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Summary.

Max-stable processes arise from an infinite-dimensional generalisation of

extreme value theory. They form a natural class of processes when sam-

ple maxima are observed at each site of a spatial process, a problem of

particular interest in connection with regional estimation methods in hy-

drology. A general representation of max-stable processes due to de Haan

and Vatan is discussed, and examples are given to show how it may be used

to generate explicit examples of max-stable process. As a side-product, it is

possible to generate a number of known multivariate extreme value families

in this way, and in one case this suggests an extension of the family. The

main contribution of the paper, however, is to define two new max-stable

stochastic processes, related to the multivariate normal and multivariate t

distributions. Statistical estimation and model checking are discussed, and

the concepts illustrated by being applied to rainfall data.

Keywords. Gaussian extreme value process, Hydrological extremes, Max-

stable process, Multivariate extreme value theory.
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1. INTRODUCTION.

Extreme value theory has traditionally been developed for univariate se-

ries in which the extremes of a single variable are being considered. The

recent papers of Smith (1989) and Davison and Smith (1990) include re-

gression models which allow for dependence between the variable of interest

and relevant covariates, but still in the context of estimating extreme values

for a single series. Multivariate extreme value theory has been developed to

study the joint distribution of extremes in several series. The probabilistic

limit theory of multivariate extremes is reasonably well established, and has

been reviewed in the books of Resnick (1987) and Galambos (1987), but sta-

tistical theory is still in rapid development. Tawn (1988, 1990a) and Smith,

Tawn and Yuen (1990) have proposed methods based on multivariate ex-

treme value distributions, which therefore generalise the classical approach

to univariate extremes based on the limiting extreme value distributions

(Gumbel 1958), while Coles and Tawn (1991) and Joe, Smith and Weissman

(1991) proposed methods extending the threshold-exceedances approaches

developed in Smith (1989) and Davison and Smith (1990).

The present paper extends these ideas to spatial extremes, in which data

such as rainfall or sea levels are collected on a grid of points in space, and the

joint distribution of extreme values at different places is of interest. For a

finite grid of sampling points, it is possible to think of this problem as merely

another application of multivariate extreme value theory, but our approach

here is based on a general class of models for extremes in stochastic pro-

cesses, known as max-stable processes. There are two principal advantages

of this approach over the one based on general multivariate extreme value

distributions. First, it generates a tractable family of multivariate extreme

value distributions even when the number of grid points becomes large,

whereas the general family of p-variate multivariate extreme value distribu-

tions involves an arbitrary positive measure on a (p-1)-dimensional simplex

or sphere, which is intractable when p is large. Secondly, by developing a
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general spatial model it is possible to answer questions, for instance about

spatial aggregation or interpolation, which a simple multivariate model can-

not.

A particular area where this question is of interest is that of regional

methods in hydrology. The traditional approach to hydrological extremes,

as represented for example by the Flood Studies Report (NERC 1975), has

recognised that data at a single site are generally too sparse for satisfactory

estimates of extremal properties to be based on that site alone. Conse-

quently, hydrologists have grouped data into regions based on geographical

or catchment characteristics, and have assumed the data within a region to

be drawn from a common distribution except for a scaling factor at each

site. Most methods in current use ignore inter-site dependence. Stedinger

(1983) examined the effect of inter-site dependence, and concluded that the

main effect was to increase the variance of estimates of margin parameters,

compared with the independent case. Hosking and Wallis (1988) conducted

a simulation study which confirmed Stedinger’s results, and also concluded

that the effect of inter-site dependence is less important than that of hetero-

geneity of the margin parameters from site to site. They also concluded that

even when both dependence and heterogeneity are present, it is still better

to employ a regional method (assuming independence and homogeneity)

than to estimate separately at each site. The bulk of their study, however,

assumed a dependence structure derived by pointwise transformation from

a multivariate normal distribution. In view of the classical result of Sibuya

(1960), on the asymptotic independence of extreme values from correlated

normal samples, this may not be adequate to reveal the full extent of the

problem. Moreover, both Stedinger and Hosking and Wallis were primarily

interested in the effects of dependence on estimates of the margin parame-

ters, rather than for its own interest. Buishand (1984) proposed a method

for estimating the dependence of extreme values between two sites, but his

method has several ad hoc features and is not easily extended to multiple
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sites. Reed and Dales (1989) developed a technique for spatial extremes

based on the notion of an equivalent number of sites. Suppose there are

N sites from which data have a common marginal distribution function G.

They assumed that the distribution function of the maximum over the N

sites is of the form GNe where Ne is the equivalent number of independent

sites. That is, the maximum over N dependent sites is assumed to have

the same distribution as the maximum over Ne independent sites, where

1 ≤ Ne ≤ N , the extreme cases Ne = 1, Ne = N corresponding respectively

to the cases of perfect dependence (same observations at all sites) and inde-

pendence. The method is a convenient method of summarising dependence,

but it lacks a firm theoretical basis and this causes a number of difficulties

in its application.

In a recent paper, Coles and Tawn (1990) have surveyed these and a

number of other aspects of regional methods, and have proposed a model

for time-series dependence based on a Markov chain model for consecutive

sites. This is a simple form of spatial model, though as with most time series

models it misses important features of spatial data.

The approach based on max-stable processes, which is developed in this

paper, may be thought of as an infinite-dimensional extension of multivariate

extreme value theory. Some theory for such processes was developed by de

Haan (1984), Vatan (1985) and de Haan and Pickands (1986), who obtained

amongst other things a spectral representation for such processes. In Section

2 we review this theory and show how special cases of this representation

lead to alternative derivations of some existing multivariate extreme value

distributions. Section 3 is devoted to a new class of stochastic processes,

termed Gaussian extreme-value processes, which have close connections with

the multivariate normal distribution as well as being max-stable. It also

contains an extension based on the multivariate t distribution instead of the

normal.
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2. MAX-STABLE PROCESSES

A stochastic process {Yt, t ∈ T}, where T is an arbitrary index set, is

called max-stable if there exist constants ANt > 0, BNt (for N ≥ 1, t ∈ T )

with the following property: if Y
(1)
t , ..., Y

(N)
t are N independent copies of

the process and

Y ∗
t =

(
max

1≤n≤N
Y

(n)
t −BNt

)
/ANt, t ∈ T,

then {Y ∗
t , t ∈ T} is identical in law to {Yt, t ∈ T}.

In the case where T is a finite set, this is precisely the definition of

a multivariate extreme value distribution (for maxima) and of course, if

|T | = 1, this reduces further to the classical “three types” of Fisher and

Tippett (Galambos, 1987, is one of numerous references covering classical

extreme value theory). There is no loss of generality in transforming the

margins to one particular extreme value distribution, and it turns out to be

convenient to assume the standard Fréchet distribution

Pr{Yt ≤ y} = e−1/y, for all t (2.1)

in which case ANt = N, BNt = 0. Henceforth we assume this, though it is

important to remember, with reference to any real-data application, that the

models we are going to describe apply only after a pointwise transformation

has already taken place.

We now consider a general method of constructing a max-stable process.

Let {(ξi, si), i ≥ 1} denote the points of a Poisson process on (0,∞) × S

with intensity measure ξ−2dξ × ν(ds), where S is an arbitrary measurable

set and ν a positive measure on S. Let {f(s, t), s ∈ S, t ∈ T} denote a

non-negative function for which

∫
S

f(s, t)ν(ds) = 1, for all t ∈ T (2.2)

and define
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Yt = max
i
{ξif(si, t)}, t ∈ T. (2.3)

The following “rainfall-storms” interpretation may help to motivate this.

Think of S as a space of “storm centres”, and ν as a measure which represents

the distribution of storms over S. Each ξi represents the magnitude of a

storm, and ξif(si, t) represents the amount of rainfall at position t from a

storm of size ξi centred at si; the function f represents the “shape” of the

storm. The max operation in (2.3) represents the notion that the observed

maximum rainfall Yt is a maximum over independent storms.

This construction is similar to one that has been employed in earlier

rainfall modelling work (e.g. by Rodriguez-Iturbe, Cox and Isham 1987,

1988, Cox and Isham 1988), but both the motivation and the interpretation

here, where we are concerned specifically with extremes, are different from

earlier applications of this nature.

Fix yt > 0 for each t, and consider the set

B = {(ξ, s) : ξf(s, t) > yt for at least one t ∈ T}.

The event {Yt ≤ yt for all t} occurs if and only if no points of the Poisson

process lie in B. However, the Poisson measure of the set B is

∫
S

∫ ∞

0
I

{
ξ > min

yt

(f(s, t)

}
ξ−2dξ ν(ds) =

∫
S

max
t

{
f(s, t)

yt

}
ν(ds)

where I is the indicator function, and consequently

Pr{Yt ≤ yt for all t} = exp
[
−
∫

S
max

t

{
f(s, t)

yt

}
ν(ds)

]
. (2.4)

It follows from (2.4) and (2.2) that the marginal distribution of Yt, for

any fixed t, is of the Fréchet form (2.1). Moreover, the process is max-

stable: this may be verified either from (2.4), or more simply by observing
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that the superposition of N independent, identical Poisson processes is itself

a Poisson process with its intensity multiplied by N .

A number of results in the literature point towards a converse of this

result: if Y is max-stable, then it may be represented by a process of the

form (2.3). Examples of such results are Theorem 3 of de Haan (1984),

theorem 4.5 of Vatan (1985) and some as yet unpublished work of Giné,

Hahn and Vatan. These results provide strong motivation for considering

(2.3) as a characterisation of max-stable processes.

For the reminder of this section, we show how a number of well-known

multivariate extreme value families may be represented in the form (2.4).

In at least one case, this suggests an extension of the family.

Example 1. Let T = {1, 2}, S = [0, 1], ν be Lebesgue measure and let

f(s, t) =


2(γ − s)/γ2, 0 < s < γ, t = 1,
2(s− 1 + γ)/γ2, 1− γ < s < 1, t = 2,
0, otherwise,

where 1/2 ≤ γ ≤ 1. Then

∫ 1

0
max

{
f(s, 1)

y1
,
f(s, 2)

y2

}
ds =

1
y1

+
1
y2
− 1

y1 + y2

(
2− 1

γ

)2

and hence

Pr{Y1 ≤ y1, Y2 ≤ y2} = exp
{
−
(

1
y1

+
1
y2

)
A

(
y1

y1 + y2

)}
(2.5)

where for 0 ≤ w ≤ 1,

A(w) = 1− φw(1− w), φ = (2− 1/γ)2. (2.6)

In the terminology of Tawn (1988) or Smith, Tawn and Yuen (1990), the

function A is called the dependence function of the bivariate extreme value

distribution function, and the specific form (2.6) is known as the mixed
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model. Thus we have provided a derivation of a known bivariate family as

a special case of a max-stable process.

Example 2. Let T, S and ν be as in Example 1 and

f(s, t) =
{

(1− α)s−α, t = 1,
(1− α)(1− s)−α, t = 2,

where 0 < α < 1. Then

∫ 1

0
max

{
f(s, 1)

y1
,
f(s, 2)

y2

}
ds =

(
y
−1/α
1 + y

−1/α
2

)α
.

This is the logistic model of bivariate extreme value theory (Tawn, 1988),

for which the dependence function is A(w) =
{
w−1/α + (1− w)−1/α

}α
.

Example 3. An extension suggested by Example 2 is to let

f(s, t) =
{

(1− α)s−α, t = 1,
(1− β)(1− s)−β , t = 2,

where 0 < α < 1, 0 < β < 1. The resulting integral from (2.4) must

be evaluated numerically but this is easily done. The point of this bilogistic

model is that it provides an asymmetric extension of the logistic model which

seems more natural than Tawn’s (1988) asymmetric logistic model. See also

Smith (1990) and Joe, Smith and Weissman (1991).

Example 4. Let S = {(s1, ..., sp) : si ≥ 0 for all i,
∑

i si = 1} denote the

unit simplex in <p, let ν be Lebesgue measure on S, T = {1, 2, ..., p} and

f(s1, ..., sp, i) = Cs−α
i , 0 < α < 1, (s1, ..., sp) ∈ S, i ∈ {1, ..., p}

where C is a normalising constant which turns out to be

C =
p−1∏
i=1

(i− α)
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and

∫
S

max
1≤i≤p

f(s1, ..., sp, i)
yi

ds =

( p∑
i=1

y
−1/α
i

)α

(2.7)

which is Gumbel’s (1960) p-dimensional logistic model (Tawn 1990a). The

derivation of (2.7) is considerably more complicated than the preceding ex-

amples, and is given in full in Appendix 1.

To summarise, the max-stable viewpoint provides a new derivation of

several known families of bivariate and multivariate extreme value distribu-

tions, and has in at least one case (Example 3) suggested an extension of an

existing family.

3. THE GAUSSIAN AND t EXTREME VALUE PROCESSES.

Now consider a max-stable process in which S = T = <d, ν is Lebesgue

measure, and

f(s, t) = f0(s− t) = (2π)−d/2|Σ|−1 exp
{
−1

2
(s− t)T Σ−1(s− t)

}
,

so that the function f (as a function of t for fixed s) is a multivariate normal

density with mean s and covariance matrix Σ.

The joint distribution at two sites may be calculated (Appendix 2) in

the form

Pr{Yt1 ≤ y1, Yt2 ≤ y2} = exp
{
− 1

y1
Φ
(

a

2
+

1
a

log
y2

y1

)
− 1

y2
Φ
(

a

2
+

1
a

log
y1

y2

)}
(3.1)

where Φ is the standard normal distribution function and

a2 = (t1 − t2)T Σ−1(t1 − t2). (3.2)

9



Equation (3.1) represents a new family of bivariate extreme value distri-

bution functions with dependence function

A(w) = (1− w)Φ
(

a

2
+

1
a

log
1− w

w

)
+ wΦ

(
a

2
+

1
a

log
w

1− w

)
(3.3)

with the dependence parameter a representing a generalised distance be-

tween the points t1 and t2. The limits a → 0 and a → ∞ in (3.3) become

the extreme cases A(w) = max(w, 1 − w) and A(w) = 1 representing, re-

spectively, perfect dependence and independence.

No closed-form expression has been found for the k-dimensional distri-

butions of the process when k > 2. The following procedure, however, shows

how they can be simulated. The method to be described is valid whenever

f(s, t) is of the form f0(s− t) for some f0.

Suppose y1 > 0, ..., yk > 0 are given, corresponding to sites t1, ..., tk.

Then

∫
S

max
i

{
f0(s− ti)

yi

}
ds

=
∫

S

∑
i

f0(s− ti)
yi

I

{
f0(s− ti)

yi
> max

j 6=i

f0(s− tj)
yj

}
ds

=
∑

i

∫
S

f0(s)
yi

I

{
f0(s)

yi
> max

j 6=i

f0(s− tj + ti)
yj

}
ds

= E

[∑
i

1
yi

I

{
f0(X)

yi
> max

j 6=i

f0(X − tj + ti)
yj

}]
(3.4)

where the random variable X has density f0. The final expression in (3.4)

is in a form that can easily be evaluated by simulation.

An extension of the Gaussian extreme-value process, to allow for storm

profiles with fatter tails than a Gaussian density, is to replace the Gaussian

density f0 with a multivariate t density:
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f0(x) = |Σ|−1/2(πv)−d/2 Γ(v/2)
Γ((v − d)/2)

(
1 +

xT Σ−1x

v

)−v/2

, (3.5)

valid for all x ∈ <d, where Σ is again a positive definite covariance matrix

and v > d. The resulting max-stable process will be referred to as the t-

extreme value process. The calculation of joint distributions in this case is

even harder than for the Gaussian extreme value process, but the simulation

formula (3.4) is still valid, and we also have, for the joint distribution at two

sites t1 and t2,

A

(
1
2

)
=

1
2

{
1 + B

(
a2

a2 + 4v2
;
1
2
,
v − d

2

)}
, (3.6)

where a is given by (3.2) and B is the incomplete beta function,

B(y;α, β) =
Γ(α + β)
Γ(α)Γ(β)

∫ y

0
uα−1(1− u)β−1du, 0 ≤ y ≤ 1.

A derivation of (3.6) is given in Appendix 3. Note that, as v →∞, A(1/2) →
Φ(a/2) which is consistent with (3.3).

The dependence function (3.3) has previously been derived in a different

context by Hüsler and Reiss (1989). They obtained it as a limiting form for

the joint distribution of bivariate extremes from a bivariate normal distri-

bution with correlation ρn varying with sample size n, in such a way that

n → ∞, ρn → 1 and (1 − ρn) log n → a2/4. They also gave a multivariate

extension.

4. APPLICATION TO SPATIAL DATA.

We now consider the application of these ideas to spatial data of the kind

described in the introduction. Attention is restricted to the “traditional”

approach to extreme value based on annual maxima, i.e. we assume that

the data consist of annual maxima at a set of sites. Clearly there is much
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scope for the development of threshold methods in this context, but this will

not be considered here.

The purpose of the present section is to propose a statistical procedure

for fitting the models that have been described. In many respects, it is a

highly ad hoc procedure, and no claim to any form of optimality is made; this

also is a question for further research. Our main purpose is to demonstrate

that the models that have been developed are at least potentially applicable

to real data. In the next section, their performance on some real data will

be considered.

The proposed procedure is as follows:

Step 1. The Generalised Extreme Value distribution

F (x;µ, σ, ξ) = exp

[
−
{

1− ξ(x− µ)
σ

}1/ξ

+

]
(4.1)

is fitted to the data at each site, and then the probability integral transfor-

mation

y =
{

1− ξ(x− µ)
σ

}−1/ξ

used to transform the data at each site so that they have a standard Fréchet

distribution function (F (y) = e−1/y). For the present study this is done sep-

arately at each site though, in the context of regional methods in hydrology,

it would be sensible also to consider procedures in which some or all of the

parameters µ, σ, ξ are common from site to site. Fitting is by maximum

likelihood, though again there are other procedures such as the probability

weighted moments method (Hosking, Wallis and Wood 1985), which could

be considered.

From now on, we assume that the data at site ti (i = 1, ..., p) consist

of standardised observations {Yni, 1 ≤ n ≤ N} with a standard Fréchet

marginal distribution.

Step 2. Estimate the extremal coefficient between each pair of sites.
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The only thing new about the concept of extremal coefficient is its name.

The idea has been proposed by Tiago de Oliveira (see de Haan 1985) as an

index of the extreme-value dependence between two variables, and has also

appeared in various guises in the hydrology literature. The name chosen here

is intended as a link between the correlation coefficient (of which it is, in

some sense, an extreme values analogue) and the extremal index (Leadbetter

1983), which is a similar concept for measuring the effect of dependence in

a stationary stochastic process. Direct use of the correlation coefficient in

extreme value theory is less desirable because the correlation coefficient lacks

the property of invariance under marginal transformations, and some of the

cases we consider (including the Fréchet) do not even have finite variance.

Suppose (X1, X2) have a bivariate extreme value distribution with com-

mon marginal distribution function F ; the extremal coefficient θ between X1

and X2 is defined by the relation Pr{max(X1, X2) ≤ x} = F θ(x). In terms

of the dependence function A (see (2.5)), we have θ = 2A(1/2). In terms of

the “equivalent number of independent sites” concept described in Section

1, it can be seen that the extremal coefficient is just that when there are

only two sites. Finally, it should be noted that Buishand (1984) defined a

function θ(x) by Pr{max(X1, X2) ≤ x} = F θ(x)(x); this is a constant when

the joint distribution is indeed a bivariate extreme value distribution but

in practice is often found not to be constant, a phenomenon also noted by

Tawn (1990b, 1990c) in a number of real data series.

If the marginal distribution is unit Fréchet, then 1/X1 and 1/X2 have

unit exponential distributions and 1/ max(X1, X2) has an exponential dis-

tribution with mean 1/θ. This suggests an obvious estimator. Returning

to our present context in which we have transformed data {Yni, 1 ≤ n ≤
N, 1 ≤ i ≤ p}, and noting that the maximum likelihood fitting of the

marginal distributions will have ensured that
∑

n Y −1
ni =

∑
n Y −1

nj = N , the

natural estimator of the extremal coefficient θij between sites i and j is
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θ̃ij = N/

{
N∑

n=1

min(Y −1
ni , Y −1

nj )

}
. (4.2)

These quantities are called raw estimates of the extremal coefficients, be-

cause they are not based on any model.

The theoretical properties of bivariate extremes show that 1 ≤ θij ≤ 2,

the extreme cases 1 and 2 corresponding respectively to complete depen-

dence and independence. The estimator θ̃ij could take any value between 1

and +∞, the former only if Yni = Ynj for all n, but cases for which θ̃ij > 2

correspond to negative dependence between the sites and are comparatively

rare in an extreme values context.

It should be noted that the concept of extremal coefficient has an obvious

extension to more than 2 variables: the extremal coefficient of k variables

X1, ..., Xk, assumed multivariate extreme with common marginal distribu-

tion function F , is defined by the relation Pr{max(X1, ..., Xk) ≤ x} = F θ(x).

In this case the theoretical range is 1 ≤ θ ≤ k.

Step 3. Estimate the standard error of each θ̃ij .

This must take into account Step 1 as well as Step 2, since the marginal

transformation appreciably affects the standard error. To see this, consider

the extreme case in which Yin = Yjn for all n. The marginal transformation

ensures
∑

n Y −1
ni =

∑
n Y −1

nj = N and hence θ̃ij = 1; in other words, the stan-

dard error is 0. Without the marginal transformation, 1/θ̃ij would be the

mean of N independent unit exponential variates and hence have variance

1/N .

In view of this difficulty, there is no simple approximate formula for the

standard error. The most reasonable procedure would appear to be one

based on resampling, i.e. jackknife or bootstrap. For the present study the

jackknife estimator of standard error (Efron 1982) was used; this leads to

the formula for the standard error
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{
N − 1

N

N∑
n=1

(
θ̃
(n)
ij − θ̃ij

)2
}1/2

,

in which θ̃
(n)
ij is the estimate obtained from the n’th jackknife sample in

which the obervations from year n are omitted. Of course, the marginal

parameters must be re-estimated for each jackknife sample.

Step 4. Fit a max-stable model to the θ̃ij ’s.

The algorithm proposed here is a sum of squares of weighted residuals:

defining

rij = (θ̃ij − θ̂ij)/sij ,

where θ̂ij is the fitted value from a model, θ̃ij is the raw estimate calculated in

Step 2, and sij the standard error of Step 3, the model parameters are chosen

to minimise
∑

i,j r2
ij . The weighted sum of squares criterion was proposed by

S.J. Neil, as part of an M.Phil. thesis at the University of Surrey, after an

earlier attempt based on unweighted least squares was found unsatisfactory

in regions of high dependence, when θ̃ij is close to 1. Nevertheless, it is still

very much an ad hoc criterion; it is an open question whether it is possible

to find some means of approximating the likelihood function.

Step 5. Test the fit of the model.

One method of testing fit is the obvious one of examining the weighted

residuals of Step 4 for outlying values, or for any systematic evidence of non-

random behaviour (plotting residuals against fitted values or against other

variables such as the distances between the points). A second idea, noting

that the estimation algorithm is based entirely on pairwise dependences, is

to test the fit on higher-order dependences. This can be done by calculating

the higher-order extremal coefficients mentioned at the end of Step 2, with
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their standard errors, and comparing them with the fitted values based on

the estimated model.

5. AN EXAMPLE

Data were supplied by the Institute of Hydrology in the form of 21

years’ annual maxima of daily rainfall measurements at a network of 405 rain

gauges in South-East England. For the purpose of the present study, it is not

feasible to fit the proposed models to anything like 405 sites simultaneously,

and two subsets of 10 sites, one a group of close neighbours (on the Isle of

Wight) and the other chosen so as to be scattered throughout the network,

have been used. The calculations have been repeated for a number of other

subsets of similar numbers of sites, with similar results to those reported

here. Figure 1 shows the grid points for our two subsets, labelled 0,1,2...,9

for subset 1 and A,B,...,J for subset 2; units of measurement are tenths of a

kilometre.

We first consider subset 1, which cover a total area approximately 20 km.

by 15 km. There are 45 raw extremal coefficients calculated from all pairs

of points, and these are plotted against the distance between the points in

Figure 2. All the raw extremal coefficients lie between 1.1 and 1.9 and, as

is to be expected, they tend to increase with distance.

The Gaussian model is defined by the covariance matrix Σ; in the present

(2×2) case this is most conveniently parametrised by writing Σ−1 =
(

α β
β γ

)
.

The model was fitted to the raw extremal coefficients, producing estimates

(with standard errors in parentheses) of α̂ = 1.7 × 10−4(0.3 × 10−4), β̂ =

−0.5 × 10−4(0.3 × 10−4), γ̂ = 1.4 × 10−4(0.3 × 10−4). The fitted values θ̂ij

are plotted against distance in Figure 3; the figure gives an indication of

how much the variability of the extremal coefficients has been reduced by

the model fit. The residuals defined in Step 4 of Section 4 have been plot-

ted against a variety of related variables, including both the fitted values
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of extremal coefficient and a variable indicating the direction from one site

to the other, but the only plot to show any interesting feature is Figure 5,

which is a plot of residual against distance. In this figure it can be seen

that there is a tendency for residual to decrease with distance. A negative

residual indicates that the fitted model exhibits less dependence than the

raw data, so the plot suggests that the model leads to too much dependence

at short distances and too little at larger distances. This feature was also

observed in several other data sets tried. A possible explanation is that the

assumed f0 function is too short-tailed, and it was in fact this feature that

motivated the introduction of the t model in Section 3, as an alternative to

the Gaussian model.

Consequently, a t-extreme value process was also fitted to the data, re-

sulting in v̂=2.5 and a reduction in
∑

r2
ij from 15.2 under the Gaussian model

to 14.0 under the t model. In this case we find α̂ = 5.9× 10−2(2.1× 10−2),

β̂ = −1.7 × 10−2(1.1 × 10−2), γ̂ = 2.4 × 10−2(0.8 × 10−2); the values are

not at all comparable with those in the Gaussian case but this is presum-

ably explained by the fact that the t density with 2.5 degrees of freedom is

quite different from a Gaussian density. A plot of fitted extremal coefficient

against distance is in Figure 4, and of residuals against distance is in Figure

6. It would appear that the t model is a significant improvement in fit over

the Gaussian model, and that the trend apparent in Figure 5 has largely

disappeared in Figure 6.

We now consider the higher-order extremal coefficients. The fitted values

here used the simulation formula (3.4). In the case of the t model, this

required sumulating from the density (3.5) - this is discussed in Appendix

4. Three subsets of the sites were considered:

(a) Sites 0,1,2,3,9, raw extremal coefficient 2.1 (standard error 0.3),

(b) Sites 4,5,6,7,8, raw extremal coefficient 1.7 (standard error 0.2),

(c) All 10 sites, raw extremal coefficient 2.7 (standard error 0.5).

The fitted values, estimated using the simulation technique based on
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(3.4), were respectively 1.77, 1.62, 2.54 under the Gaussian model, 2.15,

1.93, 3.48 under the t model. In this case the comparison between the two

models is not clear-cut, though either seems to be performing adequately

when the standard errors are taken into account.

We also consider the second subset of 10 sites depicted in Figure 1. In

this case the region is much larger (200 by 140 km.) and we might expect

the extremal coefficients to be larger, and this is in fact the case as shown

in Figure 7. In fact we now have several raw extremal coefficients greater

than 2 though their individual standard errors are such that this does not

by itself contradict the model described in this paper.

Again the Gaussian and t models were both fitted to the data, the re-

sulting values of
∑

r2
ij being respectively 22.1 and 16.4, with v̂ = 2.62 under

the t model. The parameter estimates are α̂ = 1.4 × 10−4(0.9 × 10−4),

β̂ = −0.7 × 10−4(0.5 × 10−4), γ̂ = 0.5 × 10−4(0.2 × 10−4) under the Gaus-

sian model, and α̂ = 1.3 × 10−2(1.1 × 10−2), β̂ = −1.1 × 10−2(1.1 × 10−2),

γ̂ = 1.3 × 10−2(1.2 × 10−2) under the t model. In this case the standard

errors, which were large enough to cause concern in the earlier example,

create serious doubts over the credibilty of the parameter estimates. No sin-

gle explanation for this phenomenon stands out, though it seems likely that

the indirect method of estimation (essentially, an attempt to estimate storm

profiles from annual maxima data) is responsible, and that a direct method

of fitting through daily rainfall data would be superior. Note that, in both

the cases we have considered, under the t model the estimated v̂ is far from

∞ and in fact quite close to its limiting value 2, when the density ceases

to be defined. Plots of residuals against distance show similar features to

those of Figure 4 and 6 (less markedly), but the most interesting plots in

this case are those of fitted versus raw values of extremal coefficient (Figures

8 and 9). Under the Gaussian model, many fitted values are almost exactly

2, corresponding to independence, whereas this is not the case under the t

model. The fact that the t model retains some dependence over the larger
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distances in the sample might be thought an additional reason for preferring

the t model, though the argument for this is not clear-cut.

Once again, the models were tested by assessing their ability to reproduce

higher-order extremal coefficients:

(a) Sites 1,2,4,5,6, raw extremal coefficient 3.3 (standard error 0.6),

(b) Sites 0,3,7,8,9, raw extremal coefficient 3.5 (standard error 0.8),

(c) All 10 sites, raw extremal coefficient 5.7 (standard error 1.3).

The fitted values are 3.40, 4.78 and 7.09 under the Gaussian model,

3.35, 4.05 and 6.69 under the t model. In this case the t model seems to be

performing the better of the two, though only slightly, and both models are

underestimating the true dependence to some extent.

It would of course be unwise to draw firm conclusions on the basis of just

two comparatively small examples, but the two examples do seem to indicate

that both models can be adequately fitted to the data, and give sensible

conclusions, with a preference for the t model though it is not completely

clear-cut.

6. CONCLUSIONS.

The main purpose of this study has been to present some of the properties

of max-stable models. There remain many questions about their statistical

application, including the choice of an appropriate model class, the possi-

bility of improved estimation algorithms or diagnostic tools, and (perhaps

most importantly) the extension from an annual maximum to a threshold

approach.

We conclude by mentioning another aspect of the models which points

to a potentially much greater range of applicability. The Gaussian model (or

the t model for fixed v) is defined by a covariance matrix Σ so that the depen-

dence between two sites ti and tj depends on (ti−tj)T Σ−1(ti−tj). However,

there is another way to think about this as a standardised model in which

19



Σ is the 2 × 2 identity matrix, applied to transformed sites t∗i = Σ−1/2ti.

In other words, by applying a linear transformation to the positions of the

measurement sites, we reduce the max-stable process to a single completely

defined process. This is reminiscent of some recent work on estimating spa-

tial correlations. For example, two discussion contributions by Lewis (1989)

and by Guttorp and Sampson (1989) focussed on the possibility of improving

a spatial model by “moving” one of the sites, and in further as yet unpub-

lished work, P. Guttorp and P. Sampson have proposed a systematic scheme

of this form, a form of multidimensional scaling, in which they used bivari-

ate splines to transform the site positions. Clearly there are possibilities of

this nature in the context of the work described here - instead of assuming

a single linear transformation to all the sites, we could apply different lin-

ear transformations to different parts of space. This idea could provide a

basis for extending the scheme from small numbers of sites, as have been

considered here, to a much more general scheme involving large number of

sites.
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APPENDIX 1: PROOF OF (2.7).

We require to show

∫
Sp

max
i

s−α
i

yi
ds =

p−1∏
i=1

(i− α)−1

( p∑
i=1

y
−1/α
i

)α

(A1.1)

where Sp is the unit simplex in <p, ds is Lebesgue measure on Sp, yi > 0

for all i and 0 < α < 1 .

Let µ be a measure on [0,∞]p such that the set {(x1, ..., xp) ∈ <p : 0 ≤
xi ≤ zi for at least one i} has µ-measure (

∑
z
1/α
i )α = H(z1, ..., zp) say. The

corresponding density is

h(z1, ..., zp) = (−1)p−1 ∂p

∂z1...∂zp
H(z1, ..., zp)

=
p−1∏
i=1

i− α

α

p∏
i=1

z
1/α−1
i

( p∑
i=1

z
1/α
i

)α−p

. (A1.2)

Now make the transformation
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zi = rsα
i (1 ≤ i ≤ p− 1), zp = r(1− s1 − ...− sp−1)α

where r = (
∑

z
1/α
i )α. For convenience of notation, let sp = 1−s1−...−sp−1.

Let J1(r, s1, ..., sp) denote the Jacobian of the transformation from (z1, ..., zp)

to (r, s1, ..., sp−1). By expanding the first row or column of the determinant

it can be seen that Jp satisfies the recurrence relation

Jp(r, s1, ..., sp) = αrsα−1
1 Jp−1(r, s2, ..., sp) + sα

1 (αr)p−1
p∏

i=2

sα−1
i

from which we deduce that

Jp(r, s1, ..., sp) = (αr)p−1

( p∏
i=1

sα−1
i

)( p∑
i=1

si

)
. (A1.3)

Combining (A1.2) and (A1.3), the density of µ in (r, s1, ..., sp−1) co-ordinates

turns out to be the constant
∏p−1

i=1 (i− α).

To complete the calculation, we write

(
∑

z
1/α
i )α = µ{r ≤ max

i
zis

−α
i }

=
p−1∏
i=1

(i− α)
∫

Sp

∫ ∞

0
I(r ≤ max

i
zis

−α
i )drds

=
p−1∏
i=1

(i− α)
∫

Sp

max
i

(zis
−α
i )ds

which is equivalent to (A1.1), as required.

APPENDIX 2: PROOF OF (3.1).

We use (3.4). It can be seen that f0(X)/y1 > f0(X − t1 + t1)/y2 if and

only if

XT Σ−1X + 2 log y1 < (X − t2 + t1)T Σ−1(X − t2 + t1) + 2 log y2
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and this occurs if and only if

XT Σ−1(t1 − t2) > log(y1/y2)− (t1 − t2)T Σ−1(t1 − t2)/2. (A2.1)

However, XT Σ−1(t1 − t2) is a random variable with mean 0, variance (t1 −
t2)T Σ−1(t1 − t2) = a2 and hence the probability of the event (A2.1) is

Φ(a/2+ log(y1/y2)/a). Combining this with the similar expression with the

indices 1,2 interchanged, leads to the result.

APPENDIX 3: PROOF OF (3.6).

Again using (3.4), the task is to show that

Pr{f0(X) > f0(X − t2 + t1)} =
1
2

{
1 + B

(
a2

a2 + 4v2
;
1
2
,
v − d

2

)}
(A3.1)

when X has density f0 defined by (3.5).

First, note that f0(X) > f0(X − t2 + t1) if and only if XT Σ−1(t1− t2) >

−a2/2. Writing X = Σ1/2Y , the density of Y , say g0, is given by

g0(y) = (πv)−d/2 Γ(v/2)
Γ((v − d)/2)

(
1 +

yT y

v

)−v/2

. (A3.2)

By making a further orthogonal transformation of Y , it can be seen that

the desired probability is the same as

Pr{Y1 > −a/2} (A3.3)

when Y = (Y1, ..., Yp) has the density g0. Thus we concentrate on (A3.3).

Consider the integral

J =
∫

y:|y1|>b

(
1 +

yT y

v

)−v/2

dy.
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We may write

J = lim
σ→∞

∫
y:|y1|>b

exp

(
−yT y

2σ2

)(
1 +

yT y

v

)−v/2

dy

= lim
σ→∞

(2πσ2)d/2E


(

1 +
Y T Y

v

)−v/2

I(|Y1| > b)


where Y is d-variate normal with mean 0 and covariance σ2 times the identity

matrix.

Writing Y T Y/σ2 = S + T with S, T independent respectively χ2
1 and

χ2
d−1, where S = Y T

1 Y1/σ2, we have

J = lim
σ→∞

(2πσ2)d/2
∫ ∞

b2/σ2

∫ ∞

0

{
1 +

(s + t)σ2

v

}−v/2

·

· 1
2d/2Γ((d− 1)/2)Γ(1/2)

s−1/2e−s/2t(d−3)/2e−t/2dtds

which on substituting s = uv/σ2, t = wv/σ2 and taking the limit, reduces

to

J =
(πv)d/2

Γ((d− 1)/2)Γ(1/2)

∫ ∞

b2/v

∫ ∞

0
u−1/2w(d−3)/2(1 + u + w)−v/2dwdu.

Writing this integral in the form

J =
(πv)d/2

Γ((d− 1)/2)Γ(1/2)

∫ ∞

c
u−1/2

∫ ∞

u
(w − u)(d−3)/2(1 + w)−v/2dwdu

with c = b2/v, and making the substitution w = (1 + u)/x− 1, (0 ≤ x ≤ 1)

the inner integral reduces to a standard beta integral from which we deduce

J =
(πv)d/2Γ((v − d + 1)/2)

Γ(v/2)Γ(1/2)

∫ ∞

c
u−1/2(1 + u)(d−v−1)/2du.
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The further substitution u = 1/(1− y)− 1 (c/(1 + c) ≤ y ≤ 1) then reduces

this to

J =
(πv)d/2Γ((v − d)/2)

Γ(v/2)

{
1−B

(
c

1 + c
;
1
2
,
v − d

2

)}
.

Writing b = a/2, we now see that

Pr{|Y1| > a/2} =

{
1−B

(
a2

a2 + 4v
;
1
2
,
v − d

2

)}

and the symmetry of the distribution of Y1 then allows us to deduce (A3.1)

from (A3.3).

APPENDIX 4: SIMULATING FROM THE

MULTIVARIATE t DISTRIBUTION.

The density from which we wish to simulate is (3.5), but any transfor-

mation of the form x = Ay, where AAT = Σ, reduces this to the density

g0 given in (A3.2). Thus we concentrate on the latter. Note that, for this

purpose, it is not necessary that A be symmetric; in the 2×2 case, with say

Σ =
(

a b
b c

)
, the most convenient choice is A =

(
a1/2 0

ba−1/2 (c− b2/a)1/2

)
.

Now suppose Y = (Y1, ...., Yd) is desired from (A3.2). The density is

radially symmetric, so we may write Y = (RW1, ...., RWd) where R2 = Y 2
1 +

...+Y 2
d and (W1, ...,Wd) are uniformly distributed over the unit sphere. The

easiest way to simulate the W ’s is to generate Z1, ..., Zd standard normal,

and then set Wi = Zi/(
∑

Z2
j )1/2. For R, note that the marginal density at

R = r is proportional to (1 + r2/v)−v/2rd−1 (0 < r < ∞) which is the same

thing as saying R = {vS/(1 − S)}1/2 where S has a beta distribution on

(0,1) with parameters d/2 and (v−d)/2. When d = 2 this simplifies further

and we may write S = 1− U2/(v−2) where U is uniform on (0,1).
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Figure Captions

Fig. 1. Plot of study region (units of 0.1km). Points 0–9 are subset 1

and A–J are subset 2.

Fig. 2. Plot of raw extremal coefficient against distance, subset 1.

Fig. 3. Plot of fitted extremal coefficient against distance, Gaussian

model, subset 1.

Fig. 4. Plot of fitted extremal coefficient against distance, t model,

subset 1.

Fig. 5. Residuals against distance, Gaussian model, subset 1.

Fig. 6. Residuals against distance, t model, subset 1.

Fig. 7. Plot of raw extremal coefficient against distance, subset 2.

Fig. 8. Fitted v. raw values of extremal coefficient, Gaussian model,

subset 2.

Fig. 9. Fitted v. raw values of extremal coefficient, t model, subset 2.
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