Homework 1, due Wednesday, February 3 Very important: Show All Working!!

1. In a certain year, the mean SAT score for all students is 1200 and the standard deviation is 300. Assume that the distribution is normal.
(a) What percentage of students scores above 1320? [3 points]
(b) A certain college decides to give automatic acceptance to all students who score in the top 12% of all SAT scores. What SAT score does that correspond to? [3 points]
2. The file SATscores.csv in on the Data page in sakai. Using R, answer the following questions:
(a) What are the sample mean \bar{y} and the sample standard deviation s_{y} of this dataset? [2 points]
(b) The standard error of a dataset is defined to be s_{y} / \sqrt{n}, where n is the sample size. For this dataset, what is the standard error? [2 points]
(c) Draw a histogram of the data [3 points]
(d) Draw a QQ-plot of the data [3 points]
(e) Based on the histogram and the QQ-plot, would you say the data are normally distributed? [2 points]
(f) A rough rule of thumb for when a sample mean is consistent with a hypothesized population mean (here, 1200) is that the difference between the two means should be less than 2 standard errors. Based on that, would you say the data are consistent with a population mean of 1200? [2 points]

Hints for Using R

1. Use the R functions pnorm, qnorm. For explanations, type ?pnorm or ?qnorm.
2. To read a csv file into R, type something like

SAT=read.csv('SATscores.csv')
You may need to insert the directory path before the file name.
If you type SAT at the keyboard, you will get a listing of the data: the first few lines are

	Observation	SAT
1	1	1190
2	2	1240
3	3	1120
4	4	1430

The values in the second column are the ones you need. If you prefer a short variable name, say y, you can enter y=SAT\$SAT.
(a) The sample mean and variance of the vector y are given by mean(y) and $\operatorname{var}(\mathrm{y})$. For standard deviation, sy=sqrt (var (y)).
(b) The sample size is length (y).
(c,d) Use the commands hist and qqnorm. You can find more information by typing in ?hist and ?qqnorm.

