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Abstract

Recent publications have seen the introduction of a number of new statistical methods for

paleoclimatic reconstructions. When applied to archived multiproxy datasets, most of these

methods produce reconstructed curves very similar to the “hockey stick” shape that was first

observed by Mann, Bradley and Hughes. However, one recent reconstruction, by McShane

and Wyner, produced a sharply different shape. Trying to understand the reasons for this

leads to important insights for both statistical methodology and paleoclimatic datasets. The

“divergence” phenomenon — that the relationship between temperature and some of the proxies

may not be constant over time — has been extensively discussed in the paleoclimate literature,

but mostly in the context of certain classes of northern hemisphere tree rings, which are not

included among the proxies examined here. Closer scrutiny of the data suggests a new divergence

phenomenon, associated with lake sediments. When these are removed from the data, the

resulting reconstruction is much closer to the familiar hockey stick shape. This highlights the

need both for careful scrutiny of the data, and for statistical methods that are robust against

the divergence phenomenon.
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1 Introduction

The problem of paleoclimatic reconstruction and the “hockey stick curve” — the assertion that

global temperatures remained nearly constant for 900 years, and below those of the present day,

before the well-documented rise of the 20th century — continues to fascinate scientists, statisticians,

and the general public. Although arguably tangential to the central problem of climate change

science, which I would characterize as the projection of future climate changes and their impacts

under various scenarios of human activity, the evidence for a hockey stick curve has been widely

interpreted as reinforcing the case for an anthropogenic influence on climate.

The hockey stick curve originated in two papers of Mann, Bradley and Hughes (1998, 1999).

Their statistical methods were criticized by a number of authors, most notably McIntyre and

McKitrick (2005) and Wegman, Scott and Said (2006). A report by the National Research Council

(North et al., 2006) reinforced some of the criticism but argued that the evidence for a hockey

stick curve was compelling because of the wide variety of scientific studies, using different data and

statistical methods, that had supported this conclusion. Papers by Ammann and Wahl (2007), Wahl

and Ammann (2007) countered the objections of McIntyre and Wegman, in particular, arguing

that the focus of the latter authors on a single leading principal component of the proxy data

record was inappropriate. Meanwhile Li, Nychka and Ammann (2007) took a more comprehensive

statistical approach to the problem, using generalized least squares time series regression combined

with cross-validation and bootstrap resampling to generate “ensembles” from the full 1000 years

of reconstruction; in this way, they were able to provide statistically rigorous answers to questions

related to the probability that recent years or decades were the warmest of the millenium. A

number of other papers, including Mann et al. (2008), have continued the discussion by introducing

expanded datasets and statistical analyses.

Against this background, there have been a number of recent papers proposing new statistical

techniques or analyses. Bayesian hierarchical models (BHMs) have been proposed by Li, Nychka

and Ammann (2010), Tingley and Huybers (2010a, 2010b) and Brynjarsdóttir and Berliner (2010).

Smith (2010), in discussion of Li, Nychka and Ammann (2010), argued that many questions of inter-

est in this field of research could be obtained by more elementary statistical methods, in particular,

a combination of principal component expansions and time series regression. As illustration, Smith
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showed how the hockey stick curve for a smoothed temperature signal could be reconstructed,

with pointwise prediction intervals, based on a well studied dataset of North American tree rings.

However, McShane and Wyner (2010) used similar though not identical methods, applied to a

dataset of Mann et al. (2008), to obtain quite different conclusions. Their result indicated that the

Medieval Warm Period (MWP), covering roughly the period 1000-1400, was substantially warmer

than previous reconstructions have shown, and argued that this cast doubt on the hockey stick

curve. Despite this negative conclusion, they also reported that by their Bayesian analysis, there

was a 0.8 probability that the decade 1997–2006 was the warmest decade in 1000 years, and a

0.36 probability that 1998 the warmest year. In this respect, and taking into account that exact

probabilities are almost impossible to estimate precisely in this sort of context, their conclusions

are not substantially different from those of other authors who have examined similar issues.

In addition to that analysis, McShane and Wyner included a simulation, in which the true proxy

records were replaced by “pseudoproxies” — random series uncorrelated with the true data — and

argued that under certain circumstances, regressions could be obtained using the pseudoproxies

that fitted the real observational data better than those based on the true proxies. They argued

that this showed the proxies contained little useful information.

The present paper is largely motivated by the contrast between the two last papers — that of

Smith (2010), that used principal component regression with time series errors to obtain results

very similar to those that earlier authors had obtained using sometimes much more complicated

methodology, and McShane and Wyner (2010), with a slightly different formulation of principal

components regression with autocorrelated errors, who obtained completely different conclusions.

Using the same methods as those of Smith (2010), applied to the data of McShane and Wyner

(2010), I produce in one analysis a reconstructed curve that shows an even warmer MWP than

theirs. However, I also show that this conclusion is sensitive to a number of features of the analysis,

including the choice of starting and ending dates for the observational data fitting part of the

analysis, and the inclusion or omission of individual principal components. With minor variations

in the methodology, I produce results that are much more consistent with the hockey stick curves

of other authors. Further examination of the data shows that a specific class of proxies — those

associated with lake sediments — are largely responsible for these discrepancies. If the analyses are

repeated without those proxies, the results are much more stable, though there remains evidence
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of instabilities which need to be studied more closely.

The remainder of the paper is organized as follows. In Section 2, I expand on the methods used

and consider different approaches to the incorporation of autocorrelation into a PC regression.

After discussing pseudo-proxies in Section 3, I consider the reconstruction of 1000 years of data,

using the same datasets as McShane and Wyner (2010), in Section 4. Section 5 contains further

discussion and conclusions.

Throughout the paper, I make use of the following data sources:

1. Michael Mann’s archive of proxy data, available at

http://www.meteo.psu.edu/ mann/supplements/MultiproxyMeans07

2. the observational temperature data from the Climate Research Unit of the University of East

Anglia (HADCRUT3v series, mean annual NH anomalies) available at

http://www.cru.uea.ac.uk/cru/data/temperature

Datasets and programs written in the course of the present analysis are archived on the author’s

webpage

http://www.stat.unc.edu/faculty/rs/reconstructions/

2 Methods

The statistical methods are based on those of Smith (2010). Suppose we have observed temperatures

yt for a given series of years indexed by t, and proxy series {xjt, j = 1, ..., 93} for t = 898, ..., 1998.

We perform a correlation-based (or “standardized”) principal components analysis on the proxies

to create PCs {ukt, k = 1, ..., 93}. We then fit the regression

yt = β0 +
K∑

k=1

βkukt + zt (1)

to the first K PCs, where K is some number to be determined, to the time period of observations.

With estimated regression coefficients β̂j , j = 0, 1, ...,K, we then compute for the historical

reconstruction period the predicted temperature series

ŷt = β̂0 +
K∑

k=1

β̂kukt, (2)
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and also a “smoothed” and “differentiated” version, ỹt =
∑12

i=−12 wiŷt−i and ỹ′t =
∑49

i=−49 w′iŷt−i,

where the weights wi and w′i are given by

wi = (13− |i|)/169, i = −12,−11, ..., 12, (3)

w′i =





−50−i
31250 , i = −49, ...,−25,

i
31250 , i = −24, ..., 24,
50−i
31250 , i = 25, ..., 49,

(4)

which satisfy
∑

i wi = 0,
∑

i w
′
i = 0,

∑
i iw

′
i = 1.

The smoothed version is simply meant to show a smooth trend which is easier to interpret than

individual-year results. The differentiated version is meant as an approximation to the slope of the

trend curve, though note that it is smoothed over the very long time period of 100 years (shorter

smoothing periods were tried, but the results were so noisy as to be uninterpretable).

One significant issue with this analysis is that the errors (zt in (1)) are easily shown to be

autocorrelated, so the standard method of computing standard errors will not be valid. Here, I

outline three methods of dealing with this issue, and discuss their relative merits.

1. Li et al. (2007) assumed the errors zt form an autoregressive, moving average (ARMA)

process (Brockwell and Davis 2003). They selected an AR(2) process after checking that

the residuals from such an analysis were uncorrelated. Writing this in backward-time form

(because the objective of paleoclimatology is to predict backwards), their model becomes

yt = β0 +
K∑

k=1

βkukt + zt, zt = φ1zt+1 + φ2zt+2 + εt, (5)

with εt uncorrelated (we assume they are independent N(0, σ2) for some σ2). They then

estimated the regression parameters by Generalized Least Squares (GLS).

2. McShane and Wyner (2010, page 31) assumed a regression equation of the form

yt = β0 +
K∑

k=1

βkukt + βK+1yt+1 + βK+2yt+2 + εt, εt ∼ N [0, σ2] (independent). (6)

Although their ultimate method was Bayesian, the simplest way to fit model (6) would be

ordinary least squares (OLS) regression. The time series dependence is here incorporated

through the terms yt+1 and yt+2 (again backward in time compared with traditional time

series analysis, because of the intention to do backward prediction).
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3. Smith (2010) proposed the simpler solution of fitting the model yt = β0 +
∑K

k=1 βkukt + zt by

OLS regression, but then correcting the standard errors for autocorrelation. This is assuming

the same model as (5), but with OLS instead of GLS regression.

The first point to make is that (6) is not equivalent to (5). To see why, rewrite (5) in the form

εt = yt − β0 −
K∑

k=1

βkukt − φ1{yt+1 − β0 −
K∑

k=1

βkuk,t+1} − φ2{yt+2 − β0 −
K∑

k=1

βkuk,t+2}

= yt − (1 + φ1 + φ2)β0 −
K∑

k=1

βk(ukt − φ1uk,t+1 − φ2uk,t+1).

This is equivalent to (6) only if ukt in (6) is replaced by u∗kt say, where u∗kt = ukt−φ1uk,t+1−φ2uk,t+1.

Conversely, if u∗kt is the value of the kth PC in year t, as assumed by McShane and Wyner (2010),

we must solve the last equation iteratively to derive ukt, in order to rewrite the McShane and

Wyner (2010) model in the form (5).

There is no clear-cut rationale for preferring one model to the other, but it seems to me that (5)

is the more logical model in the present context. If there were indeed a close relationship between

the temperature in year t and the proxies in year t, then we would want to regress yt directly on

the ukt (for the same t) rather than some linear combination of ukt′ across different years t′.

However, there is also a difficulty with model (5), if this is fitted by GLS regression. It is

well known that the variance of the GLS regression coefficients is smaller than that of the OLS

regression coefficients. However, in the event that the model is misspecified, it is entirely plausible

that the bias of GLS could be larger than that of OLS. Figure 1 displays some evidence that this

might be happening: the fitted regression curve by OLS regression follows the data quite closely,

but the corresponding GLS curve does not. I have observed this behavior in a number of other

cases, though not in all cases (sometimes the agreement between OLS and GLS is good).

It is possible that further research may cast light on this issue and result in a theoretical

explanation. My experience with the limited number of analyses in this paper and in Smith

(2010) is that OLS reconstructions of the historical temperature curve are more stable than GLS

reconstructions, and I therefore prefer the OLS method.

There remains the question of how to specify the ARMA model. Li, Nychka and Ammann

(2007) used an AR(2) model in (5) after examining the residuals from this model to check that

there was no autocorrelation; McShane and Wyner (2010) made the same claim with respect to their
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Figure 1: NH temperature anomalies for 1900-1998, with the fitted curves of two regressions. Solid

curve: OLS regression based on the first 6 PCs. Dashed curve: GLS regression based on the first 6

PCs.
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model (6). Smith (2010) examined the residuals from an OLS regression and used the statistical

model selection criteria AIC, BIC and AICC to determine the order of the time series model to

be fitted to the residuals; all three criteria pointed to AR(1). In limited checks with the present

data, I have come to the same conclusion. However, for consistency with the papers of Li, Nychka

and Ammann (2007, 2010) and McShane and Wyner (2010), I have used AR(2) in the remainder

of this paper.

2.1 Technical Notes

If the regression is written in the form y = Xβ + z then the covariance matrices of OLS and GLS

regression are respectively (XT X)−1XT V X(XT X)−1 and (XT V −1X)−1 where V is the covariance

matrix of z. In the examples that used OLS regression, an ARMA model was fitted to the OLS

regression residuals and V was estimated using the theoretical autocovariances of the fitted ARMA

model.

For prediction, suppose yt = uT
t β + zt is the observation to be predicted, where uT

t =

( 1 u1t . . . uKt ) and βT = ( β0 β1 . . . βK ). We assume β is estimated by β̂ (either OLS

or GLS) with covariance matrix Vβ (either (XT X)−1XT V X(XT X)−1 or (XT V −1X)−1). We also

assume β̂ and zt are independent (not exactly true in the autocorrelated case, but true in practice

because the autocorrelations of zt are negligible at the time lags being used for the reconstruction).

Consider the error in predicting ỹt =
∑

i wiyt−i for given weights wi. Defining u0t = 1 and

ŷt = uT
t β̂, we have

∑

i

wi(yt−i − ŷt−i) =
∑

i

wi

∑

k

uk,t−i(βk − β̂k) +
∑

i

wizt−i

=
∑

k

ũkt(βk − β̂k) +
∑

i

wizt−i

where ũkt =
∑

i wiuk,t−i.

Then

E




{∑

i

wi(yt−1 − ŷt−i)

}2

 = ũT

t Vβũt +
∑

i

∑

i′
wiwi′γi−i′ (7)

where {γ·} are the autocovariances of zt. Equation (7) has been used throughout to calculate the

prediction standard errors of the weighted reconstructions. This calculation does not account for

the error in estimating the ARMA parameters.
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3 Pseudoproxies

One of the arguments made by McShane and Wyner (2010) is that if the proxies are replaced by

“pseudoproxies” generated as random “red noise” series, the fit of a regression model may actually

be better than that due to the real proxies. They imply that this invalidates the temperature

reconstruction process.

The argument is reminiscent of McIntyre and McKitrick (2005), who made a similar argument

with respect to the original method of Mann, Bradley and Hughes (1998). However, the paper of

McIntyre and McKitrick (2005) has been generally interpreted as a specific criticism of the MBH

centering technique, not as a critique of paleoclimatology methods more generally. The critique

of McShane and Wyner (2010) is based on the “lasso” method of regression analysis, which is

widely accepted as a statistically valid method of performing regression analysis when the number

of covariates is large in comparison to the number of observations. Nevertheless, to my knowledge

the lasso method has not actually been used in paleoclimatology.

A side comment is that McShane and Wyner’s definition of red noise is different from that

of McIntyre and McKitrick (2005). The latter interpreted red noise as meaning a fractionally

differenced process, for which the autocorrelations decay polynomially with lag. McShane and

Wyner used an AR(1) process with autoregressive parameter φ, for which the kth autocorrelation

is proportion to φk, an exponential decay even if φ is close to 1. However they also considered the

nonstationary “Brownian motion” case for which φ = 1.

As an independent test of McShane and Wyner’s assertion, the following simulation experiment

was performed.

The new simulation is based on the data and statistical methodology of Smith (2010). That

paper used the NOAMER tree ring dataset, which consists of 70 temperature series constructed

from tree rings for 581 years (1400-1980). As training data, I use mean global annual anomalies for

1901-1980, exactly as in Smith (2010) except that I extended the time period by one year to make

it a round number 80 years. I then performed the following cross-validation exercise:

1. The period 1901-1980 was divided into four 20-year lengths (1901-1920, 1921-1940, 1941-1960,

1961-1980).

2. Each of the four periods, in turn, was omitted. A regression model based on the first two PCs
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from a correlation-based (standardized) PCA of the tree ring dataset was fitted by ordinary

least squares (OLS) based on the remaining 60 years of data.

3. The fitted model was applied to the 20 years of omitted data and compared with the true

values to compute a total mean squared prediction error (MSPE) for that 20 years.

4. The sum of MSPE for each of the 20-year periods was computed as a total cross-validated

MSPE.

The result of this exercise was a MSPE of 3.53.

The exercise was now repeated with 1000 simulations of pseudoproxies, computed as follows.

First, 70 realizations of a stationary AR(1) process of length 581 with autoregressive parameter

φ were generated. These 70 random series were assembled into a 581 × 70 matrix and a PCA

performed, exactly as for the real tree ring data. The first two PCs were taken, and the above

sequence of steps was repeated to calculate a cross-validated MSPE for each set of pseudoproxy

data. Finally, the result was averaged over the 1000 simulations to produce a simulated MSPE for

each φ. The results are displayed in Table 1.

φ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99 0.999

MSPE 4.03 4.01 4.00 3.99 3.94 3.93 3.86 3.76 3.54 3.13 2.60 2.32

Table 1: MSPE for the pseudoproxy experiment

As can be seen, the MSPE declines monotonically with φ being smaller than the MSPE for the

real proxy data for φ > 0.8.

McShane and Wyner (2010) claimed that the pseudoproxies performed worse than the real

proxies when φ = 0.25 or φ = 0.4, but better when φ = 0 (the white noise case) or in the limiting

case φ = 1 (Brownian motion).

The experiment performed here does not back up the assertion of McShane and Wyner (2010)

in the white noise case and suggests that, perhaps, what happened in their experiment was an

artifact of the lasso procedure. However, the result in the limiting case φ → 1 is consistent with

the conclusion of McShane and Wyner.

The following possible explanation suggests itself. It is well known that a simple linear regression

fitted to 20th century temperature data produces a highly significant result, even when the standard
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error of the regression coefficient is corrected to allow for autocorrelation. It is entirely conceivable

that such a linear trend will produce a better fit to the data than any combination of proxies

computed over a 581-year time period. A limiting red noise process will behave rather like a simple

linear trend. The result from Table 1 essentially confirms confirm that a linear trend does, indeed,

fit the data better than two 581-year-based PCs of the proxy data.

However, it seems to me that this result does not tell us anything meaningful about paleoclimate

reconstruction. Nobody seriously believes that the linear trend has existed for 1000 years, and the

experiment does confirm (by comparison with the white noise case) that the proxies do contain

some information about 20th century temperatures.

I believe the result of McShane and Wyner (2010) is essentially correct, at least in the limiting

cases where the random input signal is nonstationary, but it is hard to see the relevance of this

result for the problem of paleoclimate reconstruction, since nobody would try to do a paleoclimatic

reconstruction based on a simple linear regression.

4 Analysis of proxy data 998-1998

In this section, I perform some alternative analyses of the 93 proxies contained in the dataset

of McShane and Wyner (2010), for the time period 998-1998, using the PC regression methods

described in Section 2.

The observational data were taken to be 161 years (1850-2010) of mean annual anomalies from

the HADCRUT3v northern hemisphere datasets. However, the hemispheric averages computed

before 1900 are based on a substantially smaller coverage of the earth’s surface and are therefore

widely believed to be less reliable than 20th-century data. In this analysis, we use observational

data only from 1900 onwards.

All analyses here are for the OLS regression method, with standard errors corrected for auto-

correlation assuming an AR(2) model for the residuals.

The initial analyses are based on observational data fitted to the period 1900-1978. Later, they

are extended to 1998 (the end of the time period of the proxy data, that was also used by McShane

and Wyner). The reason for doing the analysis in this order will become clear as we proceed.

Figure 2 shows the reconstructed temperature curve based on the first K PCs for six values of

11



K. Also shown are the smoothed projections ỹt, and 90% pointwide prediction intervals for those

smoothed projections, computed using equation (7). This is similar to Figure 5 of Smith (2010),

except that in that paper, the initial analyses were presented without correction for autocorrelation,

whereas here, autocorrelation is taken into account from the beginning. The impression created by

Figure 2 is that the curves are stable for K ≥ 6.
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Figure 2: Reconstructions of historical temperature anomalies, with smoothed trends and pointwise

90% prediction intervals on the smoothed trends, for 6 values of K; data fitting period 1900-1978.

Figure 3 shows the same curve for K = 6 as given in Figure 2(c), but with the observations and

the same smoother applied to the observations (blue dashed curve). This is of traditional “hockey

stick” shape, with recent observations well above any of the historical reconstructions, though the

prediction interval bands for the reconstructions are quite wide in the period 1000-1400.

On the other hand, Figure 4 shows the reconstruction computed by the same method but using

observational data from 1900 to 1998. This curve departs from the hockey stick to an even greater

extent than the reconstructions in McShane and Wyner (2010). In particular, if this curve is to be

believed, temperatures around AD 1100 were substantially warmer than the present day.

As one comment on this, however, we do note an instability between OLS and GLS regression,
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Figure 3: Same as Figure 2(c) (K = 6), with observational data added and the same smoothed

trend applied to the observational data (dashed curve).
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Figure 4: Same as Figure 3, but with data fitted to 1900-1998.
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already noted in Section 2. Figure 6 shows the same curve constructed by GLS regression, based

on the model of equation (5), which looks quite different from Figure 4. This is disturbing in itself,

since by classical regression theory, both OLS and GLS lead to unbiased estimators of the regression

coefficients. The discrepancy therefore add further evidence that the model is misspecified. (In

contrast, the GLS regression corresponding to Figure 3, not shown here, has a much closer though

not exact agreement with the OLS regression.)
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Figure 5: Same as Figure 4, but based on GLS regression.

From the analysis so far, it is clear that there is something discrepant about the data for

1979-1998. In fact, the climate literature contains a fair amount of discussion of the “divergence”

phenomenon with tree rings (Section 5 explains this more fully) and this is what originally suggested

removing the last twenty years of data. However, as the following discussion will make clear, the

explanation for what has been observed has nothing to do with trees.

It should be pointed out in passing that McShane and Wyner also highlighted the divergence

in paleoclimatic reconstructions over the last 20 years; see, in particular, their Figure 18. However,

they did not explore the reasons for this in greater depth.

One approach that was tried was to return to the original 93 proxies, to look at their correlations

14



(over 1900-1998) with the observed temperature record, and to remove those with low correlation.

This turns out to be much too crude a method for identifying which proxies might be causing a

problem.

An alternative method is to look at the influence of individual PCs. Figure 6 is calculated

the same way as Figure 4, but with each of the first six PCs omitted in turn. As can be seen, if

we remove PC2 from the analysis (but not any of the other PCs), the reconstructed curve again

returns to the hockey stick shape. This suggests that proxies that contribute heavily to PC2 might

be behaving differently as a group.
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Figure 6: The analysis of Figure 4 repeated with each of the six PCs omitted in turn, while the

model is fitted to the other five.

In fact, closer examination of the data shows that several of the proxies which contribute heavily

to PC2 are of the “lake sediment” type (data codes 4000, 4001). Sediment deposits in lakes (also

known as varves) are often used as a proxy for temperature over time scales as much as several

thousand years, though it is also known that they are affected by variations in precipitation and by

atmospheric pollution (North et al. 2006, pp. 60–61). Of the 93 proxies being used in the current

analysis, 12 are of lake sediment type. This suggests repeating the analyses with those proxies
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removed.

Hence a “reduced proxy” dataset was constructed, consisting of 81 proxies, removing all those

connected with lakes. I repeated many steps of the foregoing analysis. Once again, it appeared

that an acceptable reconstruction was obtained with 6 PCs. The reconstruction using observational

data from 1900-1978 is given in Figure 7, and that based on 1900-1998 in Figure 8.
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Figure 7: Same as Figure 3, but fitted to the reduced proxy dataset.

Both figures are essentially of hockey stick shape, though on closer examination, there are

still non-trivial discrepancies. For instance, since the observational data from 1850-1899 were

not used in the reconstruction, those data themselves could be considered a test of the quality

of the reconstruction. Close examination of Figure 8 shows that the observation-based smooth

trend (dashed curve) is sometimes outside the confidence bands from the reconstruction during

this period; the agreement in Figure 7 is much better. So even after removing all the lake sediment

proxies, it still seems there are some problems with the reconstruction that uses observational data

up to 1998, but the discrepancy between the reconstruction based on 1900-1978 observational data

and the reconstruction based on 1900-1998 observational data is nowhere near as great as in the

original analysis.
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Figure 8: Same as Figure 4, but fitted to the reduced proxy dataset.

I also computed a figure analogous to Figure 6, omitting each of PCs 1-6 in turn. This figure

(not shown here) showed a generally consistent shape of the reconstruction, and did not suggest

that any single PC is dominating the overall reconstruction.

Finally, we look at the estimated slope of the temperature trend. It is often stated that,

regardless of the exact temperatures that were observed in the distant past, the rapid pace of

recent changes is much greater than anything in known history. This hypothesis can be examined

by using the predicted values of ỹ′t as an approximation to the slope of the temperature trend.

These values, together with pointwise 90% prediction intervals, are shown in Figure 9. The data

fitting period in this case was 1900-1978: the corresponding plot based on 1900-1998 is of similar

overall form but with less good agreement to 19th-century observational data (as has already been

noted).

The result in this case shows that the slope of the temperature trend in the twentieth century

was about 0.5 K/century, but that the slope has approached this several times in the past, in fact

appears to have done so at regular intervals with a period of about 150 years. In contrast, recent

NH temperatures since 1980 have been rising at a rate of about 2 K/century, though since this is
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Figure 9: Estimated slope of the trend curve, ỹ′t, with pointwise 90% confidence bands. The analysis

is based on the same data and statistical model as Figure 7. Blue dashed curve: the same estimated

slope applied to the observational data.
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based on a much shorter averaging time, this result is not directly comparable with the values in

Figure 9.

5 Discussion and Conclusions

All paleoclimate reconstruction relies on an implicit assumption of stationarity: that is, that the

relationships between proxies and true temperatures do not change across time (North et al. 2006,

Chapter 9). Such an assumption should never be taken for granted but needs critical examina-

tion for each proposed new reconstruction. Paleoclimatologists have coined the term “divergence”

to describe cases in which the stationarity assumption appears to be breaking down within the

timescale of observational data.

The best known example of divergence concerns trees; see for example Briffa et al. 1998 or pages

48-52 of North et al. (2006). However, the problem does not (so far as is known) apply uniformly to

all tree-ring proxies; the specific class of proxies for which it is known to be a problem are tree-ring

latewood density records. However, most of the known records of this type go back no further

than AD 1400; in particular, none of them are among the 93 proxies used in the present analysis

(Dr. Michael Mann, personal communication). Therefore, it appears that the known divergence

problem with tree rings is not responsible for the results in the present paper.

However, it has also been suggested that the divergence problem is not confined to tree rings

and may affect other proxies as well (Mann et al. 2008, page 13254). To the best of my knowledge,

no previous study has explicitly identified lake sediment records as subject to this problem, though

with the benefit of hindsight, it seems obvious that lake sediment deposits in the late 20th century

would be affected by anthropogenic activity other than increasing CO2.

With the elimination of lake sediment proxies, the agreement between the 1900-1978 and 1900-

1998 reconstructions is much better, and both show a clear hockey stick shape. However, we have

observed that there are still non-trivial differences between the two: in particular, the reconstruction

from 1900-1998 fails to reproduce the observed signal over part of the nineteenth century, which is

within the timescale of observational data but not used in the reconstruction itself.

The paper by McShane and Wyner (2010) and the follow-up analyses presented here have

highlighted the sensitivity of paleoclimatic reconstructions to the time period of observational data
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and to the selection of proxies. I am not suggesting that the elimination of lake sediment proxies is

the complete solution to the problem, but it does substantially reduce the discrepancies observed

in the earlier analysis. I believe the whole analysis highlights the dangers of applying automated

statistical methods to large datasets without carefully considering the structure of the data.

The recent series of papers on paleoclimatic reconstruction have also highlighted a variety

of different statistical methods. The papers by Li, Nychka and Ammann (2007), Smith (2010),

McShane and Wyner (2010) and the present contribution have used more or less direct regression

methods, regressing observed temperatures on proxies to develop a regression relationship and then

projecting backward in time, with slightly different approaches to the question of autocorrelation.

As noted in Section 1, there has been a recent trend towards the use of Bayesian Hierarchical

Models, which may ultimately be the most comprehensive solution though they are also the most

computationally intensive. A third trend in paleoclimate reconstruction methods is the use of

Errors in Variables (EIV) techniques that allow for randomness in the regressors as well as the

observations, see e.g. Schneider (2001), Hegerl et al. (2006) and a recent statistical contribution by

Ammann, Genton and Li (2010). Mann et al. (2008) remark that EIV methods seem less sensitive

to the divergence problem than classical regression techniques; given that McShane and Wyner

(2010) and the present paper have highlighted the importance of the divergence problem, the fact

that some statistical methods appear to be more robust than others at dealing with it would seem

to highlight the need for more systematic study of these issues.

In summary, recent papers published in this field have highlighted the sensitivity of paleoclimatic

data reconstructions to choices in both data selection and statistical methodology. The fact that

statistical methods that seem at first sight extremely logical, applied to well-documented datasets,

can produce results totally at odds with previous literature, is an important warning against the

automated use of statistical methods without consideration of the data to which they are being

applied.

These new analyses do not settle the question of whether the hockey stick relationship, for

northern hemisphere temperatures over the last 1000 years, is true. However, given that the

majority of recently published analyses support that relationship, and in the cases of those that do

not, the reasons for the discrepancy are easily understood and explained, it seem likely that the

consensus of the scientific community will continue to support the hockey stick relationship.
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