model is identified from (3.44) or (3.45).
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Lemma 3.18 Let

G = (Xay(ar)r Xds@)s > Xdr(om)s XAs(wm))

and
= (p1(x1), pa(x1),. ..., p1(@m), P2(Tm))

then
Ki+Kao+1

V(G — 1) S NOS+ Y Wi+ W)

where the elements of X have the forms

El(La; (00 (Y1, Y2) = pi@s)) (La, @) (Y1, Y2) — pj(2))]
= E]Ai(xs)mAj(l't)(}/l7 }/2) - pi(l’s)pj(xt>
= pij(s,t) — pi@s)p;(a)

with 1,7 =1,2; s,t=1,2,...,m, and the elements of W}, have the forms

El(La; (s (Y1, Y2) = pil®s)) (La; o) (Yigw: Yorn) — pj(2e))]
= Ely, (xs)(Yl,Yg)IA (o) Y1tk Yoir) — pi(2s)ps(2e)
= pi(s,t) = pi(ws)ps(a)

withi,5 =1,2; s,t=1,2,...,m

By setting
( L 2+ K a m Al2—m %
IRD Dt maX(—fLiml =) = —log(Xay (@)
L 24K m o AL2-m %
Zl:l Zm+:11—K2 max( s ’ ’ij’lvl ) - = 1Og(XA2(x1))
4 : (3.46)
L 24+ K a1-m a, —m\ X
21:1 an 11 Ky max(ﬁ l i ) = — log(XA1(xm))
L 2+ K a; a m -
\ Zl:]. Zm+ 11 K2 HlaX( ; Y ’u,l—il‘»m ) = - log(XA2(iCm))
we get
Theorem 3.19 Suppose the model is identified from x1,xo, ..., x,,, where these values

or % are different from the ratios of true parameter, then

Vn(@—a) -5 N(0, BO(T + 1+22+ (Wi + W/1)O'B)

k=1
for B= (C'C)7'C, % and Wy, are defined the same as in Lemma 3.18 and © is defined

by
1 1 1

0= diag(pl(x1> ’ pa(z1) Y p1(Tm) 7 pa(Tm)
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3.6 Multivariate domains of attraction and non unit
Fréchet margins

So far the models studied assumed the data follow the M4 process exactly. Some natu-
ral relaxations of the assumption would be that the distribution of underlying random
variables belongs to the domain of attraction of a multivariate extreme value distribu-
tion and the marginal distribution of Z’s is non unit Fréchet. In the univariate case,
from these assumptions, efficient estimating methods based on threshold exceedances
and generalized Pareto distribution have been developed. We now develop a similar
estimating procedure in the multivariate context. First, we rephrase Theorem 5.4.3 of
Galambos (1987) into Lemma 3.20 under the assumption the marginal distribution of

bivariate extreme value distribution is unit Fréchet.

Lemma 3.20 Let x = (21, 23), I be the population distribution and
F'(a,x+b,) — H(x) (3.47)

where H(x) has Fréchet marginals Hao¢ (x;), j = 1,2. Let F' has the same univariate
marginals ) and Fy which are eventually strictly increasing, then F belongs to the
bivariate domains of attraction of H if and only if

1 — F(uxy, uxs)
1-— Fl(u)

— —log H(x) (3.48)
as u — o0o.

We now use this lemma to construct estimators for all parameters a; ;4. Assume that

I belongs to the bivariate domains of attraction of H which has the distribution

H(x) = exp[~ Y max( el dh2mmy) (3.49)

T T2

Substitute F(uz1, uzs) and Fi(u) by = 3 Iiyi<uay, viir<uzs) 80d = > Ly, <) TESPEC-
i=1 i=1
tively, then

3=

1- Z [(Yiﬁuxh Yi1<uws)
Pr{ lim = =—logH(z)} =1 (3.50)
1= 23" Iivicuw
=1

for all w.
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From (3.50) we can construct estimation methods for parameters a;;’s. Let x; = 1,

then —log H(x) = b(x2) which was defined in (3.11), i.e

Z [Y<u, Yiy1<uz)
Pr{ hm =l =b(z)} =1.

n
n—oo
1
o E (vi<u)
=1

zl'—‘

for all u.
For any fixed u, let A,(x) = (0, u) x (0, uzx) and

1 n
= Z;IAu(x)(Yi, Yii1)

then

Xauw) = P(Yy < u, Yo < ux) = p,(z)

Lemma 3.21 Let

Cun = (XAu(oo)> XAu(:m)a <o 7XAu(xm))

and
then
Ki+K>+1
Vi(Gun = ) =5 N(O, S0+ Y Wk + W)
k=1

where the elements of ¥, have the forms

El(Lau(e) (Y1, Y2) = pul(6)) (La @) (Y1, Ya2) = pul@1))]
- EIAu(xs)ﬁAu(J:t)(Ylu }/2) - pu(xs)pu(xt>
= pu(l‘s A xt) - pu(xs)pu(xt)

with s,t =1,2,...,m, and the elements of W have the forms

El(La,(@) (Y1, Ya2) = pul@s)) Ly o) Yigk, York) = pul@1))]
— EIA ($s)(}/17 B)IAu($t)(§/v1+k7 }/QJrk) - pu('rs>pu('rt)
- puk<57 t) - pu(xs)pu(xt>

with s,t=1,2,...,m.

Let

(3.51)



then the Jacobian matrix of transforming p,(z;) into b,(z;) has the form:

L—pu(z) 1 ...
(el Tpu() 0 0
1—pu(x2) 0 B SR 0
J= | (rpulee))? 1—pu(co) (3.52)
1_pu(IM) ' ' - _7'1
T pu(o0))? 0 0 (o)
so we have
Lemma 3.22 Let
1 - % Z I(Yiﬁuy Yit1<uw) - % Z (Yi<u, Yip1<uzm)
bun:( =l ™y Yoy = )/
1— 23" Tivi<u 1—%21029)
i=1 i=1
by = (bu(x1), ..., bu(z))
then
J Ki+Ko+1
k=1
Let

n
1
- Z Livi<u, Yi1<uz)

Z -[(Y<u

Suppose the solutions of

Z[ath + ITIELX(/CZZ’KQ,ham<2

al,KQ—l)
T

xr1

) + HlaX(/a\,l’KQ,g,

max(aviQ_g, al’KZ_Q) +--+ max(alv_Kl, al’_Kﬁ—l) + al’_Kl] = /b\u(lj)

xr1 1 1
(3.53)
L a
al7K2 maxia; JKo—1, T maxia; Ko—2 7
121[ + @ %) + max(a furaot)
\ + max(al Ko—3, lK—jlz) + -+ max(ah_Kl, al';ljnﬁrl) + al;;nKl] = bu<l’m)

are a,. This is equivalent to C’unﬁu = b, in matrix notations where C,,, is uniquely

determined by a,. And the solutions of

Slafi, + max(af_y, 2) + max(af g, o )
_ + max(ajg, s, l’};f*z) + -+ max(ay_g, ”?‘*;?“) + aﬁ;fl] = bu(x1)
(3.54)
é[a}ﬁ@ + max(aj Ko—13 ;K ) + max(a;’ Ko—23 al’f,ifl)
L + max(aj'y, s, l‘fifz) + - 4 max(aj'_g,, aﬁ;'s“) - a;;:nKl] = by(Tm)
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are a,. And similarly this is equivalent to C,a, = by,.

And the solutions of

Z[az Kk, + max(a;k,-1, am—) + max(a, k,—2, a“;f_l)
+ max(ax,—3, ”;f 2) + -+ max(a;_ g, al’__gl“) + al’z_lKl] = b(xy)
(3.55)
L ai, K al,Ky—1
> lak, + max(ar,-1, - 2) + max(a,x, -2, — )
=1
L + max(a k,—3, lKjL 2) + -+ max(a;,_x, , al‘;{nﬁl) + al;E:nKl] =b(zn)
are a. And similarly this is equivalent to Ca = b.
The following theorem can be obtained.
Theorem 3.23 Suppose the model is identified from x1,xo, ..., T, where these values
are different from the ratios of true parameter, then
g Ki+Ka+1
Vi@, —a,) == N0, BJ (S, + > {Wu+ W} J'B,)
k=1

for B, = (C/.C,)7C!, J, 3, and W are defined the same as in Lemma 3.21, 3.22,
(3.52).

We now study the limiting distribution of \/n(a, — a).
By Lemma 3.22, for each u and any vector o, we have

~

! bun - bu
Xun:\/ﬁa(i) %, N(0,1) as n — oo
O-O(U
_ K1+K2+1 / /
where 04, = /& J(E, + > 2 {Wur + W/, })J' . Denote the distribution func-

tion of X, by F..(y), and standard normal distribution function ®(y), then
Fun(y) = ®(y), —00o <y < 00, as n — oo
Since ®(y) is continuous, so
limsup [Fun(y) — @ (y)| = 0,

Y

for each u.

Now suppose u(n) is a sequence of numbers chosen to satisfy the condition
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These u(n) satisfy
lir{n sup [Fymyn(y) — (y)| =0
v

which implies

o~

/bun n_bun
Xu(n),n:\/ﬁa( ), ()) LN(Q 1)7

O au(n)

S0
Vit(bumn = bum) = N(0, %)
where ¥ = lim J (2, + S W, + WL
From theucondition Vn max |bun) (2:) =b(z;)| — 0, as n — oo, we know the ratios
of parameters from by, (x;) converge to the ratios of parameters from b(z;) since ratios
are jump points. So the matrix Cy,) formed from (3.54) and the matrix formed from

(3.55) are identical for sufficiently large n because all elements of C,,) are also either
1, X orl+ x%,, and this gives /n(aym) —a) — 0.

Jzi

Let B = (C'C)~'C’, then
V(@) = () —— N (0, BEB'),

and
~ ~ d
\/ﬁ(au(n) — CL) = \/ﬁ(au(n) - &u(n)) + \/ﬁ(au(n) — a) — N(O, BEB/).

We form these results into the following corollary.

Corollary 3.24 Suppose the model is identified from x1, xa, . . ., T,,, where these values

are different from the ratios of true parameter, and under the condition

Vit s [bugn () — blai)| = 0, as n - oo,

we have

V(@) — a) == N(0, BEB').
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Chapter 4

Modeling Extreme Processes with
Parametric Structures

In chapters 2 and 3, we studied probabilistic properties of M4 processes, proposed
estimation methods, proved consistency and asymptotic normality of the estimators.
All the methods are not restricted to the number of parameters. But in numerical
computation aspect, the more parameters, the less precision of the estimates. It’s not
just a numerical stability issue, of course. The statistical precision of the estimates will
be poor if the number of parameters is too large. So in this chapter, we will consider
several parametric structures which could be imposed on the parameters. For instance
we consider a; ; ¢ being symmetric about & = 0 for each [ and d and some other specific
possibilities. In section 4.1, we shall study a symmetric parameter structure model.
In section 4.2, we shall study an asymmetric geometry parameter structure model. In
section 4.3, a monotone parameter structure model will be discussed. The following
fact will be used many times in this chapter. It should be no ambiguity when it is used
without mentioning it.

Fact: If two lines

f(z)=ax+0b and g(z) =cx+d

on the plane satisfy
f(z1) = g(z1) and f(z2) = g(x2)

for two different points x; and x5, then

a=c, andb=d.



4.1 Symmetric geometric parameter structure model

In this section we study a particular form of symmetric geometric parameter structure

model, i.e., we assume
al,k,d:bld/\isl, /{?:—Kl,...,Kg, dzl,,D (41)

for each [, where the unknown parameters are by and )\;;. We first consider the case

L =1 and then the case L > 1 in the following subsections.

4.1.1 Case L =1

When L = 1, for simplicity we assume K; = K5, then we have
arg=ba\V, k=-K,. .. K d=1,...,D (4.2)

Since Zfsz arg = by Zfsz >\|dk| =1, b; = ﬁ Let 7 = (0,0,...,74,0,...,0),
k=—K

then by (1.25) we have ’

maxy MaxXq aggTq  Maxy bd)\ldled _ maxy )\‘dk‘

O(t) = . =
) Ek maXg QrdTd Zk bd)\ljk‘Td Zk )\‘dk‘

which immediately implies
04 = max bd/\ldk| = MAX Q. (4.3)

This tells that we can either from the estimation of maxy apq to get the estimation of

04 or vice versa. Especially, if \y < 1, then 6, = by; if Ay > 1, then 6; = bd)\f.

Since .
SR LI+ Ayt AT
= 214+ X+ A+ + A -1
we have L
1+Ad+A§+---+A§(=§(b—+1). (4.4)
d

Let f(t)=1+t+---+t5 then f/(t) =1+2t+---+ Kt5¥"1 >0, for t > 0. So f(¢t) is
strictly increasing and A4 is uniquely determined by A\; = f —1(%(% +1)). And so we

have a theorem.

Proposition 4.1 Under the parameter structure (4.2), we have

1.1
0y = max agq, )\dzfil(—(——i—l)), d=1,...,D.
k 2 bd
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By the definition of ¢(x) in (3.2), when D =1 we have
q(z) = WAz + max(DAE 1z, bAK) + - - + max(bAz, bA?) + max(bx, bA)

+max(bAz, b) + max(bA2z, bA) + - - - + max(bAKz, BAK-1) 4 K. (4D)
When z5 > max (A, 1/)),
q(zy) = 29 + DAE. (4.6)
When 1/) < x1 < A,
q(z1) = b(zy + 1)(2AT £ A4 ). (4.7)
When A < 23 < 1/A
q(z3) = b(ws + DN + A4 1), (4.8)

When use g(x2) together g(x;) or ¢(z3), we can uniquely determine b and A\. Now let
x1 < x9 be two points, the goal is to find a point x5 such that x5 > max(\, 1/X). We

have the following two cases.

1. if 2229) — 1 then 2y > 2y > max(X, 1/X),

T2—x1

2. if q(z2)—q(z1)

T2—x]

through (z1,¢(x1)) and (22, q(x2)) to the line y(x) = x. Let 1 = 9, 9 = 3

< 1, calculate the intercept point (x3,¢(x3)) of the line which goes

and repeat this process until we have the case 1.

Note: if 5 > max(A, 1/)), then é < min(\, 1/)N).
Suppose now x and ¢(x) are known, where x > max(\, 1/)), then we can get the
value for b from

P F G+ D) = (gla) — ) (1.9

or equivalently

or
1

1 (@) —z
When ¢(x) is replaced by g(x) in (4.9), we get the estimate of b, i.e. b. Since q(z) ==
q(z), by continuous mapping theorem, b L b, and hence X X% A\, Since q(z) =

bf'(3(3 + 1)) + x, so we have

9 _ K1/l Kb~ K+ (L(141))

a = IGGE D T
— f-K(Llcl 3/ (3(3+1)
= [TRGGE+D) + 2KV

I6)



"  _ FGG+ ) »
Oq  f'(3(5+ )55 + 1) + 2K f~EI(5(5 + 1))

This together with Corollary 3.4, We have proved the following theorem.

Theorem 4.2 Suppose x > max(\,1/\), then
Vi —b) -5 N(0,220%6%)
where o is defined as in the Theorem 3.3.

Since A= f1(3(3 +1)), & = #;H)) = A, we then have the following corollary.

Corollary 4.3 Suppose x > max(\, 1/X), then

-~

Vn(h = ) =5 N(0,220%5%)%)

~

In order to obtain asymptotic properties of (b, \) we start from (4.6)-(4.8), the following

is a corollary of Theorem 3.5.

Corollary 4.4 Suppose min(\, 1/\) < x; < max(A,1/)), xo > max(A,1/A), then

Vil - - N0+ S (Wet WO,
k=1
where o
a= [T =[] o= [5 2 |
and

i =Pr(Yh <1,Y, <), pne =Pr(Y7 < 1,Ys < 1), 04 = phij — pitty,
wy =Pr(Y1 < 1,Ys <, Yieg < 1,You, <)) — figsy, fi = -

Theorem 4.5 Suppose min(\, 1/X\) < z1 < max(A,1/X), o > max(\, 1/X), then

/b‘ b J Ki+Ko+1
vl H _ N )L N O+ S W+ WHE(T )
k=1
where
J— J1, if 1/)\<33'1<)\
e, if A<a <1/A
and
@+ DA AT N bz + DK (K- DA 24 1)
Jl - )\K Kb/\K—l

(z1+ DA+ X A2 X+ 1) by + 1)K+ (K= DA =2 4. 420+ 1)
o= AK KbAK—!
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Proof. We prove the case when A < z; < 1/A. Since

8q§fl) = (DM A2 A+ 1),
aqa(il) = by + KN 4 (K = DA 24 20+ 1),
dq(x2) K 0q(z2) o K-1
= 2K o Kba" .

So the Jacorbian matrix is

Oq(z1)  9g(z1)
‘] = 6q(?£2) 8(1(?%2) = ‘]2'
ob o\

The determinant of J is |Jo| = b(zy + 1)(A2E 72 4202873 .. 4 (K — 2N + (K —
AR + KAK=1) > 0, so J~! exists. And then by the mean value theorem and Slutsky

theorem the proof is completed. O

4.1.2 Case L >1

We consider D = 1 in this subsection. Define

q(r) = A z 4+ max(b A e, BAS) + -+ max (BN 2, AT AT (4.10)

then

() = q1(z) + g2(x) + - - - + qr(2). (4.11)
Without loss of generality, we assume A\; < Ay < --- < Ap. Since ¢(x) is a piecewise lin-
ear function of x, the jumping points of ¢'(x) are 1/A1, 1/ Mo, ..., 1/Ar, A1, Agy ..o, AL

We assume all these points are different.

Suppose now
¢ (z) = ¢i(z) + ¢3(x) + -+ + ¢ () (4.12)

where ¢(z) = ¢*(x) all x and
g (x) = by ANz +max (AT e, iEANT) + - - max (A 2, GEATE T + AL (4.13)
Lemma 4.6 If q(x) = ¢*(x) all x, then
(A1, A2yeosAn) = (A, A5, AL)
(by,...,br) = (b],...,b]).

7



Remark: Since both ¢(z) and ¢*(x) are piecewise linear functions, we only need finite
number of points such that the two are equal at those points. The following proof
shows that.

Proof. ¢*'(z) has the same jumping points as ¢'(z) has. Suppose

max(l/)\l, 1/)\2,..., 1/)\L> )\1, )\2,...,)\[/) :)\L,
max(1/X5, 1/X5, ..., /X5, A5 A5, .. 08) = 1/,

(4.14)
Which imply A\p = 1/}, Let
FO) = A+ A4 40K

Let x > Ap and y lies in the range between the second largest jumping point and Aj.
Then by the formulas (4.6)—(4.8), we have

q(z) = be(2f(N) + 1) + bAF

gx) = bz@fN) + 1)+ D> BN =2+ BAS (4.15)
a(y) = bily + DAL + fF(\)

) = S by £ 1)+ 5 bAF 4 by + DK + F(A) -
=1 ; =1 4.16
= y+ 2 N+ boy(AF — f(Ar) — 1) +brf(AL)

I=1
(4.15)-(4.16) gives
() —q(y) =z —y +bry(Af — fF(Ar) = 1) =brf(Ar) (4.17)
Now consider using \*’s and for = > 1/A] we get
¢'(z) =z + ) AN (4.18)
For \} <y < 1/A}, we have

qi(y) = bi(y + D) +1)

L L
*(y) = bily+L(fON) + 1)+ biy2fO) +1) + XA~
L= =2 (4.19)
= y—=>biyf(\}) + l;bWK +b1(f(A\]) +1)
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(4.18)-(4.19) gives
¢ (x) = ¢ (y) =2 —y+ bjyf(A]) = b5 (f(A]) +1 =A%) (4.20)
q(x) —aly) = ¢"(x) — ¢"(y) gives
br(f(Ar) — M +1) = b f(A)) (4.21)

brf(Ar) = bi(f(A]) +1 = AT") (4.22)

Now suppose both x and y are between the maximum and the second maximum values
of A\, 1/, then

q(x) —q(y) =z —y —br(y — 2)(f(Ar) = M +1)

¢ (r) —q"(y) = v —y — bj(x — y) f(A])

which gives

bi(f(A) = AL +1) = =01 f(A) (4.23)
(4.21) and (4.23) can not be true simultaneously. So A = 1/A] can not be true, so
A} = Ar. And by, = b} is obvious.
Now Suppose
N=A,b=0b,l=k+1,...,L
then
q(x)=q/(x), l=k+1,...,L
Suppose 1/ p < A\, where Ay, is the L—k largest among 1/A\y, 1/Xo, ..., 1/Ap, A1, Ao, ...
Ar and 1/A7 > Af where 1/} is the L—Fk largest among 1/}, 1/X5, ..., 1/X5, A5, A5, ...
5. So A\, = 1/A;.
Suppose x > max(\;, 1/\), [ =1,...,k then

Zblx 2f(\) + 1) +Zbl)\K+ Z e

I=k+1
For 1/\; <y < A,
k—1 k—1 L
qly) = Z biy(2f(N) +1) + Z DA+ be(y + DO + fF(A) + l_%l a(y)
L

= E biy(2f(A) +1) + Z DS+ by + DO + ) + 22 aly)
_bky(Qf(/\k) +1) - bk)\K
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(2) —aly) = (@) lilbly@fmm)
© Y (@) — al) — by + DOE + F(0))

I=k+1
Foey(2f (k) + 1) + b A
Suppose x > max(A, 1/A7), I =1,...,k then

k

L
Zbix 21 () + +Zb*A*K+ > g(@)

I=k+1
For 1/\; <y < Aj,

Iy = bZ(y+1)(f(X;;)+1)+l§bzky(2f(k*)+1) SSUPTE )

= SR + 1)+ NS~ Bl ) + _i W)
RPN 1 N )

k

C@-aW) = @D NI D+ S (6~ 6 0) + s )
FHFOG) + 1= X

From g(a) ~ a(s) = ¢"(+) — () and 3= 0(2F(h) + 1) = 3B 2() + 1), we get
Bu(FO) = M+ 1) = B f () (4.24)

=bef () = Bp(fF(AR) = A + 1) (4.25)

These two equations can not be true simultaneously. So A\, = A}, by = bj.. So by induc-
tion, we have all \; = A/, b, = bj. Therefore ¢(z) uniquely determines all parameters.
O

Let ¢(x) evaluate at x1, za, ..., x,, such that ¢(x), ¢(x2), ..., q(x,,) uniquely deter-
mine all parameters. This can be done as long as there are at least two points between
every two adjacent jumping points.

Now suppose that q(x1),q(z2),...,q(z,,) are estimates of q(z1),q(x2),...,q(xm),
then

a

(Z]\(xl)> 2.7\(902)7 ) Z]\(me)) _5> (Q<m1)a Q($2)a ] Q(xm)) (426)

where q(z) defined by (3.12). By (4.26), we have the following theorem.
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Theorem 4.7 The solution of

L ~ g ~~ ~~ ~~
S (AE 2y 4 max(bAS " ay BAE) + -+ max(AK 21, AR Y 4 BAE) = Glay)
=1
L ~ g ~~ ~~ ~~
S (A mg—i—max(bl)\ Vg, ) + -+ max(bAK 20, AR Y 4 BAE) = Glan)
=1

L ~ g ~~ ~~ ~~

S (AE 2 + max(OAE " 2, BAE) + -+ 4+ max(BAK 2, A + 5AE) = Glam)

-~
Il
—

converges almost surely to the true parameter values.
The following is a corollary of Theorem 3.5.

Corollary 4.8

i Ki+Ko+1
Vn(q—q) — N(0,0(X + Z (Wi + W[ })O"),
k=1

where N
6(1’1) Q(Il) u_i 0 0
am | ™ | o |0 B
Z]\(xm) Q(xm) 0 0 z_z

where

P = PI'(Yi < 1 ng < ;UZ) Wi = PI‘(Yi < 1 }/2 < min(x,-,xj)), Oij = Mij — Hifly,
wl =Pr(Yy < 1,Ys <y, Yigg < 1, Yoy <a5) — fafty, fii = .

As long as x is not a jumping point, and we view ¢(z) as a function of all b; and
A;, then ¢(z) has all continuous first order partial derivatives in a neighborhood of

bi,...,br, A1,..., Ar. So we can construct the transformation Jacobian matrix J. And

we have the following theorem.

Theorem 4.9
Vi H b v rems TS e wiper )

where b= (by,....br), A= (1,..., ), b= (b1,....00), A= A1y, AL).
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4.2 Asymmetric geometric parameter structure model

In this section we study asymmetric geometric parameter structure model,
k)t (k)—
al,k,d = bld)‘l(d)+¢§d) s k’ = —Kl, e ,KQ (427)

for each [. Here a;oq = byg.

Note: the informal note by Smith and Weissman (1997) had a general form.

4.2.1 Case L=1

When L =1, the parameter structure becomes
arg = b AP oM~ k=—-K,, ... Ky, d=1,... D, (4.28)

By the definition of ¢(x) in (3.2) when D = 1 we have
q(x) = b2z + max(bA®2 71z, bAR2) + - .. + max(bAz, bA?) + max(bx, b))

+ max(béz, b) + max(bg?z, bg) + - - - + max(bpKiz, bpFi-1) 4 ok (429)
When x; < 1/¢, 27 < A,
q(z1) = oAy + 1. (4.30)
When 1/¢ < x5 < A,
q(2) = DN 2wy + (N2 - NE271 o XY b (4 -+ 05 + 0™ (4.31)
When A < 25 < 1/¢,
q(m2) = blaa( A2+ N o D+ (1 + -+ 9™ (4.32)
When x3 > A\, z3 > 1/¢,
q(xs) = w3 + bp™*. (4.33)

Note: parameters either satisfy (4.30), (4.31), and (4.33) or (4.30), (4.32) and (4.33).
Consider now (4.30), (4.31), and (4.33). From (4.30) and (4.33), we have
)\KQ — q<x1) -1 K1
1(g(xs) — 3)
Subtract 1 = (A2 + X2t oo 4 1+ ¢+ -+ + ¢'1) from (4.31) and substitute A2

with %(ﬁm, we have

M = za(a(@y) ~ 1) Ky Ty — K1 K _
Pt o s U G R GRS A R
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or equivalently

z2(q(z1) — 1) — 21(q(x2) — 1) + 2271(g(73) — 73)
r1(q(z3) — 73)

P4 (r— D)6+ 9K —1=0  (434)

There are multiple solutions for this equation. To overcome this problem, we need to

introduce additional points such that all parameters can be uniquely determined.
Suppose ] < 1 < min(1/¢,\) < 2§ < xy < max(l/¢,\) < 2§ < x3, and

q(zh), q(z1), q(xh), q(z2), q(a}), q(x3) are known, then we can have the following

three lines:

q(wy) — Q(xﬁ)x i r1g9(zy) — 2hq(x1)

L1 Y= ; ;
T — T} T — )
Ly y= 1#2) — (@) -, zaq(zh) — 7q(z))
' Ty — T To — Th
by ) el wsaleh) - Pt
’ T3 — T T3 — T4

The intercept points of Ly and Lo, Ly and L3z determine the values of é and \. What
we need is to distinguish the values of ¢ and A from the jumping points of ¢’(x), i.e. the
intercept points. By solving the intercept points, we then get b, A\, ¢ each is a function
of (¢(z), q(x1), q(z}), q(x2), q(2%), q(x3)) and hence can calculate the transformation
Jacobian matrix.

Now suppose ¢(z) satisfies (4.30), (4.31), and (4.33) while ¢*(z) satisfies (4.30),
(4.32), and (4.33). Then ¢* = 1/X\, \* = 1/¢. And b*¢*Fr = bp™r) b* XKz = pAK2
imply (A@)%2 = (A¢)®%1 which implies K, = K;. Thus if K, # K, there are no such
q(z) and ¢*(x). Assume K; = Ky = K, then we have

bWz Al XA 1)+ (149" 4 -+ ¢t

So
DA®2 £ b(p+ -+ + ¢™1) = DN 4 (A2 N A 4 D)
and
b L N N+ 5 =0 (L 9"+ ™)
we have
b(o+-+ ™) =" (Wt Xl A 4]
and

DO A2 N =0 (L4 o 4
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From these two equations we have

LR B
1-¢ 1-¢*

A—\EK1+L T 1)Ky
1-X 1—A*

Substitute ¢* = 1/, A* = 1/¢ in the above equation, we get

¢—¢" AN
1—¢K  1-)\K

Let
T xt

1=t

/(@)

then (1) . .
/ (t— ot — ot 4
f (‘r) - (1 o .%‘t)Q

By induction we can prove f’(x) > 0 for ¢t > 1, so f(x) is strictly increasing. Therefore
A = ¢. So if the model follows (4.30), (4.31) and (4.33), then the values of ¢ and \ will
not satisfy (4.30), (4.32) and (4.33), or vice versa.

Summarize all the arguments we have a theorem in this subsection.

Theorem 4.10 Under (4.28), when x| < x1 < min(1/¢, \) < 2 < x5 < max(1/¢,\) <

oy < xg, and q(z}), q(x1), q(), q(z2), q(a}), q(xs) are known, then (4.30)-(4.33)
uniquely determine all parameters.

We have the following corollary.

Corollary 4.11 When replace q(z}), q(z1), q(x}), q(z2), q(z%), q(xs) in (4.30)-
(4.33) by q(x}), q(x1), q(25), q(xs), q(z5), q(x3) and denote the solutions by b, A, o,
then

(b, X, &) =5 (b, A, ¢) (4.35)

as n — oQ.

Proof. Since

a.s.

(E]\(ﬁi)a q(z1), c?(x’z), q(z2), qA(xé)7 q(z3)) — (Q(ﬁi), q(xy), Q(xlz); q(x2), Q(J/‘é), q(x3))

and the uniqueness of solutions of (4.30)-(4.33) by Theorem 4.10, (4.35) is true, and
so the proof is completed. O

By following Corollary 4.8 and the arguments followed, the following theorem tells
the limit joint distribution of (/b\, //\\, g/b\) after suitably normalized tends to a multivariate

normal distribution.
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Theorem 4.12 Suppose x] < 1 < min(1/¢, \) < ) < xo < max(1/¢,\) < 2} < z3,

then "
b b Ki+Kao+1
Va( X = [A]) -5 N, JeE+ Y Wi+ WiHe'T)
) [0) k=1

where Wy, 3, O are defined in Corollary 4.8 with m = 6 and the elements of J are

_ _0b __ _0A _ _0¢ A
Jlj—m, JQJ'—W, JU—W,,]_L-'-vG'

Proof. By the same arguments in Theorem 2.6 and 2.7. O

4.2.2 Case L >1

We consider D = 1 in this subsection. Define

q(x) = bl)\ZKQ:U + max(bl)\lK"’_lm, bl/\lKQ) + -+ max(b Nz, A7) + max (b, b ;)
+ max(bigyz, by) + max(bydiz, bydy) + - - + max (b z, b ) + by

(4.36)
then

q(z) = q(@) + @2(x) + -+ - + qu(x). (4.37)
Without loss of generality, we assume Ay < Ay < --- < Az. Since ¢(x) is a piecewise lin-
ear function of x, the jumping points of ¢'(z) are 1/¢1, 1/¢a,..., 1/dr, A1, A2, ..., AL
We assume all these points are different.

Suppose now

¢ (x) = q(@) + g3(x) + - - + qz(2) (4.38)
where ¢(z) = ¢*(x) all z and

gf (x) = oA+ max (b2, b)Y 4 - max (b Afa, bEAF?) 4+ max(bix, bEAT)
* K1

Tk ) 4.39
+ max(b; ¢fz, b} ) + max(b; ¢i2z, by ¢F) + - - - + max(b} ¢z, b oy ) + by (4.39)

Then ¢*(x) has the same jumping points as ¢’(x) has. With out loss of generality we

can assume

max(l/gbl, 1/¢2,..., 1/¢L7 /\17 )\2,...,)\[1) :/\L, (440)

or

max(l/(bl, 1/@52,..., 1/¢L7 )\1, AQ,...,)\L) = 1/¢1, (441)

since the order in index [ does not matter in the M4 process. We need to show that

(4.37) and (4.38) agree with each other. We state this as the following lemma.
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Lemma 4.13 If q(z) = q*(x) all x, then

(1/¢1a 1/¢27---7 1/¢La /\17 )\27~-'a)\L):(1/¢>{7 1/¢;7"‘7 1/¢27 X{’ /\377)\2)
(4.42)

is true for L = 2.

We leave the proof in the proofs section of this chapter. There are possibilities that
this lemma can be generalized to case L > 2. But we will restrict our discussion in
case L = 2 in this subsection.

Now let ] < 21 < o), < 29 < 2% < 23 < &)y < x4 < x5 < x5 and there is one
jumping point that belongs to (x}, z;11), ¢ = 1,2,3,4. Let g(z;) be the estimation
of ¢q(z;), and b = (31, /52)’, A= (Xl, /):2),, (75 = (c;Aﬁl, ggg)’ be estimations of b =
(b1, b2)', A= (A1, Xo), @ = (é1, ¢2) respectively. Then the following theorem follows

immediately.
Theorem 4.14 (b, X/,a) L5, N, @) asn — oc.

Suppose J is the transformation Jacobian matrix, then the following theorem follows

by the arguments before Theorem 4.9 and Theorem 4.14.

Theorem 4.15

B b Ki+Ka+1
V([ X = [A]) -5 N Jes+ Y (Wi + WHe'T)
o ol k=1

where Wy, 3, © are defined in Corollary 4.8 with m = 10.

4.3 Monotone parameter structure model
In this section we study monotone parameter structure model, i.e.
Qi — b_Kl)\;H—Kl, k= —K17 c. ,KQ (443)

for each [.

Note: this is a special asymmetric form.
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4.3.1 Case L =1

We have
agg = b)Y k=K. Ky, d=1,...,D (4.44)
Since ZkK:Q—Kl Qg = bd kKZQ—Kl )\];+K1 = ]_, bd = W
k=—K1 7d

Let 7 =(0,0,...,74,0,...,0), then by (1.25) we have

maxy MaxXy QpgTqg  Maxy bd)\ZJrKl T4  Iax )\Z+K1
6(7‘): Z = el = K, :Qd
§ NaXy ArdTq Zk biNg "' Ta Zk Ad

which immediately implies

0, = max bd)\ZJrKl = MAX ayg- (4.45)

This tells that we can either from the estimation of maxy arg to get the estimation of
04 or vice versa. Especially, if Ay < 1, then 0; = by; if Ay > 1, then 05 = by, where
K = K| + K5 and hereafter.
we have

2 k_ 1
1—|—)\d+)\d+---—l—)\d=b—. (4.46)

d
Let f(t)=1+t+---+t5 then f/(t) =1+2t+ - -+ Kt5¥1 >0, for t > 0. So f(¢t) is
strictly increasing and Ay is uniquely determined by Ay = f 4(%). And so we have a

corollary.

Corollary 4.16 Under the parameter structure (4.44), we have
1

b
By the definition of ¢(x) in (3.2) when D = 1 we have

Qd:mgxakd, )\d:f_l( dzl,,D
q(z) = b+ max(bx, bA) + - - - + max(bA™ ", bAT) + bA K 1. (4.47)
When z > A,

g(x) =b+br+bAx+ -+ WA Tr+ N r =b+ 2. (4.43)

So b=q(z) —x and A = f~1(=——). When ¢(z) is replaced by g(z), we then have

q(z)—=
1

b=Ggx) -2, A= fH(—u—

). (4.49)

Since §(z) “* g(z) and mapping J ' o h is continuous, where h(q) = -1, s0 b =5 b,

X %% X, We have the following corollary which immediately follows Corollary 3.4.

87



Corollary 4.17 When z > X, we have /(b — b) — N(0,2202).

. _ —1H(K+DNE K K+ : :
Since b = #};\H, SO % = 1K (1+_ ;K )2 = 0. Then a corollary immediately

follows.
Corollary 4.18 When z > \, we have \/n(\ — \) —— N(0, 220252).

In order to obtain asymptotic properties of (/b\, /):), we consider 1 < A and x5 > A\. We

have
q(r1) = 1+ b\ 2y, q(ws) = 22 +b. (4.50)

dq(x1) g (a1
ob O\

So the transformation Jacobian matrix is

K K-1

~—

Og(zz) _ | Oalzs)
Ob T 0N

= 2, = b NS gy, =0. (4.51)

1 0

We then have the following theorem.

Theorem 4.19 Suppose v1 < A < xo, then

Ki+Ko+1

bl b _ ey ( -1y
\/ﬁ([ ] - N ) SN JTOE+ Y W+ W He(JY)
k=1
where ©, X, W, are defined as in Corollary 4.4.

4.3.2 Case L >1

As usual we consider D = 1 only. Define
q(x) = by + max(byx, b)) + - - + max(bl)\lK_lx, bAS) + DA T (4.53)

then
q(z) = qu(z) + @(x) + - + qr(2).

Without loss of generality, we assume \; < Ay < --- < Ap as change points. Let

FO,N) =b+bA+ -+ DA

L
where Y f(b, \) = 1.
i=1
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When z > A,
q(z) = b+ f(b, \)x

When x < A,
a(z) = f(br, \) + oAz

Lemma 4.20 If q(z) = q*(x) all z, then
(A1, Aoy An) = (A, A5, .. AT)
(by,...,br) = (b7,...,b])
Proof. Suppose now xy, x), 2, &, ...,Tr, 7, x4 satisfy

Ty< T <M <Ty << A< <z <xp <A <Tpy

q(@) = 1+ 2] (0N + 0N+ 4 b AE)
q(r1)) = 14z (0ANE + 0N+ 4 b AE)

L
q(l’z) = Z f(bl, )\l) + l’g(bg)\g{ + -+ bL/\f) + bl + f(bh )\1)ZE2
=2
= 1= f(b, M) + 2a(DiAf + b2 AS + - + DAL ) — b AT + by + f(by, M)

¢*(x)) = 14+ 2O+ 05 + - + b5 L)
¢ (x1) = 1+az1(DIA +03AF + - + b7 AL)

L
¢*(x2) = 3 (0, M)+ 22(b3A5 4+ DLAL) + b7 + f(0], Ar)ae
=2
= 1= f(0}, M) + 22(DIAT + B3NS + -+ DLAL) — 2ab AT + 0] + f (0], Ar)e
From q(z1) — q(2}) = ¢*(21) — ¢*(«}) we have
DA b b A =N A
From ¢(z2) — q(21) = ¢*(z2) — ¢*(x1) we have
bi+ f(br, A1) = by + (b7, A1)
51/\{( - f(bh /\1) = b*{)\{{ - f(b? )\1)

Which give b, = 0.
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Suppose when | = k& we have
by =b7, ...,bp =10y.

Let )\k <z < )‘k+1

K L
=Y b+ b A)z) + > (b M) + bidfe)
=1 I=k+1

k L

q'(x) =D (0 + 0 A)w) + 3 (0, 2) + i)

=1 I=kt1

Which imply
D1 iy + o+ DAL

When >\k+1 <z < )\k+2

L

k
q(x) = Z(bz + (b, \)x) + bry1 + f (g1, Ap1) + Z (f(bi, \i) + biAE D)
=1 I=kt2
k L
¢ (z) = Z(bZk + f(0, M)x) + by + [ (Ogrs A1)z + Z (F(b7, M) + A )

!
Which imply

1 l=k+2

L L
b1 + Z fbr, \) = bigy + Z AR

I=k+2 I=k+2
by — f(brr1, Aes1) = gy — f (D15 Akr1)
which imply
be1 = bpyy

so by induction all b; = b;. a

Let q(x;) be the estimation of ¢(z;), and b = (/b\l, br) A= (/):1, . .XL)’, é =
(¢1,...01) be estimations of b = (by,...br), A = (A,...AL), @ = (b1,...61)

respectively. Then the following theorem follows immediately.
Theorem 4.21 (b, X ¢) (b, X, ¢') asn — oc.

The transformation Jacobian matrix J can be easily calculated. And a theorem then

follows.
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Theorem 4.22

b b K14+Ka+1
Va(|[X] = |A]) S N JeE+ Y Wi+ WihHe')
o o} k=1

where Wy, 3, © s defined in Corollary 4.8 with m = L + 1.

4.4 Proof of Lemma 4.13

Suppose we have x1, o, T3, T4, T5 satisfy
l’l<j1<l‘2<j2<l’3<j3<x4<j4<l’5 (454)

where j1, 72, Jj3, J4 are jumping points.

Since the order in index [ does not matter, we assume that \; < Ay if one of \;
and A, is the biggest number among all jumping points and that 1/¢, < 1/¢; if one of
1/¢1 and 1/¢, is the biggest number among all jumping points.

When A\y=max(A;, A2, 1/¢1, 1/¢2) we have the following six possible combinations:

.1 1
A ¢11<)\1<¢12<)\2
As : %<)‘1<E<)‘2
A3I i<é<)\1</\2
A4Z é<ﬁ<)\1<)\2

. 1 _ 1
As : )\1<¢11<¢12<)\2
Ao o M < g < g0 <A

When 1/¢1=max(A\;, A2, 1/¢1, 1/¢2) we have the following six possible combinations:

@12)\1<)\2<é<é
o, : )\2<>\1<é<ﬁ
b )\1<é<)\2<é
@41)\2<$</\1<$
®5ié<)\1<>\2<é

.1 1
cI>6.¢)2<)\2<)\1<¢1

The notation A} in this section means

AT ! AT A5

and similarly for other notations if used.
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When A; is satisfied, we have
ZL‘1<]./§Z51<ZL‘2<)\1<I’3<1/¢2<I’4<)\2<$5

which gives

balM g+ (A X g ) (o 4 619 4 619

ql(:vl) b /\ Ty + 1
@ (z2) = by [/\’%2 + M MR N (- 4 08 o
@1 (z3) = 23+ by
q1(z4) = 24 + blﬁb{(l
@1 (z5) = 5+ by
QQ(J]1> = bg/\£(2131 + 1
QQ<$2) = bg)\é(sz + 1
q2(1’3) b /\ xT3 + 1
(z4) =
(z5)

When A, is satisfied, we have
.fCl<1/¢2<SL’2<)\1<I3<1/(]§1<$4<)\2<I‘5

which gives

ql(l’l) = bl/\{ﬁl’l +1

ql(ilfg) b /\K2332 + 1

q(z3) = bi[es N+ M o D) (T 4+ )]

q1(74) = 24 + b1¢{(1

¢ (75) = 25 + 1o

QQ<$1) b )\szl + 1

G2(2) = ba[A52xg + (NS + A2 4 Na) F oo + -+ D5 t) + 95
Go(3) = bo[ N2 25 + (NEC +A§2‘1+---+A2)+x3(¢2+ P )+¢ 1
@ (z4) = bz[)\K2$4 (A AT ) F (B e A PR 4 ]
@ (r5) = 5 + b2¢§1

When Aj is satisfied, we have

ZL‘1<1/¢1<ZL‘2<1/¢2<£L‘3<>\1<.’E4<)\2<1’5
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which gives

ql(xl) b )\ T+ 1

q(x2) = by [)\K2x2 + (AR AT

¢ (23) = by [MN2as + (M2 + )\K2 LR
¢i1(xy) =24 + 51¢K1

1 (z5) = x5 4 b1g!

QQ<(L'1> b )\K2$1 + 1

q@2(x2) = b /\K2x2 +1

q2<$3> by [)\K2CL‘3 + ()\K2 )\Kz—l + ...
Ga(4) = bo[ A2y + (NS + )\K2 Ty

Q@ (r5) = 25 + bzﬁb;{l

When A, is satisfied, we have

l’l<1/(Z)2<SE2<1/¢1<SE3<)\1<$4<)\2<£E5

which gives

ql(l’l) = bl)\{(le +1

@1 (22) = b A2y + 1

ql(ﬁfg) = bl[)\{(Ql'g + ()\{{2 + )\{{2_1 + -
¢1(24) = 14 + b1

q1(z5) = 5 + b1¢{<l

QQ<I'1) b /\ r| + 1

@2(22) = by W%Z + (A7 AT
qz(xg) by [)\K2$3+()\K2 /\Kz 1+...
q2(x4) bg[)\KQQM + ()\K2 + )\5{271 +
@2(x5) = x5 + b}

When Aj is satisfied, we have

.1'1<)\1<l’2<1/¢1<$3<1/¢2<$4<)\2<3§'5

which gives

q(xy) = b A 2e +1

ql<5(]2) b [C(]Q()\K2 + )\K2 ! + -+ 1) -+
qi(r3) = 23 + b1¢{(1

¢1(74) = 24 + b1}

¢ (r5) = 5 + b1¢{<l

QQ<C(71) = b2/\§21'1 + 1

Ga(2) = Do AS2my + 1

QQ<CL’3) b /\K21'3 —|— 1

q2(33'4) b [)\K21'4 + ()\K2 + )\5{2_1 +
G2(75) = @5 + oy
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1) + (b{{l

) +

DR

1)+¢§1
)+ by
1)+¢§1

DR

- S
M=

]

2]

']

']



When Ag is satisfied, we have

which gives

ZL‘1<)\1<I’2<1/¢2<1’3<1/¢1<I’4<)\2<l’5

=b /\K2ZE1 +1
= by[ra (A + AT 4
= by[zg(M2 4 N7 L

=b )\2 Ty + 1
= by[\2a5 + (A2 +
= ba[AS %2y + (A2 + )\K2 -

AKQ*l

When @, is satisfied, we have

which gives

+
+

1)+
1)+

'+/\2)+JI3
'+)\2)+.’L'4

(I+¢1+---
(I+¢1+---

+ o
+ ot

(o + -+ +
(¢2_|_...

Yl

)]

¢y ')+
+5') +

.fCl<)\1<I2<)\2<.’L‘3<1/¢2<$4<1/¢1<I‘5

1(1’1):b>\ $1+1

1(.2?2) = bl[ ()\K2 )\Kz_l + -
1(x3) = bi[r3(A2 + )\{(Tl +
1(20) = ba[a (A2 + A2 4
1(25) = x5+ bigy!

2([[’1) b )\K x|+ 1

2(1‘2) b /\K To + 1

2([173) b [[IZ’g()\KQ + )\K2 ! + -
o(24) = T4 + bagpy !

o(25) = 25 + b2¢§1

When &, is satisfied, we have

+1) +
1)+
+1) +

+1) +

1+ 4
I+ 4
1+ 4

(1+ ot

+ 1)

+ 03]

ZL‘1<>\2<(L’2<>\1<l’3<1/¢2<1’4<1/¢1<l‘5
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which gives

ql(l’l) = bl)\{{Ql’l +1

ql(ZL‘Q) = blA{Ql‘Q +1

ql(l'g) = b [ ()\K2 )\K2_1 + -
q1(z4) = bi[za(A\[? + AK2 L
@1 (ws) = @5 + by

QQ(ZL'l) = b2>\§2$1 + 1

Go () = bo[xa (A2 + N2 .-
¢a(23) = ba[z3(A” + AK? IR
G2(T4) = T4 + bnggl

When @5 is satisfied, we have

which gives

+1) +
+1) +

+1) +
+1) +

(I+¢1+---
(T+ ¢+

(I+¢op+---
(1+¢at--

+ ¢K1)]
+ o1

+ 03]
)

l’l<)\1<l’2<1/¢2<$3<)\2<$4<1/¢1<£IZ’5

nOf

b [AK%;g + (A2 ey

When @, is satisfied, we have

which gives

o Ag) +x3(Pr 4 -

L+ ¢n+ -+ o))
EARRERL )
L+ ¢+ + 1)

+65) + ¢y

.1'1<)\2<£C2<1/¢2<£C3<)\1<$4<1/¢1<3§'5

q1(z1) = by Mg 41

ql(l‘g) b /\K To + 1

q1(x3) = by )\K x5+ 1

01(x1) = byfea (N 4 AT
qi(z5) = x5 + bl¢{<1

QQ(lL‘l) = bg/\§2l'1 +1

q2(x2) = by [l’g()\KQ + )\K2 L.
@2(x3) = T3 + b

Q(r4) = x4 + b2¢§1

@2(x5) = o5 + b}

1)+
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When &5 is satisfied, we have
ZL‘l<1/¢2<l‘2<)\1<I’3<)\2<Jf4<1/¢1<$5

which gives

ql<l'1> b )\ I + 1
ql(LUg) b /\KQLUQ -+ 1
q(zs) = bifes N+ M o L D) (L4 4+ )]
q1(x4) = byfwa(A[2 + W 1+ D+ A4 g+ + o)
¢ (r5) = x5 + blﬁb{(l
QQ(Il) b /\ T + 1
go(22) = by [A% + A2 2T ) (B 4 0N 4 ]
@o(23) = ba[ N2y + (A2 4 AK2 1 -+/\2) + 25(dg + - - -+ H5Y) + 651
Q2(xy) = x4 + bz¢§1
G2(25) = T5 + by
When @4 is satisfied, we have
x1<1/q§2<x2<)\2<x3<)\1<x4<1/¢1<x5
which gives
ql(ﬂfl) = b1>\1 2371 -+ 1
ql(I'Q) = bl/\l 21’2 + 1
ql(ﬂfg) = bl>\1 233'3 + 1
gi(z) = bifwa(A\ 2+ AT+ D)+ (T + ¢+ 4 61
¢ (z5) = x5 + bl(b{{l
QQ<(L'1> b )\K2£L‘1 + 1
@(x2) = bo[ M2y + (N2 1 N1 ) 2o (g + - - - + H51) + 9B
2 (x3) = T3 + batpy "
¢2(xy) = g + b2¢§1
@a(x5) = x5 + by
We need to show that if
q(z) = ¢"(x)
for all z then
(1/¢17 1/¢27 >\17 )‘27) = (1/¢>{7 1/¢;7 AT? A;) (455)

where ¢(z) corresponds to (1/¢1, 1/¢2, A1, Aa, ), while ¢*(x) corresponds to (1/¢3, 1/¢%,
A5, A%). In other words we need to show every combination from all combinations A;

and A7, A; and @7, ®; and ®7 results in a contradiction or an impossible result. The
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total combinations are C§ 46 x 6 + C§ = 15+ 36 4 15 = 66. We start from A; and A3,
then ®; and @7, and finally A; and ®7.

For all combinations we have
q(z1) = ¢*(21) = DA 4 b AN = N s (4.56)

q(z5) = ¢*(25) = biol" + byt = bt + by (4.57)

Case A; and Aj: From ¢(x3) = ¢*(z3), we get

2
SN £ (L - )] = bAS® 4 1,
=1

2
Sobe N A )] = bigf”
1=1
But this is not possible since the LHS is less than 1, while the RHS is greater than 1.
Case A; and Aj: Use the same arguments as in Case A; and Aj.
Case A; and Aj: Use the same arguments as in Case Ay and Aj3.
Case A; and Af: From ¢(z3) = ¢*(z2), we get

2

SOOI 4+ A O = B (L4 e+ 6 +

=1
which is not possible for the same reason as in the Case A; and Aj.

Case A; and A§: Use the same arguments as in Case A; and Af.
Case Ay and Aj: We have

P2 = ¢], A\ = & o1 = ;*7 = A3 (4.58)

From ¢(z2) = ¢"(22), we get
ba(¢o + -+ 5 ") = bi(¢] + -+ o) (4.59)
bo(AB2 - AR e N) F bant = DN AR ) it (4.60)

From (4.58) and (4.59) we get by = bj. And from (4.60) we get Ao = A}, which is a
contradiction to A7 < A3.

Case Ay and Aj: We have

1

1
¢2:¢;7 )‘1:_*7 Qﬁl:Fv )‘2:)\;
1 1
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From q(zz) = ¢"(22), we get
ba( A5 + A0 b ) baght = B3NS+ AT D) + Dy

which implies by = b3, and ¢2(z) = ¢5(x). So q1(x) = ¢} () which can be viewed as a
case of L = 1 which has been shown to have uniqueness and it required A\; = ¢;.
Case A, and A;: We have

1 1

¢1:¢;7 )\IZQS_T’ ¢2:/\_T7 >\2:/\§

From ¢(z2) = ¢"(22), we get
ba(d + -+ ¢3") = by(5 + - + 93"
bo(AK2 1 AT ) bR = bR - N2 ) b
From ¢(z4) = ¢"(4), we get
boAs? 4 ba(¢g + -+ + 05 1) = U502 + b3(05 + - + 5™)

So by = bl and ¢o = @5 = ¢1, which is a contradiction to ¢; # ¢s.
Case Ay and A§: From ¢(z2) = ¢*(22), we get

by(AS2 + A2 o Ag) + bagph

4.61
= (L4 ) F b AT ) b (4.61)

From ¢(z3) = ¢"(x3), we get
bi(l+ @1+ + ¢ ) + b (A2 A2 )y (4.62)

= 0i(L+ 07+ 07T F B A AT 4+ A
By subtracting (4.62) from (4.61) we get
Dior " + 0305 = bagyt = ba(1+ G-+ 0

which is not possible because of (4.57).
Case A3 and Aj: We have

O1= @5, P2 =1, M1 = A, Ao = A5,
From q(x3) = ¢*(x2), we get
by + -+ ¢1h) =b3(d5 + -+ + ¢3")
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b NPT ) b =BG AT e AG) o+ bag ™

which imply Ay = A5 = A\y. But this is a contradiction to A\; < As.
Case A3 and A}: From ¢(z3) = ¢*(x3), then follow the same arguments in A; and Aj.
Case A3 and Aj: We have

1 1
o1 = e P2 = d3, A=, A=A (4.63)
1 1
From ¢(z2) = ¢"(x2), we get
bi(pp 4+ i) =N 4 kD) (4.64)
by (M2 N e A F bl = (1 B A ) (4.65)

From g(z3) = ¢"(x3), we get

b1(¢1+-~~+¢{“)+b2(¢2+~~+¢K1)

Ky o KL 4.66
=bi (AT 1) 030 4+ B3 (4.66)

L R P AL o i MRS

4.67
S G ) 4 B0 g ey ()

(4.63), (4.64), (4.66) imply by = b3, so g2(z) = ¢5(x). Thus ¢;(z) = ¢} (z) which can be
viewed as Case L = 1.

Case Ay and A}: From ¢(z3) = ¢*(x3), then follow the same arguments in A; and Aj.
Case Ay and Af: We have

1 1
=—, A=A

Qb ¢27 ¢2 )\*a *

From ¢(z4) = q"(24), we get
by(A3? + A7 e ) = B (A A ST 4 )

ba(57 + @3 e o) = U303 + 03T 4 4 6))

which imply by = b} and ¢o = ¢35 = ¢1, which is a contradiction to ¢ # ¢s.
Case A5 and Aj: From ¢(z3) = ¢*(x3), then follow the same arguments in A; and Aj.
Case ¢; and ®3: We have

AL =A%, Aa = AL, 1 =@, g2 = oy
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From g(r2) = ¢" (a), we get

by (AT AT

+1) = by AR

bi(L+ g+ 4 o) = by(1+ @5 + - + 65

+1)

which imply b; = b3, ¢1 = ¢35 = ¢2. But this is a contradiction to ¢ < ¢s.

Case ®; and ®3: We have

)\1 = )\T, )\2 = ]./Qb;, le = ¢>{a gb? = 1/)‘;

From ¢(z2) = ¢"(x2), we get

by (AT AT

+1) = b (AT AT

bi(l4 ¢t +r) = b1+ 61+ +61)

+1)

which imply b; = b7, Ay = A7 = Xo. But this is a contradiction to A\; # ..
Case ¢, and ®j: From ¢(z3) = ¢*(x3), we get

bl()\{(2 -+ )\{{2*1 4+ .. 4 1) + b2()\§2 4 )\5(271 ...

which is an impossible result.
Case ®; and ®i: We have

A =1/d3, Ao = A, ¢1 = @1, ¢2=1/A;

From ¢(z2) = ¢"(x2), we get

by (A2 AT

+1) = by(d3 + -+ + ¢5"1)

+ 1) =4

bl ént -4 0r") = b + 257 4 4 A + b

From ¢(z3) = ¢"(x3), we get

biMZT AT R D) (M N

=0i AT D) 0305+ 4 03

bi(l4 ¢+ +or) +ba(l+ o+ + 5

=051+ @+ + ) + oy N ) b

+1)

From (4.69)-(4.72) we get by = b = by. From q(x4) = ¢*(x4), we get

b A 4 AT

+1) =bj(NE AT
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which gives A\; = A} = \. But this is a contradiction to A; # \s.
Case ¢, and ®f: From ¢(z3) = ¢*(x3), we get

M o D b D) =

which is not impossible for the same reason as in the Case A; and Aj.
Case ¢, and ®3: We have

M o=1/¢5 A=A, 1= ¢F, g2 =1/A;
From q(z2) = ¢*(x2), we get
b()\Kz 1+)\K2 2 .._|_1):bT(AIKz—l_i_)\IKQ—z_i_.”_i_l)

bo(l+ o+ +¢p') = Ui(1+ 67+ + 97"

which give by = b} and ¢2 = ¢] = ¢1, which is a contradiction to ¢1 < ¢s.

Case ¢, and @}: From ¢(z3) = ¢*(z3), then follow the same arguments in Case ¢,
and ;.

Case @&, and ®i: We have

)\1 - >\>{7 )\2 1/¢27 ¢1 ¢17 ¢2 1/)\*
From ¢(z4) = ¢"(4), we get
DAL + AT b 1) = B (A AT )

which gives by = b}, so q1(x4) = ¢} (x4) and ga(x4) = ¢5(24). This is a case of L = 1.
Case ¢, and ®f: From ¢(z3) = ¢*(z3), then follow the same arguments in Case ¢4
and @g.

Case ¢3 and ¢}: From ¢(z3) = ¢*(z3), then follow the same arguments in Case ¥,
and .

Case ®3 and ®;: We have

M =1/¢5, Ao =A;, d1 =7, g2 =1/Al.
From ¢(z4) = ¢"(4), we get
biAME+ AT e D) =N AT )
bi(l+r 4 @) = 051+ @]+ 0T
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which give by = b}, A\ = A, ¢2 = 3.
Case ®; and ®f: From g(z3) = ¢*(x3), we get

DiA2 AT o D) oA + b+ o+ 95) = AT 41

which is not possible for the same reason as in the Case A; and Aj3.

Case ¢, and ®:: From ¢(z3) = ¢*(x3), we get
DA 1= b1 + AT e 1) AT 4 bo(g 4o+ 657)

which is not possible because the LHS is greater than 1, but the RHS is less than 1.
Case ¢, and ®5: We have

)\1 = )\T, )\2 = 1/¢;7 ¢l = Qﬁa ¢2 = 1/)\;
From ¢(z4) = ¢"(4), we get
DAL + AT e 1) = B (AT AT )

which gives by = b}, so q1(z4) = ¢;(z4) and hence go(z4) = ¢5(z4). This is the Case
L =1 and hence Ay = A3, ¢o = ¢5.
Case ¢; and @f: From ¢(z3) = ¢*(x3), we get

DA + AT e 1) bAg? F ba(a e 6) = BT
which is not possible for the same reason as in the Case A; and Aj3.

Case A; and ®7: From q(z3) = ¢*(3), we get

SN ) = b AR + 1
I=1
which is not possible for the same reason as in the Case A; and A3.
Case A; and ®3: Just as the case Ay and ®7.
Case A; and ®3: From ¢(z3) = ¢*(23), we get

DEONTR X e D) DN 0505+ 05 = b A 1

which is not possible for the same reason as in the Case A; and Aj.

Case A; and ®: we have
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From g(rs) = q" (a), we get

ot = b3ds"t = byl = bigr™ (4.75)
by A2 = piaiEe = p NK2 = g iR (4.76)
(4.75) and (4.76) give

AT
which results in K7 = K5s.
Suppose now K; = Ky = K, From q(z3) = ¢*(22), we get

bi(dr - 0r) =BT+ 4 1) (4.77)
b AT A F b =051 By ) (4.78)
(4.78) is equivalent to
DM AT ) =L+ s+ s (4.79)
(4.77) and (4.79) give
St el NPT RN T AT T g e

MEAT e g+ TN A T

which implies \; = ¢1, \j = ¢5.

Similarly from ¢(x4) = ¢*(x4), we can get Ay = ¢, A\] = 7.

Summarize the above arguments, we get down to a symmetric case which we have
proved the uniqueness of the parameters.

Case A; and ®;: From q(z3) = ¢*(z3), we get
DT+ AT D) A 3 (05 + -+ 03 ) = oA 4 ]

which is not possible for the same reason as in the Case A; and Aj.

Case A; and ®§: we have

G =03, A=Ay, d2=1/A1, b =1/¢j
From ¢(z2) = ¢"(x2), we get

bi(r+ e+ o1 = by(d5 + -+ 65")
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which implies b; = b5. And so ¢;(z2) = ¢5(22), g2(x2) = ¢{(x2). And this is the case

L=1.

Case Ay and ®7: we have
G1 =5, A =A3, ¢ =1/A], A =1/
From ¢(x9) = ¢*(x2), we get
bo(pg + -+ + o5 = b\ 4 1)
Do(AS2 + AT e b ) bt = b (L + b+ -+ B

From ¢(zs) = ¢"(x3), we get

DM 1) £ ba(e e+ Bh )
=0y AT e ) (AT e )

DL+ @14+ 01 ) + (A2 + A2 4 4 )y)
= Di(1+ @7+ 4 61T F B (14 g5+ 05T

From q(z4) = ¢*(z4), we get
oA + ba(gho + -+ + G5) = b2 N 4

by NPT ) = b1 T

(4.80)

(4.81)

(4.82)

(4.83)

(4.84)

(4.85)

(4.86)

(4.80), (4.81) and (4.83) imply b; = b}, then follow the same arguments as in A; and

o,
Case Ay and ®5: we have
(bl = (b;a AL = )\Ta ¢2 = 1/)\37 Ay = 1/¢T
From ¢(z2) = ¢"(x2), we get
ba(do - 5") =BT+ 4 1)
Da(Np™ + A e h) 20y = D5(1+ 0+ 93)
From ¢(z3) = ¢"(x3), we get

DM 1) bo(e + o+ Bh )
=0y e ) (AT e )
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bi(l+ @14+ 01 ) +bha(A2 + X2 4 4 )
= 0L+ @7+ -+ ™) F (1 + @5+ -+ 5™

From ¢(z4) = ¢"(24), we get
oA + ba(gha + -+ + G5 ) = bR N 41

by NE2 M ) =B (L4 @ 4+ @Y

(4.91)

(4.92)

(4.93)

(4.87), (4.91) and (4.93) imply by = b3. (4.87), (4.88) and (4.90) imply b; = bj. Then

(4.88) and (4.91) imply ¢; = ¢ = ¢3, which is a contradiction to ¢} < ¢j.

Case A, and ®3: we have
¢1=1/X5, M =1/¢;, ¢2 =1/A1, Ay =1/
From ¢(z2) = ¢"(x2), we get
balba -+ 050) = BT 4o 1)
Do(AS2 + AT b ) bt = b (L + b+ -+ 91

From g(rs) = ¢ (as), we get

AT 1) ba(de )
= 0T e ) 0595 - ™)

bl dr oo+ +b(A” + 237 T 4 )
= b1 g1 4+ o) F B AT )

From ¢(x4) = ¢*(x4), we get
bo A2 4 by (g4 - + o5 = (N2 T )

bo( A2 + N ) =0 4 P 4 T

From (4.95) and (4.99), we get

bo A2 = by \;He

From (4.96) and (4.100), we get
bzﬁb;{l = b SKI
From (4.101) and (4.102), we get
A = A gy
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Suppose Ky > Kj, since A\ = Ay = 1, we have Ay = A\j. So Ay = 1/¢,, which
violates the condition 1/¢y < Ay. Similar situation for Ky < K;. So Ky = K.
Suppose now K; = Ky = K, (4.95) and (4.97) give

by M 1) = b+ -+ @5 (4.103)
(4.98) and (4.100) give
b1+ ¢4+ =bsE + X5 1)) (4.104)
(4.103) and (4.104) give

R T SR
L+ 4ot AR+

which implies ¢; = A\ and then ¢5 = 5. (4.96) and (4.99) give

bo( NS+ M o ) =0 (14 @)+ T

ba(go 4o+ 05) = bI(A T 4+ 1)

which imply ¢ = Ay and ¢] = A]. But this is a symmetric case.

Case Ay and ®: we have
¢1 =1/ M =1/¢;, ¢ =1/X3, Ao =1/0; (4.105)
From g(zs) = ¢ (vs), we get
DrALZ + AT o+ 1)+ DA A+ ba(ga + -+ 9F1) = 1+ BiAL?

which is not possible for the same reason as in the Case A; and A3.

Case A, and ®}: we have

$1=1/X5, A= AL, @2 =3, Ao =1/0; (4.106)
From ¢(x9) = ¢*(x2), we get

ba(Go -+ 03 ") = B30 + -+ + 43") (4.107)

ba( A3+ A5 4 Ag) + bady = B5(A AT b ) 5y (4.108)

(4.106) and (4.107) gives by = b5. Then (4.108) gives Ay = A5 which violates condition
Ny < 1/¢7.
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Case Ay and @f: Just as Ay and @}, from ¢(z3) = ¢*(x3), we get
DA + AT b 1) F DAL+ ba(ha + o+ 5 ) =1+ DAL

which is not possible for the same reason as in the Case A; and A3.

Case A3 and ®7: we have
¢1=1/AL, A =1/d;, ¢2 =1/X;5, A = 1/¢; (4.109)
From ¢(z2) = ¢"(x2), we get
bi(dr -+ o) = b (AT 4+ 1) (4.110)

b+ X ) bl = B (14 6+ 01) (4.111)
From q(vs) = ¢*(3), we get

bi(dr+ -+ @1 ) + ba(do + - + ¢5 )

4.112
=T e DT A ) ( )
DAL AT A (AR AT )
* * *Kl 1 * * *Kl 1 (41]‘3)
:b1(1+¢1 R M )+b2(1+¢2 +¢ )
From q(z4) = ¢"(4), we get
bods? + bo(g + -+ ¢5t) = (AT N 1) (4.114)
ba(Ng® + A3 e dg) = 0i(L 4 @)+ -+ 1T (4.115)
From (4.110) and (4.112) we get
ba(pa + -+ at) = by(Ns"> 4 4 1) (4.116)
From (4.113) and (4.115) we get
DN AT ) = 0(L 4 gy e gy T (4.117)
From (4.110), (4.111), (4.114) and (4.115) we get
1
DA+ AT A (L + o 4+ o) = 3 (4.118)
1
DR 4 AT e N (14 @ - 4 b = 5 (4.119)
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b2 AL A by (14 g -+ GFT) =

N~ DN~

by (AS2 - AT e ) A ba(T 4 Gy O =

(4.120)

(4.121)

From (4.120), we know that when Ay, ¢; are given, then b; can be determined. From
(4.120) and (4.110), we determine bj. From (4.115), if additionally As is also given,

then by can be determined. In other words, provided that A\;, ¢;, Ay are known, then

by and by can be determined, even ¢5 can be determined also. But it is not possible

to determine the true values of by and ¢9 based on Ay, ¢, Ay since we can use only

equation (4.121) which has two unknown variables.

Case A3 and ®5: we have
G1=1/X3, M =1/¢3, b2 =1/X], Ay =1/¢]
From ¢(z2) = ¢"(22), we get
bi(gr+ -+ ort) = b (AT 4 1)

(M2 L ML ) 0 R = by (1 o 4+ 33
From g(x3) = q*(z3), we get

bi(pr + -+ @) + ba(do + - + 3"
=T e D) T N )

b + AT 4 M) F B AT )
=D+ o7+ o) 01+ 0f 4+ )

From q(z4) = ¢*(24), we get
b2)\§2 —+ b2(¢2 4+ o0+ ¢§1) — bT(ATKQ + )\IKQ—I 4t 1)

by (A3? + A5 e do) = WL+ 61+ 01T

From (4.126) and (4.128), we get
DA+ AT e M) = b5 (L g+ -+ 5™
From (4.124) and (4.129), we get
bipn” = b305" = badyt = big™
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(4.123)

(4.124)

(4.125)

(4.126)

(4.127)

(4.128)

(4.129)

(4.130)



From (4.123) and (4.125), we get
(o -+ 057) = B 41 1) (4.131)

From (4.127) and (4.131), we get
boAR2 = BIAT? = b A2 = by (4.132)

From (4.130) and (4.132), we get

K * K

1 2
)\ng/\*Kg = KlzKQZK
1 2

Suppose now K; = Ky = K, (4.128) and (4.131) give

D A T B R AL
¢2+...+¢§1 /\’{K2—1_|_..._|_1

which implies Ao = ¢9 and A} = ¢7.
Similarly (4.123) and (4.129) imply A; = ¢; and A\; = ¢5. So the cases here
correspond to symmetric cases.

Case A3 and ®35: we have

¢1=1/AL, A= A5, =3, A= 1/0; (4.133)
From ¢(z2) = ¢"(x2), we get

bu(G1+ o ) = T e ) (4134

DA+ AT b M) gl =B (L 6+ 97 (4.135)
From ¢(z3) = ¢"(x3), we get

bi(dy+ -+ ¢1 1) +ba(do+ - + d3 )

4.136
= BT e D) (0 + e 4 05 (4-136)
by (M2 N ) (A AT ) (4137)
=L g1+ + o1 F B AT ) |
From ¢(z4) = ¢"(4), we get
boAS2 4 bo(o + -+ 93 1) = i (A2 £ AT 4 1) (4.138)
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ba A5 + M b Ag) = B (L G 4o+ 0 (4.139)

From (4.137) and (4.139), we get
by (M2 A ) = O T ) (4.140)

From (4.134) and (4.136), we get
ba( + -+ 03" ) = B30+ -+ 83") (4.141)

From (4.140) and (4.141), we get

So q1(x) = ¢3(x), g2(x) = ¢ (). So we get L =1 case.

Case A3 and ®}: From ¢(z3) = ¢*(z3) we have

2
DA +0uASZ + > (g + o+ ¢7) = BiAT + 1

=1

which is not possible for the same reason as in the Case A; and Aj.

Case A3 and ®;: we have
G =1/03, M= A5, ¢2 =1/A1, Ao =1/0) (4.142)
From ¢(z2) = ¢"(22), we get
bi(gr+ -+ 1) = by(ds+ -+ 05") (4.143)
b2 AT N bl = (TR AT ) b (4.144)
From ¢(z3) = ¢"(x3), we get

bi(dr+ -+ o1t) +balo+ -+ + 65"

! , 4.145
= OO 1) (0] e+ ) (4145)
DAL+ AT 4 A) (A AT 4 1) (4.146)
= b1+ ¢t 4+ oY) F b T ) '
From q(z4) = q*(z4), we get
boAS? 4 bo(g + -+ 93 1) = by (AT £ AT 4 1) (4.147)

110



ba A5 + M b Ag) = B (L G 4o+ 0 (4.148)

From (4.143), (4.145), (4.146) and (4.148), we get by = b} which implies ¢;(z) = ¢;(x).
And then we have the same situation as in the case Az and @}

Case A3 and ®§: From ¢(z3) = ¢*(z3) we get the same equation as in the Case A3
and ®; which is not possible.

Case A, and ®7: we have
o1 =1/A3, M =1/¢3, ¢2=1/A], o =1/} (4.149)
From ¢(x9) = ¢*(x2), we get
(s 4 0 = O 4 ) (4.150)

bo( A5 4+ A0 e Ag) bt = (1 - ot (4.151)

From ¢(z3) = ¢"(x3), we get

bi(dr+ -+ ¢ ') + ba(dz + - + ¢y

4.152
{0 R IR 0 Ve e B e SN §) ( )
DAL AT b A (AR AT )
* * *Klfl * * *Klfl (415?))
=bi(1+ o1+ + o )+ 031+ o5+ + by )
From ¢(z4) = ¢"(4), we get
DAy ? 4 by(da + -+ + ¢ 1) = bi (A2 4 - + AT+ 1) (4.154)
ba( A2 + A2 o Ng) = b5 (L4 @ + -+ 9t (4.155)
From (4.150) and (4.152), we get
bi(dr+ -+ o) =N 4 A+ 1) (4.156)
From (4.153) and (4.155), we get
DM+ AT N =051+ s+ 9y (4.157)
From (4.150), (4.154), (4.151)and (4.155) we get
bagy! = bioi" = bt = by (4.158)
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boAS2 = BIA = b N2 = K (4.159)
(4.158) and (4.159) give
Ky * K1 K3
1 _ 9P _ "
N AR
which results in K7 = K.
Suppose now K; = Ky = K, From (4.156) and (4.157), we get
G4+ et A’{K2‘1+A*K2‘1+ 1 AT T+ o]
A2+ AT e L+ ¢+ + it D S Y L
which implies \; = ¢1, A5 = ¢5.
Similarly from (4.154) and (4.155), we can get As = ¢, A} = ¢7.
And then we get symmetric cases.
Case A, and ®3: we have
G =1/A1, A =1/¢3, ¢2=1/A;, Ao =1/¢} (4.160)
From q(z3) = g*(2), we get
Do+ -+ + ') = b3(A 2 4o+ 1) (4.161)
ba A + M e hg) - body = 31+ ¢+ + 65) (4.162)
From ¢(z3) = ¢"(x3), we get
bi(G1+ - O 4 bala + -+ 087
* *Kg—l * *K2—1 * (4163)
DAL+ A2 b A + B (M) + /\§2‘1 o+ A2)
* * *Kl 1 * * *Kl 1 (4164)
:b1(1+¢1 0 ) +05(1+ ¢5 + +¢ )
From q(z4) = ¢ (2), we get
boAs? +by(ho + -+ dp ) = bi(N 4 A ) (4.165)
ba(Ng? + A2 e dg) = 0i(L 4 ¢ 4o+ 1T (4.166)
From (4.161) and (4.163), we get
bi(pr+ -+ o) =N 4 1) (4.167)

112



From (4.164) and (4.166), we get
M2 N ) =0 s e (4.168)

From (4.161), (4.162), (4.165) and (4.166) we can get equations (4.120), (4.121),
(4.118), (4.119). Then the arguments follow similarly in Case Az and ®j. And we
say (4.161)-(4.166) can not be satisfied.

Case Ay and ®3: we have

$1 =05, M= A5, ¢ =1/A1, Ay =1/¢; (4.169)
From ¢(x9) = ¢*(x2), we get

balGa -+ 05 = BT 4 ) (4170)

b2 - AN e X)) bt = (1 - i) (4.171)
From g(z3) = ¢"(x3), we get

bi(dy+ -+ d1 1) + ba(do+ - + 03 )

4.172
= b AT ) (s + 4+ 03 #172)
bl<)\{(2 + )\{(2_1 +o N+ bZ()\é(Q + )\52_1 e+ Ag) (4.173)
=051+ ¢t + -+ o) + oy T 1) '
From ¢(z4) = ¢"(24), we get
52)\52 + bz(% + -+ ¢§1) = b?()‘TKQ +oot )‘T + 1) (4‘174)
ba(Ng® + A3 b Xg) = 0i(L 4 ¢ + -+ 91T (4.175)
From (4.170) and (4.172), we get
bi(fr+ - +61") =305+ + 65" (4.176)
by (M2 AT e A = AT ) (4.177)

From (4.176) and (4.177), we get by = b} which implies ¢;(x) = ¢3(x) and then ¢y(x) =
¢; (z) which becomes a case of L = 1.
Case Ay and ®}: just as Case A and ®}.

Case Ay and ®f: we have
¢1 =1/, A=Ay, @2 =5, Ao =1/ (4.178)
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From g(x5) = q*(z2), we get
by(o + -+ 4¢3 1) = b3 (% + -+ + P51 (4.179)

ba(Ag? + X577 4 Ag) + bady = 05N+ AT ) 053" (4.180)

(4.179) implies by = b3. (4.180) implies Ay = A5 = A; which violates A\; < \s.
Case Ay and ®f: just as Case Az and .
Case A5 and ®7: From q(z3) = ¢*(r3), we get

2
L bASE = DB AT )
=1

which is not possible for the same reason as in the Case ®, and P;.
Case A; and ®3: just as Case A5 and 7.
Case A5 and ®3: From q(z3) = ¢*(23), we get

L+ boAs? = by (A2 4+ A o+ 1) + oA+ ba( + -+ 95"

which is not possible for the same reason as in the Case ®, and P;.

Case A; and ®;: we have

$1 =05 M= X5, G2 =1/A1, Ay =1/0; (4.181)
From g(z3) = ¢ (), we get

LM ) =0T 1) (4.182)

bi(1+ @o+ -+ ¢3') = b5(1+ ¢ + -+ + 3" (4.183)

(4.182) and (4.183) imply b; = b} and ¢1(x) = ¢5(z). So this is a case of L = 1.
Case A5 and ®;: just as Case A5 and 3.

Case A; and ®f: we have
¢1=1/25, M =1/¢5, ¢ =1/N, Ao =1/0; (4.184)
From ¢(x2) = ¢*(x2), we get
bMe o r ) =N ) (4.185)
i1+ ¢r+ -4 01) = 03(1+ 5+ -+ 65"") (4.186)
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From g(z3) = ¢*(z3), we get
ot = b = bady' = bigr™ (4.187)
boAS2 = BN = p N2 = K (4.188)
(4.187) and (4.188) imply K| = Kj. From q(z4) = ¢*(x4), we get
bodigy + ba(f2 + o+ 851) = bI(AT? + AT 4 1) (4.189)

ba( A2 + A2 o Ng) = b (L4 @ + - + ¢t (4.190)

(4.185) and (4.186) imply A\; = ¢, A5 = ¢3. (4.187), (4.188), (4.189) and (4.190) imply
A2 = @2, \] = ¢]. So we get the symmetric cases.

Case A¢ and ®7: we have

P1 =03, A= AL, @2 =1/A5, Ao =1/¢) (4.191)
From ¢(x2) = ¢*(x2), we get

LA ) = AT ) (4.192)

bi(l+Gu+ -+ 1) = bi(1+ 6] + - + 61™) (4.193)

(4.191) and (4.192) imply by = b. (4.193) implies ¢1 = ¢ = ¢} which violates the
condition ¢} < ¢3.

Case A¢ and ®5: we have

P1 =03, A= AL, @2 =1/A5, Ao =1/¢) (4.194)
From ¢(z2) = ¢"(2), we get

A ) =Dy 1 1) (4.195)

bi(l+ g1+ -+ o17) = U3(1+ 65 + - + 05" (4.196)

(4.194) and (4.195) imply by = b5. (4.196) implies ¢1 = ¢ = ¢} which violates the
condition ¢} < ¢3.

Case Ag and ®3: we have

b1 =1/N5 M = Al 6= 03 ho = 1/ (4.197)
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bl()\{fz—l +o k1) = b“{()\TKQ_l +--+1) (4.198)

(14 ¢1+ -+ o) = bi(1+ 67+ + o™ (4.199)

We get by = b}, ¢1 = ¢}. So q1(z) = ¢ (), q2(z) = ¢5(z) and the case becomes a case
of L =1.
Case Ag and @;: From q(z3) = ¢*(3), we get

by N2 N2 D) oA by (e R = BIAT 1

which is not possible for the same reason as in the Case A; and A3.

Case Ag and ®}: we have
b1 =1/N5 M = 1/63, éa = /X, Do = 1/} (4.200)
From ¢(z2) = ¢*(x2), we get
DM 4+ 1) = D385+ -+ 93 (4.201)

(14 g+ 01 = OGS 4 A ) b (4202)
From g(zs) = " (3), we get

DA 4 1) Fbo(Bo + o+ )

4.203
= BT b 1) B3+ 05) 4209
b1(1 + ¢1 + -+ (b{{l_l) + b2()‘§2 + )‘5(2_1 +oee )\2) (4 204)
=i (L4 @1+ O ) F ST AT ) |
From ¢(z4) = ¢"(z4), we get
badg® +ba(@o + -+ 657) = BT + AT 4 4 1) (4.205)
b A2 + A2 o N = b (L4 @+ + 95T (4.206)
From (4.201) and (4.201), we get
bo(pg + -+ -+ o5 =i (N2 4 1) (4.207)
bl o+ 40571 = B + 255 4 ) (4.208)

116



From (4.205) and (4.205), we get

boAS2 = BIA = p N2 = K (4.209)
From (4.202) and (4.208), we get

gt = byds" = bagy ' = bigr (4.210)

(4.209) and (4.210) imply K; = K,. But (4.201) and (4.208) imply A; = ¢, and (4.206)
and (4.206) imply A = ¢5. This gets down to a symmetric case.
Case A¢ and ®§: From g(z3) = ¢*(x3), we get

by N L D) AR b (pp 4 ) = DN 4]

which is not possible for the same reason as in the Case A; and Aj.
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Chapter 5

Multivariate Extreme Value
Analysis to Value at Risk

5.1 Introduction

How to manage a portfolio efficiently, with the highest expected return for a given level
of risk, or equivalently, the least risk for a given level of expected return, is the key to
the success or failure of a financial system.

J.P. Morgan’s RiskMetrics TM (1996) defines risk as the degree of uncertainty of
future net return. Financial systems face many risks which may result in financial
collapse if not appropriately managed. According to RiskMetrics, a common classifi-
cation of risks gives four main categories of risk which are Credit Risk (the potential
loss because of the inability of a counterparts to meet its obligation), Operational Risk
(errors that can be made in instructing payments or setting transactions), Liquidity
Risk (inability of a firm to fund its illicit assets), and Market Risk (loss resulting from a
change in the value of traceable assets). This work focuses on ways of modeling market
risk via multivariate extreme value theories and methods.

To be aware of and to understand risks which a manager will face are very important
to the modern financial management. Especially, as financial trading systems have been
extended broadly and become more sophisticated, there has been increased awareness of
the dangers of very large losses. For example, see Smith (2000), large price movements
in security markets may cause the failure of financial systems. Examples include the
bankruptcy of Baring Bank, Daiwa Bank and Orange County in California. The most
spectacular example to date was the near-collapse of the hedge fund Long Term Capital

Management in September 1998. LTCM was trading a complex mixture of derivatives



which, according to some estimates, gave it an exposure to market risk as high as
$200 billion. Things started to go wrong after the collapse of the Russian economy
in the summer of 1998, and to avoid a total collapse of the company, 15 major banks
contributed to a $3.75 billion rescue package.

From the insurance industry, very large claims can cause insurance companies to go
bankrupt. Embrechts et al. (1997) lists 30 most costly insurance losses 1970-1995 in
table 1 (the largest one is 16,000 million dollars) and 30 worst catastrophes in terms of
fatalities 1970-1995 in table 2 (the largest fatality is 300,000), both taken from Sigma
(1996).

These events are relatively rare, but important. These and other examples have
increased awareness of the need to quantify probabilities of large losses, and for risk
management systems to control such events. A tool called Value at Risk (henceforth,
VaR) has been increasingly employed by many banks. It gained a higher profile in
1994 when J.P. Morgan published its RiskMetrics system. The Basle Committee on
Banking Supervision has proposed in 1996 that internal VaR models may be used in the
determination of the capital requirements that banks must fulfill to back their trading
activities (cf. Dave and Stahl 1999). Books, like Jorion (1996), Dowd (1998), aimed
at financial academics and traders and explained the statistics basis behind VaR. Best
(1998) is aimed at the risk management practitioners. Dave and Stahl (1999)’s working
paper studied 5 different VaR models with real data performance analysis.

Among many applications and models, portfolio returns are assumed normally dis-
tributed, or tail normally distributed. Such assumption makes the estimation easy.
However this may underestimate the risk of the system which actually has a fat-tailed
distribution. Most financial data are actually distributed with fat tail. LTCM and
banks have been criticized for not “stress-testing” risk models against extreme mar-
ket movements (Embrechts, 1999). Also back to November 1995, the Director of the
Federal Reserve, Mr. A. Greenspan stated “work that characterizes the distribution of
extreme events would be useful as well” (Embrechts, 1999). The excellent recent book
by Embrechts et al. (1997) surveys the mathematical theory of EVT and discusses its
applications to both financial and insurance risk management.

Although the use of EVT in finance and insurance industries has a considerable
literature on the subject, especially there is a much longer history of its use in the
insurance industry, most applications are restricted in univariate stochastic process

data. Again Embrechts et al. (1997) is an excellent literature. Smith (2000) presented
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a demonstration of the merits of combining established models for extreme values with
modern statistical techniques including Bayesian inference, hierarchical models and
Monte Carlo sampling for real insurance data. Tsay (1999) applied extreme value
theory to investigate the occurrence times and excesses over some high thresholds of
financial time series (S&P index). Both two works used similar methodology though
they had different kinds of data. As stated in Embrechts et al. (1997), in 1900 Louis
Bachelier showed that Brownian motion lies at the heart of any model for asset returns;
around the same time, Filip Lundberg showed that the homogeneous Poisson process,
after a suitable time transformation, is the key model for insurance liability data. As
to multivariate aspects, not much work has been done. However, it is very natural
to consider multivariate extremes in which a portfolio of asset returns is under high
risk due to a combination of various processes at extreme levels. For instance, daily
exchange rates for the value of 1 US dollar against foreign currency, or insurance models
in which there are several types of claims each day. There exist dependence structures
among the various assets in a portfolio. If the composition of the portfolio is held fixed,
then it may be enough to only assess the composition risk of the portfolio, which can
be done by applying univariate EVT. However, to manage a portfolio efficiently, or
equivalently to optimize the portfolio, the real rationale for considering multivariate
aspects is often to help design the portfolio. The famous mean-variance approach
first introduced by Markowitz is broadly used in financial management (Markowitz
1952, 1987, Korn 1997, Michaud 1998). The approach is based on an assumption
of multivariate normality for the joint distribution of assets or securities. Omne of
its formulae is to maximize the expected return subject to given risk (which is the
variance of a linear combination of assets). An alternative option is to use VaR as
the constraints, which we will investigate further and has drawn much more attention
in financial management. Conventional VaR theory is highly questionable due to the
joint multivariate normal distribution assumption of log returns which may not be
appropriate to the fat-tailed data and may result in an underestimate of the risk.
One approach to the problem is through multivariate EVT. Resnick (1987) is an
excellent source of information on possible approaches. Due to no standard notion of
order in high dimensional Euclidean space, most approaches to date have focused on the
one dimensional case. The good news is that there is a considerable progress. Coles and
Tawn (1991, 1994) have done an impressive progress on modeling extreme multivariate

events and made multivariate extreme value theory into a very practical method of data
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analysis. Embrechts, de Haan and Huang (1999) presented an approach for modeling
tail events and showed results in 2-dimensional case theoretically and numerically.
Smith and Weissman (1996) have proposed some alternative representations of extreme
value processes to characterize the joint distribution of extremes in multivariate time
series. They showed under fairly general conditions, extremal properties of a wide class
of multivariate time series may be calculated by approximating the process in the tails

by one of M4 form.

5.2 VaR methods

In risk management, one of its functions is to measure risk the financial system is
exposed to. Questions like: how much could a bank lose on a normal trading day? Or
what kind of risk the bank exposes to the market? These and other questions are very
often asked to the risk manager by the CEO of the bank. To answer these questions, we
seek some risk measurements to quantify the risk of all trading positions of the bank.
However, some traditional risk measurements have difficulties to answer questions like
those we have asked. Traditional methods usually only calculate each individual risk of
market variables invested in the market by a financial institution. The overall market
risk cannot be efficiently measured because of the number of market variables (hundreds
or thousands) and very long computing time needed. These methods may be of benefit
to traders who manage the trading activities for each financial instrument, but are not
very useful to senior risk managers or regulators. For example, the variance of the
portfolio return tells how variable the return is, but does not tell us how likely and
what amount of money the bank will lose. VaR methods can overcome those difficulties
the traditional methods suffered. VaR is defined as the value at risk is the maximum
possible loss on a portfolio over a given time interval, with a given level of confidence.
Statistically, if we let X; be the loss over time ¢ within a time horizon, say [0, 7], and
the confidence level is 1 — «, then the VaR is just the upper « percentile x, of the

random variable X, which is
Pr(Xr <z4) >1—a. (5.1)

In the literature, there are three typical methods to calculate VaR, i.e. variance-
covariance approach, historical simulation approach, and Monte-Carlo simulation ap-

proach. We will briefly describe these methods further in the following subsections.
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5.2.1 Variance-Covariance approach

The variance-covariance approach is first widely used VaR calculation method. The
references, among others, include Chapter 11 of Jorion (1997), Chapter 3 of Dowd
(1998), Chapter 2 of Best (1998). This approach assumes the return has a normal dis-
tribution for a single asset or the returns have jointly multivariate normal distribution
for a portfolio with multiple assets. How to implement VaR calculation is presented as
in the following.

Consider now a portfolio of d assets and at time t the returns are Ry, Roy, ..., Ry.
We write Ry = (Ryy, Roy, ..., Rat)’. Ry is assumed to be jointly normally distributed,
ie. Ry ~ N(u,X). Let w = (wyy, ..., wa) be the weights of each individual position

and sum to unity. The return of the portfolio at time ¢ is defined as
d
Rf == Z witRit = W/Rt. (52)
i=1
So the VaR for the portfolio is calculated from
Pr(R} > ¢) = a. (5.3)
Since RY is distributed as N(w'u, w'Xw) and hence
¢ =W+ ze(WEwW)? (5.4)

where z, is the standard normal upper « percentile. And finally the VaR for the
portfolio is
VaR, =V xc (5.5)

where V' is the original position value or the investment. In practice, however, it is
customary to assume that the expected price change is zero with given time period.

The VaR for a portfolio is calculated simply as
VaR, =V # zy(W'Sw)2 = (vVSv)? (5.6)

where v is a vector of VaRs for each individual position.

5.2.2 Historical simulation approach

The historical simulation approach is to use the empirical distribution based on the

past data. Theoretically, the empirical distribution converges to the true distribution
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of the interest random variable, here it is the portfolio return. The idea is to use
the empirical distribution to approximate the true distribution and to read off VaR
from the empirical distribution curve, usually a histogram. The advantages of using
historical simulation include no model assumption and no distribution required; VaR
can be read directly from a spread sheet. It also can capture the fat tailed behavior
of the data with enough observations and very large observed values. But there are
some disadvantages. For example, it may not be a good way to represent very extreme
events because there is no possibility of extrapolation beyond the observed range of

the data. It also assumes stationarity in time.

5.2.3 Monte-Carlo simulation approach

While the historical simulation approach using historical data to construct empirical
distribution, the Monte-Carlo simulation approach draws the data from a random
process and uses the drawn values to construct empirical distributions and further
read off the VaR from the constructed empirical distribution. Here we need a random
process to represent the price change. To achieve this, a continuous stochastic process
which can be written into a stochastic model is often used in the literature. A simple

model of price change may have the form
dXt = O'th

where W; is a Brownian motion, and o is known or at least estimable. This simple
model has a solution
Xy =Xo+ oW,

From this representation, we can draw values of X; from Monte-Carlo simulation
scheme which draws a random number from a random number generator, and then
transforms this number into a normal random variate, and finally gets a simulated
return value. This procedure is repeated over and over, until we think we have enough
values which can be used to construct an empirical distribution.

Note: since the example model here is rather simple, X, itself is normally dis-
tributed. We can calculate the VaR from Variance-covariance approach directly. The
Monte-Carlo simulation approach is usually taking advantage when the portfolio con-
tains multiple assets and relatively complicated structure which may not be easily

solved by simpler approaches.
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5.3 Extreme value approaches

The three methods described in the previous section have their own disadvantages. In
general VaR is regarded as an extreme quantile of the loss distribution because we are
interested in a 95%, 99% or even higher confidence level. For example, Bankers Trust
uses 99%; Chemical and Chase uses 97.5%; Citibank, a 95.4% level; Bank America
and J. P. Morgan uses 95% (Jorion, p20, 1997). Financial returns are fat-tailed and
exhibit the form of clustering which usually caused by extreme price movements. The
variance-covariance approach may not be suitable because its normality assumption.
Historical simulation may not work due to lack of extreme observations. Also it is hard
to use historical simulation to characterize the dependence structure among assets
of a portfolio. The Monte-Carlo simulation also has a normality assumption for the
underlying stochastic process.

The extreme value approach has drawn a major attention in VaR study recently. It
has advantages in analyzing fat tailed data, which financial data are, and extrapolating
beyond the range of observed data. Just as the variance-covariance approach has a
distributional assumption, extreme value approaches assume the underlying limiting
(for the extreme values) distributions are extreme type distributions. There are three
types of extreme value distributions which we stated in Chapter 1 and they can be
written into a generalized form

H(rz0,€) = exp{ {1 + Sy 57)

which is (1.6) in Chapter 1. Now to calculate VaR of the underlying loss distribution is
equivalent to computing the extreme quantile of (5.1) in case a portfolio only has one
position or is statistically univariate. It is known that the normal distribution is stable
and the extreme value distributions are max-stable. As a result, if R; in (5.2) follows
one of the extreme type distributions, R} won’t follow any extreme value distribution.
But the limiting form of R; will follow multivariate extreme distribution which we are
interested in. So the VaR calculation is transformed into the calculation of critical
value ¢ in (5.3) from a multivariate extreme value distribution.

The multivariate extreme value distribution has no explicit forms, unlike the uni-
variate extreme value distributions. We need to adopt one of the existing multivariate
extreme value distributions to model the data. But the observed data are not indepen-

dent, so we then need to estimate the extreme index for the multivariate time series
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under stationarity conditions. Since financial data exhibits clustering, it may be a
better choice to model the extreme value of the data by using one of the M4 process
since we have seen under mild general conditions a stationary stochastic process can
be approximated in the tails by a max-stable process and very closely a max-stable
process can be approximated by an M4 process. We present applications of M4 process

to the financial data in section 5.5.

5.4 Optimal portfolio theories

Not putting all one’s eggs in one basket has been a basic concept for a long history if
one suspects the basket is not completely secured. In finance, portfolio diversification
has been thought as an essential component of modern risk management. To minimize
the risk will result in investing money on those market variables with smaller risk.
On the other hand, an investor expects to gain the maximum possible returns with
his investment. In general, the higher the risk, the higher the return. These two
investment strategies, low risk and high return, are opposite to each other. Naturally
an investor would seek an optimal investment plan with which either to maximize the
portfolio mean return such that the estimated risk is not higher than an upper risk
limit or to minimize the risk such that the mean return is not lower than a lower mean
return limit within a given time period. This is referred as the portfolio problem in
the literature.

The mean-variance approach pioneered by Markowitz (Markowitz 1952, 1987, Korn
1997, Michaud 1998) is the earliest approach to solve a portfolio investment problem.
Although it is a one time period model approach it is still highly valued. In 1990,
Harry M. Markowitz, Merton M. Miller and William E. Sharpe gained the Nobel Prize
in economic sciences for their pioneering work in the theory of financial economics.

Let’s now assume a portfolio consists of d assets. At time ¢t = 0, an investor has to
decide how many shares of each asset to hold until time ¢ = T'. Suppose the proportion

of total money invested on asset i is m; and the price of asset i at time ¢ is P;(t), then
Bi(T)
Pi(0)

the return of asset ¢ is R; = Finally the portfolio return is

d
R = Z 7TZ‘RZ‘
=1
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and the mean return is defined by

d d
u(m) = E(R) = Z mE(R;) = Z Tipli

and the variation of the portfolio return is

d

o?(r) = Var(R) = Z m;Cov(R;, R;) Z 0T

ij=1 t,j=1
Then mean-variance approach is to decide the optimal investment plan 7 by solving

one of the following two optimization problems.

min ()
meRM

d (5.8)
st u(m) > pgw> m >0, dom=1

i=1

where ] 18 lowest mean return. Or
mazx ()
d (5.9)

s.t. o%(r) < omax, m >0, Yom=1

i=1
where omax is regarded as maximum risk one can take. (5.8) is a quadratic optimiza-
tion problem. There is a unique solution. Under some conditions (5.8) and (5.9) are
equivalent. In practice, (5.9) seems more natural. We adopt (5.9) as a basic model
in this present work and extend it to the VaR constraints calculated from a extreme
value distribution.

Traditional risk measurement, for example, the variance-covariance approach, may
under-estimate the risk a financial institution exposed to. And so we model the port-
folio returns by using a multivariate extreme value distribution function, especially in
this present case we adopt M4 processes modeling. And so our optimization model is

max ()

meRE

d (5.10)
st. Pr(RP>¢)=a, m; >0, > m=1
i=1

d
where RP = Z m;R; = 'R, and the limiting distribution of exceedances over a high

threshold of R follows a multivariate extreme value distribution.
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5.5 Dynamic financial data modeling

In this section we will model financial time series data as M4 processes. Stock prices of
GE, CITIBANK and Pfizer will be studied. Parameter estimates of M4 processes are
based on an multivariate time series of approximately 5000 days. We first look at those
extreme values of the negative returns and check whether extreme value distribution
fitting is appropriate or not by using mean excess plot, Z-plot and W-plot. The data
are standardized using GARCH(1,1) model which gives estimated conditional standard
deviation. Then we check whether extreme value distribution fitting is appropriate or
not to the standardized time series. A generalized Pareto distribution is used to fit the
data above certain threshold(.02 is used in this study) for each sequence. The data are
then transformed into Fréchet scale from fitted GPD function. The transformed data
are used in M4 processes modeling. We begin at introducing some concepts and basic

backgrounds.

5.5.1 Mean excess plot

The mean excess plot is a plot of the mean of all excess values over a threshold u against
u itself. It usually suggests whether a extreme value distribution fitting is appropriate
or not. It is very useful for initial diagnostics and selecting the threshold. It is based
on the following identity: if ¥ has a generalized Pareto distribution, provided & < 1,

then for threshold v > 0, define the mean excess function
a+Eu
1-&°

Thus, a sample plot of mean excess against threshold should be approximately a

e(u) = E{Y —ulY >u} =

straight line if the model is correct.

5.5.2 Z-statistics and W-statistics

The underlying idea behind these analysis of Z-statistics and W statistics is the point-
process approach to univariate extreme value modeling due to Smith (1989). According
to this viewpoint, the exceedance times and excess values of a high threshold are viewed
as a two-dimensional point process. If the process is stationary and satisfies a condi-
tion that there are asymptotically no clusters among the high-level exceedances, then

its limiting form is non-homogeneous Poisson. Smith and Shively (1995) introduced
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a number of diagnostic devices to examine the fit of the generalized extreme value
distributions. One idea is based on what they called Z-statistics
Tk
Zy = / As(u)ds
Ty

where T} denotes the time of the k’th exceedance of u. Ay(x) is given by

A(z) = (1 +ft%>ﬁ/&

the intensity of a nonhomogeneous Poisson process of exceedances of a level x. If
the model is correct, then Z;, Z,, ..., will be independent exponentially distributed
random variables with mean 1. The Z-statistics are an indication of how closely the
exceedances of a fixed level u are represented by a nonhomogeneous Poisson process,
but they do not test the generalized Pareto distribution assumption for the distribution

of excesses over the threshold. This can be done via W-statistics:

1 Yk—u
Wy = —log[l + & .
g ka [ T wTk + ng {u - /’LTk}

Then Wy, Ws, ... are also independent exponential random variables with mean 1, if

the model is correct. These techniques have been broadly used in model diagnostics,

for example, Tsay (1999), Smith and Goodman (2000).

5.5.3 GARCH(1,1) model

Traditional time series model AR(p) assumes constant variance cross the time which
experience has shown not the case. GARCH, generalized autoregressive conditional
heteroscedasticity, process model the residual of a time series regression. The model
was proposed by Bollerslev ( 1986 ). It does not assume the constant variance. Research
has shown that it has been quite successful to use GARCH model of fitting financial
time series. We now introduce the GARCH model.

Suppose time series regression has the form

Yo = Qo+ O1Yp—1 + -+ + Gplr—p + s,
where
w = v/ hevy
hi =K+ 61hiy+ -+ 0 b + 00U | + -+ 0,
vy ~ N(0,1).
These three formula together are called GARCH(r,s) model.
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5.5.4 Initial diagnostics

Figure 5.1 are time series plots of three stock returns. We can see there are extreme
observed values in each sequence and they are not stationary. A data transformation
may be needed in order to have stationarity and apply M4 process modeling. Before
we do that, we check whether extreme value distribution fittings are appropriate or
not for the observations which are above certain threshold.

Figure 5.2 is initial diagnosis which suggests that extreme value distribution fitting
for the Pfizer data but not for the other two data sets. Further diagnosis based on Z
and W statistics are used.

All W-plots from Figures 5.3 -5.5 suggest a generalized extreme value distribution
fitting is appropriate. Some caution should be taken since a few points, partly the
result of Oct. 87 crash, are away from the straight line. But Z-plots do not suggest a

generalized extreme value distribution fitting.

5.5.5 Data transformation

As we mentioned earlier, our goal is to model M4 process to the three time series data
sets. We now use GARCH(1,1) to model the volatility. Figure 5.6 shows estimated
conditional standard deviation. Figure 5.7 shows standardized time series. Visually
they look stationary. Figure 5.8-5.10 suggest a generalized extreme value distribution
fitting is appropriate. Notice that the earlier Z-plots were not consistent with the
model, but now they are.

After fitting the generalized extreme value distribution, the data set are transformed
into unit Fréchet scale and the transformed data are plotted in Figure 5.11.

Since an M4 process has double indexes, one for signature patterns and one for
moving range, we need to determine the order of moving range and the number of
signature patterns. We apply graphical diagnostic methods to determine the order and
propose a criteria to determine the number of signature patterns.

Based on the properties that an M4 process appears clustered observations when
an extreme observation occurs, we check those observed values which are larger than
a certain threshold. Empirical counts can tell both the moving range order and the
dependence range. We look at the counts of paired neg-daily returns on unit Fréchet
scale in different ways. We count the days when two different stock products both had

price drops over certain threshold. We count the days when a single stock product had

129



Negative Daily Return 1982-2001
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Figure 5.1: These figures show that there are extreme observations and the greatest
drop happened in the same day in all three time series, i.e. October 19, 1987, the date
of the Wall Street crash.
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Mean excess plots with confidence bands
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Figure 5.2: The mean excess plot usually suggests whether a extreme value distribution

fitting is appropriate or not.

The plot for the Pfizer data suggests extreme value

distribution fitting since the plot is contained in its corresponding confidence interval.
The other two are more doubtful since the plot goes outside the confidence bands,
though further analysis shows that the extreme value approximation is reasonable in

this case also.
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Figure 5.3: W-plots show a generalized extreme value distribution fitting is appropriate.
Some caution should be given since a few points, partly the result of Oct87 crash, are
away from the straight line.

132



10

10

0.2 1

0.1 1

0.0 1

o N A O ©
I | | | |

CITI Bank Data

Z values vs.time

W values vs. time

o N A O
I | | | |

0 2 4 6

Correlation plot for Z

0.15

0.10

0.05 -

0.0 1

0.05 -

0 2 4 6

Correlation plot for W

Figure 5.4: W-plots show a generalized extreme value distribution fitting is appropriate.
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Figure 5.5: W-plots show a generalized extreme value distribution fitting is appropriate.
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Estimated Conditional Standard Deviation Using GARCH(1,1)
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Figure 5.6: Estimated volatility

135



Neg Log Return

Neg Log Return

Neg Log Return

-10 I I I I I
01/04/82 09/30/84 06/27/87 03/23/90 12/17/92 09/13/95 06/09/98 03/05/01

Negative Daily Return Divided by Estimated Standard Deviation, 1982-2001

o

|
(53]
T

GE

10

o

1
(6]
T

-10 1 1 1 1 1 1 1
01/04/82 09/30/84 06/27/87 03/23/90 12/17/92 09/13/95 06/09/98 03/05/01
CITI

10

o

|
(62}
T

-10 L L | | |
01/04/82 09/30/84 06/27/87 03/23/90 12/17/92 09/13/95 06/09/98 03/05/01
PFIZER

Figure 5.7: Standardized series
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Figure 5.8: W-plots show a generalized extreme value distribution fitting is appropriate.
Some caution should be given since a few points, partly the result of Oct87 crash, are
away from the straight line.
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CITI Bank Standardized Data
Z values vs.time W values vs. time

8 1 . .
87 .

6,
6 1 .

44 41 )

24 2]

0 0+

0 1 2 3 4 5 6

Correlation plot for W

. 0104 T
0.15 4
010 *---------- e 0.05 + .
0.05 4 . . 0.0 . M . . .
0.0 ] . . .
0.05 A

0.05
0109 - oo 0104 -

2 4 6 8 10 2 4 6 8 10

Lag Lag

Figure 5.9: W-plots show a generalized extreme value distribution fitting is appropriate.
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Pfizer Standardized Data
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Figure 5.10: W-plots show a generalized extreme value distribution fitting is appropri-
ate.
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Neg Daily Returns on Frechet Scale
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Figure 5.11: The negative returns after transformed into unit Fréchet scale.
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two consecutive daily drops. We also count the days of two day range in which one
stock price dropped in the first day, the other stock price dropped in the second day.
We also calculate the expected counts under the assumption of independent.

We observe throughout that the “observed” values are larger than the “expected”,
and therefore we conclude that the variables are dependent. The choice of M4 processes

to model the dependence may be appropriate.

5.5.6 Model selection and parameter estimations

All the figures suggest an M4 process fitting may be a good choice for financial time
series data with multivariate temporal dependence.

Figure 5.11 and 5.12 suggest that a model of time dependance range of order 2 or 1
and at least 3 signature patterns. Some of these patterns have order of 2, corresponding
to drops happened in two consecutive days, and one has order of 1, which corresponds
to a single drop. Figure 5.12 shows that the strong dependence appears in the same
day between series and in two consecutive days within each series.

We now use the following model to fit the data.

Yia = max(ar—1.421-1, @1,0.421,,

o (5.11)

aL71,71,dZL71,i717 aLfl,O,dZLfl,ia
aL,O,dZL,i)

But we need to determine the number of signature patterns L. Define
O1(x) =Pr(u+z>Yi >u, Y, >u)

Q2(z) =Pr(u+az > Y >u, Y; <u)
Aq(z) = (u, +00) X (u,u + x)

As(z) = (0,u) X (u,u+ )

n

1 .
Ky = + D Layo (Vi Vi), § = 1,2,

i=1

We extend Kolmogorov and Smirnov’s distance into the following form

err; = sup[|Q1(z) — XA1(J:)|7 |Q2(x) — XAz(I)H}

>0
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Figure 5.12: (i) All plots are based on Fréchet transformed exceedances of a high
threshold based on negative log returns ( so they represent price drops, not price
rises); (ii) the purpose of the plots is to look for dependence among neighboring values;
(iii) the numbers in parentheses show expected and observed numbers of simultaneous
exceedances by the two variables, where “expected” is calculated on an independence

assumption.
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Where @Q1(x) and Q2(z) are calculated under estimated parameter values.

The idea here is that we use the given information up to today and compute the
probability of the event that the return falls into a certain range next day. Instead
of computing conditional probability, we compute joint probability and joint empirical
probability and compare the approximation errors.

For [ = 3,4,5,..., we compute err; at discrete points in interval [u,2u]. Figure
5.13 shows the trends of err; when [ is increasing. We can see when [ = 5 the curve
reaches stability for CITI data. And similarly [ = 6 for GE and Pfizer data.

0.185

— GE
| — CITI
| — Pfizer

0.175

Figure 5.13: Number of signature patterns L. vs Err plot.

We now fit three transformed time series data using the following model.

Yia = max(ar—1421i-1, G104%14,

a5,—1,dZ5,i—1> a5,0,dZ5,i7
a6,71,dZ6,i71> a6,0,dZG,i7

(5.12)
a9, —1,d29i-1, 90,429,

alO,—LleO,i—l; alO,O,dZIO,ia

a14,71,dZ14,i71> a14,0,dZ14,i>

Cl15,0,dZ15,¢)
where red = O, [ = 1,...,5, d = 2,3, Al kd = 0, [ = 6,...,9, d = 1,3, A d =
0, I = 10,...,14, d = 1,2. We have considered here to treat those drops in two
consecutive days as independent processes and single drops as dependent processes.

We can apply more complex structure and use the arguments about how to model
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inter-series dependence discussed in section 3.3. But we adopt a relatively simple
model to illustrate M4 process modeling to financial time series data here.

Table 5.5.6 is constructed based on the probabilistic properties of M4 processes.
The returns above certain threshold in two consecutive days are clustered into 4 or 5
groups. Initial estimates are obtained by taking average of those points within each
group. Then we can solve the system of nonlinear equations or minimize a weighted
least squares functions. What we actually do here is to use the initial estimates as the
base of selecting evaluation points xy, o, - , &, used in (3.11) and (3.12). Based on
the initial estimates, we compute the adjacent parameter ratios. For each ratio value,
say 13, we let x; = .95 and x;41 = 1.25r;. The value of m is equal to twice of the number
of those ratios. The numbers .95 and 1.25 are arbitrary. Other numbers can be used
as long as one is less than 1 and another one is larger than 1. Intuitively we choose the
numbers as big as possible because the nature of function B(a:), which has less variability
for large x, but we need to have two points between two adjacent ratios. We don’t have
a criterion to guide the choice of z;’s at this time. An optimization problem based on
a’s and x;’s may be useful, but we will not pursue this in the current work. After the
x;’s have been chosen we solve (3.16) under a constraint that the matrix formed in the
left hand side of (3.16) is the same as the one when the initial estimates are used. Using
the estimated parameter values, we can compute asymptotic covariance matrix. Since
we only have about 2200 observed drops but many parameters, the computation of the
asymptotic covariance matrix of the joint distribution of the estimates is not efficient,
i.e. the standard deviations of the estimators are not less than 1 as they are supposed
to be. The results in Table 5.5.6 are simulation results based on 100 replications of

sample size 1000.
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Table 5.1: Estimations of Parameters

Param.

GE

CITI

Pfizer

Cll,—1/a1,0
std

0.0614 / 0.0206
0.0169 / 0.0075

a2,—1/012,0
std

0.0778 / 0.0026
0.0381 / 0.0019

a3,—1/ aso
std

0.0220 / 0.0174
0.0089 / 0.0089

a4,—1/ Q4.0
std

0.0070 / 0.0121
0.0043 / 0.0100

CL5,—1/ as o
std

0.0020 / 0.0126
0.0011 / 0.0104

a6,—1/ Q6.0
std

0.1937 / 0.0005
0.0482 / 0.0002

a7,—1/ ar.0
std

0.0086 / 0.0077
0.0079 / 0.0077

as.—1/as
std

0.0012 / 0.0067
0.0014 / 0.0092

ag.—1/ag
std

0.0003 / 0.0062
0.0003 / 0.0071

a10,—1/a10,0
std

0.1594 / 0.0260
0.0162 / 0.0041

a11,—1/a11,0
std

0.0190 / 0.0105
0.0089 / 0.0074

CL12,—1/G12,0
std

0.0062 / 0.0078
0.0027 /0.0060

a13,—1/a13,0
std

0.0029 / 0.0055
0.0014 / 0.0049

a14,—1/a14,0
std

0.0011 / 0.0062
0.0005/ 0.0052

a15.0
std

0.7645
0.0128

0.7750
0.0274

0.7553
0.0042

145



Simulated Neg Daily Returns on Frechet Scale
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Figure 5.14: Simulated time series
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5.6 VaR calculation and portfolio optimization

So far we have considered modeling the three time series to M4 processes. We now
turn to do VaR calculation and portfolio optimization. For comparison, we will use

variance-covariance approach and extreme value approach.

5.6.1 Using variance-covariance approach

We now compute the VaR of a portfolio containing three stock products, GE, CITI
and Pfizer. At time ¢ the returns are Ry, Ry, R3;. We write Ry = (Ryy, Ry, R3)'. Ry
is assumed to be jointly normally distributed, i.e. R; ~ N(u, X). We can estimate the

covariance matrix 3 by the sample covariance matrix

R 0.2539 0.0408 0.0180
Y= ——10.0408 0.4591 0.1246
0.0180 0.1240 0.3557

For the standardized time series we have the estimates

1 0.2310 0.0298 0.0156
1000 0.0298 0.4399 0.1136
0.0156 0.1136 0.3372

5

The following figures plot calculated VaRs for different investment combinations, using
original time series, standardized time series. We also plot the VaR versus Expected
returns. In all plots, each point represents a portfolio investment plan or combination.
For example, one point may represent (.25, .35, .4) which means 25% of money invested
in GE, 35% of money invested in CITI and 40% of money invested in Pfizer.

Figures 5.15 and 5.16 are based on the original data. Figures 5.17 and 5.18 are
based on the standardized data. Both figures 5.15 and 5.17 show risk diversification.
In all figures, a green circle means investing all money on GE stock, a red cross means
investing all money on CITT stock, and a blue diamond means investing all money on
Pfizer stock. A green dot, a red dot or a blue dot means investing 50% or more of total
money on stock GE, CITI or Pfizer respectively. A black dot means no individual stock
received more than 50% of total money. From figures 5.16 and 5.18 we can optimize
the portfolio with highest expected return for a given level of risk. It is the point of

the upper curve when the risk is given.
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VaR in dollars

VaR calculation using original time series data (1,000,000%)

Figure 5.15: VaR for a portfolio of 3 stock products
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Figure 5.16: Expected returns for a portfolio of 3 stock products
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Figure 5.17: VaR for a portfolio of 3 stock products, standardized data
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Figure 5.18: Expected returns for a portfolio of 3 stock products, standardized data

151



5.6.2 Using M4 process approach

The multivariate normal distribution assumption makes most statistical computations
easier. But it may give inaccurate results if it doesn’t fit the data and result in a wrong
decision. In risk measurement it may under estimate the risk since Normal distribution
is best fitting the centralized data. We now introduce a new method based on the M4
process modeling and use it to compute VaR and optimize a portfolio with the VaR
constrains.

Suppose ci, ¢z, c3 are proportions of stock products in a portfolio, VaR, is the
VaR of the portfolio return ¢;Y; + ¢2Ys + ¢3Y3 calculated from P(ciY; + coYs + c3Y3 >
VaR,) < « for given level of confidence 1 — a. Due to the complex transformation
to the original data, it’s not possible to compute the maximal possible loss based on
VaR, since each individual stock behaves differently. One way is to model a univariate
time series ¢1Yy; + coYo; + ¢3Y3; in M4 process. But this is not practically applicable
since the investments change all the time.

We propose the following procedure to determine the VaR, = d and individual risk
factors VaR, = dy, VaRy = dy and VaR3 = d3 simultaneously.

max P{a\Y1 > dy, c2Ys > dy, c3Y5 > ds}

d1>0,d2>0,d3>0
st. P(aY1+ Yo+ 33 >d) < a (5.13)

d=dy +dy+ds

The constraints are very natural since they are the definitions of VaR of a portfolio.
The objective is thought to have the highest probability for all individual risk factors
beyond certain values when the portfolio is at the VaR.

Figure 5.19 draws the VaR versus the different combinations. Contrast to Figure
5.15 and 5.17, it has same trend as the other two have. But it doesn’t show smoothed
features. Figure 5.20 plots the VaR and expected returns. It is very different from
Figures 5.16, 5.18. The maximal VaR of candidate portfolios under normal assumption
is less than the minimal VaR of same candidate portfolios calculated by extreme value
approach. In extreme value model, when the VaR is beyond certain value, the expected
highest return is decreasing when the risk is increasing.

From Figure 5.18, one see that Pfizer gives highest return if invest all money to
stock Pfizer. Stock CITI gives highest risk. Stock GE has lowest return. From Figure
5.20, the extreme portfolios ( invest all, or almost all, money to one stock ) behave

similarly. But the overall structure is different.
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VaR calculation using M4 process

Figure 5.19: VaR for a portfolio of 3 stock products
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Figure 5.20: Portfolio Optimization Using Extreme Value Theory
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5.6.3 Historical simulation approach

As we have seen that variance-covariance approach gives low VaR, while M4 process
approach gives high VaR. We just can not simply tell which method is better. The
goal of this section is to distinguish them more through the results from historical
simulation approach.

The variance-covariance approach may be useful in routine risk management, while
the extreme value approach should be the method used to extreme risk management.
All VaR calculations in previous sections are unconditional, which means we didn’t use
the price move history. The variance-covariance approach can not be used to calculate
the conditional VaR since they are under the independent assumption, but the extreme
value approach can calculate the conditional VaR. Further comparisons between two
approaches can be done using historical simulation approach which gives VaRs between
VaRs obtained from the variance-covariance approach and the extreme value approach.

In Figure 5.21, we use those historical data when all three stocks had price drops
simultaneously. As you can see the VaRs in Figure 5.21 are higher than those in Figure
5.16, but lower than those in Figure 5.20. If we use thresholds to historical simulation
approach, we can see the VaRs move forward to the right, the VaRs in Figure 5.22 are
very close to those, some are even higher than, in figure 5.20.

Since the historical simulation approach doesn’t model dependence structure and
is very difficult to calculate the conditional VaRs, the extreme value approach may be

a better method, especially when considering extreme risk management.
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Figure 5.21: Portfolio Optimization Using historical simulation approach

156



940

920

900

880

Return
(0]
(2]
o

840

820

800

780

Expected return in dollars

O GE
x  CITI
O Pfizer

3.5 4 4.5 5 5.5 6 6.5 7 7.5

VaR X 104

Figure 5.22: Portfolio Optimization Using historical simulation approach

157



Chapter 6

Summary

6.1 General discussion

The methods described here represent completely new approaches to the modeling of
financial time series data. The main goal here is to propose an approach which can
efficiently model multivariate time series which are both inter-serially and temporally
dependent.

In order to achieve that goal, we have extended and proved some probabilistic prop-
erties of M4 processes. Then we have proposed estimating procedures when the ratios
can be determined using probabilistic approach. We have also proposed a practically
applicable method of M4 processes modeling. The consistency and asymptotic proper-
ties have been proved. We have also proposed a VaR calculation method based on M4
process modeling. The main theorems proved are Theorem 2.3, Theorem 2.4, Theorem
2.16, Theorem 3.7, Theorem 3.8, Proposition 3.12, Proposition 3.13, Theorem 3.15.

The results obtained can be used in many ways. For example, they can be used to
compute VaR or to optimize the portfolio under VaR constraints and given information
or historical data. Studies have shown financial data are fat tailed. They are not
normally distributed. Compare with traditional assumption of normality of underlying
distribution. These results provide more information to risk managers who may be
most interested in the situation when an extreme price movement occurs what kind of
risk the company is exposed to. The methods described can be used to other fields,
such as modeling insurance data, environment data etc.

It may be possible to propose some variants of proposed estimators and to reduce
the conditions imposed on the parameters. The choice of the points around the jump

points and the selection of model need some further work.



6.2 Directions of future research

In this section, I list some research directions under extreme value settings.

e Some extreme theorist believe that multivariate extreme value study still has a
long way to go. Besides M4 processes, it is worth to explore other dependence

structures which have multivariate extreme value distribution representation.

e [t may be worth to study modeling time series data through Markov process and
extreme events, or Bernoulli jumps and extreme process, or Poisson jumps and

extreme process.

e In a short term, it is worth to study the models:

Y;d = max max aldeu_k + N(O, 0'2), d= 1, cee ,D, (61)

I<ISL —Ki<kE<K>

vvhereZ:lL:1 ZkKj_Kl g = 1 for d =1,--- , D. Under the model we may be able
to reduce the number of signature patterns and get more efficient estimates and

their standard deviations.

Yig = max max apaZix* N(0,0%), d=1,--- D, (6.2)
1<IKL —K1<k<K>

WhereZlL:1 ZkKj_Kl ajpg = 1 ford =1,---,D. Or other variants under which we
can study both positive and negative returns and allow model to include short

selling. It increases the flexibility and may be more practically useful.
e Estimation based on regression over threshold is worth to look into.

e It may be worth to look into multivariate max-stable ARM A(p, q) processes for
its natural link to ARM A(p, q) process.

e [t may be worth to study general volatility modeling in an extreme value settings.
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