Key Points of Chapter 2
A major function of statistics methods is prediction

Purpose: Predict a variable Y in terms of other variables
X]_,,Xp

Regression function py(x1,...,xp) iS expected value of Y

Subpopulation approach
Graphical approaches, e.g. histograms and scatterplots

Sampling methods, whether to use X values in constructing
the sample

Linear and nonlinear regression functions



Prediction
e A major function of statistics methods is prediction

e Predict a variable Y as a function of Xq,..., Xy

EXAMPLE [.0.5
An investigator wants to study the pattern of associations among the following vari-
ables for U.S.-born individuals who are at least 18 years old now.

Y = height of the individual at age 18

X, = length of the individual at birth

X, = mother’s height at age 18

X, = father’s height at age 18

X, = paternal grandmother’s height at age 18

X; = paternal grandfather’s height at age 18

X = matemal grandmother’s height at age 18

X; = matemnal grandfather’s height at age 18

The investigator may not actually be interested in predicting what an individual’s

height will be at age 18, but if a good prediction function is found, then this function
may yield information regarding what the predominant determinant of an individ-
ual’s height is—the heights of his maternal ancestors, the heights of his paternal
ancestors, both, or neither, =



Purpose of Prediction

Intrinsic interest in predicting something

— Cars example — predicting maintenance costs

Prediction for the purpose of understanding relationships

— Blood pressure as a function of height and weight — real
interest in control?

Prediction as an alternative to taking a direct measurement

— Tree volume as a function of width and height — avoid
chopping down the tree!

One predictor (X) variable or several



TABLE [.0.1
A Schematic Representation of a Bivariate Population with Response Variable ¥ and Predictor

Variable X
kem Response Predictor Variable
Number Variable (Explanatory Variable)
I Y X
2 Y, X,
I 13 X,
N Yy X,

TABLE 1.1.1
A Schematic Representation of a Trivariate Population with Response Variable Y and Predic-

tor Variables X, and X,

ltem Response Predictor Variable 1 Predictor Variable 2
Number Variable (Explanatory Variable 1) | (Explanatory Variable 2)
1 Y X, X,
1 ¥, X, X2
Y, Xn Xn
1 Y, X, X,
N Yy Xy Xn2




Subpopulations

e Idea of restricting to a specific subpopulation to learn more
about a quantity of interest

e Example of car maintenance costs
— I drive my car 14,000 miles in its first year
— Other car owners have driven much more or much less

— If I want to compare my maintenance costs with those of
other owners, it makes sense to restrict to a subpopulation
of like users
x Reality check: unlikely to find many drivers with exactly

the same mileage as me

x In practice, would restrict to a range of nearby values

x SO far, this assumes nothing about the relationship be-
ing linear
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Calculations for Car Costs Example
Among all drivers: mean maintenace cost is $526, SD is $106

Among drivers with 14,000 miles: mean maintenace cost is
$621, SD is $23

By restricting to a relevant subpopulation, I get a better
estimate for my car, with much smaller standard deviation

However (point added): in practice I would have to decide
how wide an interval to take (around my car's mileage) —
bias/variance trade-off

To discuss: implementation in R
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Some R Code and Extensions

# read data and basic calculations
CAR=read.table(’.../car.txt’ ,header=T)
plot (CAR$Miles,CAR$Maint,ylab="Maintenance Cost’,xlab=’Miles Driven’)
hist (CAR$Maint)
u=which (CAR$Miles==14000)
length(u)
print (c (mean (CAR$Maint) ,sqrt(var (CAR$Maint))))
print (c (mean (CAR$Maint [ul),sqrt (var (CAR$Maint [ul))))
#
here’s an extension

#
i
# consider various "bandwidths" of possible intervals round 14000 miles
i
#

for each bandwidth, compute mean, SE and 95/ confidence interval for
# predicted maintenance costs
X=matrix(nrow=8,ncol=3)
bw=c(50,100,250,500,1000,1500,2000,2500)
for(i in 1:8){
X[i,1]1=bw[i]
X[i,2]=mean(CAR$Maint [abs (CAR$Miles-14000)<=bw[il])
X[i,3]=sqrt(var (CAR$Maint [abs (CAR$Miles-14000)<=bw[i]])/sum(abs (CAR$Miles-14000)<=bw[i]))
}
ymax=max (X[,2]+2*X[,3])
ymin=min(X[,2]-2%X[,3])
par (cex=1.3)
plot(X[,1],X[,2],pch=20,xlab="Bandwidth’,ylab="Estimated Costs’,ylim=c(ymin,ymax))
for(i in 1:8){lines(c(X[i,1],X[i,1]),c(X[i,2]-2*X[1,3],X[i,2]+2*X[1i,3]))}
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Conclusion from this example

e As the bandwidth increases, the confidence interval gets nar-

rower, but the estimated mean also changes as we include
more and more cars

e Visually, it looks as though we should use a bandwidth of
1,000 miles or less

12



Sampling Methods (p. 93—96 of text)

e Simple random sampling (SRS)

e Sampling with pre-selected variables

— What's the more familiar name for that?

e Which is better? Contrast between observational studies and
experiments

13



Linear v. Nonlinear Models (p. 96—97 of text)

e A model is linear if the regression function is linear in the
unknown parameters (usually written 8y, B, etc.

e It doesn’t really matter whether it's linear or nonlinear in the
x variables

e Most of this course is about linear models, for which the
theory and methods are much better developed

e If there's time, I'll do a bit about nonlinear models at the
end.

14



py (x) = By

py (x) = By + Byx
ﬂ-r(x) = ﬂo + Byx+ ﬁzxz
Ky &y, X9, X3) = By + Byxy + Byxy + Baxs ’
p) =Ry Bd+Bx + B/l “
py(a, %) = PBy+ b€ + Poxy + Prer
py(y 3, %3) = By + Bre> + B, sin(x;x,) + Bax; In(3) tan(x;)
uy @y, 2. %3) = By + Bixy + By + Byx Xy + Bexi + Bsxy 3
ﬂy(xl) = ﬂleﬁ’x'
sy () = o + By 7"
my(x1, %) =P85+ ﬁleﬂz‘t‘ + ﬂgeﬁfrz (232)

By T 3 = B AR
my(x, %) = ﬁ;xlf(ﬂgeﬂ’x‘)
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2412 Which of the following regression functions are (simultaneously) linear in the un-
known parameters (the symbols B, 8,. 8,, 85, ¥y, 1> ¥2: V3 refer to unknown pa-
rameters)?

a Uyx) = P+ ﬁ]x

b py(. ) =Yy +vx +¥x + 3x.
c puy(0) =By + B

4 uylx,x) =9/ + %

e Uylx)=p,+ ﬂ]xlﬂ + B, /x + ﬂ33—2x

f  py(x) = By + sin(B,x).

R A KA LAl

16



Comment about the Last Example in the
Previous Class

e If you took log py and rewrote log Bg as Bp, it would be a
linear model

e But log of the expected value is not the same as expected
value of the logarithm

e Question of whether the same model would be justified when
applied to log Y instead of Y

17



Chapter 3: Simple Linear Regression
Sample (Y;,X;), i=1,...,n, X, a predictor of Yj.

“Simple Linear Regression” means there is only one X vari-
able (more than one: Multiple Linear Regression comes later)

Linear means uy(x) = o+ B1xz for parameters 5y and (1.

Standard deviation oy (x) could also depend on x. The most
common assumption is that oy (x) is a constant o, but we
shouldn’t assume this automatically!

In addition:

— Observations independent (or uncorrelated). The text doesn't state
this explicitly but if the sampling is truly random (SRS or stratified)
this would be automatically satisfied

— @Gaussian distributions? — also a very common assumption, but some
of the theory is valid without that

— Assumes X; and Y; are measured without error — more on this later

18



Charleston

Example: Mount Airy and Charleston

Summer Temperatures in Mount Airy and Charlestor
To]

S ] e Straight line regression?
; e Constant variances?
2 - . e Gaussian distributions?

[ I I I I I
22.5 23.0 23.5 24.0 24.5 25.0

e Independent?

Mount Airy
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Assumptions of Simple Linear Regression 1

Different authors adopt slightly different assumptions — mine
differ a bit from the text’s.

Assumptions A:

o vy, = Bo-+ Bix;t+ e

e For each i, e; has mean 0 and standard deviation o (same
for all 1)

® e1,...,en Are uncorrelated

20



Assumptions of Simple Linear Regression II

Assumptions B:

e ¥y, = Bo+ Bix;+ e

e For each i, e; has mean 0 and standard deviation o (same
for all )

® e1,...,en are independent
e In addition, each of the e¢; has a Gaussian distribution

e B assumes a little bit more than A — some of the theoretical
results do in fact require B (clarify this later)

e In practice, it is rather hard to distinguish the two sets of
assumptions

21



Method of Least Squares

Suppose we have a statistical model with

e Observations y1,...,yn

e E{y;} = f(x;,0) possibly depending on additional known co-
variates x; and unknown parameter 0, with f(-,-) a known
function of x and 6

e Uncorrelated observations with a common variances (this as-
sumption will be relaxed later)

The method of least squares chooses the parameter 6 to mini-
mize

S = 3 {yi— f(z:0)}°.
1=1

22



Application 1

Suppose E{y;} = u for a fixed constant. This is the y;, ~ N|u, o]
form in a different guise. Let y = %Zyi. Then

n

S = > (yi—w?
i=1
n

i=1
= > wi—-N*—2—w) Y (wi— i) +ny—pw?
= > (wi— 9>+ nF—pw? (1)
since Y (y; —y) = 0. But the first term in (2) does not depend

on u while the second is minimized when p = y. Therefore, the
least squares estimate of u is

23



Application 2

Now suppose E{y;} = 8o + B81(x; — ) where z1,...,zy are known
(scalar) covariates, * = %in and Bg and (7 are unknown pa-
rameters. This is the classical simple linear regression problem,

where “simple” means that there is only a single covariate.

Comment: Centering the x;'s about their mean x simplifies the
math, but the model is essentially the same without that.

In this context, the principle of least squares chooses the param-
eters Bp and B1 to minimize

S = S {y; — Bo — Br(zi —T)}°.

24



Solution to Least Squares Regression I

First, consider quadratic expressions of the form

S = A—2BB+ CpB?

B\ 2 B2
— c( __) A_T
P C T C
This is minimized with respect to 8 when
B
G
and leads to the expression
BQ
S = A— —

25



Solution to Least Squares Regression 11

Next, consider [j.

S = Y [y — Br(ei — D)} — Bol”
S {yi — B1(z; — )} — 260> {yi — B1(w; — )} + nBg
> {yi — B1(zi — )} — 2nijBo + npg
= > {yi — B1(zi — B)}* +n(y — o) — ny".
The first and third terms do not depend on (g while the middle

term is minimized when Bg = y. Therefore, the least squares
estimator of g is

Bo = ¥y
and this substitution also leads to

S = Y {yi— 79— B1(z;i —1)}°.

26



Solution to Least Squares Regression III

Now write

S = S {yi—7— B1(z; — T)}?
= > Wi—7 281> (Wi — (@i —5) + BTy (2, — 1)°.
Now apply the result on slide I. The least squares estimate for

B is

_ 2w -9z —1)
> (x; — T)?

Q)
|_l

and this leads to

S - - D))
S (x; — 7)2 '

S = > (yi —)?

27



Summary

The least squares estimators for a simple linear regression are

Bo = ¥,
7 _ 2w —y)(x; — %)
> (@ — Z)?

and lead to

L 32
S = Y {vi—Bo— Pz —2)}
N ()2 - WD D)
' > (z; — T)?
This also leads to an estimator for the variance (2 or s2),
52 = O
n—2

Question: why is the divisor n — 2 and not n or n — 17

28



Standard Errors

e If Y71,...,Y), are independent (or uncorrelated) random vari-
ables and a1,...,an are constants, then Var{} q;Y;} =
S Var(a;Y;) = Y a?0?. If all variances are the same, then
Var{X a;Y;} = 023 a?.

2
e Application 1: suppose a; = % Then Y a? =n- <l> — % So

Var{¥} = 2°

n -

e Application 2: suppose a; = Z(w:;-_jz)? Then Zaiz _

> [{z(faff—?;}?] = S

e Hence if 52 is an unbiased estimator of o2, we call and

%‘%

—~

o

\/Z(%;—f)Q

the standard errors of By and B respectively.




Relation to Textbook Discussion

e The text (pp. 112—114) defines uy(xz) = Bg + B1x (without
subtracting ) and then gives the estimates

3 XA — )i —v)} 5 _ s
P1 = Z{(azi—g)Q}y , Po = y— P17 (2)

e If you write puy(z) = Bo+B1(x; — ) as I did, with B as above
and Bg =y, then

iy(z) = g+ p1(z;— %) = y— P17+ Bz,

This is equivalent to what you get from (2).

e The text (p. 114) says "It can be mathematically proven...”
but doesn’'t say how. Well, now you know how.

30



Example 1

“Crystal” data from the text (p. 119).

Predict weight as a
function of time.

Weight

20 25

Time

31



Estimating the Parameters

Cry=read.table(’C:/Users/rls/aug20/UNC/STOR455/Data/Crystal.txt’ ,header=T)
x=Cry$Time

y=Cry$Weight

n=length(y)

SSX=sum( (x-mean(x)) ~2)

SSY=sum( (y-mean(y)) ~2)

SXY=sum( (x-mean(x))*(y-mean(y)))

print (c(mean(y) ,SXY/SSX,mean(y)-mean(x)*SXY/SSX,sqrt ((SSY-SXY~2/SSX)/(n-2))))

V VVV VYV VYV

[1] 7.552857143 0.503428571 0.001428571 1.061766946

In algebra:
5, — Z{(wi—w)(yj;y)} — 0.5034,
> Az, — )<}
y = 7.5529,
y— Bz = 0.0014,
c = 1.0618.

See the text, pp. 119 and 121.
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Also...
Still writing the model as py(x) = Bo + B1(x — x):

. o 1.0618
. o 1.0618
SE(B) = i — =222 — 0.0352.

V2 Az — )%} V910

> # R code for the above
> x1=x-mean(x)
> 1m1=1m(y~x1)
> summary (1lm1)

Call:
Im(formula = y ~ x1)
Residuals:

Min 1Q Median 3Q Max
-1.96371 -0.73464 0.05629 0.89193 1.40800
Coefficients:

Estimate Std. Error t value Pr(>|t])

(Intercept)  7.5529 0.2838 26.62 4.85e-12 *x*x
x1 0.5034 0.0352 14.30 6.69e-09 **x*
Signif. codes: 0 ‘**xx’> 0.001 ‘*x’ 0.01 ‘x> 0.05 ‘.’ 0.1 ¢ ’> 1

Residual standard error: 1.062 on 12 degrees of freedom
Multiple R-squared: 0.9446,Adjusted R-squared: 0.94
F-statistic: 204.6 on 1 and 12 DF, p-value: 6.688e-09

33



Rest of this problem (pp. 120-121)

2 1If acrystal is allowed to grow for 15 hours, what is its predicted weight?

0.0014 + 0.5034«z,
0.0014 4 0.5034 x 15 = 7.5524.

py ()
fy (15)

34



Rest of this problem (pp. 120-121)

3 The crystals are priced depending on the time taken to grow them as well
as their actual weight. Crystals that are grown for 8 hours or less are priced
at $2 per gram, those that are grown between 8 hours and 16 hours are priced at
$10 per gram, and those that are grown for more than 16 hours are priced at $16
per gram. These prices reflect the additional amount of operator intervention
necessary to grow crystals for longer periods. Estimate the additional dollars that
a crystal will sell for if it is allowed to grow for 24 hours instead of 12 hours.

First do

iy (12) 0.0014 + 0.5034 x 12
iy (24) = 0.0014 + 0.5034 x 24

6.0422,
12.0830.

Estimated price of first crystal is $6.0422 x 10 = $60.42.
Estimated price of second crystal is $12.0830 x 16 = $193.33.
Difference is $132.91.

35



Rest of this problem (pp. 120-121)

4 An electronic components manufacturer places an order for 100 crystals weigh-
ing 12 grams each with a tolerance of +0.5 gram, i.e., weighing between 11.5
and 12.5 grams. How long should the crystals be allowed to grow? If 100
crystals are grown for this amount of time, how many crystals may be expected
to meet the specifications?

1. Solve 0.0014 4 0.5034x = 12, x = 23.84 hours.

2. If the weight of the crystal ¥ has a mean of 4 = 12 and a
standard deviation o = 1.062, then

0.5 Y — 0.5
Pr{115<Y <125} = Pr{— < I TR < }
1.062 o 1.062
= pnorm(0.4708) — pnorm(—0.4708) = 0.3622.

About 36 crystals will meet the specifications.

36



(2)

(b)

(c)

(d)

Mount Airy and Charleston Dataset

What is the regression equation for predicting Charleston
summer mean temperature from that in Mount Airy, and
what is the estimated standard deviation?

The mean summer temperature for one year in Mount Airy is
24°C. Predict the mean summer temperature in Charleston,
and calculate the probability that this is above 28°C.

My summer AC bill is $100 per month if the average tem-
perature is below 27°C, $120 per month if the average tem-
perature is between 27°C and 28°C, and $150 per month if
the average temperature is above 28°C. If the mean summer
temperature in Mount Airy is 23°C and I live in Charleston,
what is my expected AC bill for the summer?

If the mean summer temperature in Charleston is 27.5°C,
what is the expected mean summer temperature in Mount
Airy?

37



Residuals

o Assume y; = Bo + B1x; +e; or, alternatively, y; = B3 + 81 (z; —
z) + e; (both models lead to the same ¢;)

e Use first model: we have seen that we can estimate By and
B1 by the least squares estimators By and (1, and this also
leads to o for the residual standard deviation

e Hence, we can estimate:

e, = Y;— Bo— Bix;

and these ¢;'s are called residuals

e Residuals have many uses, but especially as a diagnostic for
whether the model assumptions are correct.

38



Standardized Residuals

Since we are assuming the ¢;'s have common standard devi-
ation o, the same will be approximately true of the e;'s.

T herefore, a natural step would be to divide each ¢; by o so
that they have approximate standard deviation 1.

A more accurate approximation is to calculate
€;
ov1—h;

where h; is called the ith hat value (the text uses h;; rather
than h;, but both notations are in common use).

r, —

For a simple linear regression, a formula for h; is
B, — 1. (zi — @)°
n SSX
where SSX = Y (z; —%)?2 as in our earlier notation. Note that
2.ihi = 2.
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Calculating Residuals and
Standardized Residuals

e by hand”..

Im1=1m(y~x)

res=y-1mi$coef [1]-1mi1$coef [2] *x
sighat=sqrt(sum(res~2)/(n-2))
hat=rep(1/n,n)+(x-mean(x))~2/sum((x-mean(x)) ~2)
sres=res/(sighat*sqrt(1-hat))

e Or use the tools built into R...

residuals(1lm1)
summary (1ml) $sigma
hatvalues(1mi)
rstandard(1lmi1)

40



Plots

e \What features are we looking for in a regression analysis?
— Linear relationship
— Constant variance
— Normal distribution of e;

— No outliers (we hope ..)

e Plotting the data is a key way to assess these properties
— Plot y against x

— Plot the (standardized) residuals against x

41
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FIGURE 3.5.1
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Conclusions from these Plots
Figs. 3.5.1/3.5.6 do look like a linear relationship
Figs. 3.5.2/3.5.7 look nonlinear
Figs. 3.5.3/3.5.8 look nonlinear

Figs. 3.5.4/3.5.9 either show increasing variance or two clear
outliers...

In each case the shape is more clearly seen in the resodual
plot than the original =,y plot

Now let’s look at the Amherst and Mount Airy datasets, e.g.

plot (Mta$MtAiry,rstandard(lm(Mta$Charleston Mta$MtAiry)) ,xlab="Mount Airy’,
ylab=’Charleston’,pch=20,main="Residual Plot for Mount Airy’)
abline(0,0)
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Temperature

Standardized Residual
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Other Plotting Techniques

e Plot residuals against fitted values (Im(...)$fitted)

— With only one x variable, this is no different conceptually
from plotting against x

— However, with multiple x variables, this technique will be
very useful
e QQ plots of (standardized) residuals

— Also called normal probability plots, rankit plots, and var-
ious other names

— For formal definition, see p. 146 of text
— qgplot in R

— An extension (p. 147 of text): do this for various com-
binations of x and y values to test for a bivariate normal
distribution
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Sample Quantiles

QQ Plot of Standardized Residuals:
Amherst data

Theoretical Quantiles

Sample Quantiles

QQ Plot of Standardized Residuals:
Mount Airy data

Theoretical Quantiles
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Other Plotting Techniques (continued)

Not mentioned in the text, but these are also common plots
people make:

e Plotting the residual at time ¢ against the residual at time
i — 1 (looking for autocorrelation)

e The full “"ACF"” plot at many lags (R function acf)
e Durbin-Watson test (function dwtest within library 1mtest)

e For Amherst data, the ACF plot is not strong but the DW
test clearly rejects the null hypothesis of no autocorrelation
(p=0.006)

e [ he Mount Airy data shows no evidence of autocorrelation

e [ hese are really *“time series’ datasets. You'll learn much
more about time series if you take STOR 556.
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Residual at time i

ACF
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Confidence Intervals, Prediction Intervals
and Hypothesis Tests

Write model in form y; = B3 + B1(x; —x) + e;, assumes least

Z(yz —y)(z;— 33)

squares estimates 8§ =y, BT = S (2,-7)?

2

Var(B) = %, Var(3;) = <2z

It's also possible to show that BS and BT are uncorrelated

Hence, for any a and b, Var(aB§+b85) = o ( @ + Z(xbz_g;)2>

If o is unknown, then
o5 + 054
\/ —I_ Z(xz_x)z

~ lp—2.
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Application to Confidence Intervals

e Example: Find a 100(1—a)% confidence interval for py () =
Bo + B1x for a given value of .

e [ his problem is actually easier if you write it in the alternative
format: py(z) = B3 + Bi(z — )

o iy (x) =B+ Bi(z — 7) and

py (x) — py (z)

tn—2

e Therefore, an appropriate confidence band for uy (x) is

1 (z—171)2

(@7
iy () £qt (1 -2 n—2)5y=
iy () q( 2" )U\/n_l_ SSX

e [Thisison p. 161 of the text.
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Prediction Intervals

e I've been asked a number of times by students in the class: what is the
distinction between Y (z) and uy(x)? (see, e.g., question 3.4.4(b) from
one of the homework assigments)

e [ he distinction is whether we are talking about an individual observation
Or an average over many observations
— In the question about car maintenance costs:

— Y (13000) is the maintenance expense for my car, if I drive it 13,000
miles in the first year

— uy(13000) is the average maintenance expense over all cars that are
driven 13,000 miles in the first year

— My interest is surely in Y(13000), not uy(13000) (unless I want the
latter number for comparison)

e Both quantities have the same point estimate
— In this analysis, we write the model as puy(z) = 55 + B (z — )
— Y (z) and fiy(z) are both B3 + Bi(z — T) where Bo,B1 are the least
squares estimates. Note that x refers to the mean z values of the

observations that were used to form the estimates — it's not updated
to include the new x

— However the variability of Y (z) and uy(x) are very different — this
is our main focus here
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Computing Interval Estimates
iy (z) — py () = (B — 65) + (B — 7)) (z — )
Variance is o2 {% + M}

Therefore, a 100(1 — a)% confidence interval for uy(x) is

~ o 1 (z—17%)2
fiy () iqt(l _5’”_2) J\/ﬁ+ SSX
V(z) -=Y(z)=(B§—85) + (B; —B7)(x—7) +e
e has mean O and SD= o, ind. of past eq,...,en.

: . 21, (z—%)2
Variance is o {ﬁ—l— S —|—1}

Therefore, a 100(1 — «)% prediction interval for Y(z) is

1 _ =\2
py (x) + qt (1_gan_2> 3\/54‘ (:BSS;:() + 1
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Example

e Redo crystal example

e \What are the confidence and prediction interval for Weight
if Time is (a) 9 hours, (b) 15 hours, (c) 21 hours?

Cry=read.table(’.../Crystal.txt’,header=T)
Iml=1m(Weight~Time,Cry)

Time=c(9,15,21)

Weight=rep(NA,3)

Crynew=data.frame(Weight,Time)

# Crynew has same structure as Cry
predict.lm(1lml,newdata=Crynew,interval=’confidence’,level=0.95)
predict.lm(1lml,newdata=Crynew, interval=’prediction’,level=0.95)

predict.lm(1lml,newdata=Crynew,interval=’"prediction’,level=0.99)
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Results

predict.lm(1lml,newdata=Crynew,interval=’confidence’,level=0.95)
fit lwr upr
4.532286 3.761579 5.302992
7.552857 6.934577 8.171137
10.573429 9.802722 11.344135

predict.lm(1lml,newdata=Crynew,interval=’prediction’,level=0.95)
fit lwr upr
4.532286 2.093891 6.970680
7.552857 5.158270 9.947445
10.573429 8.135034 13.011823

predict.lm(1lml,newdata=Crynew,interval=’prediction’,level=0.99)
fit lwr upr
4.532286 1.113831 7.950741
7.552857 4.195817 10.909898

10.573429 7.154974 13.991883
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Simultaneous Confidence/Prediction Intervals

e Suppose we have K values of z, denoted x1,...,xk.

e Simultaneous CIs: find bounds L., Ui, 1 <k < K, such that
Pr{L, <puy(zp) <Upfork=1.... K} >1—a.

e EXpect solution of form

Uk —~ * A\/l (xk_f)Q
— 4+ ¢ _
{ L } py (zy) £ txo ooy

e Simultaneous PIs: find bounds L., U, 1 <k < K, such that
PI’{LkSY(:Bk) SUk for k = 1,...,K}Z 1l — a.

e EXxpect solution of form

Uk o~ * -~ 1 (mk:_f)Q
{Lk} — MY(xk)itKU\/g‘F S9 XY + 1

e \What should we use for t}?
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Formulas for t7;
Bonferroni: ¢ = qt (1 — 5> — 2)

For prediction intervals, this is (nearly always) the best the-
oretical formula, though it might be possible to do better by
simulation

For confidence intervals, there is (nearly always) a better
result: t3- = \/Q-qf(l —«a,2,n—2) where ¢f is a quantile of
the F distribution

The formal definition of an is that it is the distribution of
U/m
V/n
In R: functions pf(xz,m,n) or qf(p,m,n) for the distribution
and quantile functions

where U ~ Xm7 V ~ Xn are independent chi-square

This is known as the Working-Hotelling procedure. It's a
special case of Scheffé’'s method.
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Quick Note in Passing
If T ~ tp then T2 ~ Fy .

We'll use this later (Section 3.8)
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Example based on Crystal Dataset

Cry=read.table(’.../Crystal.txt’ ,header=T)

1m1=1m(Weight~“Time,Cry)

n=nrow (Cry)

tstar=sqrt (2*qf(0.95,2,n-2))

SSX=sum( (Cry$Time-mean (Cry$Time)) ~2)

y1=1ml$coef [1]+1mi$coef [2] *Cry$Time
y2=yl+tstar*summary(lml) $sigma*sqrt ((Cry$Time-mean (Cry$Time)) "2/SSX+1/n)
y3=yl-tstar*summary(lml) $sigma*sqrt ((Cry$Time-mean (Cry$Time)) "2/SSX+1/n)
plot (Cry$Time,Cry$Weight,pch=20,ylab="Weight’,xlab="Time’)
lines(Cry$Time,y1l)

lines (Cry$Time,y2,1ty=2)

lines (Cry$Time,y3,1ty=2)
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Alternatively ...

library(investr)

plotFit(1lml, interval = ’confidence’, adjust = ’Scheffe’,

main = ’Working-Hotelling Procedure for Crystal Data’)
plotFit(1ml, interval = ’prediction’, adjust = ’Bonferroni’, k=14,
main = ’Simultaneous PIs for Crystal Data’)

Note: there seems to be an error on the webpage of Aaron
Schlegel (where I found this) — wrong value of k or K
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Who were Working and Hotelling?

Holbrook Working Harold Hotelling
(1895—1985) (1895—1973)
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Hypothesis Testing (Section 3.7)

All but one of the examples can be subsumed in the following:

e Write the model in the form uy(xz) = 85 + Bi(z — )

_ _ aw Bl = ~ _ =1 (@—3)°
° /,Ly(CB) = BO + 51(33 CB), SE(MY(CB)) - G\/n —I_ SSX

iy (&) iy (2)
® SE(iy ) " tn-2

e To test Hy: puy(x) = pg versus Hqi : uy(x) # po at signifi-
cance level «,
— Either: Calculate C = gt (1 —5,n — 2) - SE(py(x)),
reject Hy if |py () — puy (z)| > C,

— QOr: Calculate P = 2-pt (mgggﬁ;ﬁgg)l,n — 2, lower.tail = F),
reject Hp if P < «a.
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Comments and Extensions

T he text again emphasizes that confidence intervals are more
useful than hypothesis tests and I'd (broadly) agree with that.
Nevertheless, you need to know how to do hypothesis tests.

A particular special case: Hg: p1 =0 versus H1: pB1 #0

In that case you reject Hg when

51\/55 ‘

1 _ 2 - 2) .
2’
We'll see this again in Section 8.
One-sided tests: what do we do differently if Hq is either

py (x) > pg or py(x) < pg?
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(Q3.7.1, HW6)

The regression function of shelf-life ¥ on storage temperature X is assumed to be
a straight line py(x) = B, + B;x for values of x in the range 10°C to 35°C, and
assumptions (A) are presumed to be satisfied.

a Define an appropriate target population for this investigation.
b Define an appropriate study population for this investigation.

¢ Are the data in this investigation obtained by simple random sampling or by
sampling with presciected X values?

d Plot y; versus x;. Examine this plot and decide whether a straight line regression
model seems reasonable.

e The director of the laboratory wants to determine whether the data provide evi-
dence (at the 0.05 level) indicating that shelf-life does indeed depend on storage
temperature, so he decides to use a statistical test. State an appropriate pair of
hypotheses, suitably designating one as the null hypothesis and the other as
the alternative hypothesis, and calculate the P-value for this test. What is your
conclusion?

f Estimate, if possible, the average shelf-life for this cough syrup if it is to be
stored at 0°C.

g Estimate the average shelf-life for this cough syrup if it is to be stored at 15°C.
Also compute a 95% confidence interval for this quantity.

h Answer part (¢) using an appropriate confidence interval instead of a hypothesis

test.

Do the data provide evidence (at the 0.05 level) indicating that the average shelf-

life for bottles of cough syrup stored at 13°C is at least 650 days? Carry out an

appropriate statistical test and state your conclusions.

i Construct an appropriate confidence interval to answer part (i).
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66



Analysis of Variance (Section 1.8)

e Recall from Slide 28:

5 A _ SXY? _
> Avi—Bo—Bulei =B} = SSY - = SSY -} S5X.

e The expression Y {y; —Bo—F1(xz; —z)}? is called the error sum
of squares, abbreviated SSE. Also, 57-SSX is called the sum
of squares due to regression, abbreviated SSR. Therefore,

we have shown

SSY = SSR+ SSE.
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The Analysis of Variance Table

—
]
[ .k

TABLE J.5.1

ANOVA for Straight Line Regression
i
Source Degrees of Sum of Mean square Computed F-Value
Freedom df Squares SS MS
Regression 1 SSR MSR F.= MR
Error n—2 SSE MSE
Total n—-1 SSY MSY

e The statistic F. has an Fy ,_o distribution when 1 = 0.

e Reject Hy at significance level a when Fi. > qf(1—«a,1,n—2).
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Connecting the Dots

B3V SSX

e Slide 64: Reject Hg when = ‘ > qt (1 — %,n — 2).

o F.n— MSR _  ssr _ (B])?SSX
C — MSE — (SSE/n—2) — 52

e When Hg: (81 =0 is true,
B¥\v/SSX
(a) 22

~ tn_2,

37)255X
(b) Fo="13"% ~ Fy o,

(c) But we already noted (slide 58) that the square of a ¢,,_»
distribution is F7 5,_o.

(d) They are the same test!
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(Q3.8.1, HW6)

The following questions refer to the shelf-life data in Table 3.7.1, which are also

stored in the file shelflif.dat on the data disk.

a Present an analysis of variance table.

b Use F, from the ANOVA table in part (a) to test NH: 8, =0 against AH:
B, # 0. What is the P-value for this test? Interpret the result.

¢ Calculate ¢, for testing NH against AH in part (b). What is the P-value for this
test? Interpret the result.

d Verify that the square of ¢ in part (c) is equal to F- in (b). Further verify that
the P-value calculated from the ¢ statistic in part (c) is the same as that calculated
from the F statistic in part (b).

e What conclusion do you draw regarding 8, based on the test in part (b)?

f Compute a 99% confidence interval for B,. How will you use this confidence

interval to decide whether or not B, is close enough to zero to be considered
negligible for this problem?

g Write a short paragraph outlining your conclusmm in parts (b)<f) and give
reasons for your statements.

70



