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What is Statistics?

Statistics is the science of collecting, organizing and drawing
inferences from data

Populations
Samples

Drawing inferences about the population, using statistical
tools



Fundamental Concepts

e A model is a mathematical description of the quantities of
interest
— Example: Y has a normal distribution with unknown mean
1 and standard deviation o, often written N(u, o) or N(u, c2)
(need to distinguish which)

e A parameter is a numerical quantity that describes the pop-
ulation, usually unknown in practice
— In the above example, u and o are the parameters

e A statistic is a value that we can calculate from a sample. It
is often used to estimate a parameter, but it should not be

confused with the parameter itself
— The sample mean and the sample standard deviation
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Models

e [ here are many possible models
— Gaussian
— Binomial
— Poisson
— Gamma
— Uniform

e [ he best known model of all is the Gaussian distribution,
though you may know it by its other name: the normal dis-
tribution



Density functions (pdf’s)

e Suppose we have random variable Y; we let the real number
y be a generic value of the random variable Y, and we talk
of its density function f(y), also known as the probability
density function and sometimes abbreviated pdf

e Properties of f(y):
— f(y) > 0 for each y
— The total area under the curve f(y) is 1
— For any a and b, the area under the curve between y = a
and y = b represents the probability that Y is between a
and b

e Example: for a normal distribution with mean x and standard
deviation o,

fo) = ()



T he Normal Distribution

Example: The normal distribution is the most important
distribution 1n Statistics. Typical normal curves with
different sigma (standard deviation) values are shown
below.

/0 0.5
c =025

e Symmetric, unimodal, bell-shaped
e Completely specified by 4 and o
e [ he mean, median and mode are all the same



Example: Temperatures in Amherst, MA

Mean Annual Temperature in Amherst, MA
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Example: Temperatures in Amherst, MA

Mean Annual Temperature in Amherst, MA

10

Temperature

e Is it a straight line? Year
e Are there outliers?
e Is the distribution approximately normal?



Temperatures in Mount Airy and Charleston

Summer Temperatures in Mount Airy and Charlestor
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e How well can we predict the summer mean temperature in

one city given the summer mean temperature in the other
City?



Homework 1, due Monday, February 1
Very important: Show All Working!!

1. In a certain year, the mean SAT score for all students is 1200 and the
standard deviation is 300. Assume that the distribution is normal.
(a) What percentage of students scores above 13207 [3 points]
(b) A certain college decides to give automatic acceptance to all students

who score in the top 12% of all SAT scores. What SAT score does
that correspond to? [3 points]

2. The file SATscores.csv in on the Data page in sakai. Using R, answer
the following questions:

(2)
(b)
(c)
(d)
(e)

()

What are the sample mean y and the sample standard deviation s, of
this dataset? [2 points]

The standard error of a dataset is defined to be s,/y/n, where n is the
sample size. For this dataset, what is the standard error? [2 points]
Draw a histogram of the data [3 points]

Draw a QQ-plot of the data [3 points]

Based on the histogram and the QQ-plot, would you say the data are
normally distributed? [2 points]

A rough rule of thumb for when a sample mean is consistent with
a hypothesized population mean (here, 1200) is that the difference
between the two means should be less than 2 standard errors. Based
on that, would you say the data are consistent with a population
mean of 12007 [2 points]
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Hints for Using R

1. Use the R functions pnorm, gnorm. For explanations, type ?7pnorm Or
?qnorm.

2. To read a csv file into R, type something like
SAT=read.csv(’SATscores.csv’)

You may need to insert the directory path before the file name.

If you type SAT at the keyboard, you will get a listing of the data: the
first few lines are

Observation SAT

1 1 1190
2 2 1240
3 3 1120
4 4 1430

The values in the second column are the ones you need. If you prefer a
short variable name, say y, you can enter y=SAT$SAT.
(a) The sample mean and variance of the vector y are given by mean(y)
and var(y). For standard deviation, sy=sqrt(var(y)).
(b) The sample size is length(y).
(c,d) Use the commands hist and qgnorm. You can find more information
by typing in ?hist and ?qgnorm.
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The 68—95—-99.7 Rule

5%

q99.7%

_/

T T

U-30 u-20 y-o 4 p+toc u+20 u+3o

e Approximately what percent of the distribution is 2 standard

deviations above the mean?

e Between 1 and 3 standard deviations below the mean?

12



Typical Examples of a Normal Distribution
Heights

Weights

Test scores (sometimes by design)

Temperatures

Rainfall??

Incomes??

Number of COVID cases on the UNC dashboard?

These would all be samples from a larger population

13



Z_

scores: Standardizing the normal distribution

Suppose y is an observation from a normal distribution with
mean p and standard deviation o

The value z = % is call the z-score.

If y indeed has a normal distribution with mean g and stan-
dard deviation o, then z has a normal distribution with mean
O and standard deviation 1.

Call standard normal — refer to standard tables or use soft-
ware

In R: function pnorm(y,mu,sigma) gives the left-hand tail prob-
ability of a normal distribution with mean mu and standard
deviation sigma.

pnorm(y,mu,sigma) iS the same as pnorm((y-mu) /sigma) (try it!)
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Example: SAT scores

SAT scores from 2014 were normally distributed with mean
1500 and standard deviation 300

What percentage of SAT scores were below 14007

A4

1
900 1500 2100

The z-score is 140%65500 — —0.3333

pnorm(-0.3333)= 0.3694539, i.e. the answer is about 37%.

Alternatively, pnorm(1400,1500,300)= 0.3694413 (slight discrep-
ancy due to rounding error)

15



Example: Quantiles/Percentiles

SAT scores from 2014 were normally distributed with mean
1500 and standard deviation 300

One university guarantees a scholarship to any student scor-
ing in the top 3%.

What score does that correspond to?

On a standard normal, gnorm(0.97)= 1.880794 (let's say 1.88
for simplicity)

z = % = 1.88, therefore y = p+1.880 = 1500+1.88+x300 =
2064

Alternatively, gnorm(0.97,1500,300)=2064.238.
The required score is 2065 (to be conservative)

16



More Complicated Probabilities

e \What percentage of American males are between 68 and 72
inches tall?

e Google: un=69.2, ¢ = 2.66 (inches)

e R: pnorm(72,69.2,2.66)-pnorm(68,69.2,2.66)=777

17



Histograms

Histogram of pop1$V1 Histogram of pop2$V1
z - z 84|/
53 5,1/
) _1|o 15 r; 5I 1|0 1|5 2|0 0 10 20 30
pop15V1 pop25V1
e "hist” in R
e Left plot: unimodal, symmetric, bell-shaped — consistent

with normal distribution

e Right plot: clearly asymmetric, not a good candidate for
normal distribution
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QQ-Plots

Population 1 Population 2

%%0

Sample Quantiles
i]
Sample Quantiles

Theoretical Quantiles
Theoretical Quantiles

“ggnorm” in R
Left plot: close to straight line, good fit to normal
Right plot: strong curvature, probably not normal

Not all cases are as clear-cut as thesel
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PARAMETERS

e A parameter is something that describes the population of
interest.

e Assume a finite population, size N, values Yq,Yo,...,Yn.

e Common examples:
— Mean, puy =+ 3N Y;
— Standard Deviation, oy = \/ﬁ ZgNzl(YE — 1y )2

— Correlation coefficient between two variables X and Y,
_ S (Y py) (Xi—px)
PX)Y — ~ >N >
\/zizl(Y;’—MY) Zi:l(X’l:_/’LX)
— Population proportion p, e.g. the fraction of the whole
population that supports President Biden

20



MULTIVARIATE POPULATIONS

TABLE |.§.1
Schematic Representation of a k-Variate Population of Size N

k Measurements on Each ltem
ttems 1 2 .- k

1 X Xy o Xk

2 Xz] Xn e Xn

I X Xp Xy

N X | X2 | - | Xwme
Mean ul uz ven uk

Standard

deviation | o, o | | o

e kL means, k standard deviations, k(kT_l) correlation coefficients
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STATISTICAL INFERENCE
e Point Estimates
e Confidence Intervals (Interval Estimates)

e Hypothesis Tests

22



Point Estimates

Assume a sample y1,...,yn from the population Y1, ..., Yy
(for correlation: also xq,...,zn from Xq,..., Xy)

Simple random sample (SRS): All (1) = n,(]ifvin), samples
are equally likely

|
Mean: y==>"1" 1 v;

Standard deviation: sy = \/n—fl o (Y — )2

> iy (2—2) (yi—7)
VI ()2 T ()2
These are all unbiased estimates in the following sense: the

mean of the estimate, over many repetitions of the SRS, is
equal to the population mean.

Correlation coefficient: rzy =

23



Example of Unbiased Estimation

R code SDsimulation.txt

SAT=read.csv(’C:/Users/rls/aug20/UNC/STOR455/Data/SATscores.csv’ ,header=T)
# population

Y=SAT$SAT

N=length(Y)
VAR=sum((Y-mean(Y))~2)/(N-1)

print (VAR)

# one sample of size 10

n=10

S=sample(1:N,n)

y=Y[S]

var=sum( (y-mean(y)) ~2/(n-1))

# do this 100,000 times

varsum=0

for(i in 1:100000){

S=sample(1:N,n)

y=Y[S]
varsum=varsum+sum((y-mean(y))~2/(n-1))
}

print (varsum/100000)

Exercise: What if we divide by N and n instead of N-1 and n-17
24



Quick Note about Unbiased Estimates

The previous example illustrated the variance (square of the
standard deviation) rather than the standard deviation itself

Why was that?

/2
In fact, the sample standard deviation \/Z(gz_ly) is not ex-
actly unbiased as an estimate of the population standard
deviation (though it's close, and still better if you divide by

n — 1 instead of n)

This actually illustrates a difficulty about the concept of unbi-
asedness — it may seem like a natural and intuitive concept,
but it's not so easy to achieve in practice

( “Avoidance of bias” seems like a universal principle for statis-
tics, but it’s not quite that simple)

Nevertheless, almost everyone divides by n— 1 when estimat-
ing a standard deviation

25



Estimating Correlations 1
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e Example of a scatterplot where the correlation is O
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Estimating Correlations II

FIGURE I.5.1

Prx=04 . . Prx=0.1

pf_x=0.9 py_1r=l.0

X 4

e Examples of scatterplots where the correlations are positive
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Estimating Correlations III

FIGURE I.5.3

py,x=—0.7

pr'x=—0.9

pyx=-10

Examples of scatterplots where the correlations are negative
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Correlations in the Amherst and Mount Airy
Datasets

Mean Annual Temperature in Amherst, MA Summer Temperatures in Mount Airy and Charlestor
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Guess the correlation coefficients
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Look at the estimates —

> cor (Amh)

year temp
year 1.0000000 0.6338541
temp 0.6338541 1.0000000

How would you interpret this table?

> cor(Mta)

Year MtAiry Charleston
Year 1.000000000 -0.005637434 0.06387079
MtAiry -0.005637434 1.000000000 0.65346598

Charleston 0.063870792 0.653465976 1.00000000

30



Confidence Intervals for the Mean
Recall from STOR 155:

y =+ z*\/i_ if the SD o is known

n

y £ t* "L if o is unknown and estimated by sy

Jn
z* is derived from the normal distribution and t* from the ¢

distribution with n — 1 degrees of freedom

The values of z* or t* also depend on the confidence coeffi-
cient 1 —«. Usually, a = 0.05 for a 95% confidence interval,
but that’s not universal

31



Determining z* or t*
/ /\\

JLJ e

\.
\
k!

"L

LJD\

e One-sided or two-sided

e Confidence intervals are nearly always two-sided and
symmetric

e One-sided bounds may be used in hypothesis testing

32



Theory of Confidence Intervals 1

Idea is to find statistics L and U (functions of the data) so
that

Pr{L<0<U} = 1-aqa

where 6 is the parameter of interest

Case o known: Z = Y= has a standard normal distribution
o/\/n

(mean 0, variance 1)

Find 2% = 21_qp SO that Pr{Z < —z4 o} = Pr{Z >z, 5} =
a/2.

T hen

y l/lj -
o = { z /\f z}— {y z

33



Theory of Confidence Intervals II

Thus, L =y — z*\/iﬁ, U=1y+ ,z*\/iH fulfil the conditions for a
confidence interval

a = 0.05: z* = 1.96 (gnorm(0.975)), often rounded to 2 in
practice (hence the rule of thumb for HW1, Q2(f))

Case o unknown: t = has a t distribution with n — 1

y/f
degrees of freedom, written ¢,,_1.

Find t* = tn—l,l—oz/Q so that Pr{tn_]_ < —t*} = Pr{tn_]_ > t*} =
a/2. (In R: qt(1-alpha/2,n-1).)

In this case, L =y — t*\s/y_, =g+ t*2L

3
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Prediction Intervals

Suppose we are interested, not in estimating wp, but in pre-
dicting some future value Yy ~ N|u,o], where u and o are
the same mean and standard deviation.

We still use y as a point estimator/predictor, but now use
the fact that Yy — 4 has mean 0 and variance o2 (1 + %)

t=-Y0"U pasa t,—1 distribution

sy\/1—|-%
The 100(1 — «)% prediction interval for Yy is given by

(g —t¥sy\/1+ 2,5+ t'sy /1 + %) where t* =1, 11 42,

as before

35



Interval Estimation Summary

C TABLE l.b.2

Point Estimates and Confidence Intervals for sy, oy, and ¥, in a One-Variable Gaussian Population

Notation: il= %Ey,-; SSY:E(V; -5?

Inference Formulas _nnd Procedures
Point estimate fy =¥
of uy, oy Gy =/S3¥](n—1)

Two-sided Ry =t _apn1SEGty) < By < By +1y_g /2.0 1SE(iy)
1 — a confidence where

intervals for gz, - 2

E(fiy) = L
SE(jiy) T

Two-sided
1 — & confidence 2L <oy [
intervals for Jr xl—ﬂm—l xn[::n-l

1 — & confidence n - 1 . . 1
intervals for ¥, By — ‘l-a;zau-l"r\/ I+-<lysfy+t, ,2:,,_16“/ 1+




Homework 2: Due Wednesday, February 10

e From the book: 1.6.1, 1.8.1, 1.8.3, 1.10.8, 1.10.9, 1.10.10,
1.10.11

— Note: 1.6.1 requires the dataset tablel64.txt, on the
Data page in sakai

e The dataset EXAM.txt (Data page in sakai) contains the midterm
and final exam scores on a student exam.

— Calculate a 95% confidence interval for (a) the mean score

on the midterm, (b) the mean score on the final.
— Test the hypothesis that the mean scores on the midterm

and final are the same, against the alternative that they

are different. Use o« = 0.1. What is your conclusion?
— Draw a scatterplot of the final exam scores against the

midterm exam scores, and draw a straight line through
the plot (feel free to adapt the in-class examples for the
Amherst and Mount Airy datasets). Would you say a
straight line regression is justified in this case?

37



Instructions and Hints

e You may (and are expected to) use R for the computational
part of any of this, but show all working: if you use R to get
your answer, show the relevant R code so that we can see
exactly how you got it, but also make sure that you clearly
and unambiguously state what your answer is. You'd be
amazed how many students neglect this very simple principle!

e Some of the Graybill-Iyer problems have solutions given in the
“Answers’ chapter of the book. I recommend that you work
through these problems without first looking at the solutions,
otherwise you won't learn much from trying to do them.
However, I am not forbidding you to look at the solutions
before handing them in: just make sure that the solution
you hand in is your solution and contains a full explanation
of what you did.

38



Homework 3: Due Wednesday, February 17

This is “Project 1.”

In sakai, go to “Resources’”, then “Projects”, then "“Project
1.pdf’. Full instructions are contained therein, but email the
instructor on case of ambiguity.

Please note that the basketball data, to which the project refers,
IS also on sakai under “Data.”

39



Hypothesis Tests
Interest in an unknown parameter 6 (could be u, or o, or whatever...)

Null hypothesis Hg, typically of the form 6 = 6y for some specified value
0o (e.g. SAT example in HW1, 0 was p and the hypothesized value was
0o = 1200)

Alternative hypothesis H1 or H4, typically one of

—Hlie#eo
— Hi: 6 >0
— Hi1: 6 <6y

Fix the size of the test (a.k.a. significance level) — the probability that
we reject Hg, given that Hp is true, must be no larger than «, for some
suitable small value of «

It is common to take o« = 0.05, but contrary to what some of my epi-
demiologist friends think, this is not a universal rule, e.g. could take
a = 0.01 or even 0.001 to get a more stringent rule

Choose a test statistic T
Define a critical value for T, usually written C

The test will reject Ho when |T'| > C or T > C or T' < —C', depending on
the form of H;

40



Example

Sample of n = 135 SAT scores with mean y = 1227.5, stan-
dard deviation sy = 147.7.

Test Ho: pu= pug = 1200 versus Hy : pu # 1200

Test statistic T = Y=#2 with distribution t134 if Hg is correct
sy/v/n

Choose C = t134,0.975 = 1.978 (qt(0.975,134) in R)
Reject Hg if |T| > 1.978.

__1227.5—-1200 __ :
In fact T = 1477/vV135 2.163, so we reject Hp

Alternatively, a 95% confidence interval for u is g + t*2L =

2 =
1227.5 + 1-975%1;‘7-7 = (1202.4,1252.6)

How would this calculation change if H; was either x> 1200
or u < 12007

41



One-sided Tests

o If H : p > 1200:
— Define C = th—1,1—a = 1134,0.95 = 1.656. We use 1 —
a = 0.95 rather than 1 — a/2 = 0.975 (see figure on
“Determining z* or t*" slide
— 2.163 > 1.656 so we again reject Hg

o If H{ : 1 < 1200:
— In this case we reject if T' < —C
— Here 2.163 > —1.656 so we accept Hg
— This might seem an odd conclusion given our previous
results, but the practical conclusion is that p = 1200 is
better supported by the data than any value for which
u < 1200.

42



Tests or Confidence Intervals?

Authors’ Recommendation

We recommend that traditional statistical tests of hypotheses for a parameter,
say @ {where one rejects or does naot reject NH), never be used if a confidence
interval for 8 is available because confidence intervals are always more informa-
tive than tests, and tests alone (without the accompanying confidence intervals)
can be misleading. Since tests are taught and widely used by investigators, we
discuss them in this book, but as a general rule we advise against their indiscrim-
inate use,

My take?

I tend to agree

Many people (wrongly) interpret a decision to accept Hg as proof that
Hy was correct

This is not true — accepting Hg often means only that there wasn't
enough data to reject it

A confidence interval is more informative because it gives you the full
range of values of the unknown parameter that are consistent with the
data

Nevertheless, testing without a CI is still common practice...
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p-values
Another way of looking at hypothesis tests

We observed a value y = 1227.5. If Hq is correct, p = 1200.
How improbable is the value y = 1227.57

If the data had a true normal distribution, the probability
that y = 1227.5 would be 0 (because it's a continuous dis-
tribution)

In reality, the normal distribution isn't exact (SAT scores
take integer values) but still, the probability that vy is exactly
1227.5 is very small, regardless of the true value of u

A more meaningful question: what is the probability that y
is at least as extreme as 1227.5, if 4y = 12007

_ _ J—p ~ 1227.5-1200 | _
Pr{y > 12275} = Pr{s/\/ﬁ > } Pr{T > 2.168}

where T' is has a t134 distribution
pt(2.168,134,lower.tail=F) gives the answer 0.016.

44



Interpretation
0.016 seems quite a small probability, but interpreting it is not so easy.

If it was a two-sided test (i.e. if H; was u 7= 1200 rather than p > 1200),
we should take into account that the deviation might have been equally
far in the other direction (y = 1200 — 27.5 =1172.5)

In this case, we should use a two-sided p-value — the distribution is
symmetric around p = 1200, so
Pr{y > 12275 or y <1172.5} = 2x0.016 = 0.032.

Still quite small (in particular, it's < 0.05), but not looking so dramatic

The situation would be more complicated if, for example, we had tested
several samples before finding one that was statistically significant. VWhat
would be the interpretation then?

— Example: suppose I took data from Chapel Hill High, East Chapel
Hill High, Carrboro High, Durham Academy and the NCSSM. In the
first four, y is between 1180 and 1220, but at NCSSM, it's 1227.5.
Is that significant?

Problem of simultaneous or multiple testing

45



Simultaneous Confidence Intervals

Suppose we have K populations, parameters 64, ...,0k.

Would like to specify lower and upper confidence bounds

L;., U such that
Pr{L, <0, <Ugforeachk=1..,.K}>1-—a.
One way to achieve this is to set L;, U, so that
Pri{L, <0, <U.) =1 —% for k=1,.., K.
Theorem: If (2) holds, then so does (1).

This is called Bonferroni’s Inequality.

46
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Example
Five high schools, population mean SAT scores p(1) ... 1(5),
sample means y(l),...,y(5), sample SDs s@(jl),..., 385), sample
sizes n(1) ... n(5),

Deﬂne t(k) — tnk—l,l—a/lo fOI’ k’ — 1, ,5
The confidence interval for u(%) is

k k
(k)é) _() (k)()

FECHNAT)

For example, if high school 5 is NCSSM with 7(3) = 1227.5, s{®) =
147.7, n(5) = 135, and if we set o = 0.05 as usual, we will
define t(5) = t134,0.995 = 2.613 (qt(0.995,134) in R).

The confidence interval for NCSSM will be

2.613x147.7 2.613x147.7\ __
(1227.5 ST, 1227.5 4 200K ) (1194.3, 1260.7).

g(k)
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Multiple Testing

Same idea ...

Suppose we want to test K null hypotheses H(l), ..,HC()K)

against alternative hypotheses H%Q...,H%K).

Objective: define test statistics and critical regions so that

Pr{ReJeCt HSY or Reject HS? or ... or Reject H(K)} < a

(K)

when each of H(gl), ,Hy "7 Is true

Bonferroni solution: set the significance level for each test
to be a/K.

There are other ways of constructing simultaneous confi-
dence intervals or tests and whole books have been written
about how to do it, but the Bonferroni method is the simplest
and often almost as good as the other methods.
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When to use these methods?

Authors’ Recommendation

For each problem, the investigator must decide which type of confidence inter-
val (one-at-a-time or simultaneous) to use. We recommend that simultaneous
confidence intervals be used only in situations when an investigator must make
a decision that depends on knowing all of the values 6, simultancously, with a
specified level of confidence. That is, an investigator wants to have 1 — & con-
fidence that a decision is correct and, for the decision to be correct, alf of the
confidence intervals, L; <6, < U, i=1,...,m, must be simultaneously cor-
rect. Thus the investigator wants to have 1 — & confidence that all m intervals are
correct.

Maybe, but here's another view (Gelman-Loken paper in sakai)—

The Statistical Crisis In  the jssue of multiple

u
- -
Science comparisons arises even
BY ANDREW GELMAN, ERIC LOKEN - - s
i . — with just one analysis of
ata-dependent analysis—a “garden of forking paths"—
explains why many statistically significant comparisons don't
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here is a growing realization

that reported “statistically sig-

nificant” claims in scientific

publications are routinely mis-
taken. Researchers typically express
the confidence in their data in terms
of p-value: the probability that a per-
ceived result is actually the result of
random variation. The value of p (for
“probability”) is a way of measuring
the extent to which a data set provides
evidence against a so-called null hy-
pothesis. By convention, a p-value be-
low 0.05 is considered a meaningful
refutation of the null hypothesis; how-
ever, such conclusions are less solid
than they appear.

This multiple comparisons issue is
well known in statistics and has been
called “p-hacking” in an influential
2011 paper by the psychology re-
searchers Joseph Simmons, Leif Nel-
son, and Uri Simonsohn. Our main
point in the present article is that it
is possible to have multiple potential
comparisons (that is, a data analysis
whose details are highly contingent
on data, invalidating published p-val-
ues) without the researcher perform-
ing any conscious procedure of fishing
through the data or explicitly examin-
ing multiple comparisons.
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Relevance to the current course

You should be aware of the Bonferroni method, but it is not
going to play a big role in this course (I don't think)

There are other more specialized techniques (e.g. Scheffé
and Tukey methods) that apply in specific situations — de-
pending on how far I get, I may cover these are the end of
the course

Another solution to multiple comparison problems is simula-
tion — another topic that I may include if there's time

You should read the Gelman-Loken article as part of your
general statistics education — the issues they raise are im-
portant, but there is no “magic bullet” to solving them.
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Confidence Intervals and Hypothesis Tests
for Comparing Two Means

First sample: x4, ...,zm from distribution N[uq, o1]
Second sample: y1,...,yn from distribution N|[uo, o5]

Usually assume o1 = oo = o (should do a rough check
whether this is reasonable. but we won't do a formal test)

Find a confidence interval for pu1 — uo, Or ...

Test the null hypothesis ui = puo> against any of

— H1 F U
— M1 > p2
— p1 < 2
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o unknown: use the pooled estimate 52
with m 4+ n — 2 degrees of freedom

T—y—(a—p2) ¢

) /7%4_% m—+n—2

_ > (i—E)? > (wi—)?
m-+n—2
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Results

e Confidence interval for pu1 — po:

1 1

e Hypothesis test: reject Hy: pu1 = po against Hy © p1 #= uo if

1 1
1z —y| > t'sy/—+ —
m o n

e In both cases, for significance level «, t* = tidtn—2,1—a/2

e Question: for a one-sided test, how would you modify this?
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Extensions

What to do if o1 = 057
— No clear-cut solution, but there’s an approximate solution

called the Welch-Satterthwaite formula which you may
have seen in STOR 155

Extension to more than two samples: we could have K sam-
ples with means uy,...ux Standard deviations o1,...0x, test

Ho! p1=...=pug
against
Hqi: py,...p are not all equal.
Again, we usually assume o7 = ... = oi (but check this is

reasonable)

The procedure is then called “one-way analysis of variance”
(aov function in R)

We may talk about this later.

55



Other topics from Chapter 1 of the text
e Section 1.7 — functional notation
e Section 1.8 — vectors and matrices

e Section 1.9 — multivariate normal distribution
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Section 1.7: Functional Notation

e (Get used to expressions like

f(fC]_,CUQ,...,CEn)

to denote a (scalar) function of n variables zq1,...,xn

e A function is linear if it can be expressed in the form

f(x1,22,...,2n) = ag+ajx1+ ...+ anzn

for some constants ag,aq,...,an.

e Example f(a:l,xg,az:g) = 3x1 — (xp + 4x3 + 19 is linear, but
f(xq,x5,23) = 321 — €2 + 42723 + 19 is not.
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Section 1.8: Vectors and Matrices
A matrix is a two-dimensional array of numbers

An m X n matrix has m rows and n columns

1 2 3

Example: A = <4 5 6

) IS @ 2 X 3 matrix

An n x 1 matrix is called a column vector, and a 1 x n matrix
is called a row vector. Usually, when we say ‘“vector’” without
specifying whether it means a row vector or a column vector,
we mean the latter.

The transpose of a matrix, usually written AL or A’, is ob-
tained by interchanging the rows and columns.

1 4
With A as above, AT =] 2 5
3 6
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Operations on Matrices

Addition, Subtraction: defined element by element. If A and
B do not have the same dimensions, A+ B and A — B are
not defined.

Example: ifA=<1 2 3>,B=<1 2 1)then

4 5 6 2 1 2
(2 4 4 (00 2
A+B_<668>’ A_B_<244>'

Equality of Matrices: Two matrices A and B are defined to
be equal if and only if they are the same dimensions and
every entry of A is equal to the corresponding entry of B.

o (1 2 3 (1 2 3 o
Example: |fA_<4 5 6>’B_<4 5 6>thenA_B.
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Matrix Multiplication

e Suppose A is a mxn matrix, B is a nxp matrix, then C = AB
is defined, a m x p matrix, and its (¢,j) entry is given by

n
Cij = D aipbr;j
k=1

(Sometimes the indexes are separated by commas, some-

times they are not, it really doesn't matter but try to be
consistent)

1 2
e Example: If A=1| 3 4 ,Bz(l 2 3>,then

5 6 4 5 6
9 12 15
C = 19 26 33

29 40 51
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Special Matrices

The zero matrix, sometimes written 0, is an m X n array of
O O

zeroes, for example A= 0O O
00

A matrix is square if the row and column dimensions are the
same, i.e. m = n.

The n x n identity matrix, sometimes written I,, iSan n X n
matrix with ones on the diagonal, zeroes elsewhere. For

1 0 O
example, Is=| 0 1 O
O 01
A diagonal matrix is a square matrix whose only non-zero
4 0 O
entries are on the diagonal, for example, A=| 0 7 O

O 0 —-15
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Matrix Inverse

If C is an n x n matrix, then the inverse of C, denoted C~1, if it exists,
IS another n x n matrix with the property that

clc = cct = I,
9 12 15
Example. If I slightly change my previous C to C = 19 26 33 |,
29 40 52
32 24 6
and define D=2 —-31 33 —12 |, then D=C"1.
6 —12 6

This is not so easy to derive (except in the 2 x 2 case, see next slide)
but we shall see how to compute matrix inverses in R, and you can check
directly by multiplying out that CD and DC' are both the 3 x 3 identity

matrix.
9 12 15

Question: My original C was 19 26 33 (different in c33). Why
29 40 b1

did I change it?
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Inverse of a 2 x 2 matrix

oIfAz(a b),then
c d

provided ad # bc.
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Determinant of a Matrix

If Ais an n xn matrix, then there is a special quantity called
the determinant, which is useful in calculating inverses.

a b

2 X 2 case;: ifAz(
c d

), then |A| = ad — be.
Higher dimensions: not easy to calculate by hand, but the R
function det does what you think.

Most important property, if |A| = 0, then A~! does not exist.
It's the matrix equivalent of trying to divide by O.

However, there is actually something called a generalized in-
verse, which does something similar to A=1 when |A| = 0.
The most famous form of generalized inverse is the Moore-
Penrose inverse (e.g. Moore 1920, Penrose 1955).

Scientific trivia question: who is Penrose, and why is he
famous?
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Implementation in R

e R is an object-oriented language — define matrices (and
other mathematical objects) directly with R commands and
to manipulate them according to the rules of matrix algebra

e To define a matrix, e.q.

A=matrix(1:6,ncol=2,byrow=T)

B=matrix(1:6,ncol=2,byrow=F)

# note distinction between byrow=T and byrow=F: default is F
t(B) # transpose

# matrix operations: A+B, A-B are what you expect but

# A*¥B is element by element multiplication

C=A %% t(B) # this is how you do matrix multiplication in R
solve(C) # inverse of C

det(C) # determinant of C

e (Generalized inverse: library(MASS) and ginv(..).
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Section 1.9: Multivariate Gaussian Distributions

Recall that a random variable Y is said to have a Gaussian distribution
with mean p and standard deviation o if its probability density function

(pdf) is —1_expd —1(2=)*1 1n practice, verify this graphically
o2 2 o

(histograms, QQ plots)

The vector ( Yi Yo ... Yg )T is said to have a multivariate Gaussian

distribution if, for any constants a1, ao, ..., agk, Zle arYr has a univari-
ate Gaussian distribution

If a distribution is multivariate Gaussian, then it is characterized by the
means ui,...ur, the standard deviations oi1,...0x and the correlations
Pj.ks 1 S],kﬁSK

In reality, it's almost impossible to prove that a distribution is multivariate
Gaussian, though sometimes we can find ai,...,ax that prove it is not
(see text for an example)

Sometimes, it's easier to prove theoretically, e.g. if each of Yi,...,Ygk
is some linear combination of the same set of independent Gaussian
Z1,...,%m, then automatically, Yi,..., Yk are multivariate Gaussian
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END OF CHAPTER 1!
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