
STOR 664: FALL 2020
Midterm Exam, September 30, 2020

This is an open-book, remote-learning exam. Time limit: 2 hours. Access to course materials
and standard computational tools (in particular, R) is allowed; communication with other students
or with anybody via the internet, other than the instructor, is not. The university Honor Code
is in effect at all times. Answers may either be typed using Word or Latex, or handwritten and
scanned or photographed; if handwritten, it is recommended you use blue or black ink on plain
sheets of white paper. They should then be uploaded in sakai. The exam is worth 100 points total
(35 for question 1, 65 for question 2); points for each part-question are stated below. Although the
questions are intended to be answered in sequence, you may write out your answers in any order
and errors in one part-question will not prevent you gaining full credit in other parts of the same
question. Attempt all questions.

1. Three objects are to be weighed in a scale, whose true weights are written β1, β2, β3.

(a) Consider the following weighing scheme.

i. Each of objects 1, 2, 3 is placed on its own in the scale. The observed weights are
Y1, Y2, Y3.

ii. Each pair of objects (1 and 2, then 1 and 3, then 2 and 3) is placed in the scale
together, resulting in observed weights Y4, Y5, Y6 respectively.

iii. The three objects are weighed together, with observed total weight Y7.

Assume each of the weighings has a random error of mean 0 and variance σ2, and that
all the random errors are uncorrelated.

Without using the computer, find formulas for the least squares estimates β̂1, β̂2, β̂3, as
linear combinations of Y1, ..., Y7. You should state explicitly the coefficients of Y1, ..., Y7
in these estimators, and show that the common variance of the three estimators is 3σ2

8 .
[18 points]

(b) Consider an alternative weighing scheme where object 1 is weighed n1 times, object 2
is weighed n2 times, object 3 is weighed n3 times, where n1 + n2 + n3 = 7. Show that,
however n1, n2, n3 are chosen, the mean variance of β̂1, β̂2, β̂3 is greater than in (a).
[7 points]

(c) Now suppose that the main quantity of interest is not any of β1, β2, β3, but 2β3−β1−β2.
(This might be of interest, for instance, if we were substituting objects of types 1 and
2 in a system with objects of type 3, or the other way round, and we wanted to know
whether this would result in an increase or a decrease in the total weight of the system.)
Find the variance of the estimator 2β̂3 − β̂1 − β̂2 from part (a), and show that there
is at least one estimator derived from the scheme of part (b) that would have smaller
variance. [10 points]

2. Consider the model

yi = β1 + β2xi + εi,

yn+i = β1 + β3xi + εn+i,
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for i = 1, . . . , n. Here, xi, i = 1, .., n is a covariate with
∑n
i=1 xi = 0 and εi, i = 1, ..., 2n are

independent N(0, σ2) random variables. Our ultimate interest is in testing the null hypothesis
H0 : β2 = β3 against the alternative H1 : β2 6= β3.

(a) Assuming H1, find explicit formulas for the least squares estimators β̂1, β̂2, β̂3 in terms
of y1, ..., y2n and x1, ..., xn, and calculate their variances. [10 points]

(b) Recall that there is a general formula

SST = SSR1 + SSE1

that expresses the total sum of squares (SST =
∑

(yi − ȳ)2) as the sum of squares due
to regression and the sum of squared residuals, which in this case is given by

SSE1 =
n∑
i=1

{
(yi − ȳ − β̂2xi)2 + (yn+i − ȳ − β̂3xi)2

}
.

The subscript 1 here is to denote that these calculations are made under H1.

Under the above assumptions, find an explicit formula for SSR1 in terms of β̂2, β̂3 and
x1, ..., xn. [10 points]

(c) Repeat the calculations of parts (a) and (b) under H0. In particular, assuming β3 = β2,
find least squares estimators for β1 and β2, their variances, and formulas for SSR0 and
SSE0 in this case. To distinguish them from the estimators in (a) and (b), write β̃1 and
β̃2 for these estimators. [8 points]

(d) What are the relationships between β̃1 and β̃2 from part (c) and β̂1, β̂2, β̂3 in (a)? [4
points]

(e) Prove the formula

SSE0 − SSE1 = SSR1 − SSR0 =
(β̂2 − β̂3)2

2

n∑
1

x2i .

[ Note: If you didn’t succeed in proving this formula, nevertheless you should assume it
is correct for the remaining parts of the question.] [6 points]

(f) Show how to formally test H0 against H1 at significance level 0.05. Specifically, you
should define a relevant test statistic (which may be expressed in terms of SSE0, SSE1,
or any quantities developed in previous parts of the question), and explain how to define
the rejection region so that the test has the desired significance level. [8 points]

(g) Explain how you would calculate the power of this test for given values of β2, β3, σ and

x1, ..., xn. To illustrate your answer, calculate the power of the test when
∣∣∣β2−β3σ

∣∣∣ = 1
2 ,

n = 10 and
∑n

1 x
2
i is any of (i) 20, (ii) 40, (iii) 60, (iv) 80. [11 points]

(h) In practice, the main “design of the experiment” issue may well be the value of
∑
x2i ,

which the experimenter may be able to adjust by choosing suitable values of the xi’s.
Assuming the other parameters are as in part (g), what value of

∑
x2i would be needed

to achieve power 0.8? [8 points]

[Note: The last two parts are the only places on the exam where you are expected to
use the computer; if you use R, you should indicate clearly which functions are being
used, and how.]
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Solutions

1. (a) Writing Y1 = β1 + ε1, etc., the matrix formulation of the model is

Y =


Y1
Y2
...
Y7

 = Xβ + ε, X =



1 0 0
0 1 0
0 0 1
1 1 0
1 0 1
0 1 1
1 1 1


, XTX =

 4 2 2
2 4 2
2 2 4

 .

Here, XTX = 2I3 + 2J3, and using the general formula for (aIn + bJn)−1 = 1
aIn −

b
a(a+nb)Jn, we deduce (XTX)−1 = 1

2I3 −
1
8J3 = 1

8

 3 −1 −1
−1 3 −1
−1 −1 3

. Hence

 β̂1
β̂2
β̂3

 =
1

8

 3 −1 −1
−1 3 −1
−1 −1 3


 Y1 + Y4 + Y5 + Y7
Y2 + Y4 + Y6 + Y7
Y3 + Y5 + Y6 + Y7


=

1

8

 3Y1 − Y2 − Y3 + 2Y4 + 2Y5 − 2Y6 + Y7
−Y1 + 3Y2 − Y3 + 2Y4 − 2Y5 + 2Y6 + Y7
−Y1 − Y2 + 3Y3 − Y4 + 2Y5 + 2Y6 + Y7

 .
So the coefficients of β̂1 are 3

8 , −
1
8 , −

1
8 ,

1
4 ,

1
4 , −

1
4 ,

1
8 , and similarly for β̂2 and β̂3. Since

the diagonal entries of (XTX)−1 are all 3
8 , it follows that the common variance of the

three estimators is 3
8σ

2.

(b) The most even allocation would be to make one of n1, n2, n3 equal to 3 and the
other two equal to 2, but then the average variance of the three estimated weights is
1
3

(
σ2

n1
+ σ2

n2
+ σ2

n3

)
= 4σ2

9 > 3σ2

8 .

(c) The question is equivalent to asking the variance of cT β̂ where c =

 −1
−1
2

 and the

general formula for that is cT (XTX)−1cσ2. However, you can calculate directly that

1

8

(
−1 −1 2

) 3 −1 −1
−1 3 −1
−1 −1 3


 −1
−1
2

 = 3,

so the variance of the estimator following the scheme in (a) is 3σ2. However, if you
followed scheme (b) with n1 = 2, n2 = 2, n3 = 3, the variance of −β̂1 − β̂2 + 2β̂3 is

σ2
(

1
n1

+ 1
n2

+ 4
n2

)
= 7

3σ
2 which is better.
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2. (a) We calculate

X =



1 x1 0
1 x2 0

1
... 0

1 xn 0
1 0 x1
1 0 x2

1 0
...

1 0 xn


, XTX =

 2n 0 0
0

∑
x2i 0

0 0
∑
x2i

 , (XTX)−1 =


1
2n 0 0
0 1∑

x2i
0

0 0 1∑
x2i

 ,

Also XTY =


∑2n

1 yi,∑n
1 xiyi,∑n

1 xiyn+i,

, so β̂1 = 1
2n

∑2n
1 yi = ȳ, β̂2 =

∑n
1 xiyi/

∑n
1 x

2
i , β̂3 =

∑n
1 xiyn+i/

∑n
1 x

2
i , with variances σ2/(2n), σ2/

∑n
1 x

2
i , σ

2/
∑n

1 x
2
i .

(b)
∑2n
i=1(yi − ȳ)2 may be written as

n∑
i=1

{
(yi − ȳ − β̂2xi + β̂2xi)

2 + (yn+i − ȳ − β̂3xi + β̂3xi)
2
}

=
{

(yi − ȳ − β̂2xi)2 + β̂22x
2
i + (yn+i − ȳ − β̂3xi)2 + β̂23x

2
i

}
where for the first term we have used
n∑
i=1

(yi − ȳ − β̂2xi + β̂2xi)
2 =

n∑
i=1

(yi − ȳ − β̂2xi)2 + β̂22

n∑
i=1

x2i + 2β̂2

n∑
i=1

(yi − ȳ − β̂2xi)xi

=
n∑
i=1

(yi − ȳ − β̂2xi)2 + β̂22

n∑
i=1

x2i + 2β̂2

{
β̂2

n∑
i=1

x2i − β̂2
n∑
i=1

x2i

}
and similarly for the second term.

Hence if SST =
∑2n

1 (yi − ȳ)2, SSE1 =
∑n

1

{
(yi − ȳ − β̂2xi)2 + (yn+i − ȳ − β̂3xi)2

}
, we

deduce

SST = SSE1 + (β̂22 + β̂23)
n∑
1

x2i .

Therefore, the explicit formula for SSR1 is (β̂22 + β̂23)
∑n

1 x
2
i .

Alternatively: Just use the fact that SSR =
∑2n
i=1(ŷi − ȳ)2 where ŷi − ȳ = β̂2xi and

ŷn+i − ȳ = β̂3xi for 1 ≤ i ≤ n.

(c) In this case, XTX =

(
2n 0
0 2

∑n
1 x

2
i

)
, XTY =

( ∑2n
1 yi∑n

1 (yi + yn+i)xi

)
, so β̃1 = ȳ, β̃2 =

(
∑n

1 (yi + yn+i)xi) /
(
2
∑n

1 x
2
i

)
and their respective variances are σ2

2n ,
σ2

2
∑n

1
x2i

.

For SSR0 and SSE0, we use the same decomposition of SST as in part (b), but with
β̃2 in place of both β̂2 and β̂3. Therefore,

SSE0 =
n∑
i=1

{
(yi − ȳ − β̃2xi)2 + (yn+i − ȳ − β̃2xi)2

}
,

SSR0 = 2β̃22

n∑
1

x2i .
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(d) By direct comparison of the algebraic formulas, we deduce β̃1 = β̂1, β̃2 = (β̂2 + β̂3)/2.

(e) We have

SSE0 − SSE1 = SSR1 − SSR0

= (β̂22 + β̂23)
n∑
1

x2i − 2

(
β̂2 + β̂3

2

)2 n∑
1

x2i

=
(β̂2 − β̂3)2

2

n∑
1

x2i .

(f) The test statistic is

T =
SSE0 − SSE1

1

/
SSE1

2n− 3
.

The degrees of freedom are 1 in the numerator because there is only one free parameter
(β3) being tested, and 2n−3 in the denominator because there are 2n observations minus
3 estimated parameters under H1. When H0 is true, the distribution of T is F1,2n−3,
therefore, the test rejects H0 when T > c, where c = F1,2n−3;0.95 (the 0.95 quantile of
the F1,2n−3 distribution).

(g) The distribution of T under H1 is F ′1,2n−3;λ, where the noncentrality parameter λ is

defined by λσ2 = (β2−β3)2
2

∑n
1 x

2
i (substitution rule). Therefore, the power of the test is

Pr{T > c} when T ∼ F ′1,2n−3;λ and c is the critical value found in part (f).

When
∣∣∣β2−β3σ

∣∣∣ = 1
2 , this formula reduces to λ =

∑n
1 x

2
i /8. Under the four given values

for
∑n

1 x
2
i , we therefore want to evaluate the power for λ = 2.5, 5, 7.5, 10. Based on the

F1,17 and F ′1,17;λ distributions, we deduce c = 4.451 and the four values for power are
0.32, 0.56, 0.73, 0.85 (sample R code: c=qf(0.95,1,17), pow=1-pf(c,1,17,ncp=2.5)

yields the value 0.3202709).

(h) The problem is to find λ so that Pr{F ′1,17;λ > c} = 0.8, where c is the critical value found
in part (g). By trial and error, find λ = 8.838 (R code: 1-pf(c,1,17,ncp=8.838) yields
the answer 0.7999904). Since

∑n
1 x

2
i = 8λ, this means we need

∑n
1 x

2
i to be about 70.7.

Alternate solution to (g) and (h). The alternative way to calculate λ is with formula
(3.42) of the course notes. The null hypothesis is written in the form Cβ = h if we

define C =
(

0 1 −1
)
, h = 0. In this case Cβ = β2 − β3. The alternative then has

h′ = ±σ/2,

C(XTX)−1CT =
(

0 1 −1
)

1
2n 0 0
0 1∑n

1
x2i

0

0 0 1∑n

1
x2i


 0

1
−1

 =
2∑n
1 x

2
i

,

σ2λ = (h− h′){C(XTX)−1CT }−1(h− h′) =
σ

2
·
∑n

1 x
2
i

2
· σ

2
= σ2

∑n
1 x

2
i

8

so λ =
∑n

1 x
2
i /8 and hence as in the first solution.
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