
STOR 664: FALL 2020
Final Exam, November 20, 2020

This is an open-book, remote-learning exam. Time limit: 6 hours. Access to course materials
and standard computational tools (in particular, R) is allowed; communication with other students
or with anybody via the internet, other than the instructor, is not. The university Honor Code is in
effect at all times. Answers may be given in any of the following formats (including combinations
of more than one): R Markdown, Word, Latex or handwritten pages scanned or photographed; if
handwritten, it is recommended you use blue or black ink on plain sheets of white paper. They
should then be uploaded in gradescope. The exam is worth 100 points total (30 for questions 1
and 2, 40 for question 3); points for each part-question are stated below. Although the questions
are intended to be answered in sequence, you may write out your answers in any order and errors
in one part-question will not prevent you gaining full credit in other parts of the same question.
Attempt all questions.

X1 X2 X3 X4 X5 Y X1 X2 X3 X4 X5 Y

58.8 7107 21 129 52 3067 39.5 14119 20 187 37 3286
65.2 6373 22 141 68 2828 44.5 16691 22 195 42 3542
70.9 6796 22 153 29 2891 43.6 14571 19 206 22 3125
77.4 9208 20 166 23 2994 56.0 13619 22 198 28 3022
79.3 14792 25 193 40 3082 64.7 14575 22 192 7 2922
81.0 14564 23 189 14 3898 73.0 14556 21 191 42 3950
71.9 11964 20 175 96 3502 78.9 18573 21 200 33 4488
63.9 13526 23 186 94 3060 79.4 15618 22 200 92 3295
54.5 12656 20 190 54 3211

Table 1: Water usage data set.

X1 Average monthly temperature (oF )
X2 Average of production (thousands of pounds)
X3 Number of operating plant days in the month
X4 Number of persons on the monthly plant payroll
X5 Two-digit random number
Y Monthly water usage (gallons)

Table 2: Variables used in Table 1.

1. A production plant cost-control engineer is responsible for cost reduction. One of the costly
items in her plant is the amount of water used by the production facilities each month. She
decides to investigate water usage by collecting 17 observations of the plant’s water usage and
other variables. She had heard about multiple regression, but since she was quite skeptical
she added a column of random numbers to the original observations. Then she asked her
team’s statistician to analyze the data and make recommendations about the control variables
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X1, . . . , X5. The complete set of data is shown in Table 1. The variables are described in
Table 2.

You are the team’s statistician. Analyze the data, with appropriate consideration for variable
selection, diagnostics, transformations and multicollinearity. The objective is to find the best
model for predicting Y as a function of X1, ..., X5.

Write a report summarizing the results of this exercise. In particular, your report should
discuss as many as possible of the following items:

(a) The best regression model with variables selected from X1, ..., X5; [7 points]

(b) The goodness of fit of the model with all five variables included, taking into account the
various diagnostics available within R; [8 points]

(c) The interpretation of statistics regarding outliers, points of high leverage, influence di-
agnostics and multicollinearity; [8 points]

(d) The final conclusions that the engineer should draw. In particular, state which variables
are predictors of water usage, whether the associations are positive or negative, and the
degree of confidence you have in each of your conclusions. [7 points]

2. A dataset was collected on median housing prices in 506 neighorhoods of a large city, to-
gether with a number of potential explanatory variables. The dataset contains the following
variables:

� crim: per capita crime rate by town;

� zn: proportion of residential land zoned for lots over 25,000 sq.ft.;

� indus: proportion of non-retail business acres per town;

� chas: Charles River dummy variable (= 1 if tract bounds river; 0 otherwise);

� nox: nitrogen oxides concentration (parts per 10 million);

� rm: average number of rooms per dwelling;

� age: proportion of owner-occupied units built prior to 1940;

� dis: weighted mean of distances to five Boston employment centres;

� rad: index of accessibility to radial highways;

� tax: full-value property-tax rate per $10,000;

� ptratio: pupil-teacher ratio by town;

� black: 1000(Bk - 0.63)2 where Bk is the proportion of blacks by town;

� lstat: lower status of the population (percent);

� medv: median value of owner-occupied homes in $1000s.

The object of the exercise is to predict mdev as a function of all the other variables.

For the purpose of the present exercise, the dataset has been split randomly into two parts,
housing train.csv which is a training dataset of 400 neighborhoods, and housing test.csv

which is a test dataset of 400 neighborhoods. Both are csv files and may be read into R with
the read.csv command.
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(a) Based on the training dataset, find the best model by variable selection, and use cross-
validation to evaluate its performance (mean square prediction error or MSPE). Then,
validate your conclusion by running it on the test dataset and calculating the MSPE for
that. [6 points]

(b) Repeat the exercise of (a) using lasso regression. [6 points]

(c) Repeat the exercise of (a) using ridge regression. [6 points]

(d) Repeat the exercise of (a) using elastic net regression with α = 0.5. [6 points]

(e) Compare and contrast the four methods for finding a predictor of mdev. [6 points]

3. An experiment was performed to compare two treatments that are used in spinning cotton
thread. One is “Flyer” (1 or 2), which represent two different machines for spinning the fiber.
The other is “Twist” (1, 2, 3 or 4), which indicates four levels of twisting the fiber. The
original intention was to use all eight possible combinations of Flyer and Twist, but it was
found that the combinations (Flyer=1, Twist=1) and (Flyer=2, Twist=4) were unstable, so
these were not used. The experiment was laid out in 13 blocks, as in Table 3.

Block
Flyer Twist B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13

1 2 6 9.7 7.4 11.5 17.9 11.9 10.2 7.8 10.6 17.5 10.6 10.6 8.7
1 3 6.4 8.3 7.9 8.8 10.1 11.5 8.7 9.7 8.3 9.2 9.2 10.1 12.4
1 4 2.3 3.3 7.3 10.6 7.9 5.5 7.8 5 7.8 6.4 8.3 9.2 12.0
2 1 3.3 6.4 4.1 6.9 6.0 7.4 6.0 7.3 7.8 7.4 7.3 10.1 7.8
2 2 3.7 6.4 8.3 3.3 7.8 5.9 8.3 5.1 6.0 3.7 11.5 13.8 8.3
2 3 4.2 4.6 5.0 4.1 5.5 3.2 10.1 4.2 5.1 4.6 11.5 5.0 6.4

Table 3: Breakage rate of cotton fibers.

A plausible model for this experiment is

yijk = µ+ αi + βj + γk + εijk, (1)

where yijk denotes an arbitrary observation with Flyer i, Twist j and Block k, µ is an
overall mean, αi, βj , γk are the Flyer, Twist and Block effects, and εijk is an error term
which we assume to be N [0, σ2] independent for each (i, j, k). The range of indexes in (1) is
i = 1, 2, j = 1, 2, 3, 4, k = 1, . . . , 13 where we assume the cases i = j = 1 and i = 2, j = 4
are not observed. The parameters αi, βj , γk are subject to some constraints to make them
well-determined but we shall not need to worry about these in the following analysis.

(a) Fit the model (1) to the data, using the lm command in R. Note that you will need to
use some format such as lm(Breakrate∼factor(Flyer)+...,data=cotton) to ensure
that all three covariates are treated as factors and not as numerical variables. Based on
the results, state an estimate of α1−α2 (the mean difference between Flyer 1 and Flyer
2), and its standard error. Also state an estimate of σ. [7 points]

(b) Can any of the Flyer, Twist or Block factors be dropped from the model? Refit model
(1) with each factor dropped in turn, and state your conclusions. [6 points]
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(c) The Breakrate data in Table 1 are in the form of a 6 × 13 matrix. If we write the six
row means as M1, M2, . . . , M6, show that a natural estimate of α1−α2 is (M1 +M2−
M5 −M6)/2 and derive its (theoretical) variance. Show that the results are consistent
with the estimate and standard error you reported in part (a). [7 points]

(d) The experimental design used for this study will be called Design 1. An alternative
design, if it was feasible, would be to use each of the eight combinations of Flyer and
Twist. We call this Design 2. What would be a suitable estimator of α1 − α2 under
Design 2, and what would be its variance? [7 points]

(e) Suppose, for some integer k, you had the choice of running Design 1 in 4k blocks or
Design 2 in 3k blocks (the number of blocks is chosen so that the total number of
experimental units is the same in both designs). If the objective is still to estimate
α1 − α2, which estimate would you prefer and why? [7 points]

(f) After further study of the apparatus, the experimenter determines that the combina-
tions (Flyer=1, Twist=1) and (Flyer=2, Twist=4) are possible, but that the resulting
measurement errors will have variances 3σ2 instead of σ2 (but the other measurements
will still have variance σ2). Which design do you prefer now? [6 points]
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Solutions

General Comment on Student Solutions. In general, I felt that many students overinter-
preted the questions, looking for things that were not asked and not identifying the things that
were. I should probably have given more emphasis to the point that I repeatedly stress with my
undergraduate class: Always answer the question! As a result, this was a difficult exam to grade,
and the scores came out lower than I would usually expect with an exam of this nature. Even
with most students getting a boost from their scores on the project, the combined scores for the
whole course were lower than I would normally expect, but I allowed for that in setting the grade
boundaries. Overall, I felt that most students worked hard on the course and the final grades
reflected that; the scores are a reflection of the style of both the midterm and the final exam and
should not be interpreted as a criticism of student effort.

In the following solutions, comments that are specifically intended as a comment on student
solutions are noted in red.

1. (a) A simple sequence of commands would be a best subset regression followed by AIC
calculation, for example, if the data frame is called X,
require(leaps)

lm1=regsubsets(Y~.,data=X)

lm1s=summary(lm1)

AIC=17*log(lm1s$rss/17)+(1:5)*2

plot(AIC~I(1:5),ylab=’AIC’,xlab=’Number of Predictors’,pch=20)

which produces the left-hand plot in Figure 1. To see which variables are included in
which stage of the model, lm1s$which produces

(Intercept) X1 X2 X3 X4 X5

1 TRUE FALSE TRUE FALSE FALSE FALSE

2 TRUE FALSE TRUE FALSE TRUE FALSE

3 TRUE TRUE TRUE FALSE TRUE FALSE

4 TRUE TRUE TRUE TRUE TRUE FALSE

5 TRUE TRUE TRUE TRUE TRUE TRUE

showing that the variables are entered in the order X2, X4, X1, X3, X5 (and in sequence,
i.e. each model is nested in the one below, which is not guaranteed when using best
subsets regression). This suggests that the best model order is 4, i.e. we select the
model containing X1–X4 but not X5. An alternative way of selecting the model order,
given the nested structure, is through a sequence of hypothesis tests through the anova

function. In this case, the successive p-values are 0.03 for model 1 against model 2; 0.18
for model 2 against model 3; 0.022 for model 3 against model 4; 0.58 for model 4 against
model 5. These results mean that we might be tempted to stop at model 2, but a test
of model 2 against model 4 has a p-value of 0.027, in other words, rejecting model 2
in favor of model 4 at a significance level of 0.05. Therefore, both AIC and successive
testing suggest model 4 is best. However, you may get different conclusions with other
model selection criteria, e.g. Cp, BIC or hypothesis testing with a different significance
level than 0.05. [7 points]

Some students went beyond the above solution and also looked for transformations using
the boxcox graphical procedure. Specifically, this looks for a transformation of the form

y → yλ−1
λ . If you do this, using the full range of λ and with other features of the

model unchanged, you get the bizarre result that the maximum likelihood estimator is
λ̂ = −3.51. Kudos to those students who figured that out, and some even continued
through the whole analysis based on that transformation, but I would find it very hard
to explain a result based on that transformation. There’s no obvious “need” for a
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transformation based on skewness or other commonly cited criteria. The same applies,
I think, to each of the possible covariates.
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Figure 1: (left) AIC plot in question 1(a). (right) Influence diagram for the model with all five
variables.

(b) The standard residual plots based on the five-variable model (e.g. plot(lm5)) do not
show any extreme outliers, e.g. see Figure 1, right hand side, for the leverage and
Cook’s distance plot, which does not suggest any extreme data points. Also, the qqplot
of residuals (not shown) suggests good fit to a normal distribution. [8 points]
If you want to go further than just showing a qqplot of residuals, you could test for
normality more formally using the Shapiro-Wilk test, for example
> lm5=lm(Y~X1+X2+X3+X4+X5,X)

> shapiro.test(residuals(lm5))

...

W = 0.95481, p-value = 0.5369

The p-value is well above 0.05, so the residuals are consistent with a normal distribution.

(c) Outliers: if you use library(MASS) followed by studres(lm5), it turns out that ob-
servation 14 has studentized residual –2.699, which is potentially problematic (the null
distribution is t10, as discussed on p. 178 of Smith and Young; this gives it a two-sided
p-value of 0.022). However based on lm4 (the model with X5 omitted), the studentized
residual is –2.11 and a 2-sided p-value of 0.06; this is not a large enough residual (or the
p-value not small enough) to be considered problematic.

If you are really astute, you might notice that observation 14 is also the one with the
smallest value of X5 (the one variable that we know is not significant), so this contributes
to it being an outlier under model lm5.

Some students noted the recommendation to use a Bonferroni correction to test for the
largest studentized residual in a sample; by this method, even the vlaue –2.699 is not
statistically significant. Personally, I would treat this value as somewhat suspicious even
after applying the Bonferroni correction, but it is fair comment to note that the residual
could have arisen without anything being wrong with the model.

6



Leverage: Use influence(lm5)$hat: the largest hat value is 0.595 in observation 1,
but this is less than twice the mean leverage (p/n = 6/17 = 0.353), so not considered
especially high.

Influence diagnostics: Using cooks.distance(lm5), the largest value is 0.196, less than
0.5, so not a problem.
Multicollinearity: Computing correlations shows that X2 and X4 are highly correlated
(r = 0.918) and X1 and X3 are moderately correlated (r = 0.438); other pairwise
correlations are low. Following Faraway, around page 107,
library(faraway)

xx=model.matrix(lm5)[,-1]

vif(xx)

sqrt(eigen(t(xx)%*%xx)$val[1]/eigen(t(xx)%*%xx)$val)

xx=scale(xx)

vif(xx)

sqrt(eigen(t(xx)%*%xx)$val[1]/eigen(t(xx)%*%xx)$val)

The VIFs, with or without scaling, are 1.26, 6.7, 1.27, 6.74, 1.04, which shows there is
some multicollinearity but not enough to be critical (usually defined when VIF> 10).
The condition indices are 1, 342,...,7546 without the scaling, but are 1, 1.16, 1.45, 1.89,
5.05 aftr scaling, which does not indicate a serious problem. (Note: some of these
answers might have come in part (b), but they will earn credit wherever they appear.)
[8 points]

(d) The best model seems to be that involving X1–X4 but not X5. It looks as though average
monthly temperature and average production tend to increase the water usage, while
the number of operating plant days per month and the number of persons on payroll
tend to decrease. However, these conclusions might be affected by collinearity, especially
between X2 and X4.

[7 points]

2. (a) Variable selection method: an application of regsubsets followed by an AIC calculation
concludes that the minimum AIC model contains the following 11 covariates: crim, zn,
chas, nox, rm, dis, rad, tax, ptratio, black, lstat (the only ones missing are “indus” and
“age”). For example,
require(leaps)

lm1=regsubsets(medv~crim+zn+indus+chas+nox+rm+age+dis+rad+tax+ptratio+black+lstat,nvmax=13,data=houstr)

lm1s=summary(lm1)

lm1s$which

(Intercept) crim zn indus chas nox rm age dis rad tax ptratio black lstat

..

11 TRUE TRUE TRUE FALSE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE

AIC=400*log(lm1s$rss/400)+(1:13)*2

[1] 1450.717 1377.787 1331.630 1318.651 1297.989 1287.144 1281.123 1277.518 1273.454 1269.870 1264.049 1265.920 1267.881

A cross-validation based on leaving out one observation at a time leads to an estimated
MSPE of 24.42. For example,
MSPE=0

for(i in 1:400){lm1a=lm(medv~crim+zn+chas+nox+rm+dis+rad+tax+ptratio+black+lstat,subset=-i,data=houstr)

MSPE=MSPE+(predict(lm1a,newdata=houstr)[i]-houstr$medv[i])^2}

print(MSPE/400)

When this optimal model is applied to the test data, the RMSE turns out to be 20.72,
for example,
lm1=lm(medv~crim+zn+chas+nox+rm+dis+rad+tax+ptratio+black+lstat,data=houstr)

pr1=predict(lm1,newdata=houste)

sum((pr1-B2$medv)^2)/106

[6 points]
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(b) There is one point of data management here, which is that if you scale the X variables
in the training dataset (here labelled houstr as above), then you must make the same
scaling in the test dataset (houste). The simplest way to achieve this may be to combine
both sets of covariates into one, then rescale, and then split them again:
X=rbind(as.matrix(houstr[,1:13]),as.matrix(houste[,1:13]))

X=scale(X)

xtr=X[1:400,]

xtest=X[401:506,]

We can then proceed with a glmnet application, along the following lines:
y=as.vector(houstr$medv)

library(glmnet)

fit=glmnet(xtr,y)

cvfit=cv.glmnet(xtr,y,nfolds=400)

plot(cvfit)

cvfit$lambda.min

coef(cvfit, s = "lambda.min")

min(cvfit$cvm)

# [1] 24.70014

which.min(cvfit$cvm)

# 69

cvfit$lambda.min

# 0.01195695

sum(abs(fit$beta[,69]))

# 20.86684

This shows that the optimal λ is 0.01195..., which corresponds to column 69 of the output
matrix, and achieves a cross-validation score of 24.70. It also achieves an L1 Norm (sum
of absolute values of all the regression coefficients, except the intercept) of 20.9 to one
decimal place. The cross-validation scores and the optimal model fit are represented on
Figure 2.
Finally, using the optimal fit to predict the test values gives MSPE of 20.91 to two
decimal places, for example,
pr1=predict(fit,xtest)

mean((pr1[,69]-houste$medv)^2)

# 20.90643

[6 points]

Many students omitted the data scaling step entirely: the results are quite similar to the
above and I gave credit so long as the basic method was correct. Also, some students
used alternative measures of fit, such as RMSE rather than MSPE (square roots of all the
above MSPEs). Another variant was the some students did not use leave-one-out cross-
validation but instead one of the alternative methods were discussed in class, such as a
k-fold crossvalidation with, e.g. k = 5 or 10. I felt that all these were valid alternatives,
but I did not give full credit to those students who omitted cross-validatoin entirely,
since the question did ask for that.

(c) Repeat all the above steps with alpha=0 in the glmnet and cv.glmnet functions: the
key differences are that the minimum cross-validation score is 24.94 (achieved in column
100, i.e. the smallest λ among the 100 values fitted), and the MSPE on the test dataset
is 21.89. [6 points]

(d) Repeat all the above steps with alpha=0.5 in the glmnet and cv.glmnet functions: the
key differences are that the minimum cross-validation score is 24.70 (achieved in column
70), and the MSPE on the test dataset is 20.92. [6 points]

(e) It looks as though the lasso and elastic net methods perform about the same, with ridge
regression a little bit worse but also comparable, while variable selection still comes out
best among all the methods, just like several examples in class! [6 points]
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Figure 2: Plots of glmnet output in question 2(b)

3. The original version of the data file cotton.csv included Breakrate variables that were 10
times too large, an error that was noted during the exam. The solution here assumes the
data have been corrected and are the same as given in Table 1.

(a) The command lm1=lm(Breakrate∼factor(Flyer)+factor(Twist)+factor(Block),Cotton)
followed by summary(lm1) leads to (after some editing)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.9474 1.2433 5.588 5.69e-07 ***

factor(Flyer)2 -3.6692 0.6217 -5.902 1.71e-07 ***

factor(Twist)2 0.3538 0.8224 0.430 0.668520

factor(Twist)3 -1.1231 0.8224 -1.366 0.177072

factor(Twist)4 -3.2385 1.0768 -3.008 0.003822 **

factor(Block)2 2.1333 1.2941 1.648 0.104393

factor(Block)3 2.3500 1.2941 1.816 0.074298 .

factor(Block)4 3.2167 1.2941 2.486 0.015689 *

...

Residual standard error: 2.241 on 61 degrees of freedom

Multiple R-squared: 0.5711, Adjusted R-squared: 0.4587

F-statistic: 5.077 on 16 and 61 DF, p-value: 1.646e-06

Here, the output follows the standard R convention that sets α1 = β1 = γ1 = 0, so the
estimate of α1 − α2 is in fact 3.6692, with standard error 0.6217. Also, the Residual

standard error is s = 2.241. [7 points]

(b) Running the same model with factor(Flyer) omitted and using anova to compare the
two models, the p-value is 1.7×10−7 which is obviously significant. Similarly, the models
with either Twist or Block omitted from the lm1 model specification produce p-values
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0.0005857 and 0.00281 when tested against the model lm1. All three factors are highly
significant. [6 points]

(c) We have E{M1} = µ + α1 + β2 + (
∑
γk)/13, E{M2} = µ + α1 + β3 + (

∑
γk)/13, and

similar espressions for M3, . . . ,M6, so the expectation of (M1 + M2 −M5 −M6)/2 is
(α1 + β2 +α1 + β3)/2− (α2 + β2 +α2 + β3)/2 = α1−α2. Moreover, each of M1, . . . ,M6

has variance σ2/13 and they are all independent. Therefore, the variance of (M1 +
M2 −M5 −M6)/2 is 4σ2/52 = σ2/13. The numerical values are M1 = 10.8, M2 =
9.277, M5 = 7.085, M6 = 5.654 which lead to α̂1 − α̂2 = 3.6692.. with a standard error
s/
√

13 = 0.6215. In lm1, the estimate of factor(Flyer)2 is that of α2 − α1, so the
values are the same with a change of sign. The slight discrepancy in standard errors is
due to rounding error; in fact summary(lm1)$sigma gives 2.241464, and this divided by√

13 is 0.6217 to four decimal places. [7 points]

(d) The alternative Design 2 uses treatment combinations (1,1), (1,2), ..., (2,4) and if we
call the eight row means M1, ...,M8, we can again calculate quantities such as E{M1} =
µ+α1 + β1 + (

∑
γk)/13, E{M2} = µ+α1 + β2 + (

∑
γk)/13 and so on. The appropriate

unbiased estimator of α1−α2 is (M1 +M2 +M3 +M4−M5−M6−M7−M8)/4 which
has variance 8σ2/(16B) = σ2/(2B) where B is the number of blocks. [7 points]

(e) If we have 4k blocks under Design 1 and 3k blocks under Design 2, then the respective
variances are σ2/(4k) and σ2/(6k) so Design 2 is better. [7 points]

(f) If M1 and M8 have variances 3σ2/B while the others still have variances σ2/B, then the
variance of (M1 +M2 +M3 +M4 −M5 −M6 −M7 −M8)/4 is now 12σ2/(16B) which
reduces to σ2/(4k) when B = 3k. Therefore, in this case Design 1 and Design 2 are
the same (in the sense that the variance of α̂1 − α̂2 is the same under both models). [6
points]
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Figure 3: Histogram of Final Exam Scores and Combined Course Scores. The cutoff for H was
79.5.

10


