
Key Points of Chapter 2

• A major function of statistics methods is prediction

• Purpose: Predict a variable Y in terms of other variables

X1, . . . , Xp

• Regression function µY (x1, . . . , xp) is expected value of Y

when X1 = x1, . . . , Xp = xp.

• Subpopulation approach

• Graphical approaches, e.g. histograms and scatterplots

• Sampling methods, whether to use X values in constructing

the sample

• Linear and nonlinear regression functions
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Prediction

• A major function of statistics methods is prediction

• Predict a variable Y as a function of X1, . . . , Xp
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Purpose of Prediction

• Intrinsic interest in predicting something

– Cars example — predicting maintenance costs

• Prediction for the purpose of understanding relationships

– Blood pressure as a function of height and weight — real

interest in control?

• Prediction as an alternative to taking a direct measurement

– Tree volume as a function of width and height — avoid

chopping down the tree!

• One predictor (X) variable or several
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Subpopulations

• Idea of restricting to a specific subpopulation to learn more

about a quantity of interest

• Example of car maintenance costs

– I drive my car 14,000 miles in its first year

– Other car owners have driven much more or much less

– If I want to compare my maintenance costs with those of

other owners, it makes sense to restrict to a subpopulation

of like users

∗ Reality check: unlikely to find many drivers with exactly

the same mileage as me

∗ In practice, would restrict to a range of nearby values

∗ So far, this assumes nothing about the relationship be-

ing linear
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Calculations for Car Costs Example

• Among all drivers: mean maintenace cost is $526, SD is $106

• Among drivers with 14,000 miles: mean maintenace cost is

$621, SD is $23

• By restricting to a relevant subpopulation, I get a better

estimate for my car, with much smaller standard deviation

• However (point added): in practice I would have to decide

how wide an interval to take (around my car’s mileage) —

bias/variance trade-off

• To discuss: implementation in R
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Some R Code and Extensions
# read data and basic calculations
CAR=read.table(’.../car.txt’,header=T)
plot(CAR$Miles,CAR$Maint,ylab=’Maintenance Cost’,xlab=’Miles Driven’)
hist(CAR$Maint)
u=which(CAR$Miles==14000)
length(u)
print(c(mean(CAR$Maint),sqrt(var(CAR$Maint))))
print(c(mean(CAR$Maint[u]),sqrt(var(CAR$Maint[u]))))
#
# here’s an extension
#
# consider various "bandwidths" of possible intervals round 14000 miles
#
# for each bandwidth, compute mean, SE and 95% confidence interval for
# predicted maintenance costs
X=matrix(nrow=8,ncol=3)
bw=c(50,100,250,500,1000,1500,2000,2500)
for(i in 1:8){
X[i,1]=bw[i]
X[i,2]=mean(CAR$Maint[abs(CAR$Miles-14000)<=bw[i]])
X[i,3]=sqrt(var(CAR$Maint[abs(CAR$Miles-14000)<=bw[i]])/sum(abs(CAR$Miles-14000)<=bw[i]))
}
ymax=max(X[,2]+2*X[,3])
ymin=min(X[,2]-2*X[,3])
par(cex=1.3)
plot(X[,1],X[,2],pch=20,xlab=’Bandwidth’,ylab=’Estimated Costs’,ylim=c(ymin,ymax))
for(i in 1:8){lines(c(X[i,1],X[i,1]),c(X[i,2]-2*X[i,3],X[i,2]+2*X[i,3]))}
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Conclusion from this example

• As the bandwidth increases, the confidence interval gets nar-

rower, but the estimated mean also changes as we include

more and more cars

• Visually, it looks as though we should use a bandwidth of

1,000 miles or less
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Sampling Methods (p. 93–96 of text)

• Simple random sampling (SRS)

• Sampling with pre-selected variables

– What’s the more familiar name for that?

• Which is better? Contrast between observational studies and

experiments
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Linear v. Nonlinear Models (p. 96–97 of text)

• A model is linear if the regression function is linear in the

unknown parameters (usually written β0, β1, etc.

• It doesn’t really matter whether it’s linear or nonlinear in the

x variables

• Most of this course is about linear models, for which the

theory and methods are much better developed

• If there’s time, I’ll do a bit about nonlinear models at the

end.
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Comment about the Last Example in the
Previous Class

• If you took log µY and rewrote logβ0 as β0, it would be a

linear model

• But log of the expected value is not the same as expected

value of the logarithm

• Question of whether the same model would be justified when

applied to log Y instead of Y
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Chapter 3: Simple Linear Regression

• Sample (Yi, Xi), i = 1, . . . , n, Xi a predictor of Yi.

• “Simple Linear Regression” means there is only one X vari-
able (more than one: Multiple Linear Regression comes later)

• Linear means µY (x) = β0 + β1x for parameters β0 and β1.

• Standard deviation σY (x) could also depend on x. The most
common assumption is that σY (x) is a constant σ, but we
shouldn’t assume this automatically!

• In addition:
– Observations independent (or uncorrelated). The text doesn’t state

this explicitly but if the sampling is truly random (SRS or stratified)
this would be automatically satisfied

– Gaussian distributions? — also a very common assumption, but some
of the theory is valid without that

– Assumes Xi and Yi are measured without error — more on this later
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Example: Mount Airy and Charleston
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Assumptions of Simple Linear Regression I

Different authors adopt slightly different assumptions — mine

differ a bit from the text’s.

Assumptions A:

• yi = β0 + β1xi + ei

• For each i, ei has mean 0 and standard deviation σ (same

for all i)

• e1, . . . , en are uncorrelated
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Assumptions of Simple Linear Regression II

Assumptions B:

• yi = β0 + β1xi + ei

• For each i, ei has mean 0 and standard deviation σ (same

for all i)

• e1, . . . , en are independent

• In addition, each of the ei has a Gaussian distribution

• B assumes a little bit more than A — some of the theoretical

results do in fact require B (clarify this later)

• In practice, it is rather hard to distinguish the two sets of

assumptions
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Method of Least Squares

Suppose we have a statistical model with

• Observations y1, . . . , yn

• E{yi} = f(xi, θ) possibly depending on additional known co-
variates xi and unknown parameter θ, with f(·, ·) a known
function of x and θ

• Uncorrelated observations with a common variances (this as-
sumption will be relaxed later)

The method of least squares chooses the parameter θ to mini-
mize

S =
n∑
i=1

{yi − f(xi; θ)}2 .
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Application 1

Suppose E{yi} = µ for a fixed constant. This is the yi ∼ N [µ, σ]

form in a different guise. Let ȳ = 1
n

∑
yi. Then

S =
n∑
i=1

(yi − µ)2

=
n∑
i=1

(yi − ȳ + ȳ − µ)2

=
∑

(yi − ȳ)2 − 2(ȳ − µ)
∑

(yi − ȳ) + n(ȳ − µ)2

=
∑

(yi − ȳ)2 + n(ȳ − µ)2 (1)

since
∑

(yi − ȳ) = 0. But the first term in (2) does not depend

on µ while the second is minimized when µ = ȳ. Therefore, the

least squares estimate of µ is

µ̂ = ȳ.
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Application 2

Now suppose E{yi} = β0 + β1(xi − x̄) where x1, ..., xn are known

(scalar) covariates, x̄ = 1
n

∑
xi and β0 and β1 are unknown pa-

rameters. This is the classical simple linear regression problem,

where “simple” means that there is only a single covariate.

Comment: Centering the xi’s about their mean x̄ simplifies the

math, but the model is essentially the same without that.

In this context, the principle of least squares chooses the param-

eters β0 and β1 to minimize

S =
∑
{yi − β0 − β1(xi − x̄)}2 .
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Solution to Least Squares Regression I

First, consider quadratic expressions of the form

S = A− 2Bβ + Cβ2

= C

(
β −

B

C

)2
+A−

B2

C
.

This is minimized with respect to β when

β =
B

C

and leads to the expression

S = A−
B2

C
.
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Solution to Least Squares Regression II

Next, consider β0.

S =
∑

[{yi − β1(xi − x̄)} − β0]2

=
∑
{yi − β1(xi − x̄)}2 − 2β0

∑
{yi − β1(xi − x̄)}+ nβ2

0

=
∑
{yi − β1(xi − x̄)}2 − 2nȳβ0 + nβ2

0

=
∑
{yi − β1(xi − x̄)}2 + n(ȳ − β0)2 − nȳ2.

The first and third terms do not depend on β0 while the middle

term is minimized when β0 = ȳ. Therefore, the least squares

estimator of β0 is

β̂0 = ȳ

and this substitution also leads to

S =
∑
{yi − ȳ − β1(xi − x̄)}2 .
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Solution to Least Squares Regression III

Now write

S =
∑
{yi − ȳ − β1(xi − x̄)}2

=
∑

(yi − ȳ)2 − 2β1
∑

(yi − ȳ)(xi − x̄) + β2
1

∑
(xi − x̄)2.

Now apply the result on slide I. The least squares estimate for

β1 is

β̂1 =

∑
(yi − ȳ)(xi − x̄)∑

(xi − x̄)2

and this leads to

S =
∑

(yi − ȳ)2 −
{
∑

(yi − ȳ)(xi − x̄)}2∑
(xi − x̄)2

.
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Summary

The least squares estimators for a simple linear regression are

β̂0 = ȳ,

β̂1 =

∑
(yi − ȳ)(xi − x̄)∑

(xi − x̄)2

and lead to

S =
∑{

yi − β̂0 − β̂1(xi − x̄)
}2

=
∑

(yi − ȳ)2 −
{
∑

(yi − ȳ)(xi − x̄)}2∑
(xi − x̄)2

.

This also leads to an estimator for the variance (σ̂2 or s2),

σ̂2 =
S

n− 2
.

Question: why is the divisor n− 2 and not n or n− 1?
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Standard Errors

• If Y1, . . . , Yn are independent (or uncorrelated) random vari-

ables and a1, . . . , an are constants, then Var{
∑
aiYi} =∑

Var(aiYi) =
∑
a2
i σ

2
i . If all variances are the same, then

Var{
∑
aiYi} = σ2∑ a2

i .

• Application 1: suppose ai = 1
n. Then

∑
a2
i = n ·

(
1
n

)2
= 1

n. So

Var{Ȳ } = σ2

n .

• Application 2: suppose ai = xi−x̄∑
(xi−x̄)2. Then

∑
a2
i =∑[

(xi−x̄)2

{
∑

(xi−x̄)2}2

]
= 1∑

(xi−x̄)2.

• Hence if σ̂2 is an unbiased estimator of σ2, we call σ̂√
n

and

σ̂√∑
(xi−x̄)2

the standard errors of β̂0 and β̂1 respectively.
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Relation to Textbook Discussion

• The text (pp. 112–114) defines µY (x) = β0 + β1x (without

subtracting x̄) and then gives the estimates

β̂1 =

∑
{(xi − x̄)(yi − ȳ)}∑
{(xi − x̄)2}

, β̂0 = ȳ − β̂1x̄. (2)

• If you write µY (x) = β0 +β1(xi− x̄) as I did, with β̂1 as above

and β̂0 = ȳ, then

µ̂Y (x) = ȳ + β̂1(xi − x̄) = ȳ − β̂1x̄+ β̂1xi

This is equivalent to what you get from (2).

• The text (p. 114) says “It can be mathematically proven...”

but doesn’t say how. Well, now you know how.
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Example 1

“Crystal” data from the text (p. 119). Predict weight as a
function of time.
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Estimating the Parameters
> Cry=read.table(’C:/Users/rls/aug20/UNC/STOR455/Data/Crystal.txt’,header=T)
> x=Cry$Time
> y=Cry$Weight
> n=length(y)
> SSX=sum((x-mean(x))^2)
> SSY=sum((y-mean(y))^2)
> SXY=sum((x-mean(x))*(y-mean(y)))
> print(c(mean(y),SXY/SSX,mean(y)-mean(x)*SXY/SSX,sqrt((SSY-SXY^2/SSX)/(n-2))))

[1] 7.552857143 0.503428571 0.001428571 1.061766946

In algebra:

β̂1 =

∑
{(xi − x̄)(yi − ȳ)}∑
{(xi − x̄)2}

= 0.5034,

ȳ = 7.5529,

ȳ − β̂1x̄ = 0.0014,

σ̂ = 1.0618.

See the text, pp. 119 and 121.
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Also...
Still writing the model as µY (x) = β0 + β1(x− x̄):

SE(β̂0) =
σ̂
√
n

=
1.0618√

14
= 0.2838,

SE(β̂1) =
σ̂√∑

{(xi − x̄)2}
=

1.0618√
910

= 0.0352.

> # R code for the above
> x1=x-mean(x)
> lm1=lm(y~x1)
> summary(lm1)

Call:
lm(formula = y ~ x1)
Residuals:

Min 1Q Median 3Q Max
-1.96371 -0.73464 0.05629 0.89193 1.40800
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 7.5529 0.2838 26.62 4.85e-12 ***
x1 0.5034 0.0352 14.30 6.69e-09 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.062 on 12 degrees of freedom
Multiple R-squared: 0.9446,Adjusted R-squared: 0.94
F-statistic: 204.6 on 1 and 12 DF, p-value: 6.688e-09
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Rest of this problem (pp. 120–121)

µ̂Y (x) = 0.0014 + 0.5034x,

µ̂Y (15) = 0.0014 + 0.5034× 15 = 7.5524.
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Rest of this problem (pp. 120–121)

First do

µ̂Y (12) = 0.0014 + 0.5034× 12 = 6.0422,

µ̂Y (24) = 0.0014 + 0.5034× 24 = 12.0830.

Estimated price of first crystal is $6.0422 × 10 = $60.42.

Estimated price of second crystal is $12.0830 × 16 = $193.33.

Difference is $132.91.
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Rest of this problem (pp. 120–121)

1. Solve 0.0014 + 0.5034x = 12, x = 23.84 hours.

2. If the weight of the crystal Y has a mean of µ = 12 and a

standard deviation σ = 1.062, then

Pr{11.5 ≤ Y ≤ 12.5} = Pr
{
−

0.5

1.062
≤
Y − µ
σ
≤

0.5

1.062

}
= pnorm(0.4708)− pnorm(−0.4708) = 0.3622.

About 36 crystals will meet the specifications.
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Mount Airy and Charleston Dataset

(a) What is the regression equation for predicting Charleston
summer mean temperature from that in Mount Airy, and
what is the estimated standard deviation?

(b) The mean summer temperature for one year in Mount Airy is
24oC. Predict the mean summer temperature in Charleston,
and calculate the probability that this is above 28oC.

(c) My summer AC bill is $100 per month if the average tem-
perature is below 27oC, $120 per month if the average tem-
perature is between 27oC and 28oC, and $150 per month if
the average temperature is above 28oC. If the mean summer
temperature in Mount Airy is 23oC and I live in Charleston,
what is my expected AC bill for the summer?

(d) If the mean summer temperature in Charleston is 27.5oC,
what is the expected mean summer temperature in Mount
Airy?
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Residuals

• Assume yi = β0 +β1xi+ ei or, alternatively, yi = β∗0 +β∗1(xi−
x̄) + ei (both models lead to the same ei)

• Use first model: we have seen that we can estimate β0 and

β1 by the least squares estimators β̂0 and β̂1, and this also

leads to σ̂ for the residual standard deviation

• Hence, we can estimate:

êi = yi − β̂0 − β̂1xi

and these êi’s are called residuals

• Residuals have many uses, but especially as a diagnostic for

whether the model assumptions are correct.
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Standardized Residuals

• Since we are assuming the ei’s have common standard devi-
ation σ, the same will be approximately true of the êi’s.

• Therefore, a natural step would be to divide each ei by σ̂ so
that they have approximate standard deviation 1.

• A more accurate approximation is to calculate

ri =
êi

σ̂
√

1− hi
where hi is called the ith hat value (the text uses hi,i rather
than hi, but both notations are in common use).

• For a simple linear regression, a formula for hi is

hi =
1

n
+

(xi − x̄)2

SSX

where SSX =
∑

(xi− x̄)2 as in our earlier notation. Note that∑
i hi = 2.
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Calculating Residuals and
Standardized Residuals

• “by hand”..

lm1=lm(y~x)

res=y-lm1$coef[1]-lm1$coef[2]*x

sighat=sqrt(sum(res^2)/(n-2))

hat=rep(1/n,n)+(x-mean(x))^2/sum((x-mean(x))^2)

sres=res/(sighat*sqrt(1-hat))

• or use the tools built into R...

residuals(lm1)

summary(lm1)$sigma

hatvalues(lm1)

rstandard(lm1)
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Plots

• What features are we looking for in a regression analysis?

– Linear relationship

– Constant variance

– Normal distribution of ei

– No outliers (we hope ..)

• Plotting the data is a key way to assess these properties

– Plot y against x

– Plot the (standardized) residuals against x
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Conclusions from these Plots

• Figs. 3.5.1/3.5.6 do look like a linear relationship

• Figs. 3.5.2/3.5.7 look nonlinear

• Figs. 3.5.3/3.5.8 look nonlinear

• Figs. 3.5.4/3.5.9 either show increasing variance or two clear

outliers...

• In each case the shape is more clearly seen in the resodual

plot than the original x, y plot

• Now let’s look at the Amherst and Mount Airy datasets, e.g.

plot(Mta$MtAiry,rstandard(lm(Mta$Charleston~Mta$MtAiry)),xlab=’Mount Airy’,
ylab=’Charleston’,pch=20,main=’Residual Plot for Mount Airy’)
abline(0,0)
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Other Plotting Techniques

• Plot residuals against fitted values (lm(...)$fitted)

– With only one x variable, this is no different conceptually
from plotting against x

– However, with multiple x variables, this technique will be
very useful

• QQ plots of (standardized) residuals

– Also called normal probability plots, rankit plots, and var-
ious other names

– For formal definition, see p. 146 of text

– qqplot in R

– An extension (p. 147 of text): do this for various com-
binations of x and y values to test for a bivariate normal
distribution
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Other Plotting Techniques (continued)

Not mentioned in the text, but these are also common plots
people make:

• Plotting the residual at time i against the residual at time
i− 1 (looking for autocorrelation)

• The full “ACF” plot at many lags (R function acf)

• Durbin-Watson test (function dwtest within library lmtest)

• For Amherst data, the ACF plot is not strong but the DW
test clearly rejects the null hypothesis of no autocorrelation
(p=0.006)

• The Mount Airy data shows no evidence of autocorrelation

• These are really “time series” datasets. You’ll learn much
more about time series if you take STOR 556.
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Confidence Intervals, Prediction Intervals
and Hypothesis Tests

• Write model in form yi = β∗0 + β∗1(xi − x̄) + ei, assumes least

squares estimates β̂∗0 = ȳ, β̂∗1 =
∑

(yi−ȳ)(xi−x̄)∑
(xi−x̄)2 .

• Var(β̂∗0) = σ2

n , Var(β̂∗1) = σ2∑
(xi−x̄)2.

• It’s also possible to show that β̂∗0 and β̂∗1 are uncorrelated

• Hence, for any a and b, Var(aβ̂∗0 + bβ̂∗1) = σ2
(
a2

n + b2∑
(xi−x̄)2

)
.

• If σ is unknown, then

aβ̂∗0 + bβ̂∗1

σ̂

√
a2

n + b2∑
(xi−x̄)2

∼ tn−2.

50



Application to Confidence Intervals

• Example: Find a 100(1−α)% confidence interval for µY (x) =

β0 + β1x for a given value of x.

• This problem is actually easier if you write it in the alternative

format: µY (x) = β∗0 + β∗1(x− x̄)

• µ̂Y (x) = β̂∗0 + β̂∗1(x− x̄) and

µ̂Y (x)− µY (x)

s

√
1
n + (x−x̄)2

SSX

∼ tn−2

• Therefore, an appropriate confidence band for µY (x) is

µ̂Y (x)± qt
(

1−
α

2
, n− 2

)
σ̂

√
1

n
+

(x− x̄)2

SSX

• This is on p. 161 of the text.
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Prediction Intervals
• I’ve been asked a number of times by students in the class: what is the

distinction between Y (x) and µY (x)? (see, e.g., question 3.4.4(b) from
one of the homework assigments)

• The distinction is whether we are talking about an individual observation
or an average over many observations

– In the question about car maintenance costs:

– Y (13000) is the maintenance expense for my car, if I drive it 13,000
miles in the first year

– µY (13000) is the average maintenance expense over all cars that are
driven 13,000 miles in the first year

– My interest is surely in Y (13000), not µY (13000) (unless I want the
latter number for comparison)

• Both quantities have the same point estimate

– In this analysis, we write the model as µY (x) = β∗0 + β∗1(x− x̄)

– Ŷ (x) and µ̂Y (x) are both β̂∗0 + β̂∗1(x − x̄) where β̂0, β̂1 are the least
squares estimates. Note that x̄ refers to the mean x values of the
observations that were used to form the estimates — it’s not updated
to include the new x

– However the variability of Y (x) and µY (x) are very different — this
is our main focus here
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Computing Interval Estimates

• µ̂Y (x)− µY (x) = (β̂∗0 − β
∗
0) + (β̂∗1 − β

∗
1)(x− x̄)

• Variance is σ2
{

1
n + (x−x̄)2

SSX

}
• Therefore, a 100(1− α)% confidence interval for µY (x) is

µ̂Y (x)± qt
(

1−
α

2
, n− 2

)
σ̂

√
1

n
+

(x− x̄)2

SSX

• Ŷ (x)− Y (x) = (β̂∗0 − β
∗
0) + (β̂∗1 − β

∗
1)(x− x̄) + e

• e has mean 0 and SD= σ, ind. of past e1, . . . , en.

• Variance is σ2
{

1
n + (x−x̄)2

SSX + 1
}

• Therefore, a 100(1− α)% prediction interval for Y (x) is

µ̂Y (x)± qt
(

1−
α

2
, n− 2

)
σ̂

√
1

n
+

(x− x̄)2

SSX
+ 1
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Example

• Redo crystal example

• What are the confidence and prediction interval for Weight

if Time is (a) 9 hours, (b) 15 hours, (c) 21 hours?

Cry=read.table(’.../Crystal.txt’,header=T)

lm1=lm(Weight~Time,Cry)

Time=c(9,15,21)

Weight=rep(NA,3)

Crynew=data.frame(Weight,Time)

# Crynew has same structure as Cry

predict.lm(lm1,newdata=Crynew,interval=’confidence’,level=0.95)

predict.lm(lm1,newdata=Crynew,interval=’prediction’,level=0.95)

predict.lm(lm1,newdata=Crynew,interval=’prediction’,level=0.99)
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Results

> predict.lm(lm1,newdata=Crynew,interval=’confidence’,level=0.95)

fit lwr upr

1 4.532286 3.761579 5.302992

2 7.552857 6.934577 8.171137

3 10.573429 9.802722 11.344135

> predict.lm(lm1,newdata=Crynew,interval=’prediction’,level=0.95)

fit lwr upr

1 4.532286 2.093891 6.970680

2 7.552857 5.158270 9.947445

3 10.573429 8.135034 13.011823

> predict.lm(lm1,newdata=Crynew,interval=’prediction’,level=0.99)

fit lwr upr

1 4.532286 1.113831 7.950741

2 7.552857 4.195817 10.909898

3 10.573429 7.154974 13.991883
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Simultaneous Confidence/Prediction Intervals

• Suppose we have K values of x, denoted x1, . . . , xK.

• Simultaneous CIs: find bounds Lk, Uk, 1 ≤ k ≤ K, such that

Pr {Lk ≤ µY (xk) ≤ Uk for k = 1, . . . ,K} ≥ 1− α.

• Expect solution of form{
Uk
Lk

}
= µ̂Y (xk)± t∗Kσ̂

√
1

n
+

(xk − x̄)2

SSX

• Simultaneous PIs: find bounds Lk, Uk, 1 ≤ k ≤ K, such that

Pr {Lk ≤ Y (xk) ≤ Uk for k = 1, . . . ,K} ≥ 1− α.

• Expect solution of form{
Uk
Lk

}
= µ̂Y (xk)± t∗Kσ̂

√
1

n
+

(xk − x̄)2

SSX
+ 1

• What should we use for t∗K?
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Formulas for t∗K

• Bonferroni: t∗K = qt
(
1− α

2K , n− 2
)

• For prediction intervals, this is (nearly always) the best the-
oretical formula, though it might be possible to do better by
simulation

• For confidence intervals, there is (nearly always) a better
result: t∗K =

√
2 · qf(1− α,2, n− 2) where qf is a quantile of

the F distribution

• The formal definition of Fm,n is that it is the distribution of
U/m
V/n

where U ∼ χ2
m, V ∼ χ2

n are independent chi-square

• In R: functions pf(x,m, n) or qf(p,m, n) for the distribution
and quantile functions

• This is known as the Working-Hotelling procedure. It’s a
special case of Scheffé’s method.
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Quick Note in Passing

If T ∼ tn then T2 ∼ F1,n.

We’ll use this later (Section 3.8)
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Example based on Crystal Dataset

Cry=read.table(’.../Crystal.txt’,header=T)
lm1=lm(Weight~Time,Cry)
n=nrow(Cry)
tstar=sqrt(2*qf(0.95,2,n-2))
SSX=sum((Cry$Time-mean(Cry$Time))^2)
y1=lm1$coef[1]+lm1$coef[2]*Cry$Time
y2=y1+tstar*summary(lm1)$sigma*sqrt((Cry$Time-mean(Cry$Time))^2/SSX+1/n)
y3=y1-tstar*summary(lm1)$sigma*sqrt((Cry$Time-mean(Cry$Time))^2/SSX+1/n)
plot(Cry$Time,Cry$Weight,pch=20,ylab=’Weight’,xlab=’Time’)
lines(Cry$Time,y1)
lines(Cry$Time,y2,lty=2)
lines(Cry$Time,y3,lty=2)
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Alternatively ...

library(investr)

plotFit(lm1, interval = ’confidence’, adjust = ’Scheffe’,

main = ’Working-Hotelling Procedure for Crystal Data’)

plotFit(lm1, interval = ’prediction’, adjust = ’Bonferroni’, k=14,

main = ’Simultaneous PIs for Crystal Data’)

Note: there seems to be an error on the webpage of Aaron

Schlegel (where I found this) — wrong value of k or K
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Who were Working and Hotelling?

x Holbrook Working Harold Hotelling

x (1895–1985) (1895–1973)
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Hypothesis Testing (Section 3.7)

All but one of the examples can be subsumed in the following:

• Write the model in the form µY (x) = β∗0 + β∗1(x− x̄)

• µ̂Y (x) = β̂∗0 + β̂∗1(x− x̄), SE(µ̂Y (x)) = σ̂

√
1
n + (x−x̄)2

SSX

• µ̂Y (x)−µY (x)
SE(µ̂Y (x)) ∼ tn−2

• To test H0 : µY (x) = µ0 versus H1 : µY (x) 6= µ0 at signifi-

cance level α,

– Either: Calculate C = qt
(
1− α

2, n− 2
)
· SE(µ̂Y (x)),

reject H0 if |µ̂Y (x)− µY (x)| > C,

– Or: Calculate P = 2·pt
(
|µ̂Y (x)−µY (x)|
SE(µ̂Y (x)) , n− 2, lower.tail = F

)
,

reject H0 if P < α.
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Comments and Extensions

• The text again emphasizes that confidence intervals are more

useful than hypothesis tests and I’d (broadly) agree with that.

Nevertheless, you need to know how to do hypothesis tests.

• A particular special case: H0 : β1 = 0 versus H1 : β1 6= 0

• In that case you reject H0 when∣∣∣∣∣β̂∗1
√
SSX

σ̂

∣∣∣∣∣ > qt

(
1−

α

2
, n− 2

)
.

We’ll see this again in Section 8.

• One-sided tests: what do we do differently if H1 is either

µY (x) > µ0 or µY (x) < µ0?
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Analysis of Variance (Section 1.8)

• Recall from Slide 28:∑
{yi − β̂0 − β̂1(xi − x̄)}2 = SSY −

SXY 2

SSX
= SSY − β̂2

1 · SSX.

• The expression
∑
{yi− β̂0− β̂1(xi− x̄)}2 is called the error sum

of squares, abbreviated SSE. Also, β̂2
1 ·SSX is called the sum

of squares due to regression, abbreviated SSR. Therefore,

we have shown

SSY = SSR+ SSE.
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The Analysis of Variance Table

• The statistic Fc has an F1,n−2 distribution when β1 = 0.

• Reject H0 at significance level α when Fc > qf(1−α,1, n−2).
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Connecting the Dots

• Slide 64: Reject H0 when
∣∣∣∣β̂∗1√SSXσ̂

∣∣∣∣ > qt
(
1− α

2, n− 2
)
.

• FC = MSR
MSE = SSR

(SSE/n−2) =
(β̂∗1)2SSX

σ̂2 .

• When H0 : β1 = 0 is true,

(a)
β̂∗1
√
SSX
σ̂ ∼ tn−2,

(b) FC =
(β̂∗1)2SSX

σ̂2 ∼ F1,n−2.

(c) But we already noted (slide 58) that the square of a tn−2

distribution is F1,n−2.

(d) They are the same test!
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