
Chapter 4:
Multiple Regression

• Multiple Linear Regression is the extension of simple linear
regression to include many covariates (x variables)

• The basic equation for the mean response is either

µY (x1, ..., xp) = β1x1 + β2x2 + . . .+ βpxp (1)

or

µY (x1, ..., xp) = β0 + β1x1 + β2x2 + . . .+ βpxp (2)

• Nearly all (but not all) practical regression analyses are of
form (2), however (1) is easily transformed into (2) by simply
defining x1 = 1 (and adjusting the value of p).

• In multiple regression, there is usually little advantage in re-
placing x by x− x̄, so we won’t do that.
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Preliminaries

• In this chapter, we won’t need to use calculus or any ad-
vanced probability theory or linear algebra, but we note a
few basic facts

• Recall the basic rules of matrix multiplication and that a
vector y of dimension n is just a n×1 matrix (a.k.a. column
vector; if you want a row vector write yT ).

• One basic but elementary fact is that if A and B are matrices
and the product AB is defined, then (AB)T = BTAT .

– Proof: The (i, j) entry of (AB)T is
∑
k ajkbki =

∑
k bkiajk

which is also the (i, j) entry of BTAT .

• Extension: (A1A2 . . . Am)T = ATmA
T
m−1 . . . A

T
1

• Remark: we may not need this but another similar result is
that (AB)−1 = B−1A−1 and by extension (A1A2 . . . Am)−1 =
A−1
m A−1

m−1 . . . A
−1
1 .
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Trace of a Matrix

• If C is an n×n matrix with entries {cij, 1 ≤ i ≤ n, 1 ≤ j ≤ n},
the trace of C is the sum of the diagonal entries, i.e.

∑n
i=1 cii.

• Easy but important fact: if A is an n×m matrix and B is an

m× n matrix, tr(AB)=tr(BA).

• Proof: Both traces are equal to
∑n
i=1

∑m
j=1 aijbji.
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Means and Covariances of Random Vectors

• Suppose y =
(
y1 y2 . . . yn

)T
is a random vector of dimen-

sion n (i.e., each of y1, y2, . . . , yn is a random variable, not
necessarily independent).

• Suppose µi is the expected value of yi (i = 1, . . . , n) and let
vij be the covariance of yi and yj (i.e. the expected value of
(yi − µi)(yj − µj) — if i = j this is just the variance).

• Let µ =
(
µ1 µ2 . . . µn

)T
and write V for the n× n matrix

whose (i, j) entry is vij.

• Then we say that the random vector y has mean µ and
covariance matrix V .

• Another way to write V is

V = E
{

(y − µ)(y − µ)T
}

where E{. . .} is expectation.
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Linear Transformations of Random Vectors

Theorem. Suppose y is a random vector of length n with mean
µ and covariance matrix V . Let A be an m×n matrix, and write
z = Ay. Then z is a random vector of length m with mean Aµ
and covariance matrix AV AT .

Proof. First note that expectation is a linear operator in the
sense that

E {zi} = E

∑
j

aijyj

 =
∑
j

aijµj = ith entry of Aµ

and then, by applying the same result a second time,

E
{

(z −Aµ)(z −Aµ)T
}

= E
{
A(y − µ)(A(y − µ))T

}
= E

{
A(y − µ)(y − µ)TAT

}
= AE

{
(y − µ)(y − µ)T

}
AT

= AV AT .
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Assumptions for Multiple Linear Regression

• yi =
∑p
j=1 xijβj +ei where ei is “error”. If the model includes

an intercept, set xi1 = 1.

• We assume the ei are uncorrelated, have mean 0 and common

variance σ2.

• Another way to write that is: y =
(
y1 y2 . . . yn

)T
is a

random vector with mean Xβ and covariance matrix σ2In.

• Later (but not right away), we will also assume that e1, e2, . . . , en

are (jointly) normally distributed.

• We also write e =
(
e1 e2 . . . en

)T
. Then, another way to

write the equation is

y = Xβ + e.
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Principle of Least Squares

• Choose β =
(
β1 β2 . . . βp

)T
to minimize

S =
n∑
i=1

e2
i =

n∑
i=1

(yi −
p∑

j=1

xijβj)
2.

• Since we also have S = eTe and e = y − XTβ, we can also

write that as

S = (y −Xβ)T (y −Xβ).
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Formula for the Least Squares Estimators

S = (y −Xβ)T (y −Xβ) = βTXTXβ − 2yTXβ + yTy.

Consider an expression of the form

βTCβ − 2bTβ + a = (β − C−1b)TC(β − C−1b) + a− bTC−1b.

Provided C is non-negative definite (which means that gTCg ≥ 0
for any g), the first term is ≥ 0, and equal to 0 if

β = C−1b.

Setting a = yTy, b = XTy, C = XTX, S is minimized when

β̂ = (XTX)−1XTy

and in that case,

S = yTy − yTX(XTX)−1XTy.
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Summary So Far ...

• Basic model: yi =
∑p
j=1 xijβj + ei

• Assumptions on ei: uncorrelated, mean 0, common standard

deviation σ. It’s very often assumed, also, that they are

independent with normal distributions.

• Matrix representation: y = Xβ + e.

• Method of least squares: chose β to minimize

S = (y −Xβ)T (y −Xβ).

• The solution: β̂ = (XTX)−1XTy. These are called the

normal equations.

• In addition, S = yTy − yTX(XTX)−1XTy.
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A Couple of Details

• How do we know C = XTX is non-negative definite?

– Let g be any p-dimensional vector and define q = Xg with entries
qi, i = 1, . . . , n.

– Then gTXTXg = qTq =
∑n

i=1 q
2
i ≥ 0.

– Therefore, XTX is non-negative definite.

• What if XTX is not invertible?

– This is possible — if there are linear dependencies among the columns
of X, the rank of X will be < p, and in that case, (XTX)−1 will not
exist.

– It’s still possible to solve the normal equations in the form XTXβ̂ =
XTy but the solution will not be unique

– Alternatively, use a generalized inverse (recall Chapter 1) but that
doesn’t actually solve hte uniqueness problem.

– The practical solution is to eliminate all covariates that are linear
combinations of other covariates. In nearly all examples in this course,
that will be done ahead of time.
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Properties of the Estimators I

• β̂ = (XTX)−1XTy = Ay say.

• Therefore, E{β̂} = AE{y} = AXβ = β because AX =

(XTX)−1XTX = Ip.

• The covariance matrix of y is σ2In. Therefore, the covari-

ance matrix of β̂ is A(σ2In)AT = σ2ATA = σ2(XTX)−1XT ·
X(XTX)−1 = σ2(XTX)−1.

• This result will be very important when we come to talk

about tests and confidence intervals later.
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Major Results So Far

• Assumption: y = Xβ + e where e has mean 0 (vector of

zeroes) and covariance matrix σ2In.

• Objective: Minimize S(β) = (y −Xβ)T (y −Xβ).

• S(β) is minimized by β̂ = (XTX)−1XTy.

• S(β̂) = yTy − yTX(XTX)−1XTy.

• Cov(β̂) = (XTX)−1σ2.

• We shall also see (later) that σ̂2 = S(β̂)
n−p is an

unbiased estimator of σ2.

• σ̂ multiplied by the square root of the jth diagonal entry of

(XTX)−1 is the standard error of β̂j, j = 1, . . . , p.
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Example

• GPA data on sakai; see text, pages 220, 223, 225, 243

• 20 students; record GPA after one year of college (y variable),
plus SAT math and verbal scores and high-school GPA in
Math and English

• Some terminology: since the college GPA is being treated as
dependent on the other four, we call GPA1yr the dependent
variable and the other four (SATxM, SATxV, HSxM, HSxE)
the independent variables.

• We do want an intercept term in this regression, so define X
to be an n×5 matrix, with first column all ones and the other
four columns drawn from the four independent variables.

X =


1 321 247 2.30 2.63
1 718 436 3.80 3.57
1 358 578 2.98 2.57
... ... ... ... ...
1 653 606 3.69 3.52


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Example (continued)
• Now calculate

XTX =


20.0 10232.0 9565.0 57.1 60.2

10232.0 5759520.0 5084391.0 30707.6 31806.9
9565.0 5084391.0 4908617.0 28231.5 29294.3

57.1 30707.6 28231.5 176.7 173.9
60.2 31806.9 29294.3 173.9 185.6

 ,

(XTX)−1 =


2.655125 0.001378 −0.000362 −0.200684 −0.852128
0.001378 0.000005 0.000000 −0.000356 −0.000862
−0.000362 0.000000 0.000004 −0.000195 −0.000297
−0.200684 −0.000356 −0.000195 0.117056 0.047219
−0.852128 −0.000862 −0.000297 0.047219 0.432052

 ,

XTy =


51.86

28199.63
25825.56
155.0074
159.5413

 , (XTX)−1XTy =


0.16155
0.00201
0.00125
0.18944
0.08756

 .

• Side comment. Maybe it would have been better to scale
the variables first, e.g. divide the SAT scores by 100 so that
they are of the same order of magnitude as the GPAs.
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Example (continued)

• We can also work out,

yTy = 141.8188,

yTX(XTX)−1XTy = 140.7373

σ̂ =

√
141.8188− 140.7373

15
= 0.2685

and the standard errors are

σ̂
√

2.655125 = 0.438,

σ̂
√

0.000005 = 0.0006, (more accurately 0.00058)

etc.

• These matrix operations are easily carried out in R. See code

R-code-Chap-4.txt on sakai.
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Direct Implementation in R
• Now do

x lm1=lm(GPA1yr∼ ·,GPA)
x summary(lm1)
Remark. The text “∼ ·” means you regress on all the other variables in
the dataframe GPA. If we wanted only a subset, say SATxV and HSxM,
we would write lm1=lm(GPA1yr∼ SATxV+HSxM,GPA).

• Part of output shows

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.1615496 0.4375321 0.369 0.71712
SAT_M 0.0020102 0.0005844 3.439 0.00365 **
SAT_V 0.0012522 0.0005515 2.270 0.03835 *
HS_M 0.1894402 0.0918680 2.062 0.05697 .
HS_E 0.0875637 0.1764963 0.496 0.62700
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.2685 on 15 degrees of freedom
Multiple R-squared: 0.8528,Adjusted R-squared: 0.8135
F-statistic: 21.72 on 4 and 15 DF, p-value: 4.255e-06
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Interpretation

• The t value is the estimate divided by its standard error

• The fourth column gives the two-sided p-value for the null

hypothesis that each coefficient is 0

• The results show the optimal combination of the four inde-

pendent variables to predict a student’s first-year GPA

– All four coefficients are positive — that’s reassuring, but

not an automatic conclusion from this kind of analysis

• The results also show that the coefficients for HSxM and

HSxE are not statistically significant, though that’s marginal

for HSxM

• Maybe these two variables should be dropped from the

analysis
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Reminders of Major Theoretical Results

• If y has mean µ and covariance matrix V , then z = Ay has

mean Aµ and covariance matrix AV AT .

• For β̂ = (XTX)−1XTy, set A = (XTX)−1XT , mean of β̂ is

AXβ = (XTX)−1XT ·Xβ = β, covariance matrix is A(σ2In)AT =

σ2 · (XTX)−1XT · In ·X(XTX)−1 = σ2(XTX)−1.

• Also ŷ = Xβ̂ = X(XTX)−1XTy = Hy where H = X(XTX)−1XT

is the hat matrix.

• Properties of H: HT = H (symmetric) and

H2 = H (idempotent)

• Also write ê = (y −Xβ̂)T (y −Xβ̂) (vector of residuals) and

note that yTy = ŷT ŷ + êT ê (Pythagoras Theorem)
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Heffernan and Tawn (2004)
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Properties of the Estimators II

• Let’s write

(
ŷ
ê

)
=

(
H

I −H

)
y

• The covariance matrix is

(
H

In −H

)
· σ2In ·

(
HT In −HT

)
= σ2

(
H

In −H

)(
H In −H

)
= σ2

(
H2 H(In −H)

(In −H)H (In −H)2

)
= σ2

(
H 0
0 In −H

)
• ŷ has cov. matrix σ2H, ê has cov. matrix σ2(I−H), and the

two are uncorrelated (independent if joint normal)

• In particular, the variance of ŷi is σ2hii and the variance of êi
is σ2(1− hii) where hii or hi is the ith hat value.

• This explains some of the terminology of Chapter 3. In par-
ticular, it justifies the definition of ri = êi/(σ̂

√
1− hii) as the

standardized residual.
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Properties of the Estimators III

• Write ê = (In −H)y = (In −H)(y−Xβ) (because HX = X)

•
∑
ê2
i = êT ê = (y −Xβ)T (In −H)T (In −H)(y −Xβ)

= (y −Xβ)T (In −H)(y −Xβ)
= tr{(In −H)(y −Xβ)(y −Xβ)T}. (Recall tr(AB)=tr(BA))

• Trace (“tr”) is a linear operator, hence
E[tr{(In −H)(y −Xβ)(y −Xβ)T}]
= tr{(In −H)E[(y −Xβ)(y −Xβ)T ]}
= tr{(In −H)σ2In} = σ2{tr(In)− tr(H)}

• But, tr(In) = n and tr(H) = tr(X(XTX)−1XT )
= tr((XTX)−1XTX) = tr(Ip) = p.

• Therefore, E{
∑
ê2
i } = (n− p)σ2, and hence

σ̂2 =
∑
ê2
i

n−p is an unbiased estimator of σ2.

• This explains why we always correct for degrees of freedom
when estimating σ.
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Application to Simple Linear Regression

• Assume X =


1 x1 − x̄
1 x2 − x̄
... ...
1 xn − x̄

. Then XTX =

(
n 0
0 SSX

)
.

• H = X(XTX)−1XT

=


1 x1 − x̄
1 x2 − x̄
... ...
1 xn − x̄

( 1
n

0
0 1

SSX

)(
1 1 . . . 1

x1 − x̄ x2 − x̄ . . . xn − x̄

)

=


1 x1 − x̄
1 x2 − x̄
... ...
1 xn − x̄

( 1
n

1
n

. . . 1
n

x1−x̄
SSX

x2−x̄
SSX

. . . xn−x̄
SSX

)

=


1
n

+ (x1−x̄)2

SSX
1
n

+ (x1−x̄)(x2−x̄)
SSX

. . . 1
n

+ (x1−x̄)(xn−x̄)
SSX

1
n

+ (x2−x̄)(x1−x̄)
SSX

1
n

+ (x2−x̄)2

SSX
. . . 1

n
+ (x2−x̄)(xn−x̄)

SSX... ... . . . ...
1
n

+ (xn−x̄)(x1−x̄)
SSX

1
n

+ (xn−x̄)(x2−x̄)
SSX

. . . 1
n

+ (xn−x̄)2

SSX


• In particular, hii = 1

n
+ (xi−x̄)2

SSX
, exactly as in the Chapter 3 formulas.
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Recall GPA Example
• Fit multiple regression in R:

x lm1=lm(GPA1yr∼ ·,GPA)
x summary(lm1)
Remark. The text “∼ ·” means you regress on all the other variables in
the dataframe GPA. If we wanted only a subset, say SATxV and HSxM,
we would write lm1=lm(GPA1yr∼ SATxV+HSxM,GPA).

• Part of output shows

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.1615496 0.4375321 0.369 0.71712
SAT_M 0.0020102 0.0005844 3.439 0.00365 **
SAT_V 0.0012522 0.0005515 2.270 0.03835 *
HS_M 0.1894402 0.0918680 2.062 0.05697 .
HS_E 0.0875637 0.1764963 0.496 0.62700
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.2685 on 15 degrees of freedom
Multiple R-squared: 0.8528,Adjusted R-squared: 0.8135
F-statistic: 21.72 on 4 and 15 DF, p-value: 4.255e-06
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Compare Text Results in Minitab and SAS
(pages 243–5)

Heffernan and Tawn (2004)
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We could decide to drop HSxE

> lm2=lm(GPA1yr~SAT_M+SAT_V+HS_M,GPA)
> summary(lm2)
...

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.3342498 0.2587474 1.292 0.214776
SAT_M 0.0021849 0.0004553 4.799 0.000197 ***
SAT_V 0.0013123 0.0005252 2.499 0.023738 *
HS_M 0.1798702 0.0876786 2.051 0.056964 .
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.2621 on 16 degrees of freedom
Multiple R-squared: 0.8504,Adjusted R-squared: 0.8223
F-statistic: 30.31 on 3 and 16 DF, p-value: 7.816e-07

Compared with earlier fit, the Multiple R-squared has gone down, but the
Adjusted R-squared has increased (0.8223 v. 0.8135). We shall discuss these
later.
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Residual Plots (Section 4.5 of text)

• Standardized residuals by formula ri = êi
σ̂
√

1−hii
, same as in

simple linear regression

• Range in this case is –1.90 to 2.25 — nothing unusual

• Plot standardized (or unstandardized) residuals against

– Any of the variables included in the model

– Any other variables not included in the model

– Fitted values

• QQ (or rankit) plot — R function qqnorm. A straight line

indicates good fit to normal distribution.

• Or: try plot(lm1)
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Confidence and Prediction Intervals
(Section 4.6 of text)

• In these examples, we assume there is an intercept and write
the model in the form µY (x1, . . . , xp) = β0 +

∑p
j=1 βjxj with

p+ 1 parameters.

• We may be interested in any of

– βj for any of j = 0,1, . . . , p

– µY (x1, . . . , xp) for any given x1, . . . , xp

– A linear combination of the form
∑p
j=0 ajβj for any con-

stants a0, a1, . . . , ap. Also write this as aTβ.

• However the first two cases may be derived from the third,
so we concentrate on that.

• My notation differs slightly from the text, specifically in using
p rather than k for the number of regressors and j = 0, . . . , p
for the parameter indices.
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General Approach

• If θ = aTβ, then a suitable estimator is θ̂ = aT β̂.

• The variance of θ̂ is σ2aT (XTX)−1a

• If, in addition to the assumptions made so far, the original er-
rors {ei} are independent and normally distributed with means
0 and common variance σ2, then θ̂−θ

σ̂
√

aT (XTX)−1a
∼ tn−p−1.

• The quantity σ̂
√
aT (XTX)−1a is called the standard error of

θ̂, abbreviated se.

• A 100(1− α)% confidence interval for θ is given by

θ̂ ± qt
(

1−
α

2
, n− p− 1

)
· se.

• Comment: degrees of freedom is n−p−1 (rather than n−p)
because we must also account for the intercept.
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Prediction Intervals
• Here, we confine ourselves to θ of the form β0+

∑p
j=1 xjβj where x1, . . . , xp

are the covariates of a new observation. However, for convenience I will
still write θ = aTβ where a0 = 1 and aj = xj for j = 1, . . . , p.

• The problem is to predict Y = θ + e where e is the random error asso-
ciated with the new observation. We assume e ∼ N [0, σ] — the same
distribution as the past errors, but independent of them.

• Point predictor Ŷ = θ̂ where θ̂ = aT β̂.

• Ŷ −Y = θ̂− θ− e has variance σ2(aT(XTX)−1a+ 1) where the +1 is what
distinguishes a prediction interval from a confidence interval.

• The prediction standard error is pse = σ̂
√

aT(XTX)−1a + 1.

• A 100(1−α)% prediction interval is given by θ̂± qt
(
1− α

2
, n− p− 1

)
· pse.

• In R: use predict.lm function, similar to single regressor case.
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Confidence/Prediction Interval Example

In GPA dataset, consider a student for whom SATxM=601,

SATxV=497, HSxM=2.98, HSxE=3.01.

1. Find a 99% confidence interval for the mean first-year GPA

of all students with this profile.

2. Find a 90% prediction interval for the first-year GPA of this

particular student

3. Estimate the probability that this particular student has a

first-year GPA greater than 3

33



Solution to Part 1

First create new dataframe, then calculate a, the point predictor
aT β̂, and se. Recall V = (XTX)−1.

GPA1=data.frame(SAT_M=601,SAT_V=497,HS_M=2.98,HS_E=3.01)
a=as.numeric(c(1,GPA1))
pred=as.numeric(t(a) %*% betahat)
se=as.numeric(sighat*sqrt(t(a) %*% V %*% a))
pred+c(0,-1,1)*qt(0.995,15)* se

Result: [1] 2.820101 2.595133 3.045069

Alternatively, use predict.lm:

> predict.lm(lm1,newdata=GPA1,interval=’confidence’,level=0.99)
fit lwr upr

1 2.820101 2.595133 3.045069

The predicted value is 2.82 and the 99% confidence interval is

(2.59,3.05)
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Solution to Part 2

The main difference is to use pse in place of se.

a=as.numeric(c(1,GPA1))
pred=as.numeric(t(a) %*% betahat)
pse=as.numeric(sighat*sqrt(1+t(a) %*% V %*% a))
pred+c(0,-1,1)*qt(0.95,15)* pse

Result: [1] [1] 2.820101 2.330725 3.309477

Alternatively, use predict.lm:

> predict.lm(lm1,newdata=GPA1,interval=’prediction’,level=0.90)
fit lwr upr

1 2.820101 2.330725 3.309477

The predicted value is 2.82 and the 90% prediction interval is

(2.33,3.31). Note that the 90% prediction interval is wider than

the 99% confidence interval.
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Solution to Part 3

• If the future value is Y , we have Y ∼ N [θ, σ] and also θ̂ ∼
N [θ, σ

√
aTV a] (independent), so Y − θ̂ ∼ N [0, σ

√
1 + aTV a].

• Hence Y−θ̂
σ̂
√

1+aTV a
∼ tn−p−1.

• We can estimate Pr{Y > y∗} as Pr
{

Y−θ̂
σ̂
√

1+aTV a
> y∗−θ̂

σ̂
√

1+aTV a

}
=

pt

(
y∗−θ̂

σ̂
√

1+aTV a
, n− p− 1, lower.tail = F

)
• In this case (with y∗ = 3) the R code gives

> pt((3-pred)/pse,15,lower.tail=F)
[1] 0.2645123

• There is about a 26% chance that the student’s first-year

GPA will be greater than 3.
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Hypothesis Tests (Section 4.7 of text)

• The usual caution: generally, confidence intervals are more
informative than hypothesis tests (but can you explain why?)

• The generic problem: define θ = aTβ for some given vector
a, test H0 : θ = θ0 against one of (a) H1 : θ 6= θ0, (b)
H1 : θ > θ0, (c) H1 : θ < θ0.

• Comments:

– Case (a) is called two-sided, cases (b) and (c) one-sided

– In case (b), the text writes H0 : θ ≤ θ0 (and similarly, in
case (c) it writes H0 : θ ≥ θ0) but the notation I’ve used
here is the more usual formulation and, in my opinion,
easier to handle

– The case where θ = βj for one of j = 0,1, . . . , p is a special
case but of particular interest — note that the standard
R printout (or SAS, or Minitab) includes the two-sided
p-value for each βj so this is immediately available
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Example (Page 279 of text)

• GPA dataset: let θ be the mean first-year GPA of all stu-
dents for whom SATxM=594, SATxV=665, HSxM=3.42,
HSxE=2.70. Test H0 : θ = 2.5.

• R code:
t

GPA2=data.frame(SAT_M=594,SAT_V=665,HS_M=3.42,HS_E=2.70)
a=as.numeric(c(1,GPA2))
pred=as.numeric(t(a) %*% betahat)
se=as.numeric(sighat*sqrt(t(a) %*% V %*% a))
# t statistic for a hypothesized value of 2.5
tc=(pred-2.5)/se
print(c(pred,se,tc))

t

The t statistic is 4.008

• We can compute the p-value as either pt(tc,15,lower.tail=F)
(one-sided) or 2*pt(tc,15,lower.tail=F) (two-sided) — re-
sults are respectively 0.00057 or 0.00114.

• Either way, the result is highly significant.
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Analysis of Variance (Section 4.8)

• Recall from slide 8: S = yTy − yTX(XTX)−1XTy.

• Rewrite that in the form:
∑
ê2
i =

∑
y2
i −

∑
ŷ2
i .

• In practice, we nearly always fit regression models including

an intercept, and in that case, the formula may be rewritten

as:
∑
ê2
i =

∑
(yi − ȳ)2 −

∑
(ŷi − ȳ)2.

• We can also write this in the form: SSE = SSY − SSR.

• See page 284 of the text, but as far as I can tell, they never

give the formula SSR =
∑

(ŷi − ȳ)2
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Analysis of Variance, Page 2

• To test H0 : β1 = β2 = . . . = βp = 0 against the alternative

H1 that at least one of β1, β2, . . . , βp is not zero

(note: the hypothesis doesn’t assume β0 = 0)

• Calculate SSE, SSR, MSE = SSE
n−p−1, MSR = SSR

p ,

FC = MSR
MSE .

• If H0 is true, FC ∼ Fp,n−p−1.

• For a test of significance level α, reject H0 if

FC > qf(1− α, p, n− p− 1).

• Alternatively, calculate the p-value as

pf(FC, p, n− p− 1, lower.tail = F ).
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The Analysis of Variance Table
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Example

• GPA data, as in several earlier examples

• Fit lm1=lm(GPA1yr∼.,GPA) and summary(lm1)
x

...

Residual standard error: 0.2685 on 15 degrees of freedom

Multiple R-squared: 0.8528, Adjusted R-squared: 0.8135

F-statistic: 21.72 on 4 and 15 DF, p-value: 4.255e-06

• sum((lm1$fitted-mean(lm1$fitted))^2) and sum(lm1$residual^2)

yield SSR = 6.264321 and SSE = 1.081499

• Alternatively, SSY =
∑

(yi − ȳ)2 = 7.34582 so

SSR = 7.34582− 1.081499 = 6.264321.

• FC = 6.264321
4 /1.081499

15 = 21.72097

pf(21.72097,4,15,lower.tail=F) yields 4.254795e-06.
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ANOVA Table

Source df SS MS F-ratio
Regression 4 6.264321 1.56608 21.7209

Error 15 1.081499 0.072100
Total 19 7.34582 0.386622
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Multiple R-squared and Adjusted R-squared

• R2 = SSR
SSY = 1− SSE

SSY

• R2 has various other names including “multiple correlation

coefficient” and “coefficient of determination”. The general

idea is that the closer R2 is to 1, the better the model fit

(note: always 0 ≤ R2 ≤ 1).

• The adjusted R-squared value is R2
a = 1− (n−1)SSE

(n−p−1)SSY

= 1 − MSE
MSY . This is sometime referred to as corrected for

degrees of freedom (here, the model includes an intercept so

the degrees of freedom for SSE is n− p− 1).

• In preceding example, R2 = 1− 1.081499
7.34582 = 0.8527736,

R2
a = 1− 19×1.081499

15×7.34582 = 0.8135132.
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Comparing Nested Models

• Section 4.9 of the text, but my treatment differs substantially

from the text’s
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Example

• GPA data again, fit lm1 as above, but also

• lm0=lm(GPA1yr~SAT_M+SAT_V,GPA)

summary(lm0)

...

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.5071417 0.2667266 1.901 0.0743 .

SAT_M 0.0026056 0.0004432 5.879 1.82e-05 ***

SAT_V 0.0015741 0.0005555 2.834 0.0115 *

..

Residual standard error: 0.2858 on 17 degrees of freedom

Multiple R-squared: 0.811, Adjusted R-squared: 0.7888

F-statistic: 36.47 on 2 and 17 DF, p-value: 7.079e-07

• Is lm0 better or worse than lm1?
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Comparing two models using R-squared

• R2 = SSR
SSY = 1− SSE

SSY

• If we drop parameters from a model, SSE always goes up

but SSY does not change

• Therefore, R2 from lm0 must be less than from lm1

• However, R2
a could increase when we decrease p

• In this case it doesn’t, so lm0 is still worse — but that’s not

the only criterion
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The F test for nested models

• Think of lm0 as the null hypothesis (H0),

lm1 as the alternative hypothesis (H1).

• Under lm1: SSE1 = (n− p1 − 1)σ̂2
1 with df = n− p1 − 1

• Under lm0: SSE0 = (n− p0 − 1)σ̂2
0 with df = n− p0 − 1

• SSE0 > SSE1 and n− p0 − 1 > n− p1 − 1

• Calculate SSE0−SSE1
p1−p0

and SSE1
n−p1−1, hence Fc = SSE0−SSE1

p1−p0

/
SSE1
n−p1−1

• If H0 is true, then Fc ∼ Fp1−p0,n−p1−1

• Reject H0 if Fc is too large
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Solution for GPA Data

• σ̂1 = 0.2685 with df = 15, SSE1 = 15× 0.26852 = 1.081

• σ̂0 = 0.2858 with df = 17, SSE0 = 17× 0.28582 = 1.389

• SSE0−SSE1
17−15 = 0.154

• SSE1
15 = 0.0721

• Fc = 0.154
0.0721 = 2.136

• P-value is pf(2.136,2,15,lower.tail=F)=0.153

• Do not reject H0

• Check with anova(lm0,lm1)
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Example Based on MT2 Question 3(d)

• File “gifted.txt” (data frame gif)

lm1=lm(score~.,gif)
lm0=lm(score~fiq+miq+age1+age10,gif)
summary(lm1)
...
Residual standard error: 2.785 on 28 degrees of freedom
Multiple R-squared: 0.6839, Adjusted R-squared: 0.6049
F-statistic: 8.655 on 7 and 28 DF, p-value: 1.227e-05
...
summary(lm0)
...
Residual standard error: 2.819 on 31 degrees of freedom
Multiple R-squared: 0.6415, Adjusted R-squared: 0.5952
F-statistic: 13.87 on 4 and 31 DF, p-value: 1.362e-06

• Test the hypothesis H0 that model lm0 is correct, against the
alternative lm1

• Try to do this for yourself before looking at the next slide
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Solution

• σ̂1 = 2.785 with df = 28, SSE1 = 28× 2.7852 = 217.17

• σ̂0 = 2.819 with df = 31, SSE0 = 31× 2.8192 = 246.35

• SSE0−SSE1
31−28 = 9.727

• SSE1
28 = 217.17

28 = 7.756

• Fc = 9.727
7.756 = 1.254

• P-value is pf(1.254,3,28,lower.tail=F)=0.309

• Do not reject H0

• Check with anova(lm0,lm1)
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Summary
• There are various ways of comparing two models — directly from the

parameter estimates, residual plots, tests of normality, etc. The criteria
discussed here apply only when both models seem plausible fits to the
data

• Multiple R-squared (R2) always favors the larger model when the two
models are nested

• Adjusted R-squared (R2
a) may favor the smaller model, but it’s only one

of several criteria

• For comparing two models that are nested, used the F test described on
the previous two slides

• If the models are not nested or if there are more than two models to
compare, things are more complicated ...

• Later in the course, we shall see several other criteria for comparing
models, e.g. AIC, BIC, Mallows’ Cp, and other ways to select the best
model, e.g. ridge regression and the lasso

52


