
TODAY’S CLASS

1. Syllabus

2. Course Overview

3. Review of basic statistical principles
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What is Statistics?

• Statistics is the science of collecting, organizing and drawing

inferences from data

• Populations

• Samples

• Drawing inferences about the population, using statistical

tools
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Fundamental Concepts

• A model is a mathematical description of the quantities of
interest
– Example: Y has a normal distribution with unknown mean
µ and standard deviation σ, often written N(µ, σ) or N(µ, σ2)
(need to distinguish which)

• A parameter is a numerical quantity that describes the pop-
ulation, usually unknown in practice
– In the above example, µ and σ are the parameters

• A statistic is a value that we can calculate from a sample. It
is often used to estimate a parameter, but it should not be
confused with the parameter itself
– The sample mean and the sample standard deviation

ȳ =
1

n

n∑
i=1

yi,

s2
y =

1

n− 1

n∑
i=1

(yi − ȳ)2.
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Models

• There are many possible models
– Gaussian
– Binomial
– Poisson
– Gamma
– Uniform

• The best known model of all is the Gaussian distribution,

though you may know it by its other name: the normal dis-

tribution
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Density functions (pdf’s)

• Suppose we have random variable Y ; we let the real number
y be a generic value of the random variable Y , and we talk
of its density function f(y), also known as the probability
density function and sometimes abbreviated pdf

• Properties of f(y):
– f(y) ≥ 0 for each y
– The total area under the curve f(y) is 1
– For any a and b, the area under the curve between y = a

and y = b represents the probability that Y is between a

and b

• Example: for a normal distribution with mean µ and standard
deviation σ,

f(y) =
1

σ
√

2π
e
−1

2

(
y−µ
σ

)2
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The Normal Distribution

• Symmetric, unimodal, bell-shaped

• Completely specified by µ and σ

• The mean, median and mode are all the same
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Example: Temperatures in Amherst, MA
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• Is it a straight line?
• Are there outliers?
• Is the distribution approximately normal?
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Temperatures in Mount Airy and Charleston
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• How well can we predict the summer mean temperature in
one city given the summer mean temperature in the other
city?
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Homework 1, due Monday, February 1
Very important: Show All Working!!

1. In a certain year, the mean SAT score for all students is 1200 and the
standard deviation is 300. Assume that the distribution is normal.

(a) What percentage of students scores above 1320? [3 points]
(b) A certain college decides to give automatic acceptance to all students

who score in the top 12% of all SAT scores. What SAT score does
that correspond to? [3 points]

2. The file SATscores.csv in on the Data page in sakai. Using R, answer
the following questions:

(a) What are the sample mean ȳ and the sample standard deviation sy of
this dataset? [2 points]

(b) The standard error of a dataset is defined to be sy/
√
n, where n is the

sample size. For this dataset, what is the standard error? [2 points]
(c) Draw a histogram of the data [3 points]
(d) Draw a QQ-plot of the data [3 points]
(e) Based on the histogram and the QQ-plot, would you say the data are

normally distributed? [2 points]
(f) A rough rule of thumb for when a sample mean is consistent with

a hypothesized population mean (here, 1200) is that the difference
between the two means should be less than 2 standard errors. Based
on that, would you say the data are consistent with a population
mean of 1200? [2 points]
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Hints for Using R
1. Use the R functions pnorm, qnorm. For explanations, type ?pnorm or

?qnorm.

2. To read a csv file into R, type something like

SAT=read.csv(’SATscores.csv’)

You may need to insert the directory path before the file name.

If you type SAT at the keyboard, you will get a listing of the data: the
first few lines are

Observation SAT
1 1 1190
2 2 1240
3 3 1120
4 4 1430

The values in the second column are the ones you need. If you prefer a
short variable name, say y, you can enter y=SAT$SAT.

(a) The sample mean and variance of the vector y are given by mean(y)
and var(y). For standard deviation, sy=sqrt(var(y)).

(b) The sample size is length(y).
(c,d) Use the commands hist and qqnorm. You can find more information

by typing in ?hist and ?qqnorm.
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The 68–95–99.7 Rule

• Approximately what percent of the distribution is 2 standard

deviations above the mean?

• Between 1 and 3 standard deviations below the mean?
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Typical Examples of a Normal Distribution

• Heights

• Weights

• Test scores (sometimes by design)

• Temperatures

• Rainfall??

• Incomes??

• Number of COVID cases on the UNC dashboard?

• These would all be samples from a larger population
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z-scores: Standardizing the normal distribution

• Suppose y is an observation from a normal distribution with
mean µ and standard deviation σ

• The value z = y−µ
σ is call the z-score.

• If y indeed has a normal distribution with mean µ and stan-
dard deviation σ, then z has a normal distribution with mean
0 and standard deviation 1.

• Call standard normal — refer to standard tables or use soft-
ware

• In R: function pnorm(y,mu,sigma) gives the left-hand tail prob-
ability of a normal distribution with mean mu and standard
deviation sigma.

• pnorm(y,mu,sigma) is the same as pnorm((y-mu)/sigma) (try it!)
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Example: SAT scores

• SAT scores from 2014 were normally distributed with mean

1500 and standard deviation 300

• What percentage of SAT scores were below 1400?

• The z-score is 1400−1500
300 = −0.3333

• pnorm(-0.3333)= 0.3694539, i.e. the answer is about 37%.

• Alternatively, pnorm(1400,1500,300)= 0.3694413 (slight discrep-

ancy due to rounding error)
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Example: Quantiles/Percentiles

• SAT scores from 2014 were normally distributed with mean

1500 and standard deviation 300

• One university guarantees a scholarship to any student scor-

ing in the top 3%.

• What score does that correspond to?

• On a standard normal, qnorm(0.97)= 1.880794 (let’s say 1.88

for simplicity)

• z = y−µ
σ = 1.88, therefore y = µ+1.88σ = 1500+1.88∗300 =

2064

• Alternatively, qnorm(0.97,1500,300)=2064.238.

• The required score is 2065 (to be conservative)
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More Complicated Probabilities

• What percentage of American males are between 68 and 72

inches tall?

• Google: µ = 69.2, σ = 2.66 (inches)

• R: pnorm(72,69.2,2.66)-pnorm(68,69.2,2.66)=???
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Histograms

• “hist” in R

• Left plot: unimodal, symmetric, bell-shaped — consistent
with normal distribution

• Right plot: clearly asymmetric, not a good candidate for
normal distribution
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QQ-Plots

• “qqnorm” in R

• Left plot: close to straight line, good fit to normal

• Right plot: strong curvature, probably not normal

• Not all cases are as clear-cut as these!
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PARAMETERS

• A parameter is something that describes the population of

interest.

• Assume a finite population, size N , values Y1, Y2, . . . , YN .

• Common examples:

– Mean, µY = 1
N

∑N
i=1 Yi

– Standard Deviation, σY =
√

1
N−1

∑N
i=1(Yi − µY )2

– Correlation coefficient between two variables X and Y ,

ρX,Y =
∑N
i=1(Yi−µY )(Xi−µX)√∑N

i=1(Yi−µY )2∑N
i=1(Xi−µX)2

– Population proportion p, e.g. the fraction of the whole

population that supports President Biden
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MULTIVARIATE POPULATIONS

• k means, k standard deviations, k(k−1)
2 correlation coefficients
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STATISTICAL INFERENCE

• Point Estimates

• Confidence Intervals (Interval Estimates)

• Hypothesis Tests
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Point Estimates

• Assume a sample y1, ..., yn from the population Y1, ..., YN
(for correlation: also x1, ..., xn from X1, ..., XN)

• Simple random sample (SRS): All
(
N
n

)
= N !

n!(N−n)! samples

are equally likely

• Mean: ȳ = 1
n

∑n
i=1 yi

• Standard deviation: sy =
√

1
n−1

∑n
i=1(yi − ȳ)2

• Correlation coefficient: rx,y =
∑n
i=1(xi−x̄)(yi−ȳ)√∑n

i=1(xi−x̄)2∑n
i=1(yi−ȳ)2

• These are all unbiased estimates in the following sense: the

mean of the estimate, over many repetitions of the SRS, is

equal to the population mean.
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Example of Unbiased Estimation

R code SDsimulation.txt

SAT=read.csv(’C:/Users/rls/aug20/UNC/STOR455/Data/SATscores.csv’,header=T)
# population
Y=SAT$SAT
N=length(Y)
VAR=sum((Y-mean(Y))^2)/(N-1)
print(VAR)
# one sample of size 10
n=10
S=sample(1:N,n)
y=Y[S]
var=sum((y-mean(y))^2/(n-1))
# do this 100,000 times
varsum=0
for(i in 1:100000){
S=sample(1:N,n)
y=Y[S]
varsum=varsum+sum((y-mean(y))^2/(n-1))
}
print(varsum/100000)

Exercise: What if we divide by N and n instead of N-1 and n-1?
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Quick Note about Unbiased Estimates

• The previous example illustrated the variance (square of the
standard deviation) rather than the standard deviation itself

• Why was that?

• In fact, the sample standard deviation

√∑
(yi−ȳ)2

n−1 is not ex-
actly unbiased as an estimate of the population standard
deviation (though it’s close, and still better if you divide by
n− 1 instead of n)

• This actually illustrates a difficulty about the concept of unbi-
asedness — it may seem like a natural and intuitive concept,
but it’s not so easy to achieve in practice

• (“Avoidance of bias” seems like a universal principle for statis-
tics, but it’s not quite that simple)

• Nevertheless, almost everyone divides by n−1 when estimat-
ing a standard deviation
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Estimating Correlations I

• Example of a scatterplot where the correlation is 0.
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Estimating Correlations II

• Examples of scatterplots where the correlations are positive
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Estimating Correlations III

• Examples of scatterplots where the correlations are negative
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Correlations in the Amherst and Mount Airy
Datasets
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Guess the correlation coefficients
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Look at the estimates —

> cor(Amh)

year temp

year 1.0000000 0.6338541

temp 0.6338541 1.0000000

How would you interpret this table?

> cor(Mta)

Year MtAiry Charleston

Year 1.000000000 -0.005637434 0.06387079

MtAiry -0.005637434 1.000000000 0.65346598

Charleston 0.063870792 0.653465976 1.00000000
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Confidence Intervals for the Mean

• Recall from STOR 155:

• ȳ ± z∗ σ√
n

if the SD σ is known

• ȳ ± t∗ sy√
n

if σ is unknown and estimated by sy

• z∗ is derived from the normal distribution and t∗ from the t

distribution with n− 1 degrees of freedom

• The values of z∗ or t∗ also depend on the confidence coeffi-

cient 1−α. Usually, α = 0.05 for a 95% confidence interval,

but that’s not universal
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Determining z∗ or t∗

• One-sided or two-sided

• Confidence intervals are nearly always two-sided and

symmetric

• One-sided bounds may be used in hypothesis testing
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Theory of Confidence Intervals I

• Idea is to find statistics L and U (functions of the data) so

that

Pr {L ≤ θ ≤ U} = 1− α

where θ is the parameter of interest

• Case σ known: Z = ȳ−µ
σ/
√
n

has a standard normal distribution

(mean 0, variance 1)

• Find z∗ = z1−α/2 so that Pr
{
Z < −zα/2

}
= Pr

{
Z > zα/2

}
=

α/2.

• Then

1− α = Pr

{
−z∗ ≤

ȳ − µ
σ/
√
n
≤ z∗

}
= Pr

{
ȳ − z∗

σ
√
n
≤ µ ≤ ȳ + z∗

σ
√
n

}
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Theory of Confidence Intervals II

• Thus, L = ȳ − z∗ σ√
n
, U = ȳ + z∗ σ√

n
fulfil the conditions for a

confidence interval

• α = 0.05: z∗ = 1.96 (qnorm(0.975)), often rounded to 2 in

practice (hence the rule of thumb for HW1, Q2(f))

• Case σ unknown: t = ȳ−µ
sy/
√
n

has a t distribution with n − 1

degrees of freedom, written tn−1.

• Find t∗ = tn−1,1−α/2 so that Pr {tn−1 < −t∗} = Pr {tn−1 > t∗} =

α/2. (In R: qt(1-alpha/2,n-1).)

• In this case, L = ȳ − t∗ sy√
n
, U = ȳ + t∗ sy√

n
.
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Prediction Intervals

• Suppose we are interested, not in estimating µ, but in pre-

dicting some future value Y0 ∼ N [µ, σ], where µ and σ are

the same mean and standard deviation.

• We still use ȳ as a point estimator/predictor, but now use

the fact that Y0 − ȳ has mean 0 and variance σ2
(
1 + 1

n

)
.

• t = Y0−ȳ
sy

√
1+1

n

has a tn−1 distribution

• The 100(1− α)% prediction interval for Y0 is given by(
ȳ − t∗sy

√
1 + 1

n, ȳ + t∗sy
√

1 + 1
n

)
where t∗ = tn−1,1−α/2,

as before
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Interval Estimation Summary
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Homework 2: Due Wednesday, February 10

• From the book: 1.6.1, 1.8.1, 1.8.3, 1.10.8, 1.10.9, 1.10.10,
1.10.11

– Note: 1.6.1 requires the dataset table164.txt, on the
Data page in sakai

• The dataset EXAM.txt (Data page in sakai) contains the midterm
and final exam scores on a student exam.

– Calculate a 95% confidence interval for (a) the mean score
on the midterm, (b) the mean score on the final.

– Test the hypothesis that the mean scores on the midterm
and final are the same, against the alternative that they
are different. Use α = 0.1. What is your conclusion?

– Draw a scatterplot of the final exam scores against the
midterm exam scores, and draw a straight line through
the plot (feel free to adapt the in-class examples for the
Amherst and Mount Airy datasets). Would you say a
straight line regression is justified in this case?
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Instructions and Hints

• You may (and are expected to) use R for the computational

part of any of this, but show all working: if you use R to get

your answer, show the relevant R code so that we can see

exactly how you got it, but also make sure that you clearly

and unambiguously state what your answer is. You’d be

amazed how many students neglect this very simple principle!

• Some of the Graybill-Iyer problems have solutions given in the

“Answers” chapter of the book. I recommend that you work

through these problems without first looking at the solutions,

otherwise you won’t learn much from trying to do them.

However, I am not forbidding you to look at the solutions

before handing them in: just make sure that the solution

you hand in is your solution and contains a full explanation

of what you did.
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Homework 3: Due Wednesday, February 17

This is “Project 1.”

In sakai, go to “Resources”, then “Projects”, then “Project

1.pdf”. Full instructions are contained therein, but email the

instructor on case of ambiguity.

Please note that the basketball data, to which the project refers,

is also on sakai under “Data.”
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Hypothesis Tests
• Interest in an unknown parameter θ (could be µ, or σ, or whatever...)

• Null hypothesis H0, typically of the form θ = θ0 for some specified value
θ0 (e.g. SAT example in HW1, θ was µ and the hypothesized value was
θ0 = 1200)

• Alternative hypothesis H1 or HA, typically one of
– H1 : θ 6= θ0

– H1 : θ > θ0

– H1 : θ < θ0

• Fix the size of the test (a.k.a. significance level) — the probability that
we reject H0, given that H0 is true, must be no larger than α, for some
suitable small value of α

• It is common to take α = 0.05, but contrary to what some of my epi-
demiologist friends think, this is not a universal rule, e.g. could take
α = 0.01 or even 0.001 to get a more stringent rule

• Choose a test statistic T

• Define a critical value for T , usually written C

• The test will reject H0 when |T | > C or T > C or T < −C, depending on
the form of H1
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Example

• Sample of n = 135 SAT scores with mean ȳ = 1227.5, stan-

dard deviation sy = 147.7.

• Test H0 : µ = µ0 = 1200 versus H1 : µ 6= 1200

• Test statistic T = ȳ−µ0
sy/
√
n

with distribution t134 if H0 is correct

• Choose C = t134,0.975 = 1.978 (qt(0.975,134) in R)

• Reject H0 if |T | > 1.978.

• In fact T = 1227.5−1200
147.7/

√
135

= 2.163, so we reject H0

• Alternatively, a 95% confidence interval for µ is ȳ ± t∗ sy√
n

=

1227.5± 1.978×147.7√
135

= (1202.4,1252.6)

• How would this calculation change if H1 was either µ > 1200

or µ < 1200?
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One-sided Tests

• If H1 : µ > 1200:
– Define C = tn−1,1−α = t134,0.95 = 1.656. We use 1 −
α = 0.95 rather than 1 − α/2 = 0.975 (see figure on

“Determining z∗ or t∗” slide
– 2.163 > 1.656 so we again reject H0

• If H1 : µ < 1200:
– In this case we reject if T < −C
– Here 2.163 > −1.656 so we accept H0
– This might seem an odd conclusion given our previous

results, but the practical conclusion is that µ = 1200 is

better supported by the data than any value for which

µ < 1200.
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Tests or Confidence Intervals?

My take?

• I tend to agree

• Many people (wrongly) interpret a decision to accept H0 as proof that
H0 was correct

• This is not true — accepting H0 often means only that there wasn’t
enough data to reject it

• A confidence interval is more informative because it gives you the full
range of values of the unknown parameter that are consistent with the
data

• Nevertheless, testing without a CI is still common practice...
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p-values

• Another way of looking at hypothesis tests

• We observed a value ȳ = 1227.5. If H0 is correct, µ = 1200.
How improbable is the value ȳ = 1227.5?

• If the data had a true normal distribution, the probability
that ȳ = 1227.5 would be 0 (because it’s a continuous dis-
tribution)

• In reality, the normal distribution isn’t exact (SAT scores
take integer values) but still, the probability that ȳ is exactly
1227.5 is very small, regardless of the true value of µ

• A more meaningful question: what is the probability that ȳ
is at least as extreme as 1227.5, if µ = 1200?

• Pr {ȳ ≥ 1227.5} = Pr
{
ȳ−µ
s/
√
n
≥ 1227.5−1200

147.7/
√

135

}
= Pr {T > 2.168}

where T is has a t134 distribution

• pt(2.168,134,lower.tail=F) gives the answer 0.016.
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Interpretation
• 0.016 seems quite a small probability, but interpreting it is not so easy.

• If it was a two-sided test (i.e. if H1 was µ 6= 1200 rather than µ > 1200),
we should take into account that the deviation might have been equally
far in the other direction (ȳ = 1200− 27.5 = 1172.5)

• In this case, we should use a two-sided p-value — the distribution is
symmetric around µ = 1200, so

Pr {ȳ ≥ 1227.5 or ȳ ≤ 1172.5} = 2× 0.016 = 0.032.

Still quite small (in particular, it’s < 0.05), but not looking so dramatic

• The situation would be more complicated if, for example, we had tested
several samples before finding one that was statistically significant. What
would be the interpretation then?

– Example: suppose I took data from Chapel Hill High, East Chapel
Hill High, Carrboro High, Durham Academy and the NCSSM. In the
first four, ȳ is between 1180 and 1220, but at NCSSM, it’s 1227.5.
Is that significant?

• Problem of simultaneous or multiple testing
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Simultaneous Confidence Intervals

• Suppose we have K populations, parameters θ1, ..., θK.

• Would like to specify lower and upper confidence bounds

Lk, Uk such that

Pr {Lk ≤ θk ≤ Uk for each k = 1, ...,K} ≥ 1− α. (1)

• One way to achieve this is to set Lk, Uk so that

Pr {Lk ≤ θk ≤ Uk} = 1−
α

K
for k = 1, ...,K. (2)

• Theorem: If (2) holds, then so does (1).

• This is called Bonferroni’s Inequality.
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Example

• Five high schools, population mean SAT scores µ(1), ..., µ(5),

sample means ȳ(1), ..., ȳ(5), sample SDs s
(1)
y , ..., s

(5)
y , sample

sizes n(1), ..., n(5).

• Define t(k) = tnk−1,1−α/10 for k = 1, ...,5.

• The confidence interval for µ(k) isȳ(k) −
t(k)s

(k)
y√

n(k)
, ȳ(k) +

t(k)s
(k)
y√

n(k)


• For example, if high school 5 is NCSSM with ȳ(5) = 1227.5, s(5)

y =

147.7, n(5) = 135, and if we set α = 0.05 as usual, we will

define t(5) = t134,0.995 = 2.613 (qt(0.995,134) in R).

• The confidence interval for NCSSM will be(
1227.5− 2.613×147.7√

135
, 1227.5 + 2.613×147.7√

135

)
= (1194.3, 1260.7).
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Multiple Testing

• Same idea ...

• Suppose we want to test K null hypotheses H
(1)
0 , ..., H

(K)
0

against alternative hypotheses H(1)
1 , ..., H

(K)
1 .

• Objective: define test statistics and critical regions so that

Pr
{

Reject H(1)
0 or Reject H(2)

0 or ... or Reject H(K)
0

}
≤ α

when each of H(1)
0 , ..., H

(K)
0 is true

• Bonferroni solution: set the significance level for each test

to be α/K.

• There are other ways of constructing simultaneous confi-

dence intervals or tests and whole books have been written

about how to do it, but the Bonferroni method is the simplest

and often almost as good as the other methods.
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When to use these methods?

Maybe, but here’s another view (Gelman-Loken paper in sakai)—
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Relevance to the current course

• You should be aware of the Bonferroni method, but it is not

going to play a big role in this course (I don’t think)

• There are other more specialized techniques (e.g. Scheffé

and Tukey methods) that apply in specific situations — de-

pending on how far I get, I may cover these are the end of

the course

• Another solution to multiple comparison problems is simula-

tion — another topic that I may include if there’s time

• You should read the Gelman-Loken article as part of your

general statistics education — the issues they raise are im-

portant, but there is no “magic bullet” to solving them.
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Confidence Intervals and Hypothesis Tests
for Comparing Two Means

• First sample: x1, ..., xm from distribution N [µ1, σ1]

• Second sample: y1, ..., yn from distribution N [µ2, σ2]

• Usually assume σ1 = σ2 = σ (should do a rough check

whether this is reasonable. but we won’t do a formal test)

• Find a confidence interval for µ1 − µ2, or ...

• Test the null hypothesis µ1 = µ2 against any of

– µ1 6= µ2

– µ1 > µ2

– µ1 < µ2
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Theory

• x̄ = 1
m

∑m
i=1 xi ∼ N

[
µ1,

σ√
m

]

• ȳ = 1
n

∑n
i=1 yi ∼ N

[
µ2,

σ√
n

]

• x̄− ȳ ∼ N
[
µ1 − µ2, σ

√
1
m + 1

n

]

• σ unknown: use the pooled estimate s2 =
∑

(xi−x̄)2+
∑

(yi−ȳ)2

m+n−2
with m+ n− 2 degrees of freedom

• x̄−ȳ−(µ1−µ2)

s
√

1
m+1

n

∼ tm+n−2
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Results

• Confidence interval for µ1 − µ2:

x̄− ȳ ± t∗s
√

1

m
+

1

n

• Hypothesis test: reject H0 : µ1 = µ2 against H1 : µ1 6= µ2 if

|x̄− ȳ| > t∗s

√
1

m
+

1

n

• In both cases, for significance level α, t∗ = tm+n−2,1−α/2

• Question: for a one-sided test, how would you modify this?
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Extensions

• What to do if σ1 6= σ2?
– No clear-cut solution, but there’s an approximate solution

called the Welch-Satterthwaite formula which you may
have seen in STOR 155

• Extension to more than two samples: we could have K sam-
ples with means µ1, . . . µK standard deviations σ1, . . . σK, test

H0 : µ1 = . . . = µK

against

H1 : µ1, . . . µK are not all equal.

• Again, we usually assume σ1 = . . . = σK (but check this is
reasonable)

• The procedure is then called “one-way analysis of variance”
(aov function in R)

• We may talk about this later.
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Other topics from Chapter 1 of the text

• Section 1.7 — functional notation

• Section 1.8 — vectors and matrices

• Section 1.9 — multivariate normal distribution
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Section 1.7: Functional Notation

• Get used to expressions like

f(x1, x2, . . . , xn)

to denote a (scalar) function of n variables x1, . . . , xn

• A function is linear if it can be expressed in the form

f(x1, x2, . . . , xn) = a0 + a1x1 + . . .+ anxn

for some constants a0, a1, . . . , an.

• Example f(x1, x2, x3) = 3x1 − 7x2 + 4x3 + 19 is linear, but

f(x1, x2, x3) = 3x1 − ex2 + 4x1x3 + 19 is not.
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Section 1.8: Vectors and Matrices

• A matrix is a two-dimensional array of numbers

• An m× n matrix has m rows and n columns

• Example: A =

(
1 2 3
4 5 6

)
is a 2× 3 matrix

• An n×1 matrix is called a column vector, and a 1×n matrix
is called a row vector. Usually, when we say “vector” without
specifying whether it means a row vector or a column vector,
we mean the latter.

• The transpose of a matrix, usually written AT or A′, is ob-
tained by interchanging the rows and columns.

• With A as above, AT =

 1 4
2 5
3 6

.
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Operations on Matrices

• Addition, Subtraction: defined element by element. If A and

B do not have the same dimensions, A + B and A − B are

not defined.

• Example: if A =

(
1 2 3
4 5 6

)
, B =

(
1 2 1
2 1 2

)
then

A+B =

(
2 4 4
6 6 8

)
, A−B =

(
0 0 2
2 4 4

)
.

• Equality of Matrices: Two matrices A and B are defined to

be equal if and only if they are the same dimensions and

every entry of A is equal to the corresponding entry of B.

• Example: if A =

(
1 2 3
4 5 6

)
, B =

(
1 2 3
4 5 6

)
then A = B.
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Matrix Multiplication

• Suppose A is a m×n matrix, B is a n×p matrix, then C = AB

is defined, a m× p matrix, and its (i, j) entry is given by

ci,j =
n∑

k=1

ai,kbk,j

(Sometimes the indexes are separated by commas, some-

times they are not, it really doesn’t matter but try to be

consistent)

• Example: If A =

 1 2
3 4
5 6

, B =

(
1 2 3
4 5 6

)
, then

C =

 9 12 15
19 26 33
29 40 51

 .
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Special Matrices

• The zero matrix, sometimes written 0, is an m × n array of

zeroes, for example A =

 0 0
0 0
0 0

.

• A matrix is square if the row and column dimensions are the
same, i.e. m = n.

• The n× n identity matrix, sometimes written In, is an n× n
matrix with ones on the diagonal, zeroes elsewhere. For

example, I3 =

 1 0 0
0 1 0
0 0 1

.

• A diagonal matrix is a square matrix whose only non-zero

entries are on the diagonal, for example, A =

 4 0 0
0 7 0
0 0 −15

.
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Matrix Inverse
• If C is an n × n matrix, then the inverse of C, denoted C−1, if it exists,

is another n× n matrix with the property that

C−1C = CC−1 = In.

• Example. If I slightly change my previous C to C =

 9 12 15
19 26 33
29 40 52

,

and define D = 1
6

 32 −24 6
−31 33 −12

6 −12 6

, then D = C−1.

• This is not so easy to derive (except in the 2 × 2 case, see next slide)
but we shall see how to compute matrix inverses in R, and you can check
directly by multiplying out that CD and DC are both the 3 × 3 identity
matrix.

• Question: My original C was

 9 12 15
19 26 33
29 40 51

 (different in c3,3). Why

did I change it?
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Inverse of a 2× 2 matrix

• If A =

(
a b
c d

)
, then

A−1 =
1

ad− bc

(
d −b
−c a

)
,

provided ad 6= bc.
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Determinant of a Matrix

• If A is an n×n matrix, then there is a special quantity called
the determinant, which is useful in calculating inverses.

• 2× 2 case: if A =

(
a b
c d

)
, then |A| = ad− bc.

• Higher dimensions: not easy to calculate by hand, but the R
function det does what you think.

• Most important property, if |A| = 0, then A−1 does not exist.
It’s the matrix equivalent of trying to divide by 0.

• However, there is actually something called a generalized in-
verse, which does something similar to A−1 when |A| = 0.
The most famous form of generalized inverse is the Moore-
Penrose inverse (e.g. Moore 1920, Penrose 1955).

• Scientific trivia question: who is Penrose, and why is he
famous?
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Implementation in R

• R is an object-oriented language — define matrices (and
other mathematical objects) directly with R commands and
to manipulate them according to the rules of matrix algebra

• To define a matrix, e.g.

A=matrix(1:6,ncol=2,byrow=T)

B=matrix(1:6,ncol=2,byrow=F)

# note distinction between byrow=T and byrow=F: default is F

t(B) # transpose

# matrix operations: A+B, A-B are what you expect but

# A*B is element by element multiplication

C=A %*% t(B) # this is how you do matrix multiplication in R

solve(C) # inverse of C

det(C) # determinant of C

• Generalized inverse: library(MASS) and ginv(..).
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Section 1.9: Multivariate Gaussian Distributions
• Recall that a random variable Y is said to have a Gaussian distribution

with mean µ and standard deviation σ if its probability density function

(pdf) is 1
σ
√

2π
exp

{
−1

2

(
x−µ
σ

)2
}

. In practice, verify this graphically

(histograms, QQ plots)

• The vector
(
Y1 Y2 . . . YK

)T
is said to have a multivariate Gaussian

distribution if, for any constants a1, a2, . . . , aK,
∑K

k=1 akYk has a univari-
ate Gaussian distribution

• If a distribution is multivariate Gaussian, then it is characterized by the
means µ1, . . . µK, the standard deviations σ1, . . . σK and the correlations
ρj,k, 1 ≤ j, k ≤ K.

• In reality, it’s almost impossible to prove that a distribution is multivariate
Gaussian, though sometimes we can find a1, . . . , aK that prove it is not
(see text for an example)

• Sometimes, it’s easier to prove theoretically, e.g. if each of Y1, ..., YK
is some linear combination of the same set of independent Gaussian
Z1, . . . , Zm, then automatically, Y1, ..., YK are multivariate Gaussian
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END OF CHAPTER 1!
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