
Introduction to Logistic Regression
(Thanks to Dr. Cunningham for the Example)

• In 1846 the Donner and Reed families left Springfield, Illinois,

for California by covered wagon. In July, the Donner Party,

as it became known, reached Fort Bridger, Wyoming. There

its leaders decided to attempt a new and untested route to

the Sacramento Valley. The group became stranded in the

eastern Sierra Nevada mountains when the region was hit by

heavy snows in late October. By the time the last survivor

was rescued on April 21, 1847, 40 of the 87 members had

died from famine and exposure to extreme cold.

• Objective of this exercise: model probability of survival as a

function of age and sex.

1



The Data

> don=read.csv(’.../donner.csv’,header=T)
> head(don)

Age Sex Survival
1 23 1 0
2 40 0 1
3 40 1 1
4 30 1 0
5 28 1 0
6 40 1 0

• Data file donner.csv on sakai

• 45 individuals, Age as given, Sex=1 for male, 0 for female,

Survival=1 for alive, 0 for dead
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Initial Summaries

• Women: 10 survive, 5 die

• Men: 10 survive, 20 die

• Women do better than men

• Also, it’s clearly advantageous to be young

• For the next part of the presentation, we will focus on the

Age factor and look at Sex only later
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Regression of Survival on Age

• yi = 1 if person i is alive, 0 if dead

• xi is the age of person i

• Why not do a simple regression of yi on xi?

– Well you could do this, it’s not a terrible idea, but ...

– No guarantee that predicted value ŷi is between 0 and 1,

so how to interpret?

– yis are not normally distributed, that was one of our

assumptions (but it’s not essential)

– If yi = 1 with probability pi, 0 with probability 1− pi, the

variance of yi is pi(1 − pi), so it’s not constant, and that

is an important assumption

– So, do something different ...
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Logistic Regression

• pi = Pr{yi = 1}

• Define ηi = log
(

pi
1−pi

)
, called logit of pi

• Inverse relationship: pi = eηi
1+eηi

• We can allow −∞ < ηi <∞, always gives 0 < pi < 1 (limits 0

or 1 as ηi → −∞ or +∞)

• Suppose ηi = β0 + β1xi

• Extension to p covariates: ηi = β0 +
∑p
j=1 βjxij

• Fit by glm function in R with family=binomial. Estimation

is by method of maximum likelihood but we won’t go into

details about that (come to STOR 557 if you want to learn)
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Fitting in R
> m1=glm(Survival~Age,family=binomial,don)
> summary(m1)
Deviance Residuals:

Min 1Q Median 3Q Max
-1.5401 -1.1594 -0.4651 1.0842 1.7283

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.81852 0.99937 1.820 0.0688 .
Age -0.06647 0.03222 -2.063 0.0391 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for binomial family taken to be 1)

Null deviance: 61.827 on 44 degrees of freedom
Residual deviance: 56.291 on 43 degrees of freedom
AIC: 60.291
Number of Fisher Scoring iterations: 4

• For an individual of age x, the estimated probability of
survival is e1.81852−0.06647x

1+e1.81852−0.06647x
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Uncertainties of the Estimated Probabilities

Consider probabilities for individuals aged 15 and 65
predict(m1,type=’response’,newdata=data.frame(Age=c(15,65)),se.fit=T)
# $fit
# 0.6945470 0.0757146
# $se.fit
# 0.11938933 0.08330818

Estimated probabilities 0.695, 0.076, standard errors 0.119, 0.083

Here’s a better way to do it (calculate confidence intervals on
logit scale and back-transform to probabilities):

p1=predict(m1,type=’link’,newdata=data.frame(Age=c(15,65)),se.fit=T)
eta=p1$fit;exp(eta)/(1+exp(eta))
eta=p1$fit+1.96*p1$se.fit;exp(eta)/(1+exp(eta))
eta=p1$fit-1.96*p1$se.fit;exp(eta)/(1+exp(eta))
# 0.6945470 0.0757146
# 0.8726354 0.4578956
# 0.430077229 0.007881829

95% confidence intervals for probability of survival are (0.43,0.873)
at age 15 and (0.008, 0.458) at age 65
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Logistic Regression with Multiple Covariates

• We can extend the glm function to include as many covariates

as we like, e.g. with 3 covariates glm(y∼x1+x2+x3,family=binomial)
etc.

> m2=glm(Survival~Age+Sex,family=binomial,don)
> summary(m2)
...

Estimate Std. Error z value Pr(>|z|)
(Intercept) 3.23041 1.38686 2.329 0.0198 *
Age -0.07820 0.03728 -2.097 0.0359 *
Sex -1.59729 0.75547 -2.114 0.0345 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for binomial family taken to be 1)

Null deviance: 61.827 on 44 degrees of freedom
Residual deviance: 51.256 on 42 degrees of freedom
AIC: 57.256
Number of Fisher Scoring iterations: 4
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Interpretation

• Adding one year of age changes your odds of survival (prob-

ability that you survive divided by probability that you do not

survive) to e−0.07820 ≈ 0.925 of its previous value (a reduc-

tion of 7.5% in your odds of survival)

• Being male (compared with female) means your odds of sur-

vival are multiplied by e−1.59729 ≈ 0.2 (an 80% reduction in

odds, but that’s not the same as probability)

• We can calculate separate survival curves for men and women

(next plot)

• For either men or women of any given age, we could compute

a probability of survival (with either a standard error or a

confidence interval) by using the predict command, same as

in the one-variable case
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Comparing Multiple Models
m0=glm(Survival~1,family=binomial,don)
m3=glm(Survival~Age*Sex,family=binomial,don)
anova(m0,m1,test=’Chi’)
anova(m1,m2,test=’Chi’)
anova(m2,m3,test=’Chi’)

• m0 included as baseline model (intercept but no covariates);
m3 includes product of Age and Sex (interaction model)

• anova carries out an ANOVA test for nested models; test=’Chi’
computes a p-value using a chi-squared test. This is similar
to an F test for a linear model, but less precise because the
chi-squared test is only approximate (the F test is exact when
the normal-theory assumptions are satisfied)

• In this case the three p-values are 0.019, 0.035, 0.048 — all
are < 0.05, suggesting that each model is significantly better
than the previous one. However, this is harder to interpret,
because the m3 model produces a counter-intuitive pair of
survival curves
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More on the Interaction Model
• The interaction model is equivalent to fitting separate survivor curves to

the men and women

• There was one 25-year-old woman who died (row 11). If we omit her,
the plot for the rest of the women looks like this:

15 20 25 30 35 40 45 50

Jitter Plot for Women only Omitting Row 11

Alive Dead

• All the women of ages ≤ 40 lived, those ≥ 45 died

• If we fitted the logistic regression curve just to them, the slope would in
effect be infinite — a well-known problem with logistic regression when
the data can be split into two disjoint groups

• The actual curve doesn’t look like this because of that one 25-year-old
who died, but it’s still probably a much steeper slope than it should be

• The additive model avoids this artifact and is probably more realistic
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Validating the Model: A Thought Experiment

• Same idea as cross-validation

• Omit each observation in turn

• Refit both models (m2 and m3) to the other 44 data points:

if the predictive probability for the omitted datapoint is > 0.5

we guess “survived”; otherwise “did not survive”

• The proportion of correct guesses is 71% under model m2,

73% under model m3

• Either model is a significant improvement on random

guessing!
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Summary of Logistic Regression

• Logistic regression is appropriate when the responses are all
0 or 1 (binary data)

• The model fits ηi = log pi
1−pi as a linear combination of co-

variates, where pi = Pr{yi = 1}

• We can estimate parameters, standard errors, etc., very simi-
larly to standard linear models, but using glm with family=binomial

• We showed how to use anova to compare nested models. For
non-nested, can use AIC, BIC, etc. similarly to linear models

• We can estimate probabilities (with standard errors or confi-
dence intervals) for new data using the predict command

• We can also use cross-validation

• For more detail and other kinds of glms, come to STOR 557!
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Topics I Wanted to Cover but Didn’t

• Diagnostics for Outliers and Influence (Chapter 5 of text)

• Analysis of Variance Models (not to be confused with

Analysis of Variance Tests)
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Diagnostics for Outliers and Influence

• Studentized residuals

• Hat values and Leverage

• Influence: Cook’s D statistic
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Studentized Residuals
(pp. 353–354 of course text)

• Usual linear model — p covariates plus an intercept

• Ti =
yi−Ŷ(−i)(xi1,...,xip)

σ̂(−i)/
√

1−hii
where

– Ŷ(−i)(xi1, . . . , xip) is the prediction of the i th observation omitting the
i th observation itself from the regression model fit

– σ̂(−i) is the estimated σ omitting the i th observation itself from the
regression model fit

– hii is the i th hat value (diagonal entry of H = X(XTX)−1XT)

• Important fact: if all model assumptions (including indepen-

dent normal errors) are satisfied, then Ti ∼ tn−p−2 (exactly)

• rstudent in R

21



Application to Nuclear Power Data
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• 6-covariate model as in previous examples

• The studentized residuals are slightly more spread out than the standard-
ized residuals — extremes at –2.43, 2.50 instead of –2.22, 2.28

• p-values 2*pt(-2.50,24)=0.02 not too extreme by Bonferroni correction
— interpreted as a test for outliers, conclude no outliers
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Hat Values and Leverage
(Section 5.3 of course text)

• Defined just by the x values — often used to characterize

which covariates are extreme

•
∑
i hii = p + 1 (assuming intercept) — mean is p+1

n — a

value greater than 2(p+1)
n is considered “worthy of further

examination”

• hatvalues in R

Nuclear power data: largest value is 0.4126 (observation 26)

but 2(p+1)
n = 2×7

32 = 0.4375.
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Cook’s D Statistic
(Section 5.4 of course text)

• What it is (in words): a measure of how much the ith ob-
servation influences the vector of regression coefficients β

• Flags points that have both high leverage and are outliers as
measured by the standardized or studentized residuals

• cooks.distance(modelname) in R, or use plot(modelname) for a
series of diagnostic plots

• DFFITS is almost the same thing (not obvious)

• What are high values? Various rules of thumb in the litera-
ture, but R uses D=0.5 and D=1 as warning levels

• Nuclear power data: largest two values are 0.418 (observa-
tion 19) and 0.423 (observation 26)

• Donner data, interaction model: largest value is 0.401 (ob-
servation 11).
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plot(lm1) for nuclear power data
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Analysis of Variance

Recall left-out part of HW3:
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R code

> bb=read.csv(’basketball.csv’,header=T)
> bb1=bb[bb$Team==’North Carolina’|bb$Team==’Duke’|
bb$Team==’North Carolina State’,]
> a1=lm(Team.Score~Team,bb1)
> a0=lm(Team.Score~1,bb1)
> anova(a1,a0)
..

Res.Df RSS Df Sum of Sq F Pr(>F)
1 97 12986
2 99 13976 -2 -989.8 3.6966 0.02837 *
> # second way of doing the same thing
> aov(Team.Score~Team,bb1)
Sum of Squares 989.795 12986.315
Deg. of Freedom 2 97
> Fstat=(989.795/2)/(12986.315/97)
> 1-pf(Fstat,2,97)
[1] 0.0283682
> # third way
> summary(aov(Team.Score~Team,bb1))

Df Sum Sq Mean Sq F value Pr(>F)
Team 2 990 494.9 3.697 0.0284 *
Residuals 97 12986 133.9
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What’s Going On Here?
• Analysis of Variance refers to a special class of linear models where the

covariates are all factor variables

• After reducing the data frame, Team is a factor variable with just three
values, North Carolina, Duke and North Carolina State.

• The command a1=lm(Team.Score∼Team,bb1) fits the model where Team.Score
is the response and Team the (sole) covariate

• However, because Team has three levels, and the model is still assumed
to include an intercept, there are four parameters (the intercept, plus one
term each for Duke, North Carolina and North Carolina State) but only
three degrees of freedom to estimate them. R solves this problem by
defaulting that the first level alphabetically (here, Duke) is automatically
given the value 0 and the others expressed as difference from Duke.

• Interpretation: North Carolina scores on average 0.81 points per game
more than Duke, and North Carolina State scores 6.24 points fewer

• The F test that all three means are equal has a p-value of 0.0284, which
implies strong but not certain evidence against that hypothesis.
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Two-way ANOVA

• Team.Location is also a factor variable with three levels, Home,

Away and Neutral

• We can test both factors at once with a model like

a2=lm(Team.Score∼Team+Team.Location,bb1)

• We can also add an interaction, e.g.

a3=lm(Team.Score∼Team*Team.Location,bb1)

• Practical question: what does the interaction model test for,

in language that any basketball fan would understand?

• We can use anova or aov to test model a2 against a1 or a3

against a2

• Team.Location is significant, but the interaction is not
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